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Abstract
Non-vertebrate species represent about 95% of known metazoan (animal) diversity.They remain to this day relatively unexplored genetically, but understanding theirgenome structure and function is pivotal for expanding our current knowledge of evolu-tion, ecology and biodiversity. Following the continuous improvements and decreasingcosts of sequencing technologies, many genome assembly tools have been released,leading to a significant amount of genome projects being completed in recent years. Inthis review, we examine the current state of genome projects of non-vertebrate animalspecies. We present an overview of available sequencing technologies, assembly ap-proaches, as well as pre and post-processing steps, genome assembly evaluation meth-ods, and their application to non-vertebrate animal genomes.
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Introduction
The field of genomics is presently thriving, with new genomes of all kind of organisms be-coming available every day. ForMetazoa, efforts have unsurprisingly focused on human’s closestrelatives (i.e., vertebrates) so far [1]: out of 7,894 metazoan assemblies available in the GenBankdatabase (accessed on October 29th, 2021) [2], ∼ 56.9% (4,493) belong to the subphylum Ver-tebrata. However, from the currently ∼2.1 million described metazoan species, only ∼73,000(3.5%) belong to vertebrates [3]. The remainingmetazoan phyla, hereafter called "non-vertebrateanimals", are thus underinvestigated and lack genetic resources.
Non-vertebrate animals are found in nearly all known terrestrial and aquatic ecosystems(both marine and freshwater), and represent the diverse branches of the metazoan tree of life(among which vertebrates are just a twig that originated about 600 millions years ago [4]). Char-acterizing the genome structure and gene content of non-vertebrate animals is therefore pivotalfor expanding our knowledge regarding the evolution, ecology and biodiversity of metazoans.
In recent years, important sequencing efforts have started to tackle the dearth of genomicdata for non-vertebrate animals, with a strong focus on arthropods (2,683 assemblies on Gen-Bank). The phylum Arthropoda is very diverse: it consists of more than 1.3 million species, themajority of which belong to the class Insecta (∼1 million species) [5]. Insects have a signifi-cant impact on agriculture (e.g. as crop pests) and on the transmission of diseases (e.g. malariaand dengue) [6]. They also play important beneficial and regulatory roles in natural ecosystems,through pollination and decomposition of organic matter [7]. Genome sequencing yields invalu-able insights into species that are key in the aforementioned processes. For example, variousgenome projects have targeted insects such as Bemisia tabaci, a common crop pest [8], and themosquitoes Aedes aegypti (vector of yellow fever, dengue and chikungunya) [9] and Anophelesdarlingi (vector of malaria) [10]. These studies unveiled, among other findings, expansions ofgenes involved in insecticide resistance. The genomes of these species are so important for hu-man health and food security that many have actually been sequenced multiple times, eitherbecause of the availability of newer sequencing methods or to compare different strains (for in-stance, three versions of the genome of Aedes aegypti [9, 11, 12] were successively published).Many phyla with less direct human implications, however, do not even have a single good-qualitygenome assembly available to date (e.g., chaetognaths) [13].
Other non-vertebrates (and their symbionts) have also shown tremendous importance andrelevance with respect to socio-economic impact. Snails, sponges and corals all produce metabo-lites with biological activities such as anticancer, anti-inflammatory, antibacterial, among oth-ers [14–16]. Terpenoid metabolites have been found in more than 70 gastropod species [17].
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In sponges, compounds such as polyketides, terpenoids and alkaloids have also been found inspecies of the genera Haliclona, Petrosia, and Discodemia, these three genera being the richestamong sponges in terms of bioactive compounds [18]. Thus, genome assemblies are essential toidentify and better understand the genes, pathways and sources of these compounds. Amongmollusks, several species valued as food resources are studied for their impact in aquaculture[19]. Moreover, non-vertebrates are important model systems to understand processes such asadaptation to climate change, ocean acidification, biomineralization [20–23]. Various species ofcorals [24–27] have been sequenced to study the effects of increasing seawater temperaturesand to understand how these species may survive in changing environments.
Some genome projects are motivated by more theoretical questions, to improve species clas-sification and elucidate specific traits. Genome assemblies provide abundant sets of genes tobuild robust phylogenetic trees, opening the field of phylogenomics [28]. New genome resourcesbring novel insights into difficult phylogenetic positions: a large analysis based on genomes andtranscriptomes confirmed that myxozoans belonged to Cnidaria [29]; the sequence of Hoilungiahongkongiensis placed placozoans as a sister group to cnidarians and bilaterians [30]. Genomicstudies have also attempted to elucidate the mechanisms underlying asexuality, as sexual re-production is a character shared by almost all eukaryotes and its strict absence generally leadsto rapid extinction due to the accumulation of deleterious mutations [31], yet ancient asexualspecies are observed in many branches of phylogeny [32–36].
The dearth of non-vertebrate animal genomic resources may be blamed to the difficulty tocollect individuals in remote or hardly accessible locations and in accordance with the Nagoyaprotocol [37]; the scarcity of certain species; non-existing resources to cultivate individuals inlaboratories; the lack of protocols to extract pure, high-molecular-weight DNA; their frequentlylarge genomes characterized by high repetitive contents and high heterozygosity. However, se-quencing technologies now offer cost-effective solutions and wide applicability to solve some ofthese problems. Reducing the current unbalance in genomic resources between vertebrates andnon-vertebrate animals will increase the precision of future tools and studies. Indeed, genomedata are often used as the foundation for different genomic and protein databases. The programBUSCO (Benchmarking Universal Single-Copy Orthologs) [38–40], used to measure the com-pleteness of a genome assembly, relies on reference gene sets that are used for scoring, basedon existing assemblies for a group of species. Thus, results from under-sampled groups couldchange drastically when more species are added to the gene sets. These could also have ma-jor effects in analyses such as phylogenomics, protein families studies and of gene duplicationevents. Another consequence of the current dearth of genomic resources for non-vertebrate ani-mals is that BLAST [41] searches for animal species most often recover vertebrate and arthropodhits, even though the target species is distant from these phyla, hampering the identification ofsequences from a species lacking a reference or closely related genome. As a result, identifyingmetazoan contaminants in a fragmented assembly of an animal genome is almost impossible dueto similar GC contents and the absence of hits in genomic databases.
It is therefore imperative to explore thoroughly the diversity of metazoans, specifically fromnon-vertebrate animal species. International consortia such as the Global Invertebrate GenomicsAlliance (GIGA) [42, 43] have been put in place to overcome some of the aforementioned limita-tions. Other consortia such as the Earth BioGenome Project [44], the Darwin Tree of Life [45],the Aquatic Symbiosis Genomics Project [46] and the European ReferenceGenomeAtlas [47] arealso expected to significantly boost the genomic resources of non-vertebrates in the near future.Undoubtedly, these projects will benefit from the drastic improvements in sequencing technolo-gies over the last years. In this review, we first offer a brief historical overview of sequencingtechnologies and algorithmic approaches to genome assembly. We then survey software forgenome assembly, pre/post-processing steps, assembly evaluation, and phasing assemblies, tohelp newcomers to the field build their own assembly pipelines and have an overview of pastand current tools. Although sequencing methods, algorithms and programs presented in this pa-per are not restricted to a category of organisms, the challenges and solutions that we describeare specific to non-model non-vertebrate animal genomes.
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1. Sequencing
Sequencing technologies have dramatically evolved over the last two decades, providing re-searchers with various options when it comes to tackling a genome project (Table 1). Sangersequencing, the widely used sequencing method with chain-terminating inhibitors, published in1977, produces reads around 1,000 basepair (bp) long with an error rate of about 1% [48]. Theprinciple is to synthesize complementary strands of DNA from a single strand with a mixtureof regular nucleotides and dideoxynucleotides, the latter stopping the polymerase when incor-porated. Four reactions are performed for each type of base, and the resulting oligonucleotidesare migrated by electrophoresis to identify the correct base at every position and generate aread. This method laid the foundations for DNA sequencing and was used extensively in severalgenome assembly projects, which were at that time typically ran by large international consortia:the budding yeast Saccharomyces cerivisiae [49] was the first eukaryote sequenced, whereas thenematode Caenorhabditis elegans was the first metazoan [50]. Sanger sequencing is a relativelylow-throughput method in terms of the number of sequences generated, and is costly as well[51]. Although it is almost not used in genome projects anymore, the technology was pivotal forthe generation of the first assembly of the human genome published in 2001, a monumentaleffort by 20 sequencing centers, to an estimated cost of 300 million US dollars [52].
Second-generation sequencing technologies, initially called next-generation sequencing (NGS),are characterized by a strong increase in sequencing throughputs compared to the Sangermethod,with millions of DNA fragments sequenced simultaneously. NGS reads are much smaller thanSanger reads (from 110 bp for the first 454 machine in 2005 up to to 350 bp for MiSeq Illuminamachines nowadays), resulting in the need for new analysis algorithms and programs [53]. Thearrival of NGS sequencing democratized genome assembly projects, broadening the scope ofinvestigated species beyond well-studied model organisms. Several second-generation sequenc-ing methods have emerged through the years, some of which have since then been discontinued:454 pyrosequencing [54], Ion Torrent [55], SOLiD [56], and Solexa (for a comparison on the ap-proaches, see [57]). Among these methods, Solexa, subsequently purchased by Illumina [58],became and remains the most widely used approach to this day. This approach consists in ampli-fying short DNA molecules bound on a flow cell, and sequencing them by sequential addition offluorescently tagged nucleotides. This protocol generates highly accurate single or paired-endreads with a length up to a few hundred bases. The recent NovaSeq system further increasedthe output from a single run and abated the cost (up to 3 Terabases per flowcell). Short readsstimulated the whole field of genomics, and led to a large production of assemblies for all sorts oforganisms, up to this day (Figure 1). These short-read based assemblies resulted in a tremendousincrease of genomic resources, which remained typically quite fragmented (with N50s below 1Megabase (Mb)).
Third-generation sequencing has brought a whole new range of sequencing data, with thesequencing of long DNA molecules extending up to hundreds of thousands of bases [59]. Thetwo main players in the field, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies(Nanopore), use two different kinds of technologies. PacBio developed Single Molecule Real-Time (SMRT) sequencing, where a complementary strand of DNA is produced from a singlestrand by addition of fluorescently labeled nucleotides. The fluorescent tag is released and theluminescence is interpreted as a base [60]. The resulting reads have a length around twenty kilo-bases (kb) and a high error rate, an issue recently addressed by the introduction of an extra stepcalled Circular Consensus Sequencing (CCS). In CCS, the DNA polymerase passes multiple timeson the same base on a circularized strand to produce High Fidelity (HiFi) reads that can achievean accuracy over 99%, despite a smaller maximal read length [61].
Nanopore sequencing uses a membrane with protein pores, through which an electrical cur-rent is flowing. DNA strands are pulled through the pores, with each passing nucleotide gener-ating a distinct disruption signature in the current that can be inferred as a specific base [62].The firm has specifically oriented its strategy toward a "do it yourself" approach, enabling se-quencing in any lab and even directly in the field via a small portable device [63]. Researchers
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Figure 1 – Contig N50 of 237 non-vertebrate animal genome assemblies over time. TheN50 represents the contiguity of an assembly and is defined as the length of the largestcontig for which at least 50% of the assembly size is contained in contigs equal or greaterin length.
can control how they generate their sequencing data, contribute to protocol development, anddevelop their own basecalling [64] to increase the yield and improve the quality and length ofthe reads. Although Nanopore reads still typically exhibit a high error rate, their length keepsincreasing to attain hundreds of kilobases to 1 Mb [65]. The error rate has also been decreasingwith the development of more accurate basecallers such as Bonito [66] combined with Poreover[67], and the release of the new R10 flow cell which can estimate the length of homopolymericregions more accurately and produce reads with an error rate below 1% [68].

Long reads are now routinely included in genome assembly projects and have led to muchmore contiguous assemblies than short-read only assemblies (Figure 1). A current limitation liesin the amount of DNA required to prepare long-read libraries, and long-read sequencing stillremains inaccessible for certain species: whereas Illumina sequencing can handle small DNAamounts, with a poor quality, long-read protocols require high-molecular-weightDNA [69]. PacBioand Nanopore sequencing remain difficult when one animal is too small to provide a sufficientamount of DNA, especially when the organism requires extraction protocols that lead to overlyfragmented DNA (for example, with skeletons). In addition, secondary metabolites associated toDNA molecules, or branched DNA structures, can also disturb the sequencing reaction.
2. Genome assembly

A variety of programs have been developed to assemble sequencing reads de novo, takingadvantage of different sequencing technologies while considering their limitations. Genome as-sembly aims to correctly reconstruct the original chromosome sequences from short or long,and accurate or error-prone fragments. Assemblers are typically based on one of the followingparadigms: greedy, Overlap-Layout-Consensus, de Bruijn graphs.
The assembly problem can be represented as a linear puzzle where the pieces are the reads.Reads match together when they have overlapping sequences. This puzzle could be intuitivelysolved by iteratively putting together the overlapping pieces that match best: this greedy ap-proach is an efficient heuristic to find the shortest common superstring of the set of reads (i.e.,the shortest sequence that includes all the reads as substrings) [135]. Greedy algorithms havebeen implemented for first-generation sequencing reads, for instance in TIGR [81], and were fur-ther applied in short-read assemblers like PERGA [98], SSAKE [110] and VCAKE [112]. However,they cannot resolve complex, repetitive genomes: for this reason, greedy assemblers are mostlyused nowadays to assemble small organelle genomes such as chloroplasts and mitochondria[136].
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Table 1 – Sequencing approaches and associated assemblers.
First generation1 kb ARACHNE [70], Atlas [71], CAP3 [72], Celera [73], Euler [74], JAZZ [75],High accuracy Minimus [76], MIRA [77], phrap [78], Phusion [79], SUTTA [80],Sanger TIGR [81]Second generation25-300 bp ABySS [82, 83], ALLPATHS [84], BASE [85], CABOG [86], Edena [87],High accuracy EPGA [88], Euler-SR [89], Gossamer [90], IDBA [91], ISEA [92],454, IonTorrent, JR-Assembler [93], LightAssembler [94], Meraculous [95], MIRA [77],Solexa, SOLiD Newbler [96], PCAP [97], PERGA [98], Platanus [99],PE-Assembler [100], QSRA [101], Ray [102], Readjoiner [103],SGA [104], SHARGCS [105], SOAPdenovo [106], SOAPdenovo2 [107],SPAdes [108], SparseAssembler [109], SSAKE [110], SUTTA [80],Taipan [111], VCAKE [112], Velvet [113]Third generation10-100,000+ kb Canu [114], FALCON [115], Flye [116], HINGE [117], MECAT [118],PacBio CLR, MECAT2 [118], miniasm [119], NECAT [120], NextDenovo [121],Nanopore Ra [122], Raven [123], Shasta [124], SMARTdenovo [125],wtdbg [126], wtdbg2 [127]
15-25 kb Flye [116], HiCanu [128], hifiasm [129], IPA [130], LJA [131],High accuracy mdBG [132], MBG [133], NextDenovo [121], Peregrine [134],PacBio HiFi, Raven [123], wtdbg2 [127]

TheOverlap-Layout-Consensus (OLC) paradigmwas first described in 1979 byRodger Staden[137] and is based on an overlap graph (Figure 2). The Overlap step consists in finding overlapsabove a certain quality threshold between all the reads and building a directed graph, where thenodes are the reads and the edges represent the overlaps between them. The Layout step re-moves redundant edges that can be inferred from other edges. Finally, the Consensus step findsthe shortest generalized Hamiltonian path through the graph, i.e. returns the shortest path (orset of disconnected paths) that visit each contig of the assembly at least once. The OLC para-digm has thrived with the program Celera [73], which was used to assemble a human genomefrom a Sanger shotgun dataset [138].
De Bruijn Graphs (DBGs) (Figure 3) are a well studied structure in graph theory, described byNicolaas Govert de Bruijn in 1946 [139] and before him by Camille Flye Sainte-Marie [140]. DBG-based assemblers require highly accurate reads to avoid a large number of erroneous k-mersand creating bulges in the assembly graph. They start by indexing all the different sequences ofa given k length (k-mers) found in the reads. In node-centric DBGs, the k-mers present in thereads are represented as nodes and are connected in the graph when they have an overlap ofa k-1 length. In edge-centric DBGs, the k-mers present in the reads are represented as edgesconnecting their left and right (k-1)-mers. Once the graph is constructed, DBG assemblers lookfor a generalized Eulerian (in the case of edge-centric DBGs) or Hamiltonian (in the case of node-centric DBGs) path through the graph, i.e. returns the shortest path (or set of disconnectedpaths) that visits each k-mer of the assembly at least once. This approach was first used forgenome assembly of first-generation sequencing datasets [141] and was quickly implementedin multiple popular short-read assemblers, e.g. ABySS [82, 83], IDBA [91], SOAPdenovo [106]and SOAPdenovo2 [107], SPAdes [108], Velvet [113]. The choice of the value k greatly affectsthe output: small k-mers lead to complex de Bruijn graphs, while large k-mers result in morefragmented assemblies [131]. DBG-based assemblers often use several k-mer sizes to combinethe paths identified in different graphs.
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Figure 2 – Overview of Overlap-Layout-Consensus assembly. The graph was built withall overlaps of at least 5 bases with a tolerance of 1 mismatch.

With the advent of third-generation sequencing, OLC assemblers have benefited from a re-newed interest whereasDBG-based ones are poorly suited for long, low-accuracy reads, contain-ing many erroneous k-mers. Numerous assemblers have implemented the OLC approach to pro-duce de novo assemblies from error-prone long-read datasets: Flye [116], Ra [122], Raven [123],Shasta [124], wtdbg2 [127]. Now that HiFi reads bring a new type of high-accuracy long reads,assemblers have been adapted to better handle these sequences, such as Flye (with adapted
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Figure 3 – Overview of genome assembly using de Bruijn graphs. A circular genome isassembled based on three reads using node-centric and edge-centric DBGs with k = 3.The node-centric DBG is searched for a Hamiltonian cycle (visiting all nodes), and theedge-centric DBG for an Eulerian cycle (visiting all edges). These cycles are representedin blue in the graphs.

parameters), HiCanu [128] and hifiasm [129], and new DBG assemblers adapted for large k-mervalues are now being released [131–133].
From sequencing reads, assemblers build contiguous sequences called contigs. A perfectlyassembled genome should have one contig representing each chromosome, but this is rarelyachieved for eukaryotes. Assemblers need to find unambiguous paths in the assembly graph toreconstitute the chromosomes, but they often fail to do so due to the genomic structure: size,heterozygosity, repetitive content. Large genomes require a high amount of sequencing data inorder to reach a sufficient depth to represent every locus. Genome sizes have a high variability(Figure 4): in the phylum Cnidaria, some myxozoans have a genome size of only some tens of

8 Nadège Guiglielmoni et al.

Peer Community Journal, Vol. 2 (2022), article e29 https://doi.org/10.24072/pcjournal.128

https://doi.org/10.24072/pcjournal.128


Annelida

Arthropoda

Bryozoa

Cnidaria

Ctenophora

Echinodermata

Hemichordata

Mollusca

Nematoda

Nemertea

Platyhelminthes

Porifera

Rotifera

Tardigrada

0 20 40
# assemblies

30 100 300 1000 3000
Assembly sizes (Mb)

Figure 4 – Assembly sizes. The left graph shows the number of assemblies included foreach phylum and the right part shows the corresponding assembly-size ranges.
Megabases (Mb) (Kudoa iwatai: 22.5 Mb, Myxobolus squamalis: 53.1 Mb, Henneguya salminicola:60.0 Mb [142]), while the hydrozoan Hydra oligactis (1.3 Gigabases (Gb)) [143] has a genomesize two orders of magnitude larger. Heterozygous regions constitute a major cause for breaks inassemblies of non-model animal genomes, as they generally have higher levels of heterozygositythan model species [144]. Most assemblers try to build a haploid representation of all genomes,even for multiploid (i.e. diploid or polyploid) genomes. To this end, heterozygous regions arecollapsed in order to keep a single sequence for every region in the genome. In an assembly graph,these heterozygous regions will appear as bubbles, where one contig (a homozygous region)can be connected to several other contigs (the alternative haplotypes of a heterozygous region).When the assembler is unable to select one path, the homozygous region is not joined with anyof the haplotypes, leading to a break in the assembly.

3. Assembly pre and post-processing
As obtaining high-quality chromosome-level contigs still remains challenging, upstream anddownstream tools have been developed in conjunction with assemblers (Table 2). Researcherscan test numerous combinations of these tools to devise the pipeline that will yield the bestassembly (Figure 5).
Long reads have the advantage over short reads that they result in more contiguous assem-blies. Nevertheless, assemblies of PacBio Continuous Long Reads (CLR) or Nanopore reads canhave remaining errors due to their low accuracy; while errors in PacBio CLR are random and arecompensated with a high coverage, Nanopore reads have systematic errors in homopolymericregions [228]. Assemblies of error-prone long reads often necessitate additional processes toincrease the quality. There are two possible strategies: correct the long reads prior to assembly,and polish the contigs after assembly. Correcting long reads can be done using only the longreads or by adding high-accuracy short reads. Many tools have been developed for both scenarii
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Figure 5 – Assembly pipeline, including the assembly and the pre/post-processing steps.
Table 2 – Assembly pre and post-processing tools for haploid assemblies.

Step Data ToolsRead filtering Long reads Filtlong [145]Long-read error Short reads CoLoRMAP [146], Hercules [147], HG-CoLoR [148],correction Jabba [149], LoRDEC [150], LoRMA [151], NaS [152],proovread [153]Long reads Canu [114], CONSENT [154], Daccord [155], FLAS [156],HALC [157], MECAT [118], MECAT2 [118], NECAT [120],NextDenovo [121]Polishing Short reads ntEdit [158], Pilon [159], POLCA [160]Short & long Apollo [161], Hapo-G [162], HyPo [163], Racon [164]readsLong reads Arrow [165], CONSENT [154], Medaka [166]NextPolish [167], Nanopolish [168], Quiver [165]Haplotig Long reads HaploMerger2 [169], purge_dups [170],purging Purge Haplotigs [171]Scaffolding Short reads Bambus [172], BATISCAF [173], BESST [174], BOSS [175],Mate pairs GRASS [176], MIP [177], Opera [178], ScaffMatch [179],ScaffoldScaffolder [180], SCARPA [181], SCOP [182],SLIQ [183], SOPRA [184], SSPACE [185],WiseScaffolder [186]Long reads DENTIST [187], gapless [188], LINKS [189], LRScaf [190],npScarf [191], PBJelly [192], RAILS [193], SLR [194],SMIS [195], SMSC [196], SSPACE-LongRead [197]Genetic maps ALLMAPS [198]Optical maps AGORA [199], BiSCoT [200], OMGS [201],SewingMachine [202], SOMA [203]Linked reads ARBitR [204], Architect [205], ARCS [206], ARKS [207],fragScaff [208], Scaff10X [209]3C/Hi-C 3D-DNA [12], dnaTri [210], GRAAL [211],HiCAssembler [212], instaGRAAL [213], Lachesis [214],pin_hic [215], SALSA [216], SALSA2 [217], scaffhic [218],YaHS [219]Gap filling Short reads GapFiller [220], GAPPadder [221], Sealer [222]Long reads Cobbler [193], DENTIST [187], FGAP [223], gapless [188],GMcloser [224], LR_Gapcloser [225], PBJelly [192],PGcloser [226], TGS-GapCloser [227]
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and have been thoroughly reviewed on multiple datasets [229]. When tested on Caenorhabdi-tis elegans Nanopore reads, the error rate decreased from 28.93% to less than 1% (using Canu[114], CONSENT [154], FLAS [156], Jabba [149], LORMA [151] or MECAT [118]). Assemblingcorrected reads is expected to yield contigs with higher quality and contiguity. Alternatively, oradditionally, the contigs can be polished to reduce errors, using long reads and/or short reads.Polishing can be a more computationally efficient strategy: the reads are mapped solely to thedraft assembly, while correction is usually based on an all-versus-all read mapping.
Assemblers are generally tested onmodel-organismdatasets, and are ill-suited for non-modelgenomes with variable levels of heterozygosity. They often fail to collapse highly divergent hap-lotypes, causing artefactually duplicated regions that hinder subsequent analyses [230]. Somelong-read assemblers, Ra and wtdbg2, have been identified as less prone to retain uncollapsedhaplotypes [231]. Contigs can also be post-processed to remove these duplications with dedi-cated tools such as HaploMerger2 [169], purge_dups [170] and Purge Haplotigs [171]. HaploM-erger2 detects uncollapsed haplotypes based on sequence similarities, while purge_dups andPurge Haplotigs also rely on coverage depth.
To improve the contiguity of an assembly, contigs can be grouped, ordered and orientedinto scaffolds. These scaffolds may contain gaps, when the sequence that should connect twocontigs cannot be retrieved, represented as a sequence of Ns, and these gaps can be reducedpost-scaffolding with gap-filling tools. Chromosome-level scaffolds have become a standard ingenome assembly publications: unlike fragmented assemblies, they can be used for synteny anal-ysis, finding rearrangements, and to separate chromosomes from different species. Scaffoldingtools were already developed for first-generation sequencing reads (e.g. Celera [73], CAP3 [72],GigAssembler [232]). Since then, several sequencing techniques have been used to scaffold as-semblies: mate pairs, long reads, genetic maps, optical mapping, linked reads, and proximity lig-ation [233]. Mate pairs are short reads with a large insert size (more than several kb), and havebeen widely used in next-generation assemblies. Among the 237 assemblies we surveyed, 78included a mate-pair scaffolding step (Figure 6). Both genetic maps [234] and optical maps [235]provide information on the linkage and relative position of a set of markers, spread over thegenome, thus they can be used to anchor contigs. Genetic maps were used for the genome as-semblies of the flatworm Schistosoma mansoni [236], the copepod Tigriopus japonicus [237] andthe coral Acropora millepora [26]. Although existing genetic maps provide precious resources,building one is particularly difficult as it requires breeding [234], making it hardly accessible forwild species, and impossible for asexual species. Markers of optical maps are motifs in the se-quence that are labeled and detected by a fluorescent signal. Companies such as Bionano orNabsys propose this service to scaffold assemblies [238], and this method was included in somenon-vertebrate genome projects: several nematodes including Onchocerca volvulus [239], As-caris suum and Parascaris univalens [240], the tapeworms Echinococcus multilocularis [241] andHymenolepis microstoma [242], and the chiton Acanthopleura granulata [243].
Linked reads and proximity ligation are based on short-read sequencing, preceded by a spe-cific library preparation. For linked reads, also called cloud reads, long fragments of DNA arebarcoded and then sequenced. The company 10X Genomics was a leader of this technology,but they chose to discontinue its commercialization in June 2020. New linked-read methods arenow emerging such as haplotagging [244] and TELL-seq [245], and the latter protocol is able tohandle inputs as low as a few nanograms of DNA. Linked reads have been used to scaffold thegenomes of the coral Acropora millepora [26] and the bee Lasioglossum albipes [246]. As linkedreads are also shotgun Illumina reads, these reads are sometimes used for assembly (using Ar-chitect [205] or Supernova [247]) or polishing, as was done for the mosquito Anopheles funestus[248].
Proximity ligation techniques, based on capture of chromosome conformation [249], werenot originally developed with genome sequencing applications in mind. Instead, they aimed atinvestigating the interplay between chromosome 3D organization and DNA processes [250].A popular genomic derivative of 3C, Hi-C [251] documents the average conformation of the
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Figure 6 – Assemblies scaffolding. Left: number of assemblies that included each scaf-folding method. Right: scaffold N50 of non-vertebrate animal genome assemblies overtime. The assemblies that included a Hi-C scaffolding step are highlighted in orange; theyform a cluster with a scaffold N50 over 1 Mb.

genomes of a population of cells. Briefly, the approach consists in freezing the chromosomefolding of each individual cell using chemical fixation by formaldehyde, which generates bondsbetween proteins and proteins, and proteins and DNA. Then, the genome is cut into fragmentsusing a restriction enzyme, that are then ligated in dilute conditions. As a consequence, frag-ments that were trapped together by the crosslinking step are more prone to be ligated witheach other, rather than with a fragment belonging to a different crosslinked complex. This re-sults in chimeric fragments with respect to the original genome agencement, reflective of their3D contacts in vivo. The relative proportions of ligation events between all restriction fragmentsof a genome can then be quantified, in theory, through high-throughput sequencing. On average,and because of the polymer nature and physical properties of DNA, the frequency of contactsbetween a pair of loci reflects either their 1D cis disposition along a chromosome, or their transdisposition on two independent chromosomes [252, 253]. Hi-C scaffolders have been developedfollowing these principles: some follow a graph approach and use Hi-C links to join contigs (3D-DNA [12], SALSA2 [217]), whereas others exploit Markov Chain Monte Carlo (MCMC) samplingand Bayesian statistics to reorganize DNA segments into the scaffolds most likely to explainthe observed interaction frequencies (GRAAL [211] and its later improved version instaGRAAL[213]). These tools are not yet able to estimate the gap size separating two contigs connectedinto a scaffold, thus they usually insert gaps with an arbitrary length. Most Hi-C protocols useone or several restriction enzymes, leading to an enrichment of Hi-C reads around recognitionsites and making them inadequate for de novo assembly and polishing. Recent protocols can nowuse Dnase I instead of restriction enzymes to yield libraries with a uniform distribution, such asOmni-C; these Hi-C reads can be used as single-end reads for short-read assembly.
The Hi-C protocol itself is becoming more and more accessible as commercial kits are nowavailable (e.g. Arima Hi-C, Phase Genomics, or Dovetails Genomics), yet they still require a mini-mum input of about 0.5-1 million cells. Hi-C scaffolding proved efficient at bringing highly frag-mented draft assemblies to chromosome-level scaffolds (Figure 6), and is now included in manygenome projects for all sorts of non-vertebrate animals: the arthropods Varroa destructor [254],Carcinoscorpius rotundicauda [255], andCataglyphis hispanica [256], the cnidariansXenia sp. [257]andRhopilema esculentum [258], the echinoderms Lytechinus variegatus [259] and Pisaster ochraceus[260], the molluscs Scapharca broughtonii [261], Chrysomallon squamiferum [262], andMercenariamercenaria [263], the nematods Caenorhabditis remanei [264] and Heterodera glycines [265], the
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platyhelminthe Schistosoma haemotabium [266], the poriferan Ephydatia muelleri [267], the ro-tifer Adineta vaga [36], the xenacoelomorph Hofstenia miamia [268], and more. A compellingadvantage of Hi-C scaffolding over other scaffolding methods is its ability to discriminate differ-ent organisms in a draft assembly: DNA from different organisms belong to distinct nuclei, thusthey have no 3D interactions. This feature is especially useful for non-vertebrate animals withsymbionts, that can hardly be eliminated from the host prior to sequencing, and are often targetsfor genome assembly as well.
Pre/post-processing steps are often included in assembly tools: Canu, MECAT, MECAT2,NECAT and NextDenovo correct low-accuracy long reads prior to assembly; Flye, Raven andNextDenovo have a polishing step; and assemblers can include a scaffolding step to yield bothcontigs and scaffolds. Users can choose however to skip these steps and perform their ownpre/post-processing instead, or in addition. Some assemblers propose a hybrid assembly strat-egy, using both short and long reads, such as HALSR [269], MaSuRCA [270] and WENGAN[271].

4. Assembly evaluation
A critical step in genome assembly is to estimate the quality of draft assemblies, and choosethe best one for subsequent analysis. The first metric to assess is the assembly size and itsadequacy with an estimated genome size. The size can be estimated experimentally with flowcytometry or Feulgen densitometry [272], but these methods require a reference species forwhich the genome size is already well known, exposing them to errors induced by the refer-ence genome size. Reference-free genome size estimation tools are typically k-mer based ap-proaches and use high-accuracy reads (e.g. Illumina, PacBio HiFi). These tools, such as BBtools[273], GenomeScope [274] and KAT [275], build a k-mer spectrum representing the number of k-mers with a certain frequency of occurence. When the sequencing depth is sufficient, the k-merspectrum should display one or more peaks depending on the ploidy. For a haploid organism,there should be only one peak, whereas a diploid organism should have two peaks. The plot mayalso show a peak of k-mers with a frequency of occurence close to zero, corresponding to er-roneous k-mers. Another recent tool called MGSE [276] estimates genome size based on readsmapping to a highly contiguous assembly of the same genome; this method can be used as apost-hoc analysis.
N50 is a popular metric that reflects the contiguity of an assembly: it is defined as the lengthof the largest contig (or scaffold) for which 50% of the assembly size is contained in contigs(or scaffolds) of equal or greater length. Some tools provide in addition the N75, N90, N99,computed in a similar fashion. The NG50 is a variant of N50 that refers to an estimated genomesize instead of the assembly size. The target assembly can further be mapped against a referenceassembly to detect misassemblies and break them: theN50 andNG50 of the resulting fragmentsare calledNA50 andNGA50. All thesemetrics can be computed usingQUAST [277]. For genomeassemblies of non-model non-vertebrate animals, reference assemblies are seldom available, orthey have a poor quality or contiguity that the new assembly aspires to improve. Therefore wewill focus on reference-free evaluation methods. Table 3 and Figure 8 present an example ofassembly evaluation for the recently published snail Achatina fulica [278] and the coral Xenia sp.[257].
Another feature to optimize is the completeness of the genome, usually based on orthologs ork-mers. BUSCO [38–40] searches for orthologs in a user-provided lineage; the current Metazoalineage (designated as Metazoa odb10) contains 954 features. Assemblies are evaluated basedon the proportion of orthologs to these 954 genes that can be retrieved into them; yet, somefeatures are systematicallymissing in some genomes as they are absent from these species.Morespecific lineages are available for arthropods, insects, nematodes, vertebrates,mammals, asmanyassemblies are available for these groups, but other metazoan phyla suffer from their lack ofresources. Consequently, BUSCO is most powerful when comparing several draft assembliesfor one genome. BUSCO scores provide information on complete single-copy and duplicated
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Figure 7 – Overview of scaffolding methods.

features, and the latter can be used to detect improperly duplicated regions in a haploid assembly.However, BUSCO scores are limited to genomic regions and cannot report for non-coding ones.
k-mer completeness scores do not present such limitations: KAT assesses the completenessof a whole assembly based on its representation of k-mers from a high-accuracy sequencingdataset. The k-mer spectrum should display one or several peaks depending on the ploidy ofthe genome: one peak for a haploid genome; two peaks for a diploid genome, the first depictingheterozygous k-mers, and the second for homozygous k-mers. Depending on the ploidy of thegenome, every k-mer should be represented in the assembly as many times as they actually arein the genome.
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Table 3 – Assembly evaluation of Achatina fulica and Xenia sp..
Achatina fulica Xenia sp.Basic statistics Assembly size 1.86 Gb 222.7 MbN50 59.6 Mb 14.8 MbN90 44.1 Mb 6.9 MbLargest scaffold 116.6 Mb 22.5 MbNumber of scaffolds 1500 168Number of scaffolds larger than 1 Mb 32 17N count 3,600,500 194,000BUSCO completeness Complete and single-copy BUSCOs 84.4% 86.0%Complete and duplicated BUSCOs 3.6% 2.2%Fragmented BUSCOs 3.5% 3.5%Missing BUSCOs 8.5% 8.3%Reads mapping Short reads 96.2% 87.8%Long reads 81.62% 99.5%Hi-C 70.2% 65.7%
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Figure 8 – Assembly evaluation of Achatina fulica and Xenia sp.. Left: KAT comparisonof the k-mers in the Illumina datasets v. the assembly. Right: Hi-C contact maps, with abinning of 300 for Achatina fulica, 30 for Xenia sp..
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Both Achatina fulica and Xenia sp. have high BUSCO scores (against the lineage Metazoaodb10), yet slightly below 90%, and they have few duplicated BUSCO features. The k-mer spec-trum of Achatina fulica only shows one peak around 70X (Figure 8, top left). These k-mers areexpected to be represented exactly once, which is the case for the majority; there are almostno k-mers that appear twice in the assembly (in purple), but there is a noteworthy amount ofmissing k-mers (in black). For Xenia sp., the k-mer spectrum has two peaks with a k-mer multi-plicity around 35X and 70X (Figure 8, bottem left). The first peak, representing heterozygousk-mers, shows that a portion is represented once in the assembly, while the rest is missing, asexpected in a collapsed assembly. The second peak, for homozygous k-mers has a majority ofk-mers represented once, and some k-mers either absent or duplicated. These assemblies seemoverall properly collapsed and complete.
KAD, for k-mer abundance difference [279], proposes an alternative k-mer-based evaluation.This tool does not compute an overall completeness score, but instead classifies k-mers basedon their abundance in the assembly and the sequencing dataset: good k-mers, erroneous k-mers(absent from the dataset), overrepresented k-mers (duplications), and underrepresented k-mers(collapsed repetitions).
Assemblies need to be screened for contaminants, to tell apart the sequences coming fromthe target and from other species. Contaminants may originate from the environment, the sym-biont, or be artificially introduced by the sequencing process. Blobtools [280] and BlobToolKit[281] aim to identify themwith GC content, coverage depth and taxonomy assignment using theNCBI TaxID. Discriminating bacteria in metazoan assemblies is usually straightforward based ontheir distinct GC percentage. The task is more challenging when the target metazoan genome ismixed with other eukaryotes or even metazoans, especially when these species are absent fromdatabases. Chromosome-level assemblies reduce the risk of contamination, as downstream anal-yses can be run exclusively on sequences that were anchored to the main scaffolds. In addition,with Hi-C data, sequences from different species can be separated based on their absence oftrans interactions. Contamination can lead to false conclusions: for instance, a study on a highlyfragmented genome assembly (N50 = 16 kb) of the tardigrade Hypsibius dujardini assumed thatabout 17% of its genome derived from horizontal gene transfers [282], when these sequenceswere in fact contaminants [283].
When Hi-C data are available, contact maps, i.e. the representation of the paired-end readsfrom theHi-C library aligned on the resulting scaffold, procure another evaluation asset to searchfor misassemblies. The contact map is expected to show heightened frequencies for each chro-mosome, in a chromosome-level assembly, and these interaction frequencies should decreasewith increased distances separating loci on the sequence, based on the distance law. ForAchatinafulica, 30 chromosome-level scaffolds (out of 31) display relatively consistent and regular con-tact patterns, representing well individualized entities in the contact map (Figure 8, top right).By contrast, the contact map of Xenia sp. does not display such patterns, with multiple transcontacts appearing between the scaffolds and most likely corresponding to scaffolding errors.

5. Phasing assemblies
As collapsing multiploid genomes can be difficult for highly divergent regions and frequentlycauses breaks in the assembly, an intuitive solution would be to phase genomes to retrieve allhaplotypes. Phased assemblies represent a whole different challenge as they necessitate to cor-rectly associate alleles, i.e. different versions of a heterozygous region [284]. A first approach,called trio-binning, is to assemble one individual using sequencing data from the individual itselfand its parents [285]; yet this method is only adapted when the parents can be identified, andis inapplicable on asexual species. Some tools are able to reconstruct haplotypes from collapsedassemblies using long reads, namely HapCUT2 [286] and WhatsHap [287]. Ideally, genomesshould be uncollapsed, as can be done with Bwise [288] and Platanus-Allee [289] using shortreads, FALCON-Unzip [115] using PacBio CLR or HiFi. FALCON-Unzip uses the output from the
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FALCON assembler, that includes both a haploid assembly and alternative haplotigs for heterozy-gous regions, to associate haplotypes based on long reads. Phased assemblies of low-accuracylong reads are limited, as small heterozygous regions were confused with errors; this led to hap-lotypes being erroneously collapsed.
HiFi reads have made a disruption in the fields of genomics: they are especially well-suitedfor phased assemblies, using hifiasm [129] for instance, thanks to their length and low errorrate, and they have already been used to produce phased assemblies of a human [290] and thepotato Solanum tuberosum [291]. Nevertheless, sequencing HiFi reads can remain inaccessiblefor non-model organisms as pure DNA is necessary.
Many organisms have already been assembled using low-accuracy long reads and high-accuracyshort reads, thus an alternative is to correct long reads with short reads using a tool that con-serves haplotypes such as Ratatosk [292]. Phased long-read assemblies can be further polishedwith adequate programs (e.g. Hapo-G [162]). As Hi-C has demonstrated its efficiency to scaffoldhaploid assemblies, the principles were further exploited in ALLHiC [293], GraphUnzip [294] andFALCON-Phase [295] to phase assemblies while increasing their contiguity: as alleles from onehaplotype belong to one chromosome, these alleles have higher Hi-C interaction frequenciestogether than with alleles from alternative haplotypes.
Phasing-specific evaluation methods are still scarce, and publications of phased assembliesrely on various datasets to prove their correctness (e.g. parental assemblies [290]).Merqury [296]proposes a k-mer-based approach, inspired by KAT, and computes plots and scores to assessphasing completeness and find haplotype switches. However, similarly to trio-binning, it requiresparental data.

6. Recommendations
Long reads and Hi-C have become a gold standard for genome assembly and several consor-tia have adopted this strategy. Ideally, high-accuracy long reads (PacBio HiFi, Nanopore Q20+)should be prefered as they generally yield more contiguous assemblies than low-accuracy longreads, and they improve the resolution of repetitions. HiFi reads also have the advantage thattheir assembly requires lower computational resources; the computational burden has howevershifted to filtering PacBio reads to produce HiFi reads, although this step is usually performedby sequencing providers. More than ten softwares have already been released for or adapted tohigh-accuracy long reads, and have led to high-quality assemblies, but we can expect that theyare not yet able to fully take advantage of these new technologies, and the development of newtools will further elevate the accuracy of de novo assemblies. Besides, these reads necessitatean optimisation of high-molecular-weight DNA libraries which is not possible for all non-modelspecies.
Low-accuracy long reads aremore accessible, and they have been used to assemble countlessreference genomes over the past decade. For low-accuracy PacBio reads, a high coverage depthis sufficient to eliminate errors, due to their random error pattern. Low-accuracy Nanopore readsneed to be combined with highly accurate reads to correct or polish their systematic errors. Alimiting factor for long-read sequencing is the minimum DNA input. Nanopore reads, necessi-tate one microgram of high-molecular-weight DNA, and three micrograms are recommendedto maximize the output of a flow cell. For PacBio reads, low and ultra-low input protocols areavailable (for both low- and high-accuracy reads), but they are only adequate for genomes up to500 Mb. Another factor to weight in when choosing between these reads is their length: withan optimized Nanopore library, reads are typically longer than PacBio reads, and lead to morecontiguous assemblies.
When high-molecular-weight DNA cannot be extracted, short reads are the adequate option.The resulting assemblies are more fragmented, yet some short-read assemblers are able to pro-duce good drafts, such as Platanus. These assemblies may have large missing repetitions, thusthey are not ideal for analysis of repetitive content and they should be thoroughly assessed interms of assembly size and completeness.
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Hi-C scaffolding has emerged as the most robust method to obtain chromosome-level scaf-folds with no contamination. It is applicable as long as fresh or flash-frozen tissue is available forcrosslinking, and with a minimum input of a half to one million cells. When these requirementsare not fullfilled, linked reads can be used as an alternative (as TELL-seq can use a low input ofDNA), or in addition to further reduce assembly errors.
A current issue for non-model species are remaining artefactual duplications in assemblies;these duplications must be identified with BUSCO and k-mer analysis tools, and eliminated withhaplotig-purging tools prior to scaffolding. However, producing collapsed haploid assemblies isa standard set by genome projects for low-heterozygosity genomes: phasing assemblies may bea better option and a more comprehensive representation of highly heterozygous genomes.
The most crucial step in an assembly pipeline should be the evaluation step. Chromosome-level assemblies are sought for to study structural rearrangements, transposable elements, dis-card contaminants and compare related species. Genomics consortia have set high standards forquality and contiguity (more than 90% of an assembly anchored to the main scaffolds, BUSCOand k-mer completeness superior to 90%), but these goals may not be reached for some diffi-cult species. Imperfect genome assemblies still provide insights into understudied species, aslong as their flaws are acknowledged. For instance, fragmented assemblies may be used to iden-tify genes and conduct phylogenomics or population genomics analyses, although the numberof genes can be inflated due to their fragmentation [297] and repetitions may be poorly repre-sented. Conclusions should be drawn carefully depending on the quality of the assembly: whatwould appear as awhole-genome duplication could be the result of large artefactual duplications;contaminants could be erroneously interpreted as horizontal gene transfers.

7. Building robust animal genomic databases
We surveyed genome assembly papers from diverse metazoan phyla. Figures 1, 4 and 6 onlyretained assemblies that were available on GenBank, as we used assembly sizes, contig N50sand scaffold N50s from this source. We also limited these assemblies to those published afterthe year 2007, as we found that assemblies were seldom available on GenBank before that,and up to the year 2020. Some genomes were not deposited, and were instead available on apersonal/lab/university page. This impedes meta-analyses and we are unable to accurately esti-mate the number of published non-vertebrate animal genome assemblies. The datasets used forthe genome assemblies also suffer from this issue, as they are not necessarily publicly available.Efforts are being made to make genome assemblies and datasets findable, accessible, interoper-able and reusable (FAIR) [298]. Assembly pipelines are becoming more reproducible thanks toseveral initiatives using workflow managers, such as the Vertebrate Genome Project assemblypipeline in Galaxy [299].
There were several inconsistencies in genome assembly statistics between the publishedpaper and the assemblies available in the databases. In some cases, the differences were of afew kilobases, generally for the N50. The combination of cheaper sequencing methods, high-accuracy long reads and dynamic consortia have built a momentum in genome assembly promis-ing to escalate the number of assemblies available, and genomic databases should be improved inparallel to better document assembly statistics and strategies. Exhaustive databases with reads,contig-level and scaffold-level assemblies, and also a list of tools used for assembly, could beused to conduct large analyses of these genomes and report on the performance of assemblytools.

Supplementary information
Data presented in Figures 1, 4 and 6 are available in [300]. Tables 1 and 2 are available andwill be updated in [301].
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