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Abstract
Robustness to genetic or environmental disturbances is often considered as a key prop-erty of living systems. Yet, in spite of being discussed since the 1950s, how robustnessemerges from the complexity of genetic architectures and how it evolves still remainsunclear. In particular, whether or not robustness is independent to various sources ofperturbations conditions the range of adaptive scenarios that can be considered. Forinstance, selection for robustness to heritable mutations is likely to be modest and in-direct, and its evolution might result from indirect selection on a pleiotropically-relatedcharacter (e.g., homeostasis). Here, I propose to treat various robustness measurementsas quantitative characters, and study theoretically, by individual-based simulations, theirpropensity to evolve independently. Based on a simple evolutionary model of a generegulatory network, I showed that five measurements of the robustness of gene expres-sion to genetic or non-genetic disturbances were substantially correlated. Yet, robust-ness was mutationally variable in several dimensions, and robustness components couldevolve differentially under direct selection pressure. Therefore, the fact that the sensi-tivity of gene expression to mutations and environmental factors rely on the same genenetworks does not preclude distinct evolutionary histories of robustness components.
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1. Introduction
Robustness is the capacity of living organisms to buffer internal or environmental distur-bances. Robustness encompasses, for instance, the ability to maintain physiological equilibria(homeostasis), to ensure developmental stability, or to repair and mitigate DNA damage in bothsoma and germline. Although robustness is virtually intermingled with the definition of life itself,its underlying mechanisms and its evolutionary origins remain far from being clearly understood(Stearns, 2002; Masel and Siegal, 2009; Wagner, 2013; Hallgrimsson et al., 2019).Robustness evolves as a consequence of non-linearities in the developmental or physiolog-ical mechanisms, i.e. changes in the magnitude of the effect of some genetic or environmentalfactor on the phenotype of interest (Nijhout, 2002). The study of the evolutionary processesleading to robustness roots into the conceptual and empirical work by C.H. Waddington and theconcept of canalization (Waddington, 1942, 1959; Schmalhausen, 1949; Loison, 2019). Canal-ization is a property of complex developmental systems that buffers environmental and geneticvariation, and maintains actively the organism in an optimal developmental path. Although thescope and the definition of canalization varies substantially among authors, canalization is gen-erally expected to evolve as an adaptation to "canalizing" selection for an optimal phenotype(Eshel and Matessi, 1998; Debat and David, 2001; Flatt, 2005; Klingenberg, 2019). However,formal population genetic models have questioned the unicity of the canalization process. Inparticular, robustness to environmental factors appears more likely to evolve as an adaptationthan robustness to genetic (mutational) disturbances, on which selection seems to be ratherweak and indirect even in optimal theoretical conditions (Wagner et al., 1997; Hermisson et al.,2003; Le Rouzic et al., 2013).In this context, the evolution of robustness as a general property of organisms heavily de-pends on the genetic and physiological integration of the different robustness dimensions (Fares,2015; Félix and Barkoulas, 2015). If the robustness to environmental factors and to geneticmuta-tions share the same physiological bases, the adaptive evolution of environmental canalization
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can generate a correlated response of genetic canalization; this hypothesis has been referredto as "congruent evolution" (de Visser et al., 2003), and have recieved some empirical support(Lehner, 2010; Tonsor et al., 2013). In contrast, if genetic and environmental robustness had in-dependent biological bases, they would be featured by independent evolutionary mechanisms,and possibly independent evolutionary histories.Although this issue would benefit from a better theoretical framework, modeling the evolu-tion of robustness is not straightforward. The simplest approach relies on modifiers, i.e. genesthat can influence the robustness of the organism without affecting the phenotype. However, inthe case of genetic robustness, modifier-based models either rely on tricky rescaling or cannotdissociate the phenotype and the robustness to the phenotype (Wagner et al., 1997; Kawecki,2000; Rajon andMasel, 2013). In addition, inmodels where the genotype-phenotype associationis arbitrary (such as the NK model, Kauffman and Levin, 1987, or the multilinear model, Hansenand Wagner, 2001), any correlation between environmental and genetic robustness would bea modeling choice, and not an output of the model. More promising to address the congruentevolution issue are models in which the phenotype is a result of an integrated process mim-icking some developmental or physiological mechanism (referred to as causally cohesive geno-type phenotypemodels in Rajasingh et al., 2008). In such dynamic models, robustness to variousdisturbances appear as an emergent property of the model complexity, caused by regulatoryfeedbacks, that cannot be easily deduced from the model parameters. Although the potentialpalette of relevant dynamic models is large and could include morphological development mod-els (Milocco and Salazar-Ciudad, 2020), RNA foldingmodels (Wagner and Stadler, 1999), ormeta-bolic models (Nijhout et al., 2019), evolutionary biologists have often considered gene regulatorynetwork models as a good compromise between complexity and numerical tractability for study-ing the evolution of canalization and robustness (Kauffman, 1969; Wagner, 1994; Smolen et al.,2000; Le Cunff and Pakdaman, 2012).Such theoretical gene networks have been shown to display enough non-linearity, lead-ing to epistasis and pleiotropy, to evolve enhanced or reduced sensitivity to environmental(Masel, 2004; Espinosa-Soto et al., 2011; Espinoza-Soto et al., 2011) and genetic (Wagner, 1996;Bergman and Siegal, 2003; Draghi and Wagner, 2009; Azevedo et al., 2006; Rünneburger andLe Rouzic, 2016) perturbations. Interesting observations suggest that environmental or geneticcanalization could be correlated to other robustness properties in such models. For instance,Ciliberti et al. (2007) and Kaneko (2007) noticed that robustness to mutations and robustnessto noise was correlated in gene networks — a similar result was obtained earlier for RNA-foldingstructures (Fontana, 2002). Furthermore, it has been shown that network stability, the propensityof the network to maintain stable (non-cyclic) gene expressions, was correlated to robustness,as selection on stability alone could drive an indirect response of genetic (Siegal and Bergman,2002) and environmental canalization (Masel, 2004; Nagata and Kikuchi, 2020). In contrast,Odorico et al. (2018) showed that networks selected to maintain (but not converge to) an equi-librium became both environmentally sensitive and genetically canalized, suggesting that envi-ronmental and genetic robustness could be theoretically decoupled. However, no systematicquantitative description of the pleiotropic pattern underlying different robustness componentshas ever been attempted.Here, I aim at extending the study of canalization in theoretical gene networks to address themultidimensional nature of robustness, by estimating the evolutionary independence of variousrobustness components. Four robustness-related measurements were considered, two of themcorresponding to environmental robustness (early vs. late disturbances), two corresponding togenetic robustness (early — inherited — or late — acquired — mutations). Gene expression in-stability was also included in the set of robustness-related traits, as it is linked to the intrinsicstability of the expression phenotype. The first part of this study focuses on themultidimensionalpatterns of robustness in small and random networks, and the second part on the evolutionaryconsequences of the pleiotropic nature of robustness, based on individual-based simulations.

Arnaud Le Rouzic 3

Peer Community Journal, Vol. 2 (2022), article e26 https://doi.org/10.24072/pcjournal.125

https://doi.org/10.24072/pcjournal.125


2. Model and Methods
2.1. Gene regulatory network.

The network model belongs to the family of gene regulatory network models sometimesreferred to as "Wagner model" (after Wagner, 1994, 1996; see Fierst and Phillips, 2015 for ahistorical record). Two variants of the model were proposed in Wagner (1994); the second one,involving discrete gene expressions scaled between −1 and 1, has often been reused in theliterature (Wagner, 1996; Siegal and Bergman, 2002; Ciliberti et al., 2007). The model describedbelow is closer to the first model by Wagner (1994), featuring a continuous gene expression
P between 0 and 1, and a constitutive expression level 0 < a < 1 that can be lower than themid-expression point.More specifically, the structure of a n-gene network is encoded as a n×nmatrixW, while thestate of the network is stored into a vectorP of size n. In this setting,Wij encodes the influence ofgene j on the expression of gene i ,Wij < 0 represents a negative interaction (inhibition),Wij > 0a positive interaction (activation), andWij = 0 denotes the absence of regulatory interaction. Piis the expression of gene i , ranging between 0 (no expression) and 1 (maximum expression).The properties of these gene networks are explored in a discrete dynamic system:
(1) Pt+1 = F (WPt),

where the function F is a vectorized version of a sigmoid scaling function: F (x1, x2, ... , xn) =
[f (x1), f (x2), ... , f (xn)];
(2) f (x) =

1

1 + λae−µax
,

with λa = (1− a)/a and µa = 1/a(1− a) (Guyeux et al., 2018). The function f is scaled such that
f (0) = a and df /dx |x=0 = 1; the parameter a thus stands for the constitutive gene expression(the expression of a gene in absence of regulators), and this function defines the scale of thematrix W: Wij = δ (δ � 1) means that the expression of gene i at the next time step will tendto Pi ,t+1 = a + δ if i is regulated by a single, fully expressed transcription factor j (Pj ,t = 1).This setting, extensively described in Rünneburger and Le Rouzic (2016), differs mathematicallyfrom the constitutive expression model in Wagner (1994) that shifts the sigmoid as Pt+1 =
F (WPt + a).Gene networks dynamics start from an initial expression P0, and gene expression was up-dated for T time steps. By default, P0 = (a, a, ..., a), since this step immediately follows a virtualinitial state with no expression. The expression phenotype corresponding to a gene networkwas determined by averaging gene expressions during the last τ time steps for each gene i :
P∗i = (1/τ)

∑T
t=T−τ Pit .

2.2. Robustness indicators.
Five robustness indicators were calculated, corresponding to five different aspects of geneticor environmental robustness in a gene network: robustness to early (ρE ) and late (ρe ) environ-mental disturbance, and robustness to early (ρM ) and late (ρm) genetic disturbance, and networkstability ρS . All indicators were expressed on a scale homogeneous to log variances in gene ex-pressions; the mode of calculation is summarized in Table 1, robustness is maximal when theindex ρ is small.The robustness to early environmental disturbance ρE measures the capacity of a networkto reach a consistent final state starting from different initial gene expressions. In practice, Rreplicates of the network dynamics were run, in which the initial gene expressions (P0) weredrawn into Gaussian (µ = a,σ = σE ) distributions (expression values < 0 and > 1 were set to 0and 1, respectively). The environmental robustness ρE i for each gene i was measured as the logvariance in the final gene expression across these replicates.The robustness to late environmental disturbance ρe measures the capacity of a network torecover its equilibrium state after having being disturbed. Gene expressions after T time stepswere disturbed by adding a random Gaussian noise of standard deviation σe to each gene of the
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network, and ρe i was computed for each gene i as the log variance in gene expression at timestep T + 1 over R replicates.The robustness to early mutations ρM measures the system robustness to inherited geneticmutations (modifications of the W matrix). A random non-zero element of the W matrix wasshifted by a random Gaussian number of standard deviation σM , and its consequences on themean expression of all network genes was recorded. The procedure was replicated R times, andthe robustness score ρMi for each gene i was calculated as the log variance of gene expressionacross R replicates.The robustness to late mutations ρm measured the effect of mutations in the gene network
W after having reached the final state. In practice, theWmatrix was mutated in the same way asfor ρM with a standard deviation σm, but its consequences on gene expression were calculatedfor only one time step, starting from the last state of the network. The robustness score wascalculated as for other indicators (log variance over R replicates).Finally, dynamic systems based on theWagner model often tend to generate limit cycles andnever converge to a stable equilibrium. Network stability ρS quantifies the capacity for a specificnetwork to lead to stable gene expressions. For consistency with other indicators, this instabilitywas measured as the log squared difference between the average expression during the last τtime steps, and an extra time step.

Table 1 – Summarized calculation of all five robustness indicators. Index i stands for thegene (1 ≤ i ≤ n), and r for the replicate (1 ≤ r ≤ R ), since all indicators except ρS wereestimated by a resampling procedure. P∗i stands for the equilibrium gene expression of
gene i (mean expression from the last τ time steps), and P∗i = (1/R)

∑R
r=1 P

∗
i ,r representsthe mean over replicates. Noise in gene expression was simulated by adding a randomGaussian deviation to the initial state P0 of the network (for ρE ) or to the last state PT ofthe network (for ρe ).Mutationswere simulated by adding a randomdeviation to a randominteraction in the network W, either before starting the network dynamics (ρM ) or afterthe last time step (ρm). All robustness indicators are homogeneous to a log variance ingene expression; robustness increases when the indicator gets smaller, and sensitivityincreases when the indicator increases. The last column indicates the standard deviationof the corresponding Gaussian disturbance.

Indicator Robustness component Computation Std. dev.
ρE Early noise in geneexpression ρE i = log[ 1

R−1
∑R

r=1(P∗i ,r − P∗i )2] σE = 0.1

ρe Late noise in geneexpression ρe i = log[ 1
R−1

∑R
r=1(Pi ,T+1,r − Pi ,T+1)2] σe = 0.1

ρM Early (inherited)mutations ρMi = log[ 1
R−1

∑R
r=1(P∗i ,r − P∗i )2] σM = 0.1

ρm Late (aquired)mutations ρmi = log[ 1
R−1

∑R
r=1(Pi ,T+1,r − Pi ,T+1)2] σm = 0.1

ρS Expression stability ρS i = log[(P∗i − PT+1)2]

All these scores were calculated for every gene i of a given network, and then averagedover all genes in order to get a series of summary network descriptors. The magnitude of thescore itself is arbitrary, as it depends on the size of the disturbance. However, indicators happento increase approximately linearly with the size of the disturbance (Sup. Figure SI1), the resultswere thus largely unaffected by a change in the variance of mutational effects and environmentalnoise.
2.3. Random networks.

Random networks were generated as n × n W matrices filled with independent identically-distributed random numbers drawn into a Gaussian (by default: µ0 = 0,σ0 = 1) distribution. Adensity parameter 1/n ≤ d ≤ 1 could be specified, corresponding to the frequency of non-zero
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slots in the W matrix. Zeros were placed randomly, with the constraint that all genes should beregulated by at least another one.
2.4. Exhaustive exploration of two-gene networks.

The main interest of gene-network models is the complexity and the richness of the un-derlying genotype-phenotype relationship. As a side effect, such models are in general difficultto handle mathematically (Carneiro et al., 2011; Le Cunff and Pakdaman, 2012). Excluding theone-gene self-regulating case (which already has non-trivial mathematical properties, Guyeuxet al., 2018), the simplest network (2-by-2 matrix) has four genetic parameters, which makesthe exploration of the parameter set tedious. Here, the number of dimensions was restricted byconsidering the set of networks that lead to a predefined arbitrary equilibrium, Pθ
∞ = (Pθ

1 ,Pθ
2 ).As F (WPθ

∞) = Pθ
∞, theWmatrix can be reduced to two independent parameters,W11 andW21:

(3) W = F

[(
W11 A
W21 B

) (
Pθ
1

Pθ
2

)]
=

(
Pθ
1

Pθ
2

)
,

with
A =

1

Pθ
2

[f −1(Pθ
1 )−W11P

θ
1 ],

B =
1

Pθ
2

[f −1(Pθ
2 )−W21P

θ
1 ],

(4)

f −1(y) = − 1
µa

log
(
1−y
λay

) being the inverse of f (x) (equation 2). This equation can be extended
to any network size, provided that a single elementWij is unknown for each line i of the matrix:
(5) Wij =

1

Pθ
j

[f −1(Pθ
i )−

∑

j ′ 6=j

Wij ′P
θ
j ′ ].

Among the n2 elements of a n-gene network, there are thus n(n− 1) neutral dimensions thatcan be explored without modifying equilibrium gene expressions. Large gene networks are thuscharacterized by a proportionally larger neutral space.The W matrix achieving the desired Pθ∗
∞ equilibrium from a specific pair W11,W21 alwaysexists (and is unique), but the stability of the equilibrium is not guaranteed. Networks whichfinal gene expression P∗ = (P∗1 ,P∗2 ) differed substantially from the target (in practice, when

|P∗1 −Pθ
1 | + |P∗2 −Pθ

2 | > 0.15) were excluded from the analysis. Such discrepancies correspond toeither unstable equilibria (inwhich case gene expressionswere driven away from the equilibrium)or extreme oscillatory behaviors (large oscillations may hit expression limits 0 or 1, which drivesthe average expression away from the target equilibrium).
2.5. Evolutionary simulations.

The evolution of gene networks under various evolutionary constraints was studied byindividual-based simulations. Each individual was featured by its genotype (a n × n W matrix,by default n = 6 to limit the computational burden), its expression phenotype P∗, and the fiverobustness scores ρE , ρe , ρM , ρm, and ρS . Individuals were haploid and reproduced clonally. Muta-tions consisted in adding a random Gaussian deviate of variance σ2ν to a random regulatory inter-action of theWmatrix, with a rate ν per individual and per generation. Mutational parameters νand σν were kept reasonably low to limit the strength of indirect selection for genetic robustness(Wagner et al., 1997; Rünneburger and Le Rouzic, 2016). Generationswere non-overlapping, andpopulation size N was constant. A generation consists in sampling N new individuals among the
N parents, with a probability proportional to the individual fitness. Fitness was computed as-suming stabilizing selection around a target (optimal) expression level for n′ ≤ n genes of thenetwork (by default n′ = 3), as w = exp(−∑n′

i=1 si (P
∗
i − θi )2), where si was the strength of sta-bilizing selection on gene i (si = 0 standing for no selection), and θi was the optimal expressionphenotype. The θi were drawn in a uniform (0,1) distribution at the beginning of each replicated
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simulation, and the initial gene network was empty (Wij = 0) except for one random elementper line, which was initialized to match the optimal expression using equation (5).
The evolution of robustness components was tracked by estimating ρE , ρe , ρM , ρm, and ρS atregular time points. Components were estimated for each individual, and averaged out over thepopulation. The response to direct or indirect selection was computed as the average changefrom generation 0; the multivariate response was stored as a 5-dimension vector R. Simulationruns were replicated 100 times and the results were averaged out, default parameter values areprovided in Table 2.

Table 2 – Default parameter values in the evolutionary simulations.
Parameter Symbol ValuePopulation size N 1000Gene network size n 6Constitutive expression a 0.2Network time steps T 16Network measurement steps τ 4Network density d 1.0Simulation replicates 100Mutation rate per individual ν 0.01Size of mutational effects σν 0.1Number of selected genes n′ 3Stabilizing selection coefficient s 10Directional selection coefficient β 0Number of robustness tests R 100Size of early environmental noise σE 0.1Size of late environmental noise σe 0.1Size of early genetic mutations σM 0.1Size of late genetic mutations σm 0.1

Directional selection on robustness indicators was also performed in some simulations, con-sisting in multiplying individual fitness by exp(
∑

x∈(S ,E ,e,M,m) βxρx), where βx was the strength ofdirectional (positive or negative) selection on robustness index x (in practice, βx = ±0.01). Thevector β is thus proportional to the multivariate selection gradient on robustness components.There was no correlated selection (the fitness function is the product of independent marginalfunctions applied on gene expressions and robustness components).
Estimating genetic covariance matrices G was computationally intractable in simulations (itwould require a heavy resampling procedure in each individual), mutational covariancesM fromthe average genotype in the population (W) were used instead to derive multivariate evolution-ary predictions. Mutational covariance matrices M = νC/5 were estimated from covariances Cin gene expressions and robustness coefficients among 100 gene networks differing fromW by5 mutations (drawn from the same algorithm as during the simulations). In order to control forthe influence of stabilizing selection on gene expression on the evolution of robustness, condi-tional mutational matrices (equivalent to conditional evolvabilities of G matrices in Hansen andHoule, 2008) were computed as Mc(y |x) = My −MyxM

−1
x Mxy , where y indicate the ny uncon-strained traits and x the nx constrained traits (i.e. the n′ = 3 genes under stabilizing selection).

Mc(y |x) was thus a ny × ny matrix measuring how the unconstrained traits can mutate whiletraits x remain constant. Predicted mutational evolvabilities in the direction of selection β werecalculated as epred = β>Mcβ/|β|2 (Hansen and Houle, 2008), and realized (observed) evolvabili-ties were obtained by projecting the multivariate response to selection R on the direction of β:
eobs = Rβ/|β|. Contrary to the genetic covariancesG, mutational covariancesM cannot be useddirectly to compute quantitative evolutionary predictions, as the relationship between M and
G depends on the mutation-selection-drift equilibrium, which is notoriously difficult to handle
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mathematically (Bürger and Lande, 1994). The following analyses thus focus on whether muta-tional evolvabilities are proportional to the selection responses, assuming that G is proportionaltoM.
Simulations and data analysis were coded in R (R Core Team, 2020), except for the core genenetwork dynamics that was coded in C++ and embedded in the R code with the Rcpp package(Eddelbuettel and Balamuta, 2017).

3. Results
3.1. Random networks.

Random interaction matrices are regularly used in the literature to study the general proper-ties of gene networks (e.g. Carneiro et al., 2011; Pinho et al., 2012). As such, random networksare not expected to reflect the properties of biologically-realistic genetic architectures, as bio-logical networks are far from random. However, such an approach helps developing a generalintuition about the properties of the underlying model.
Correlations were calculated between all five robustness components over 10,000 randomnetworks (Sup. Figure SI2). All robustness components were positively correlated, correlationsranged from about 0.62 (late genetic vs. early environmental) to above 0.97 (late environmen-tal vs. late genetic). A principal component analysis (Figure 1A and B) confirms that robustnesscomponents were partially correlated. The first PC (82% of the total variance) corresponds tothe general robustness of the network, and involves all robustness indexes.
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Figure 1 – A: Summary of the principal component analysis on the five robustness indica-tors over 10,000 random 6-gene networks (µ0 = 0,σ0 = 1), indicating the position of thefive robustness components on all five (normalized) Principal Components (PC); ρS : Sta-bility, ρE : Early environmental, ρe : Late environmental, ρM : Early genetic, ρm: Late genetic.B: relative contribution of the five PCs to the total variance. C: Influence of the averageregulation strength (µ0) on the % of the total variance explained by the first PC (negativevalues feature inhibitory networks, positive values activating networks). D: Influence ofthe standard deviation of the regulation strength (σ0). E: Influence of the network density.F: Influence of the network size.
The remaining variance is explained by orthogonal vectors separating all other robustnesscomponents. At least 4 out of 5 PCs, explaining 10% to 2% of the total variance, did not vanishwhen increasing the sample size (Sup. Figure SI3). The part of the variance in robustness ex-plained by the first PC is robust to the network properties, as it remains around 80% when themean and the variance in the regulation strengths, the network density, and the network sizevary (Figure 1C, D, E, and F).
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3.2. Two-gene networks.
In the following, I considered an arbitrary case of a two-gene network which genes are ex-pressed to P∞ = (0.3, 0.6). Equivalent results could be achieved with a different, arbitrary target.Figure 2 illustrates how the robustness components varied in this constrained 2-gene networkmodel (red stands formaximum robustness, i.e. minimum scores for ρE , ρe , ρM , ρm, and ρS ). All thenetworks considered here converge to the same gene expression, and can thus be consideredas phenotypically equivalent ; the colored space in Figure 2 thus represents a connected neu-tral network in which populations can evolve, and thus change the topology and the robustnessof the gene network, while keeping the expression phenotype constant. In the white regions,the equilibrium was not achieved in numerical simulations for at least three different reasons(Sup. Figure SI4): (i) fluctuations around the equilibrium were large enough to hit the edges ofthe (0,1) interval, shifting the mean expression; (ii) the expression dynamics was slow and thenetwork was unable to get close to the equilibrium after 16 time steps; (iii) the equilibrium wasnot reachable from the default starting point.
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Figure 2 – Robustness indicators (ρE , ρe , ρM , ρm, and ρS ) estimated for an exhaustive con-tinuum of two-gene networks with an arbitrary expression equilibrium atP∞ = (0.3, 0.6).Although two-gene networks have four independent genetic parameters, only two wererepresented here, the two others being computed to ensure the desired equilibrium. Redstands for the maximum robustness (lowest robustness scores); yellow for minimum ro-bustness (highest scores). For readability, color scales are different across panels. LettersA to E stand for five example networks illustrated in Sup. Figure SI6.
The different robustness components were correlated, but did not overlap perfectly. In or-der to assess the variation of the robustness properties, five networks of contrasted robustness,labeled from A to E, were tracked more specifically (Figure 2; the corresponding W matricesare provided in Sup. Table SI5). Sup. Figure SI6 illustrates the effect of various sources of dis-turbance on each network dynamics. The network denoted as B was robust to most sources ofdisturbance, while network E was sensitive to all components except stability. Network C wasunstable, but remained relatively buffered. Networks A and D illustrate intermediate loss-of-robustness behaviors, through different mechanisms (instability for network D, and weak buffer-ing for network A).
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This 2-gene network analysis thus confirms the results obtained for large random networks:robustness components are only partially correlated. Robustness is not a feature of large andintricate genetic architectures, as it is already present (and multidimensional) in the simplestgene networks.
3.3. Evolution and evolvability of robustness.

●●● ●●●●● ●●●● ●●●●● ●●●ρE

Early Environmental (ρE)

Selected robustness component

O
bs

er
ve

d 
ro

bu
st

ne
ss

 c
om

po
ne

nt

●●● ●●●●● ●●●● ●●●●● ●●●

ρe

●●● ●●●●● ●●●● ●●●●● ●●●

ρM

●●● ●●●●● ●●●● ●●●●● ●●●

ρm

0 4000 8000

Generation

●●● ●●●●● ●●●● ●●●●● ●●●ρS

●●● ●●●●● ●●●● ●●●●● ●●●

Late Environmental (ρe)

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

0 4000 8000

Generation

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

Early Genetic (ρM)

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

0 4000 8000

Generation

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

Late Genetic (ρm)

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

0 4000 8000

Generation

●●● ●●●●● ●●●● ●●●●● ●●●

●●● ●●●●● ●●●● ●●●●● ●●●

−40

−30

−20

−10

Stability (ρS)

●●● ●●●●● ●●●● ●●●●● ●●●

−14
−12
−10
−8
−6
−4

●●● ●●●●● ●●●● ●●●●● ●●●

−16
−14
−12
−10
−8
−6
−4

●●● ●●●●● ●●●● ●●●●● ●●●

−16
−14
−12
−10
−8
−6
−4

0 4000 8000

Generation

●●● ●●●●● ●●●● ●●●●● ●●●

−40

−30

−20

−10
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The evolution of robustness was studied by individual-based simulations, in which all indi-viduals were characterized by their genotype (a 6-gene network) and a set of phenotypes (geneexpressions and network robustness). Gene expressions for 3 out of 6 genes were under stabi-lizing selection. In addition to stabilizing selection on gene expression (forcing the network tomaintain a functional role), robustness indicators were directly selected towards more or lesssensitivity. Such direct, artificial selection pressures on robustness are not designed to reflectrealistic selection on gene networks, but they might reveal evolutionary limits to the evolutionof robustness due to internal constraints. Stabilizing selection on gene expression is expectedto generate a slight selection pressure on the robustness, but this effect was apparent only forlarger or more frequent mutations (Sup. Figure SI7).
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Figure 4 – Trajectories of the bivariate response to selection over 5000 generations (av-erage over 100 simulation replicates) for all combinations of robustness indicators. Eachpanel displays the selection response in eight directions, as illustrated in the legend (fourunivariate — colored arrows — and four bivariate — gray arrows — gradients of selection,same color code as in Figure 3). Mutational and conditional mutational matrices, esti-mated from the initial genotypes, are illustrated as ellipses in each panel (95% ellipsesassuming a multivariate Gaussian mutational distribution). For conditional Mc matrices,the constraining traits were the three gene which expression was under stabilizing selec-tion. X and Y axes were adjusted so that their scale matches for each trait comparison(correlational ellipses were not distorted). The colored inset illustrates the proportional-ity between the predicted mutational evolvability (calculated fromMc ) and the observedevolvability in the direction of selection after 1000 generations (same color/symbol codeas in the rest of the figure, hyphenated line: linear regression with no intercept).

Direct selection on all robustness components lead to a response, showing that robustnessis evolvable (diagonal panels in Figure 3). Yet, the evolutionary potential differed substantiallyamong robustness indicators, as indicated by the differences in the Y-scales. Robustness indica-tors being all homogeneous to a sum of squared difference in gene expression (i.e., the variancein gene expression induced by various disturbances), they could be compared directly. The mostevolvable robustness components were early environmental disturbances (ρE ) and stability (ρS ),which can differ by up to 25 log units (11 orders of magnitude) after 10,000 generations of bidi-rectional selection. In contrast, robustness to late environmental noise ρe and genetic changes
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(ρM and ρm) only differed by 3 to 4 log units (i.e. a factor 10 to 100). For these three robustnesscomponents (ρe , ρM , and ρm), the response was clearly asymmetric (the response towards morerobustness was slower). Although the average response supports a clear evolutionary trend, re-sponse to selection was variable across simulation replicates, as distributions of up and downresponses generally overlap. The selection response was still ongoing after 10,000 generations.
Selection on robustness components also lead to an indirect response of all other compo-nents, which confirms a general genetic correlation. The magnitude of the correlated response(from 10% to 100% of the direct response) depended on the correlation across robustness com-ponents. Simulations were run to test the long-term effect of synergistic and antagonistic selec-tion on all pairs of robustness indicators (Figure 4), and selection responses were compared tothe mutational evolvabilities computed at the beginning of the simulations. There was a convinc-ing proportional relationship between predicted and observed evolvabilities on all directions ofselection. Selection response was fast in directions that were mutationally evolvable, and slow indirections that were not evolvable. Yet, in spite of the variation of evolvability across directions inthe multivariate robustness space, evolution was always possible, even if reduced proportionallyto the mutational variance, confirming the absence of absolute constraints.
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The proportionality between realized and predicted evolvabilities tends to fade out for long-term selection responses (Sup. Figure SI8), which can be due to the evolution of mutational con-straints (the M matrix evolves compared to the initial network). This was confirmed by trackingthe evolution ofmutational correlations across robustness traits through time (Figure 5). Averagecorrelations did not evolve substantially in control simulations, but direct selection on robustness
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components did trigger systematic change in some (but not all) mutational correlations. For in-stance, the correlation between ρM and ρm does not seem to be evolvable, while the correlationbetween ρM and ρE changed from ' 0.3 to about 0.6 or 0.15 depending on the selection regime.All correlations remained positive. The evolution of correlations was partially driven by the direc-tion of selection (more or less robustness). Within each specific pair of robustness components,the evolution of correlation was rather consistent: for instance, selecting to decrease ρE or ρM(i.e. making the network more robust) always decreased the correlation between ρE and ρM . Yet,there was no general pattern associating the evolution of robustness and the evolution of cor-relation; depending on the robustness component, selecting for more or less robust networksmay increase or decrease the correlations (colored inset in Figure 5). There was no effect ofjoint selection; selecting together two robustness components did not make them more (or less)correlated (Sup. Figure SI9).
4. Discussion

Whether or not various robustness components of genetic architectures are independent iscentral to understand why organisms are robust or sensitive to genetic or environmental dis-turbances. Independent genetic bases of robustness components would call for independentevolutionary histories, while a pleiotropic genetic architecture could explain the evolution ofnonadaptive robustness components as a result of indirect selection. The analysis of the geneticcorrelations between five robustness components, based on a simple gene network model, re-sults in a balanced answer: robustness components are largely correlated, but pleiotropy is notan absolute constraint, and pairs of robustness components evolved in divergent directions un-der direct, artificial bivariate selection. Such a quantitative answer to the so-called ’congruence’hypothesis (de Visser et al., 2003) would explain both how unselected robustness componentscould be partly driven by indirect selection and why various robustness-related features seemto have their own evolutionary history.
4.1. Model limits.

Gene regulation networks are popular candidates when attempting to model complex biolog-ical processes: they are at least partly built on solid and realistic principles (transcription factorscan enhance or repress the expression of other genes), gene regulation plays a crucial role inmost biological, physiological, and developmental mechanisms, and even modest size regulationnetworks display a wide diversity of behavior, including homeostasis (stable equilibrium of geneexpressions) (Stern, 1999), cyclic dynamics (Leloup and Goldbeter, 2003; Akman et al., 2010), oramplification of a weak signal (Hornung and Barkai, 2008). Conveniently, the phenotypic levelconsidered as the output of a gene network (the expression level of all network genes) can be as-similated to a partial transcriptome, which opens the possibility for confrontation with empiricaldata.The gene network model proposed by Wagner (1994) is particularly popular in evolution-ary biology to model gene network evolution due to its computational simplicity and efficiency,combined with a direct biological interpretation (each line of the regulation matrix is the set oftranscription factor fixation sites in the promoter of a gene) (see Spirov and Holloway, 2013;Fierst and Phillips, 2015 for review and alternative models). In practice, multiple variants basedon this original model have been derived, either to address specific questions, or to correct forunrealistic features. Here, I used a quantitative version of the model, in which gene expressionswere scaled between 0 (no expression) and 1 (maximum expression), which was first proposedin Wagner (1994), although later work have often preferred binary networks (in which genescan be on/off, e.g. Wagner, 1996; Ciliberti et al., 2007), and a gene expression scaling between-1 and 1. Unlike in Wagner (1996) and Siegal and Bergman (2002), mutations had cumulativeeffects (the value of the mutant allele was drawn in a Gaussian centered around the value of theparental allele), which allows for gradual evolution. Finally, the sigmoid response function wasmade asymmetrical by introducing a constitutive expression parameter (as in e.g. Rünneburgerand Le Rouzic, 2016) in order to avoid the unrealistically high expression of unregulated genes
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(half the maximum expression) from the default setting. This constitutive expression was notevolvable in the model, but simulations (Sup. Figure SI7) show that two robustness components(ρE and ρS ) were very sensitive to this parameter (larger constitutive expression was associatedwith more robust networks). It is thus not unlikely that real systems may evolve towards morerobustness by increasing the constitutive expression of key genes, as already suggested (for dif-ferent reasons) by Draghi and Whitlock (2015).
Discrete time and simplematrix algebramade it possible to run evolutionary individual-basedcomputer simulations, in which the network output needs to be calculated for thousands of indi-viduals and thousands of generations. Using more realistic models based on continuous time anddifferential equations, non-linear regulation effects, and independent degradation and transcrip-tion rates would make the simulations less practical, with little benefit in terms of explanatorypower. Computational constraints also limit the network size to a few dozen genes, which wasnot enough to generate realistic levels of sparsity — simulated gene networks were too denseto be realistic. Decreasing network density and smaller network sizes made robustness com-ponents slightly less correlated (Figure 1E and F), suggesting that the integration of robustnesscomponents increaseswith network complexity (size and number of connections). The simulatedphenotypic target (maintaining a constant set of gene expressions) were also extremely simplecompared to what gene networks are theoretically able to do (e.g. converging to different equi-libria in different cell types, or controlling a complex dynamic of gene expression during thedevelopment). However, the results are robust to most simulation parameters (Sup. Figure SI7),suggesting that they reflect general properties of the underlying genetic architecture. In partic-ular, the network size n and the number of selected genes n′ do not alter drastically robustnesscomponents, showing that small regulatory motifs are not qualitatively different from large genenetworks in terms of robustness.
In spite of the simplicity of the network model, it appeared that connecting network features(for instance, the strength of a specific regulation) and robustness was not trivial, even in verysmall networks. For instance, in the n = 2 gene-network analysis, most robustness componentswere complex functions of all four regulation strengths. Throughout this work, robustness wasthus treated as an emergent property of the underlying network, which cannot be easily de-duced from a reductionist approach. Yet, it is possible to interpret the correlation patterns interms of network dynamics. Two of the most correlated components are the robustness to earlyenvironmental variation ρE and network stability ρS , which both measure the ability of the net-work to converge to a given gene expression equilibrium. Conversely, the correlation betweenlate mutational ρm and environmental ρe robustnesses can be attributed to the consequences ofsuch disturbances over a single time step: for a single target gene, decreasing the concentrationof a transcription factor and decreasing the sensitivity of the promoter to the same transcrip-tion factor have very similar immediate consequences on gene expression. Yet, even if thesemeasurements happen to be correlated by construction, their partial evolutionary independencehighlights their potential for independent evolvability in real gene network architectures, whichare substantially more complex and subtle than our gene network model.
In the simulations, selection on robustness components was direct and constant both in upand down directions (i.e. towards more or less robust genetic architectures). This setting wasnot expected to reflect realistic evolutionary pressures on robustness, which might be morecomplex, overlapping, and asymmetric. Stabilizing selection, for instance, selects both directlyfor robustness to environment, and indirectly for robustness to mutations (Wagner et al., 1997);selection for stability also promotes indirectly robustness to mutations (Siegal and Bergman,2002). Conversely, selecting for lower robustness through the phenotype may be difficult oreven impossible: fluctuating selection does not promote decanalized genetic architectures (LeRouzic et al., 2013), and selection for environmental sensitivity is limited by the inaccuracy ofthe perception of the envrionmental signal (Reed et al., 2010). Simulation results thus illustratehow robustness components may evolve independently when individually selected; whetheror not there exists realistic conditions for such selection pressures is a different — and morecomplicated — issue.
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4.2. Measuring robustness.
There are potentially many ways to measure the robustness of a phenotypic trait. Here, fiveindicators were proposed to capture various (and potentially independent) aspects of what isgenerally defined as robustness. The sensitivity to inherited mutations (ρM ) is probably the mostpopular one, as it is central to the discussion around the evolution of canalization (Wadding-ton, 1959; Wagner, 1996; Fares, 2015). The sensitivity to environmental perturbations is alsounavoidable, although its implementation in a gene network model is less straightforward. Here,it was calculated as both the sensitivity of the network to disturbance in the initial expressionstate (ρE ), which measures the size of the basin of attraction of the optimal expression pattern,and as the strength of the stability of the equilibrium when disturbed (ρe ). These two measure-ments can be interpreted as developmental robustness and physiological homeostasis, respec-tively, as they quantify the response of the network to disturbances in the expression levels atdifferent time scales. The robustness to mutations occurring after the network convergence (ρm)was considered because it sets up an alternative to the genetic vs. environmental congruencehypothesis: in long-lived organisms, non-heritable (somatic) mutations participate to the ageingprocess (Kennedy et al., 2012), ageing being to some extent under direct selection. Thus, therobustness to somatic mutations could also drive indirectly the evolution of genetic canalization.Although not strictly a robustness component, the gene network stability (ρS , amplitude of thefluctuations of gene expressions) was also considered because it has been proven to drive an in-direct response of genetic canalization, based on very similar model (Siegal and Bergman, 2002).Its correlation with other robustness indicators confirms the tight link between robustness andstability in gene networks.
These indicators were chosen based on the possibility to measure them in numerical simu-lations. Although the empirical assessment of the correlation between robustness componentswould be way more convincing than a theoretical study, defining similar measurements fromexperimental datasets can be challenging. For instance, ρM and ρE could, at least in theory, beestimated as the variance in gene expression across genetic backgrounds or across environmen-tal conditions, respectively. Measuring ρm environmentally is more complicated, as it would likelybe confounded with other ageing mechanisms. In contrast, the empirical distinction between e.g.

ρe and ρS relies on discriminating internal vs. external sources of noise, and might be in practiceimpossible. In all cases, gene expression data are generally quite noisy and their analysis neces-sitates heavy corrections to prevent multiple testing issues. Studying empirically the robustnessand evolvability of molecular and morphological traits has long been considered as a challengingtask, but methodological and technological progress has recently brought new concrete perspec-tives (Payne and Wagner, 2019).
Some popular measurements of developmental robustness were not considered here fortechnical reasons. For instance, fluctuating asymmetry (the variance between the same pheno-typic trait measured in the right and the left body parts of symmetric organisms) is a conve-nient measurement of microenvironmental effects on the development (Debat and David, 2001;Leamy and Klingenberg, 2005), but it has no equivalent at the level of gene expression in a reg-ulation network. The deterministic sensitivity to a directional environmental gradient could alsobe used to measure phenotypic plasticity, which is central to the question of phenotypic robust-ness. Yet, there are several ways to model phenotypic plasticity in a gene network (Masel, 2004;Burban et al., 2022), and it requires a specific selection setup (different expression optima as afunction of the environment). Because of this additional complexity, adaptive phenotypic plas-ticity was excluded from the focus of this work, although the evolution of plasticity of gene ex-pression remains an intriguing and fundamental question. In particular, phenotypic plasticity (i.e.an adaptive lack of robustness to some environmental signal) may itself be canalized to geneticor other environmental disturbances (Stearns and Kawecki, 1994); considering reaction norms(a measurement of plasticity) as quantitative traits thus opens challenging questions about theadaptive evolution of the canalization of robustness traits.
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Figure SI1 – Sensitivity of the robustnessmeasurements to themagnitude of the distur-bance. Four out of five robustness indicators (ρE , ρe , ρM , ρm) depend on the magnitude ofthe disturbance (σE , σe , σM , and σm, respectively). The figure displays the influence of thesize of the disturbance on the robustness measurement (left: 10 random networks, right:10 evolved networks). Vertical dotted lines stand for the values used in the simulations.Robustness scores are not completely consistent for random networks, as some of themcan be differentially robust to large or small disturbances. The consistency is better inevolved networks (the rank of different genotypes in terms of robustness rarely dependson the size of the disturbance).

20 Arnaud Le Rouzic

Peer Community Journal, Vol. 2 (2022), article e26 https://doi.org/10.24072/pcjournal.125

https://doi.org/10.24072/pcjournal.125


●

● ●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

● ●
●

●

●
●●

●

●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●
●

●

● ●

●
●

●
●

●
●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●●●

● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●

●

●
● ●

●
●

●
●

●
●

●
● ●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
● ●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
−

40
−

30
−

20
−

10

La
te

 E
nv

iro
nm

en
ta

l (
ρ e

)
r=0.67

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

−
40

−
30

−
20

−
10

E
ar

ly
 G

en
et

ic
 (ρ

M
)

r=0.75

●

● ●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●●

●●
●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

● ●
●

●

●
●●

●● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●
● ●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●
●

●
● ●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

−
40

−
30

−
20

−
10

La
te

 G
en

et
ic

 (ρ
m
)

r=0.63

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

−
40

−
30

−
20

−
10

S
ta

bi
lit

y 
(ρ

S
)

−40 −30 −20 −10

Early Environmental (ρE)

r=0.70

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

r=0.88

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●●

● ●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●●
●

●

●
●●

●● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●
●●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●
●

●
●●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

r=0.97

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

−40 −30 −20 −10

Late Environmental (ρe)

r=0.74

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

● ●
●

●

●
●●

●● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●
● ●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●
●

●
● ●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

● ●

●●●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

r=0.88

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

−40 −30 −20 −10

Early Genetic (ρM)

r=0.73

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

−40 −30 −20 −10

Late Genetic (ρm)

r=0.71

Figure SI2 – Correlations among robustness indexes among random networks. Correla-tions between all five robustness components among 10,000 random 6-gene networks(µ0 = 0,σ0 = 1).
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Figure SI3 – Sampling effects on Principal Components. Influence of the sampling effect(number of networks and number of replicates R to estimate robustness) on the relativeweight of the principal components. All PCs except the last one are robust to sampling.
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Figure SI4 – Reasons for not reaching the desired equilibrium.Although equation 4 guar-antees that an equilibrium exists at the target phenotypic expression, the equilibriummight not be reachable in practice when simulating the gene network dynamics. The col-ored area in the figure corresponds to networks that failed to produced the target phe-notype, each color representing a distinct reason; Yellow: network dynamics was slowand the final gene expression has not been reached yet after 16 time steps; Gray: an al-ternative equilibrium was reached (most of the time implying that one or both genes areeither completely silenced to fully expressed). Red: The network steady state featuredoscillations that were so large that they hit themaximumorminimum expression, shiftingthe average expression away from the target expression.
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W11 W21 W12 W22A 0.70 0.20 -0.21 0.38B -0.30 0.30 0.29 0.33C -0.40 0.80 0.34 0.08D -1.00 -0.80 0.64 0.88E 1.50 3.50 -0.61 -1.27Table SI5 – Two-gene example networks. The five two-gene networks detailed in Fig-ure 2 and Sup. Figure SI6.
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Figure SI6 – Illustration of the robustness scores. The figure displays a subset of thereplicated tests for four robustness indexes. Rows A to E correspond to the five net-works described in Sup. Figure SI5. Four (out of five) robustness measurements rely ona resampling procedure (corresponding to the four columns of the figure). In each panel,the default (undisturbed) network kinetics is displayed as plain lines (black for gene 1,red for gene 2), while 10 disturbed networks are indicated as pale lines. By construction,all networks have an equilibrium at (0.3, 0.6). The network stability can be assessed fromthe amplitude of the cycles in the undisturbed kinetics (thick lines), and does not rely ona stochastic algorithm. The network robustness to genetic disturbance was estimatedby mutating the gene network before the first time step (early genetic mutation, firstcolumn) or before the last time step (late genetic mutation, second column). Environmen-tal robustness was estimated by disturbing the gene expression, without changing thegenotype, before the first time step (early environmental, third column) and before thelast time step (late environmental, fourth column).
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Figure SI7 – Exploration of the parameter set. Influence of simulation parameters (muta-tion rate ν, mutation size σν , population size N , constitutive expression a, total numberof genes n, number of selected genes n′, network density d , and strenght of selection s)on fitness and robustness indexes after 5000 generations (default settings except for thetarget parameter). The figure reports the mean± standard deviation across 20 replicatedsimulations. Vertical dotted lines stand for the default parameter values.
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Figure SI8 – Accuracy of the prediction vs. simulation time. Effect of the number of gen-erations on the proportionality relationship between predicted and observed evolvabili-ties of robustness components. The figure displays the r2 of a linear regression (withoutintercept) between the predicted evolvability from the conditional Mc matrix measuredat the first generation and the observed evolvability in the direction of selection for allreplicated simulations. The regression at generation 1,000 is illustrated in the coloredinset in Figure 4.
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Figure SI9 – Evolution of correlations. Evolution of the mutational correlation among ro-bustness components after 10,000 generations of evolution (∆r = r10,0000−r0), averagedover 100 simulation replicates. For each pair of robustness components, nine selectiongradients were simulated (including control simulations without selection on robustness,central slot).
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