Section: Ecology
Topic: Biology of interactions, Ecology, Statistics

Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks

Corresponding author(s): Nicvert, Lisa (lisa.nicvert@fondationbiodiversite.fr)

10.24072/pcjournal.580 - Peer Community Journal, Volume 5 (2025), article no. e73.

Get full text PDF Peer reviewed and recommended by PCI

Species interactions in ecological communities are often represented as networks, the structure of which is thought to be linked to species' interaction niches (or Eltonian niches). Interaction niches are intimately related to the notion of trait matching, which posits that a species interacts preferentially with partners whose traits are complementary to their own. Multivariate methods are commonly used to quantify species environmental niches (or Grinnellian niches). More recently, some of these methods have also been used to study the interaction niche, but they consider only the niche optimum and require trait data. In this article, we use the correspondence analysis (CA) framework to study interaction networks and investigate trait matching without requiring trait data, using the notion of latent traits. We use reciprocal scaling, a method related to CA, to estimate niche optima and breadths, defined respectively as the mean and standard deviation of the latent traits of species' interacting partners. We present the method, test its performance using a simulation model we designed, and analyze a real frugivory network between birds and plants. The simulation study shows that the method is able to recover niche breadths and optima for data generated with parameters typical of ecological networks. The birds-plants network analysis shows strong relationships between species latent traits and niche breadths: a posteriori correlation with measured traits suggests that birds and plants of intermediate size tend to have the broadest niches. Additionally, birds preferentially foraging in the understory have broader niches than birds preferentially foraging in the canopy. CA and reciprocal scaling are described as fruitful exploratory methods to characterize species interaction profiles, provide an ecologically meaningful graphical representation of interaction niches, and explore the effect of latent traits on network structure.

Published online:
DOI: 10.24072/pcjournal.580
Type: Research article
Keywords: Interaction niche; Trait matching; Correspondence analysis; Reciprocal scaling; Ecological network

Nicvert, Lisa 1, 2; Fritz, Hervé 3, 4; Dray, Stéphane 1

1 Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS – Villeurbanne, France
2 FRB-Cesab – Montpellier, France
3 REHABS, International Research Laboratory, CNRS-NMU-UCBL, Nelson Mandela University – George, South Africa
4 Sustainability Research Unit, Nelson Mandela University – George, South Africa
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_580,
     author = {Nicvert, Lisa and Fritz, Herv\'e and Dray, St\'ephane},
     title = {Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks},
     journal = {Peer Community Journal},
     eid = {e73},
     publisher = {Peer Community In},
     volume = {5},
     year = {2025},
     doi = {10.24072/pcjournal.580},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.580/}
}
TY  - JOUR
AU  - Nicvert, Lisa
AU  - Fritz, Hervé
AU  - Dray, Stéphane
TI  - Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks
JO  - Peer Community Journal
PY  - 2025
VL  - 5
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.580/
DO  - 10.24072/pcjournal.580
LA  - en
ID  - 10_24072_pcjournal_580
ER  - 
%0 Journal Article
%A Nicvert, Lisa
%A Fritz, Hervé
%A Dray, Stéphane
%T Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks
%J Peer Community Journal
%D 2025
%V 5
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.580/
%R 10.24072/pcjournal.580
%G en
%F 10_24072_pcjournal_580
Nicvert, L.; Fritz, H.; Dray, S. Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks. Peer Community Journal, Volume 5 (2025), article  no. e73. https://doi.org/10.24072/pcjournal.580

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.ecology.100765

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Abdi, H.; Béra, M. Correspondence Analysis, Encyclopedia of Social Network Analysis and Mining, Springer, New York, NY, 2017, pp. 1-12 | DOI

[2] Albrecht, J.; Classen, A.; Vollstädt, M. G. R.; Mayr, A.; Mollel, N. P.; Schellenberger Costa, D.; Dulle, H. I.; Fischer, M.; Hemp, A.; Howell, K. M.; Kleyer, M.; Nauss, T.; Peters, M. K.; Tschapka, M.; Steffan-Dewenter, I.; Böhning-Gaese, K.; Schleuning, M. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient, Nature Communications, Volume 9 (2018) no. 1, p. 3177 | DOI

[3] Bascompte, J.; Jordano, P. Plant-Animal Mutualistic Networks: The Architecture of Biodiversity, Annual Review of Ecology, Evolution, and Systematics, Volume 38 (2007) no. 1, pp. 567-593 | DOI

[4] Beh, E. J. Simple Correspondence Analysis: A Bibliographic Review, International Statistical Review, Volume 72 (2004) no. 2, pp. 257-284 | DOI

[5] Benadi, G.; Dormann, C. F.; Fründ, J.; Stephan, R.; Vázquez, D. P. Quantitative Prediction of Interactions in Bipartite Networks Based on Traits, Abundances, and Phylogeny, The American Naturalist, Volume 199 (2022) no. 6, pp. 841-854 | DOI

[6] Bender, I. M. A.; Kissling, W. D.; Blendinger, P. G.; Böhning-Gaese, K.; Hensen, I.; Kühn, I.; Muñoz, M. C.; Neuschulz, E. L.; Nowak, L.; Quitián, M.; Saavedra, F.; Santillán, V.; Töpfer, T.; Wiegand, T.; Dehling, D. M.; Schleuning, M. Morphological trait matching shapes plant–frugivore networks across the Andes, Ecography, Volume 41 (2018) no. 11, pp. 1910-1919 | DOI

[7] Blonder, B.; Lamanna, C.; Violle, C.; Enquist, B. J. The n-dimensional hypervolume, Global Ecology and Biogeography, Volume 23 (2014) no. 5, pp. 595-609 | DOI

[8] Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks, BMC Ecology, Volume 6 (2006) no. 1, pp. 1-12 | DOI

[9] Blüthgen, N.; Fründ, J.; Vázquez, D. P.; Menzel, F. What do interaction network metrics tell us about specialization and biological traits, Ecology, Volume 89 (2008) no. 12, pp. 3387-3399 | DOI

[10] Carscadden, K. A.; Emery, N. C.; Arnillas, C. A.; Cadotte, M. W.; Afkhami, M. E.; Gravel, D.; Livingstone, S. W.; Wiens, J. J. Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation, The Quarterly Review of Biology, Volume 95 (2020) no. 3 | DOI

[11] Chase, J. M.; Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches, Interspecific Interactions, University of Chicago Press, Chicago, IL, 2003 | DOI

[12] Dormann, C. F.; Fründ, J.; Schaefer, H. M. Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations, Annual Review of Ecology, Evolution, and Systematics, Volume 48 (2017) no. 1 | DOI

[13] Dray, S. On the number of principal components: A test of dimensionality based on measurements of similarity between matrices, Computational Statistics & Data Analysis, Volume 52 (2008) no. 4, pp. 2228-2237 | DOI

[14] ter Braak, C. J. F. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis, Ecology, Volume 67 (1986) no. 5, pp. 1167-1179 | DOI

[15] ter Braak, C. J. F.; Šmilauer, P.; Dray, S. Algorithms and biplots for double constrained correspondence analysis, Environmental and Ecological Statistics, Volume 25 (2018) no. 2, pp. 171-197 | DOI

[16] Treurnicht, M.; Pagel, J.; Tonnabel, J.; Esler, K. J.; Slingsby, J. A.; Schurr, F. M. Functional traits explain the Hutchinsonian niches of plant species, Global Ecology and Biogeography, Volume 29 (2020) no. 3 | DOI

[17] van Dam, A.; Dekker, M.; Morales-Castilla, I.; Rodríguez, M. Á.; Wichmann, D.; Baudena, M. Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity, Scientific Reports, Volume 11 (2021) no. 1, p. 8926 | DOI

[18] Dehling, D. M.; Lai, H. R.; Stouffer, D. B. Eltonian Niche Modelling: Applying Joint Hierarchical Niche Models to Ecological Networks, Ecology Letters, Volume 28 (2025) no. 6 | DOI

[19] Dehling, D. M.; Bender, I. M. A.; Blendinger, P. G.; Muñoz, M. C.; Quitián, M.; Saavedra, F.; Santillán, V.; Böhning-Gaese, K.; Neuschulz, E.-L.; Schleuning, M. ANDEAN frugivory: data on plant–bird interactions and functional traits of plant and bird species from montane forests along the Andes, 2021 | DOI

[20] Dehling, D. M.; Jordano, P.; Schaefer, H. M.; Böhning-Gaese, K.; Schleuning, M. Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions, Proceedings of the Royal Society B: Biological Sciences, Volume 283 (2016) no. 1823, p. 20152444 | DOI

[21] Dehling, D. M.; Stouffer, D. B. Bringing the Eltonian niche into functional diversity, Oikos, Volume 127 (2018) no. 12, pp. 1711-1723 | DOI

[22] Dehling, D. M.; Töpfer, T.; Schaefer, H. M.; Jordano, P.; Böhning-Gaese, K.; Schleuning, M. Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales, Global Ecology and Biogeography, Volume 23 (2014) no. 10, pp. 1085-1093 | DOI

[23] Devictor, V.; Clavel, J.; Julliard, R.; Lavergne, S.; Mouillot, D.; Thuiller, W.; Venail, P.; Villéger, S.; Mouquet, N. Defining and measuring ecological specialization, Journal of Applied Ecology, Volume 47 (2010) no. 1, pp. 15-25 | DOI

[24] Dolédec, S.; Chessel, D.; ter Braak, C. J. F.; Champely, S. Matching species traits to environmental variables: a new three-table ordination method, Environmental and Ecological Statistics, Volume 3 (1996) no. 2, pp. 143-166 | DOI

[25] Dray, S.; Legendre, P. Testing the Species Traits–Environment Relationships: The Fourth-Corner Problem Revisited, Ecology, Volume 89 (2008) no. 12, pp. 3400-3412 | DOI

[26] Eklöf, A.; Jacob, U.; Kopp, J.; Bosch, J.; Castro-Urgal, R.; Chacoff, N. P.; Dalsgaard, B.; de Sassi, C.; Galetti, M.; Guimarães, P. R.; Lomáscolo, S. B.; Martín González, A. M.; Pizo, M. A.; Rader, R.; Rodrigo, A.; Tylianakis, J. M.; Vázquez, D. P.; Allesina, S. The dimensionality of ecological networks, Ecology Letters, Volume 16 (2013) no. 5, pp. 577-583 | DOI

[27] Ellis, P. D. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results, Cambridge University Press, Cambridge, United Kingdom, 2010

[28] Elton, C. The animal community, Animal Ecology, Sidgwick and Jackson, London, 1927, p. 50

[29] Foster, M. S. Factors Influencing Bird Foraging Preferences among Conspecific Fruit Trees, The Condor, Volume 92 (1990) no. 4, pp. 844-854 | DOI

[30] Fründ, J.; McCann, K. S.; Williams, N. M. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model, Oikos, Volume 125 (2016) no. 4, pp. 502-513 | DOI

[31] Gauch Jr., H. G.; Whittaker, R. H. Coenocline Simulation, Ecology, Volume 53 (1972) no. 3, pp. 446-451 | DOI

[32] Godoy, O.; Bartomeus, I.; Rohr, R. P.; Saavedra, S. Towards the Integration of Niche and Network Theories, Trends in Ecology & Evolution, Volume 33 (2018) no. 4, pp. 287-300 | DOI

[33] Greenacre, M. The contributions of rare objects in correspondence analysis, Ecology, Volume 94 (2013) no. 1, pp. 241-249 | DOI

[34] Grinnell, J. Geography and Evolution, Ecology, Volume 5 (1924) no. 3, pp. 225-229 | DOI

[35] Hill, M. O. Reciprocal Averaging: An Eigenvector Method of Ordination, The Journal of Ecology, Volume 61 (1973) no. 1, p. 237 | DOI

[36] Hill, M. O. Correspondence Analysis: A Neglected Multivariate Method, Journal of the Royal Statistical Society. Series C (Applied Statistics), Volume 23 (1974) no. 3, pp. 340-354 | DOI

[37] Hirschfeld, H. O. A Connection between Correlation and Contingency, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 31 (1935) no. 4, pp. 520-524 | DOI

[38] Hutchinson, G. E. Concluding Remarks, Cold Spring Harbor Symposia on Quantitative Biology, Volume 22 (1957) no. 0, pp. 415-427 | DOI

[39] Ings, T. C.; Montoya, J. M.; Bascompte, J.; Blüthgen, N.; Brown, L.; Dormann, C. F.; Edwards, F.; Figueroa, D.; Jacob, U.; Jones, J. I.; Lauridsen, R. B.; Ledger, M. E.; Lewis, H. M.; Olesen, J. M.; Van Veen, F. F.; Warren, P. H.; Woodward, G. Ecological networks – beyond food webs, Journal of Animal Ecology, Volume 78 (2009) no. 1, pp. 253-269 | DOI

[40] Kermavnar, J.; Kutnar, L.; Marinšek, A.; Babij, V. Are ecological niche optimum and width of forest plant species related to their functional traits?, Flora, Volume 301 (2023) | DOI

[41] Legendre, P.; Legendre, L. Numerical Ecology, Elsevier, Oxford, United Kingdom, 2012

[42] Legendre, P.; Galzin, R.; Harmelin-Vivien, M. L. Relating Behavior to Habitat: Solutions to The fourth-Corner Problem, Ecology, Volume 78 (1997) no. 2, pp. 547-562 | DOI

[43] Lewinsohn, T. M.; Inácio Prado, P.; Jordano, P.; Bascompte, J.; M. Olesen, J. Structure in plant–animal interaction assemblages, Oikos, Volume 113 (2006) no. 1, pp. 174-184 | DOI

[44] Maglianesi, M. A.; Böhning-Gaese, K.; Schleuning, M. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant–pollinator interactions, Journal of Animal Ecology, Volume 84 (2015) no. 3, pp. 655-664 | DOI

[45] Minchin, P. R. Simulation of multidimensional community patterns: towards a comprehensive model, Vegetatio, Volume 71 (1987) no. 3, pp. 145-156 | DOI

[46] Nicvert, L.; Fritz, H.; Dray, S. Code and data for: "Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks", Figshare, 2025 | DOI

[47] Nicvert, L.; Fritz, H.; Dray, S. Supplementary information for : "Trait matching without traits: using correspondence analysis to investigate the latent structure of interaction networks", Figshare, 2025 | DOI

[48] Palacio, F.; Valoy, M.; Bernacki, F.; Sánchez, M.; Núñez-Montellano, M.; Varela, O.; Ordano, M. Bird fruit consumption results from the interaction between fruit-handling behaviour and fruit crop size, Ethology Ecology & Evolution, Volume 29 (2017) no. 1, pp. 24-37 | DOI

[49] Pappas, J. L.; Stoermer, E. F. Multivariate measure of niche overlap using canonical correspondence analysis, Écoscience, Volume 4 (1997) no. 2, pp. 240-245 | DOI

[50] Peralta, G.; CaraDonna, P. J.; Rakosy, D.; Fründ, J.; Pascual Tudanca, M. P.; Dormann, C. F.; Burkle, L. A.; Kaiser-Bunbury, C. N.; Knight, T. M.; Resasco, J.; Winfree, R.; Blüthgen, N.; Castillo, W. J.; Vázquez, D. P. Predicting plant–pollinator interactions: concepts, methods, and challenges, Trends in Ecology & Evolution (2024), p. S0169534723003361 | DOI

[51] Peres-Neto, P. R.; Legendre, P.; Dray, S.; Borcard, D. Variation Partitioning of Species Data Matrices: Estimation and Comparison of Fractions, Ecology, Volume 87 (2006) no. 10, pp. 2614-2625 | DOI

[52] Phillips, R. D.; Peakall, R.; Van Der Niet, T.; Johnson, S. D. Niche Perspectives on Plant–Pollinator Interactions, Trends in Plant Science, Volume 25 (2020) no. 8, pp. 779-793 | DOI

[53] Poisot, T.; Stouffer, D. B.; Gravel, D. Beyond species: Why ecological interaction networks vary through space and time, Oikos, Volume 124 (2015) no. 3, pp. 243-251 | DOI

[54] Poisot, T. Moving functional network ecology forward (without traits), Peer Community in Ecology, Volume 1 (2025), p. 100765 | DOI

[55] R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2024

[56] Santamaría, L.; Rodríguez-Gironés, M. A. Linkage Rules for Plant–Pollinator Networks: Trait Complementarity or Exploitation Barriers?, PLOS Biology, Volume 5 (2007) no. 2, p. e31 | DOI

[57] Schleuning, M.; Blüthgen, N.; Flörchinger, M.; Braun, J.; Schaefer, H. M.; Böhning-Gaese, K. Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata, Ecology, Volume 92 (2011) no. 1, pp. 26-36 | DOI

[58] Schoener, T. W. Theory of Feeding Strategies, Annual Review of Ecology, Evolution and Systematics, Volume 2 (1971) no. Volume 2, 1971, pp. 369-404 | DOI

[59] Sexton, J. P.; Montiel, J.; Shay, J. E.; Stephens, M. R.; Slatyer, R. A. Evolution of Ecological Niche Breadth, Annual Review of Ecology, Evolution, and Systematics, Volume 48 (2017) no. 1, pp. 183-206 | DOI

[60] Singer, M. C.; McBride, C. S. Geographic mosaics of species' association: a definition and an example driven by plant–insect phenological synchrony, Ecology, Volume 93 (2012) no. 12, pp. 2658-2673 | DOI

[61] Thiel, S.; Willems, F.; Farwig, N.; Rehling, F.; Schabo, D. G.; Schleuning, M.; Shahuano Tello, N.; Töpfer, T.; Tschapka, M.; Heymann, E. W.; Heer, K. Vertically stratified frugivore community composition and interaction frequency in a liana fruiting across forest strata, Biotropica, Volume 55 (2023) no. 3, pp. 650-664 | DOI

[62] Thioulouse, J.; Chessel, D. A Method for Reciprocal Scaling of Species Tolerance and Sample Diversity, Ecology, Volume 73 (1992) no. 2, pp. 670-680 | DOI

[63] Thioulouse, J.; Dray, S.; Dufour, A.-B.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with {ade4}, Springer, 2018 | DOI

[64] Vázquez, D. P.; Blüthgen, N.; Cagnolo, L.; Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review, Annals of Botany, Volume 103 (2009) no. 9, pp. 1445-1457 | DOI

[65] Wheelwright, N. T. Fruit‐Size, Gape Width, and the Diets of Fruit‐Eating Birds, Ecology, Volume 66 (1985) no. 3, pp. 808-818 | DOI

[66] Whittaker, R. H. Vegetation of the Great Smoky Mountains, Ecological Monographs, Volume 26 (1956) no. 1, pp. 2-80 | DOI

Cited by Sources: