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Abstract
Recently, a number of studies have reported somewhat contradictory patterns of tem-
poral trends in arthropod abundance, from decline to increase. Arthropods often exhibit
non-monotonous variation in abundance over time, making it important to account for
temporal coverage in interpretation of abundance trends, which is often overlooked in
statistical analysis. Combining four recently analysed datasets that led to contrasting
outcomes, we first show that temporal abundance variations of arthropods are non-
monotonous. Using simulations, we shownon-monotony is likely to bias estimated linear
abundance trends. Finally, analysing empirical data, we show that heterogeneity in es-
timated abundance trends is significantly related to the variation in temporal baseline
of analysed time series. Once differences in baseline years, habitats and continents are
accounted for, we do not find any statistical difference in estimated linear abundance
trends among the four datasets. We also show that short time series produce more sto-
chastic abundance trends than long series, making the dearth of old and long-term time
series a strong limitation in the assessment of temporal trends in arthropod abundance.
The lack of time series with a baseline year before global change acceleration is likely to
lead to an underestimation of global change effects on biodiversity.
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Introduction 

Over the last decades, many studies have documented a biodiversity crisis on the basis of high 
extinction rates (Dirzo & Raven 2003; Ceballos et al. 2015) and population losses or declines (Butchart et 
al. 2010; Ceballos et al. 2017), mainly in vertebrates. Worldwide erosion of biodiversity is caused by 
anthropogenic global change (Sala et al. 2000), i.e. a set of pressures including among others land use 
change, climate warming, overexploitation, or pollution (Steffen et al. 2006). In recent years, invertebrates, 
and especially arthropods, have been at the centre of a debate (Dornelas & Daskalova 2020; McDermott 
2021) regarding the magnitude and even the directionality of the temporal trends in their abundance. 
Some studies showed a strong decline on the basis of standardized inventories (Hallmann et al. 2017; 
Seibold et al. 2019), while analyses of meta-datasets assembling heterogeneous time series evidenced a 
decline of terrestrial, but an increase of aquatic arthropods (Pilotto et al. 2020; van Klink et al. 2020) or no 
overall decline (Crossley et al. 2020). Finally, an analysis of opportunistic occurrence data revealed non-
monotonous dynamics and no overall decline (Outhwaite et al. 2020). 

Heterogeneity in population trends among studies is not surprising but the underlying causes need to 
be differentiated, particularly to tell apart abiotic/biotic factors from methodological factors. The dynamics 
of biodiversity changes are well-documented and their heterogeneity relatively well understood for 
vertebrates (Antão et al. 2020; Daskalova et al. 2020b, a; Leung et al. 2020) or for some specific functional 
groups of invertebrates, such as pollinators (Grab et al. 2019; Duchenne et al. 2020; Soroye et al. 2020; 
Millard et al. 2021). However, the heterogeneity in population trends remains poorly explained for most 
invertebrates. Several reasons may explain the contrasting patterns revealed by the studies involved in the 
arthropod decline debate. Global change pressures can vary in space among locations or ecological 
habitats, and species abilities to respond to environmental changes may depend on their traits or their 
evolutionary history (Helmus et al. 2010; Grab et al. 2019); hence spatial, ecological and taxonomic 
coverages are obvious sources of heterogeneity among studies and are widely discussed in the recent 
literature (Blowes et al. 2019; Pilotto et al. 2020). For example, some studies used global datasets with a 
bias towards the northern hemisphere (van Klink et al. 2020) while others considered national or even 
more local spatial extents (Hallmann et al. 2017). Some focused on terrestrial arthropods (Hallmann et al. 
2017; Seibold et al. 2019) while others included aquatic groups (Crossley et al. 2020; van Klink et al. 2020). 
Finally, some studies analysed average trends by pooling multiple taxonomic groups (Hallmann et al. 2017; 
van Klink et al. 2020), while others reported trends for each taxonomic group (Outhwaite et al. 2020). 

Differences in temporal coverage (i.e. the time period during which a taxon or community was 
monitored) across studies are at the core of the debate over biodiversity crisis (Pauly 1995; Cardinale et al. 
2018; Loreau et al. 2022), but efforts to account for temporal coverage in statistical analysis remain limited 
(Cardinale et al. 2018; Didham et al. 2020; Loreau et al. 2022). Heterogeneity in temporal coverage is likely 
to influence the conclusions of studies assessing temporal trends in arthropod abundance for two reasons. 
First, there is variation in baseline years across the studies fuelling the debate: some analysed time series 
of identical temporal coverage and relatively old baseline year (Hallmann et al. 2017; Outhwaite et al. 
2020), while others used heterogeneous datasets consisting mostly of time series with recent baseline 
years (Crossley et al. 2020; van Klink et al. 2020). Second, non-monotonous dynamics repeatedly reported 
in arthropods (Macgregor et al. 2019; Baranov et al. 2020; Høye et al. 2021; Schowalter et al. 2021), due 
to temporally variable environmental pressures (Baranov et al. 2020; Duchenne et al. 2020; Schowalter et 
al. 2021), can affect linear estimates of abundance trend beyond the original description of the shifting 
baseline syndrome (Fig. 1). With non-monotonous dynamics, estimated linear trends can vary from positive 
to negative when considering different baseline years for the same time series (e.g. Fig. 1h). As most 
arthropod trends were estimated assuming linear trends and available data often do not make it possible 
to account for all factors influencing temporal variation in abundance, it appears critical to account for 
differences in baseline years when making comparison within and among studies. 
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Figure 1: Schematic examples of how baseline year may affect estimated linear abundance trends. 

(a-d) Hypothetical time-series showing abundance variations over years (black) and three possible 
temporal coverages with contrasting baseline years: old (blue), intermediate (red) and recent (yellow). (e-

h) Linear abundance trends estimated with time series starting from these three baseline years. (i-l) 
Pattern of estimated abundance trends against baseline year, reconstructed by estimating abundance 
trends over all possible baseline years. The dashed black line shows the zero-value delimiting positive 

(above) vs. negative (below) abundance trends. 

Here, we evaluated the effect of the baseline years of time series on estimated linear trends in 
arthropod abundance, using the four largest datasets of arthropod time series recently analysed in studies 
fuelling the current debate (Dornelas et al. 2018; Crossley et al. 2020; Outhwaite et al. 2020; van Klink et 
al. 2020). We first characterized non-monotony in temporal variations of arthropod abundance. Then, 
using simulations we assessed how non-linearity can bias linear abundance trends. Finally, using a sliding 
baseline method on the empirical dataset aggregated here (cf. Methods, Fig. 2), we measured how non-
linearity in arthropod abundance trends can produce a statistical dependency of estimated linear 
abundance trends on the baseline year. 

Methods 

The four source datasets (step 1) 
We aggregated four source datasets from recent publications evaluating abundance trends in 

arthropods (Table S1): (i) annual occupancy estimates (the proportion of 1km2 grid cells in a region 
occupied by a species, a proxy for abundance) at species level for a wide diversity of arthropods from Great-
Britain, produced by Outhwaite et al. (2019), (ii) annual estimates of arthropod abundances mostly at 
species level from American Long-Term Ecological Research (LTER) sites from Crossley et al. (2020), (iii) 
annual estimates of arthropod abundances from the meta-analysis of van Klink et al. (2020), aggregated at 
the resolution of taxonomic order, and (iv) abundance time series from the BIOTIME database (Dornelas 
et al. 2018), mostly at the species level (Fig. S1). 
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Figure 2: Schematic description of data aggregation, and workflow of analyses to assess the effect of 
the temporal baseline on abundance trends. In Step 1, we aggregated empirical datasets from four 

different source datasets. Then we characterized non-monotony of abundance variations over time (Step 
2), and we assessed how non-monotony can affect estimated linear abundance trends using simulations 

(Step3, Goal 1). Finally, we created an array of subset datasets using a sliding baseline (Step 4) to 
estimate how baseline years influenced estimated linear abundance trends in empirical data (Step 5, Goal 

2). Abundance trends are expressed as growth rates for all time series, allowing comparisons among 
common and rare species, as well as among datasets (cf. Supplementary Methods, Fig. S2 & S3). 

Statistical analyses were then performed accounting for habitat (aquatic vs. terrestrial), continent, data 
source and taxonomy. 

We focused on well covered continents and habitats, using only arthropod time series from North 
America and Europe with information on habitat (aquatic vs. terrestrial). We homogenized taxonomy using 
the Global Biodiversity Information Facility (GBIF) taxonomy backbone. For data from Crossley et al. (2020) 
and from van Klink et al. (2020), some time series describe the temporal variations of a wide diversity of 
species pooled together by summing their respective abundances. For these datasets, we removed all time 
series with taxonomic resolution coarser than taxonomic order, except for non-insect arthropods that are 
often grouped at taxonomic class level in available datasets (Chilipoda, Diplododa, Collembola, 
Branchiopoda etc.). We retained these groups and consider them to be the same rank as taxonomic orders 
in the following for simplicity. Details about aggregation and filtering step are available in Supplementary 
Methods. 

To study baseline year effects on linear abundance trends estimated from time series with consistent 
ending dates, we removed time series ending before 2005 (n = 14,717). We further removed the few 
abundance values before 1970 (n = 1,039, 0.4%) to focus on the time period when most of the data were 
collected. Finally we removed time series shorter than 3 years (n = 47). This led to 14,130 original time 
series (Table S2, Fig. S1). 

Assessing the monotony of temporal variation in abundance (step 2, goal 1) 
Because estimated linear abundance trends depend on the baseline year only if abundance varies non-

linearly, especially non-monotonically, over time (Fig. 1), we estimated non-monotony using a Generalized 
Additive Model (GAM) for each original time series. We estimated the strength of non-monotony as the 
number of local extrema, hereafter turning points, observed in the non-linear trend predicted by the GAM, 
as detailed in supplementary Methods. 
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Simulations of temporal declines for different population dynamics (step 3, goal 1) 
We used simulations to assess how non-linearity in temporal variation of abundance (i.e. population 

dynamics) can bias estimated linear abundance trends, depending on their baseline year. We used four 
different shapes of population dynamics (Fig. 4a), using four functions describing temporal variation in 
average population size over 42 years (cf. R script available in supplementary materials). For each shape of 
population dynamics, we simulated time series with different growth rates r from stable (r = 1) to declining 
(r = [0.95, 0.9, 0.85]). The three latter values of r correspond to declines of 5%, 10% and 15% per year, 
respectively. We simulated 100 abundance time series for each shape of population dynamics and growth 
rate. To do so, for each year, we sampled observed abundance values from a Poisson distribution with a 
mean equal to the average population size of the corresponding year. Then, we estimated a linear 
abundance trend over the entire time period (baseline year at t = 1), as well as over truncated time series 
with different baseline years (t =10, 20, 30), using a Generalized linear model (GLM) with a Poisson error 
structure and a log link function, and accounting for temporal autocorrelation (equation (1) below).  

Generating an array of subset datasets using a sliding baseline (step 4) 
To study the effect of the baseline year of time series on abundance trends estimated from the 14 130 

empirical original time series, we created an array of 41 datasets, hereafter called subset datasets, 
corresponding to 41 different baseline years, from 1970 to 2010 by steps of one year (Fig. 2). For each of 
the subset datasets, time series were either truncated to start at the given baseline year, or removed if 
they did not include this specific baseline year. By construction, each of the original time series therefore 
appears several times in the array of 41 datasets, corresponding to n (1 ≤ n ≤ 41) truncated time series. 
Since time series with old baseline years are rare, the number of time series included in the subset datasets 
decreases with earlier baseline years. 

Estimating abundance trends (step 5) 
We estimated arthropod abundance trends using one GLM per truncated time series. We considered 

only truncated time series with at least three annual estimates of abundance, including the abundance 
estimate in the year used to truncate the time series. 

To obtain comparable abundance trends among the various sources, expressed in the same unit, we 
used a model structure that allows the estimation of growth rates. To do so we used GLMs with Poisson 
error structure with a log link function for count data, from van Klink et al. (2020), Crossley et al. (2020) 
and BIOTIME, GLMs with a binomial error structure with a logit link function for occupancy estimates from 
Outhwaite et al. (2019), and GLMs with a gaussian error structure with a log link function for density 
estimates from BIOTIME. Trends estimated with a log or logit link functions are expressed as the logarithm 
of a growth rate (see Supplementary Methods, Fig. S2 & S3), allowing comparisons between common and 
rare species, but also among datasets. Therefore, this approach with appropriate link functions  gives the 
same importance to rare and to common species, in contrast to classic standardization of abundance by 
mean and standard deviations, which biases average trends by giving more weight to species with lower 
inter-annual variability in abundance (Fig. S4). 

The GLM used for each truncated time series explains the abundance estimates of each year 𝑖 by a 
Poisson or Binomial distribution, of parameter 𝜆# and 𝑝# respectively, which depend on a linear year effect 
(𝛽): 

𝑙𝑜𝑔(𝜆#)	𝑜𝑟	𝑙𝑜𝑔𝑖𝑡(𝑝#) = 𝛼 + 𝛽 × 𝑦𝑒𝑎𝑟# + 𝜑# + 𝑒#                                       (1) 

where 𝛼 is the intercept, 𝜑# is a temporal random walk of order one (𝜑#~𝒩(𝜑#89, 𝜎<=), with 𝜑9 = 0) to 
account for temporal autocorrelation and 𝑒# an error term. We fitted these GLMs using the INLA R package 
(Rue et al. 2009). 

Evaluating the importance of the effect of baseline year in arthropod abundance trends (goal 2) 
Pooling together the slopes of the year effect from the linear models presented above, across the 41 

subset datasets, we obtained 192,244 abundance trends. We removed abundance trends estimated from 
time series with a single non-zero yearly estimate of abundance. We did so because growth rates estimated 
from such time series are likely to be extreme (i.e. strongly negative or positive) if this positive abundance 
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estimate is by chance at the end or at the beginning of the truncated time series (Fig. S5). We thus kept 
the 175,796 abundance trends derived from truncated time series with ≥2 non-zero abundance estimate. 

We examined the effect of baseline year used to truncate the original time series on abundance trends. 
To this end, we used a Bayesian linear mixed-effects model explaining abundance trends with spatial and 
temporal variables. Since we do not expect a linear relationship between abundance trends and baseline 
year (Fig. 1), the effect of baseline year was modelled as a polynomial of order three. We added a continent 
effect, a habitat effect, and all two- and three-way interactions between these effects and the polynomial 
baseline year effect (equation (2)), because recent results suggest that terrestrial and aquatic arthropods 
exhibit differences in their abundance trends and because population trends can vary over space 
(Outhwaite et al. 2020; van Klink et al. 2020). To assess whether differences among source datasets 
(Crossley et al. 2020; Outhwaite et al. 2020; van Klink et al. 2020) persist after spatio-temporal variables 
have been taken into account, we included a dataset effect, with four levels. 

We also accounted for pseudo-replication in species belonging to the same taxonomic orders, as well 
as for the fact that several truncated time series are obtained from the same original time series, by adding 
a random effect of taxonomic order and time series ID on the intercept. Data from van Klink et al. (2020) 
and Crossley et al. (2020) originated from multiple sites and different data sources. Thus, we accounted for 
this structure by adding a random site effect nested in a random data source effect. For data from 
Outhwaite et al. (2019), the data source corresponds to the groups used to calculate occupancy estimates 
in the original dataset and the site corresponds to the country coverage of the data for each group (UK or 
GB), both extracted from the Online-only Table 1 (Outhwaite et al. 2019). 

The linear mixed-effect model is thus the following: 

𝐴𝑇ABCDEFGH# = 𝛼CD + 𝛽E + 𝜑BCD + 𝜃9J + 𝜃=K + 𝜃LM + 𝜃NO + 𝑒ABCDEFGH#                                           (2) 

where 𝐴𝑇ABCDEFGH#  is the abundance trend of truncated time series 𝑗 with baseline b, from continent 𝑐, 
habitat ℎ, dataset 𝑠, order 𝑜, data source 𝑑, site 𝑙, from original time series 𝑖. 𝛼CD is the intercept for all 
combinations of continent 𝑐 and habitat ℎ, while 𝛽E is the effect of the source dataset s. 𝜑BCD is a baseline 
effect that depends on baseline b, continent 𝑐 and habitat ℎ. It is modelled as a temporal random walk of 
order one (𝜑BCD~𝒩(𝜑(B89)CD, 𝜎<=), with 𝜑9CD = 0). The 𝜃s denote random effects on the intercept: 𝜃9J  
for taxonomic order, 𝜃=K for data source, 𝜃LM for site and 𝜃NO  for time series ID. 𝑒ABCDEFGH#  is an error term 
following 𝒩(0, 𝜎=). 

To account for the fact that our response variable is estimated, and thus each value has an associated 
standard error (𝑠𝑑𝑒A), we modelled the residual variance as a function of this error. In addition, since the 
four source datasets have different taxonomic scopes or different spatial scales, we expect that residual 
variance (𝜎=) will be strongly structured by the source dataset. Finally, the baseline year also affects the 
number of abundance estimates in time series, which is expected to affect the stochasticity of abundance 
trends (Bahlai et al. 2021). We modelled the dependence of variance of the residuals (σ²) on standard error 
associated to abundance trends of truncated time series j (𝐴𝑇A), on source dataset s and on the number of 
years with data in each truncated time series (ny): 

logX𝜎=AEY = 𝛼E + 𝛽9E × 𝑛𝑦A + 𝛽=E × 𝑛𝑦A= + 𝛽L × log	(𝑠𝑑𝑒A)                                     (3)         

where 𝛼E  is the intercept, which depends on source dataset s, and 𝛽9E and 𝛽=E the polynomial effects of 
the number of years with data in truncated time series j, for each dataset, on the residual variance 𝜎=EA. 
𝛽L is the effect of standard error associated to 𝐴𝑇A on the residual variance 𝜎=EA. Parameters of the two 
models, one for the mean (equation (2)) and one for the residual variance (equation (3)), are estimated 
simultaneously. On this model (equation (2)), we estimated the variance of abundance trends explained 
by each random or fixed effect, as the ratio of its variance on the sum of all these variances plus the variance 
of the residuals. Priors used are detailed in the R script available in supplementary material. The model was 
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fitted using the R2jags R package (Su & Yajima 2012), with 3 chains using 60,000 iterations with a burnin 
of 50,000 and a thin rate of 3, which was enough to reach convergence (all parameters with Rhat<1.1). 

 

Figure 3: Empirical time series of arthropod abundance are non-monotonous, leading to unstable 
abundance trends over a gradient of baseline years. (a) Distribution of the number of original time series 

as a function of the number of turning points (a proxy for non-monotony, cf. Methods) and of the 
number of years with data in the corresponding time series. (b) Variation in direction of abundance 

trends (positive vs. negative) of truncated time series, as a function of the number of years with data in 
the corresponding time series. Truncated time series are from the same original time series which is 

truncated for every possible baseline year (cf. Methods, Fig. 2). Boxplots represent minimum and 
maximum values (bottom and top of vertical lines), first and third quartiles (Q1 and Q3, bottom and top 

of boxes) and median (thick horizontal lines); colours indicate sample size (number of original time 
series). Points with values outside of the range [Q1-1.5(Q3-Q1), Q3+1.5(Q3-Q1)] are considered as 

outliers and represented as full circles. 

Results 

 The number of turning points per empirical time series increases with the number of years with data 
in the time series, indicating that the vast majority of population trends are non-monotonous when time 
series are long enough (Fig. 3a). As expected from Figure 1, the strength of the non-monotony, measured 
as the number of turning points per time series, affects trend estimation. Non-monotonous abundance 
trends are characterized by multiple changes in trend direction over time, such that estimated linear trends 
may have opposite signs depending on the baseline year considered as the start of the time series (Fig. 3b). 
This pattern is consistent across the four source datasets (Fig. S6). 
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Figure 4: Non-linear population dynamics can bias estimated abundance trends. (a) Raw patterns of 
population dynamics when the population is stable, i.e. with a growth rate r = 1, or when the population 

declines by 5% (r=0.95), 10% (r=0.9) or 15% (r=0.85) each year. (b) Scaled patterns of population 
dynamics shown in (a) but using a log10 y-axis scale illustrating that the red curve corresponds to linear 

dynamics (cf. Supplementary methods, Fig. S2). (c) Estimated values of log(r) as a function of the shape of 
the population dynamics over 100 stochastic simulations per type of population dynamics. (d) Estimated 

values of log(r) as a function of the shape of the population dynamics and of the baseline year used to 
truncate the time series. In (c) and (d) the dashed horizontal line shows the value of the logarithm of the 

true (simulated) growth rate. Boxplots have the same meaning as in Figure 3. The right panel of (d) 
without outliers is represented in Figure S7. 
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Using simulated population dynamics (Fig. 4a), we show that similar rates of declines lead to different 
estimated growth rates, depending on the shape of the population dynamics (Fig. 4a-c). Assuming linearity 
to estimate population trends from non-linear dynamics can induce a strong bias when the growth rate 
departs from stability (r=1), by either overestimating or underestimating the genuine simulated trends (Fig. 
4c). As expected, truncating the time series towards more recent baseline years increases the bias in the 
estimated growth rate, except in simulations with linear population dynamics (Fig. 4d). In addition to the 
magnitude of the bias, uncertainty (i.e. dispersion of values around the median) also increases when 
truncating the time series towards more recent baseline years (Fig. 4d). Short and recent time series tend 
to produce extreme estimated growth rates, which can even be opposite to the simulated long-term 
decline (Fig. 4d). These results suggest that not accounting for non-linearity in population trends can induce 
strong biases, and that short-term and recent time series cannot be used to infer long-term population 
change, even if population dynamics are linear, due to the strong uncertainties on estimated values. 

When looking for general patterns in all empirical truncated time series together, statistical analyses 
show that average linear abundance trends estimated from the truncated time series strongly depend on 
the baseline year used for truncation, in interaction with habitats and continents (Fig. 5). This suggests that 
the non-linearity in temporal variations of abundance (Fig. 3b) leads to a strong dependence of the 
Arthropod population trends to the considered period (Fig. 5a). Results show a higher uncertainty in North 
America likely because time series with old baseline years are scarce for this region (Fig. 5b). This highlights 
that data are missing to estimate long-term abundance changes of Arthropods, and that recent data cannot 
help to fill this blank because of non-linearity. 

Figure 5: Effect of the baseline year on average abundance trends. (a) Relationships between the 
baseline year of times series and estimated abundance trends (log of the growth rate) relative to the 
abundance trends estimated with the oldest baseline of the dataset (1970), for each continent and 
habitat. Error bars are 95% confidence intervals. (b) Number of truncated time series used for each 

baseline value. 

Importantly, for the two source datasets including short and long time series (i.e. those from Outhwaite 
et al. and van Klink et al., Fig. 6a), the residual variance of the model strongly decreases with the number 
of years with data in time series. This is consistent with our previous results based on simulations of 
truncated time series (Fig. 4c), and suggests that the stochasticity in abundance trends estimated from 
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short time series is much greater than that from long time series. For data from Crossley et al. and BIOTIME, 
the relationship between the residual variance in abundance trends and the number of years with data is 
strongly parabolic. However, those datasets are strongly biased towards recent and short time series (Fig. 
6a), prompting caution in interpreting this signal. 

Although statistically significant, the effects of baseline year explain only a small fraction of the total 
variation in abundance trends (Fig. 6b). Overall, random effects controlling for methodological issues, 
spatial and taxonomic heterogeneity explain 56% of the variation in abundance trends (Fig. 6b). A high 
proportion of this variation in abundance trends is explained by the random effect of time series ID, 
controlling for the artificial dependencies among abundance trends generated by the truncation procedure 
(cf. Methods). Most of the remaining variation in abundance trends is explained by taxonomic order and 
local site random effects, highlighting that abundance trends are strongly heterogeneous among clades 
and among sites. This questions the relevance of global estimates and stresses the need to carefully identify 
the drivers of such heterogeneity. Some groups, such as Trombidiformes (mites), Orthoptera, Collembola 
and Isopoda, exhibit more positive average abundance trends while other groups, such as Archaeognatha 
(jumping bristletails), Hymenoptera, Coleoptera, Dermaptera and Blattodea are associated with more 
negative trends (Fig. S8). Strikingly, once the various sources of heterogeneity are controlled for, we do not 
find any significant difference among the four source datasets from which the abundance estimates were 
extracted (Fig. 6c). 

 
Figure 6: Variation in abundance trends is strongly structured by methodological effects. (a) 

Predicted (lines) and observed (points) residual variance of the model for each source dataset. 
Predictions are from equation (3). The histogram at the top shows the distribution of truncated time 

series along the x-axis, per dataset. (b) Variation in abundance trends explained by the model effects, and 
residual variation. (c) Black dots show the effect (± CI95%) of the source dataset on abundance trends, 

relatively to the reference level (BIOTIME).  
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Discussion 

Accounting for differences in baseline years contributes to settling the debate on arthropod decline  
Our analysis shows that the non-monotony of empirical abundance time series induces a strong 

dependency of estimated abundance trends to the baseline year, as well as a strong uncertainty in 
abundance trends from short time series. Our findings therefore bring statistical support to the fact that 
most of the available data regarding arthropods, which are biased towards recent and short time series, 
are not appropriate to extrapolate long-term population trends, as suggested recently in discussions over 
vertebrates and arthropods population trends (Daskalova et al. 2021; Loreau et al. 2022; Mehrabi & Naidoo 
2022). 

We show that baseline year is statistically linked to abundance trends, and we highlight that average 
linear abundance trends, if they make any sense, should be interpreted in the light of the temporal window 
covered by the analyzed time series. By statistically assessing the effect of shifting baseline, we provide a 
general picture of how abundance trends change as function of baseline year, which may help to reposition 
the findings of past and future studies in a broader context, and hopefully to make between-studies 
comparison easier. Importantly, once we controlled average temporal trends of studies by the various 
sources of heterogeneity we did not find any statistical difference among source datasets, suggesting that 
the contradiction among recent results regarding arthropod decline comes from methodological issues 
related to temporal coverage as well as taxonomical and geographical bias. 

The importance to define temporal baseline and use common spatial yardsticks when evaluating 
temporal change was previously emphasized in the wider context of biodiversity decline (Lotze & Worm 
2009; Mihoub et al. 2017; Cardinale et al. 2018; Stouffer et al. 2021), but here we bring further statistical 
support to this caveat. Indeed, although the importance of comparing results with common baselines is 
well known, the baseline effect is rarely explicitly accounted for in quantitative analysis (but see Macgregor 
et al. (2019) for an example), in contrast to other sources of heterogeneity in abundance trends (e.g. space 
and taxonomy). Although van Klink et al. (2020) tested the effect of the starting year by truncating their 
time series (see Fig. 3 of van Klink et al. 2020), they did not formally test for a baseline effect: discarding 
data earlier than a given baseline threshold, from 1960 to 2005, did not result in constraining the baseline 
years to be equal across all time series. Since their dataset was mainly composed of time series with a 
baseline year after 1990, discarding data before a giving baseline threshold did not affect the overall 
distribution of baseline years much, except for recent thresholds (post-1990). 

We also show that shorter time series exhibit much more stochasticity (i.e. higher residual variance) 
than long term series, which increases the uncertainty of results from these short-term time series that are 
commonly used in assessing arthropod abundance trends (Seibold et al. 2019; Crossley et al. 2020; van 
Klink et al. 2020). In other words, our results show that short-term series need to be much more replicated 
than long-term time series to reach the same level of confidence in the results. This is consistent with 
previous trends assessment regarding moths in Great-Britain (Macgregor et al. 2019) and more generally 
with the fact that arthropod abundance trends estimated from short time series are strongly sensitive to 
year to year variations (Daskalova et al. 2021). Here we show that uncertainty decreases exponentially with 
the length of time series, highlighting the importance to maintain existing biodiversity monitoring schemes. 
Obtaining long enough time series  is critical for assessing reliable abundance trends, which echoes hot and 
recent debates about abundance trends in vertebrates  (Leung et al. 2022; Loreau et al. 2022). 

Limitations and future challenges  
In addition to the dramatic lack of data for some regions of the world, our study suggests that available 

arthropod abundances suffer from temporal limitations that should be carefully kept in mind when 
assessing their trends. First, the significant effects of baseline year and study area (continent and local site) 
suggest that the estimation of the arthropod abundance trends suffers from large uncertainties, mainly 
due to the lack of historical data. Here, 1970 is the oldest baseline we can tackle with the data at hand, but 
it cannot be considered as a reference before the rise in global change pressures (Mihoub et al. 2017), 
leading to a likely underestimation of global change effects on arthropod abundance. Since we cannot go 
back in time to sample biodiversity, this issue will remain difficult to solve. Museum collections and other 
sources of historical data could help fill this gap, although extracting reliable information from such data is 
still challenging (Isaac et al. 2014; Bartomeus et al. 2019; Duchenne et al. 2020; Outhwaite et al. 2020). 
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Whether or not scientists can manage to obtain the necessary data and apply relevant methods to 
effectively turn back the clock, our analysis stresses the critical need to maintain long-term monitoring and 
secure appropriate archiving of related data (Millar & Searcy 2019). 

Second, we used the same datasets as previous studies, so our analysis does not introduce new 
elements to assess the reliability of these abundance trends with respect to potential biases related to 
spatial and taxonomic coverage or data quality (Desquilbet et al. 2020). For example, some of the time 
series included in van Klink et al.’s and Crossley et al.’s datasets were produced by experimental studies 
manipulating environmental conditions likely to influence abundance trends (Desquilbet et al. 2020, 2021), 
leading to criticisms about the use of these time series to assess temporal trends (Cardinale et al. 2018). 
Similarly, using only or mostly data from research stations, such as Long-Term Ecological Research sites, 
could bias estimated abundance trends upward as these locations are often partially protected from 
disturbances. Our results show that local site strongly explains heterogeneity in abundance trends, which 
is consistent with the strong influence of local changes in environmental conditions on arthropod 
abundance trends (Seibold et al. 2019). This has consequences for the interpretation of global trends 
obtained from a non-representative sample of sites. This potential bias stresses the need for standardized 
protocols to monitor arthropod abundance in numerous sites, representative of the areas covered by 
different habitats and land-uses, to handle the diversity of anthropic pressures on biodiversity, some 
remaining restricted to particular areas while others apply widely over space. Monitoring schemes based 
on citizen sciences are one way to tackle this challenge (van Swaay et al. 2008; Jeliazkov et al. 2016), since 
they can produce protocoled or semi-protocoled datasets over a large set of habitats and landscapes, over 
seasons and years, at national or even continental scales. Citizen science monitoring schemes are often 
recent, but would be of considerable help to ensure long-term monitoring of species abundances, should 
they be maintained in the future. 

Moreover, by expressing abundance trends as growth rates, we gave the same importance to rare 
species as to common species, which could be debated. Decline of extremely rare species could be poorly 
informative and less likely to affect ecosystem functioning than decline of common species, while rare 
species can exhibit extreme abundance trends (Fig. S9), thus affecting average abundance trends in a non-
negligible way. On the other hand, rare species can contribute greatly to some biodiversity metrics, such 
as species richness, phylogenetic diversity or functional diversity, making it relevant to weigh them similarly 
as common species for some purposes. Consistent with previous comments (O’Hara & Kotze 2010; 
Desquilbet et al. 2021), we show that transforming abundance counts with log(x+1) before statistical 
analysis of the data, as done by Crossley et al. 2020 and van Klink et al. 2020, instead of using model 
structures adapted to the data (i.e. GLM instead of linear models), can introduce an asymmetrical bias, 
flattening the abundance trends of rare species (Fig. S2). In a similar way, standardizing data by dividing by 
standard deviation also strongly biases the relative values of abundance trends among species (Fig. S4), 
stressing the need to explicitly test the effect of any transformations performed on the data. 

Finally, the large variation in abundance trends across sites, taxonomic groups, habitats and continents 
brings into question the relevance of producing global multitaxon linear trends. Global multitaxon trends 
are likely to be disconnected from the ecological causes and consequences of biodiversity changes. Losses 
in one place or one taxonomic group cannot be balanced by gains in another place or taxonomic group.  
Losses and gains can have contrasting ecological and evolutionary consequences, that need to be assessed 
at relevant ecological scales, e.g. at community level or for a given functional group. Moreover, our results 
show that variation in arthropod abundance over time is non-linear and sometimes non-monotonous. This 
suggests that the use of linear analyses is inadequate, despite being the most straightforward and used 
analysis, and should at least always be associated to the temporal coverage of the data. Disconnecting 
arthropod decline assessments from temporal yardsticks can affect the understanding of published results 
making them apparently contradictory. This is particularly important for topics of interest for the general 
public such as arthropod decline, as it could lead to undermining trust in science (Dornelas & Daskalova 
2020). 
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Supplementary Methods 

Aggregating datasets 
For data from Outhwaite et al. (2019), we focused on occupancy estimates labelled at Great-Britain 

level, which can in fact correspond to two different spatial coverages (United Kingdom or Great-Britain). 
Since for this dataset occupancy estimates are modelled, not observed, we excluded occupancy estimates 
that converged poorly in their analyses (Rhat<1.2): this yielded 138,095 occupancy estimates for 3,496 
species, from 1970 to 2015, which correspond to 57% of the arthropod occupancy estimates at Great-
Britain level from the original dataset. 

For data from Crossley et al. (2020) 
(https://datadryad.org/stash/dataset/doi:10.5061/dryad.cc2fqz645) we used the file 
“External_Database_S1_PerSpecies_Abundance_LTER_annotated.csv.” After data filtering, we obtained 
78,187 annual abundance estimates from 1943 to 2019 with a taxonomic resolution varying from species 
to order levels. This corresponds to 94% of the abundance estimates from the original dataset. 

For data from van Klink et al. (2020) we used the file “aax9931-Van-Klink-SM-CORRECTED-Data-S1.txt.” 
Some data from American LTER sites and from BIOTIME could be duplicated with time series from Crossley 
et al. (2020) and from BIOTIME respectively, but because van Klink et al. aggregated data at taxonomic 
order (Fig. S1), we considered them as different. We also removed biomass data to keep abundance data 
only. We restricted our analysis to time series from North America and Europe as other locations were 
poorly represented. After data filtering, we obtained 26,785 annual abundance estimates from 1932 to 
2018 with a taxonomic resolution at order level. This corresponds to 43% of the abundance estimates from 
the original dataset. 

For BIOTIME data we extracted all data, and we kept only time series regarding arthropods from 
terrestrial and freshwater habitats, from North America and Europe. We removed LTER data to avoid 
duplicated time series with Crossley et al. (2020). We inferred zeros on a given plot for a given species for 
a given year when the plot has data for at data from the same taxonomic order than the focal species for 
the given year. Then we removed time series with only zero abundance values. After data filtering, we 
obtained 79,250 annual abundance estimates from 1898 to 2016 with a taxonomic resolution varying from 
species to order levels. 

Assessing monotony of abundance variation over time 
We estimated non-monotony of temporal abundance variations using a Generalized Additive Model 

(GAM) for each original time series, using the mgcv R package (Wood 2017). These GAMs have a Poisson 
error structure (with a log link function) for abundance data from van Klink et al. (2020), Crossley et al. 
(2020) and BIOTIME, or a gaussian error structure for logit transformed occupancy estimates from 
Outhwaite et al. (2019). We used a smooth (spline) effect of the year. For time series sampled at different 
periods, we added a spline effect of the period penalized by a ridge penalty, to model it as a random effect. 
To avoid non-identifiable models, the dimension of the basis used to represent the year smooth term is 
constrained to be smaller than to the number of years (duration) of the time series, minus one if it is 
sampled over different sampling periods, with a maximum basis value of 10.  

Then extracting the polynomial effect of the year on abundance, we assessed the non-monotony of 
this polynomial effect as the number of local maximums and minimums (i.e. turning points) observed. 

Comparing abundance trends among species 
A common problem when comparing abundance trends over many species is that estimated trends are 

not easily comparable among species, especially between rare and common species, since abundance 
trends depend on initial abundance. Indeed, two species, a rare and an abundant one, with an abundance 
shifting in a year from 10 to 15 individuals and from 10,000 to 15,000 individuals respectively, are both 
growing with a rate of 50% per year. However, measuring these abundance variations on the number of 
individuals will give a gain of 5 individuals for the first one against a gain of 5,000 individuals for the second 
species. Demographic effects measured on rough measure of abundance (number of individuals, 
occupancy probability, etc.) depend on the level of abundance, hiding the decline of rare species (Fig. S2 & 
S3). Note that standardizing abundances of each species by subtracting the mean and dividing by standard 
deviation does not solve this problem in a proper way, since it does not allow to estimate growth rate but 
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can instead create artefacts by increasing the importance of stable species with low inter-annual variation 
in their abundance, relatively to species declining/increasing but with high inter-annual variations in 
abundance (Fig. S4).   

This dependency of abundance trends to initial abundance can be overcome by expressing population 
trends in terms of growth rates, a multiplicative factor which correspond to the growth of the population. 
In a time-discrete system, a growth rate > 1 is associated with increasing abundance over time, a growth 
rate equals to 1 corresponds to a constant abundance over time, while a growth rate < 1 is associated with 
decreasing abundance over time. Such measure allows to compare trends among species, regardless of 
their initial abundance, but is cannot be estimated directly using classic linear models. Indeed, the 
demography of a population with growth rate r, as shown in Fig. S6, can be expressed by the following 
geometric progression: 

𝐴^ = 𝐴^_` × 𝑟^  
where 𝐴^ is the abundance at time t, 𝐴^_` is the initial abundance (intercept), while r is the growth rate. 
The problem is that this product cannot be estimated using classic linear models which, by definition, 
estimate linear functions (𝑦 = 𝑏 + 𝑎𝑥). Here, we transformed occupancy estimates using a logit function 
and abundance counts using a log function to linearize geometric changes, then allowing to estimate 
growth rates using linear models. If we study the logarithm of the abundance instead of the abundance, 
then the function describing the population demography becomes linear: 

log	(𝐴^) = log(𝐴^_` × 𝑟^)	
log	(𝐴^) = log(𝐴^_`) + log(𝑟^)	
log	(𝐴^) = log(𝐴^_`) + 𝑡 × log	(𝑟) 

If we set 𝑎 = log	(𝑟) and 𝑏 = log(𝐴^_`), we have: 
log	(𝐴^) = 𝑏 + 𝑎𝑡 

Thus, by regressing linearly log(abundance) against time we can estimate the logarithm of the growth 
rate, which is a measure of abundance trend independent of the initial abundance (i.e. the rarity) of species 
(Figure S6). Since log(1) = 0, then the sign and the value of the estimated slope indicate the direction and 
the magnitude of the abundance trend, respectively. However, since log(0) is not defined and since we 
have zero abundance values, we need to use a model structure which allows zero abundances. Usually, 
studies use log	(𝐴^ + 𝜀) instead of log	(𝐴^), choosing 𝜀 = 1 arbitrarily (Crossley et al. 2020; van Klink et al. 
2020), while the value of 𝜀 will strongly affect the result by breaking the linearization of the geometric 
progression (Fig. S2). 

Here, to avoid this arbitrary transformation, we used a Generalized linear model (GLM) with a Poisson 
error structure, using a log link function, which allows to estimate log	(𝐴^) = 𝑏 + 𝑎𝑡 by considering zero 
abundance data. 

Regarding the occupancy probabilities, the same logic applies but we have to account for the fact that 
the proportion of grid cells occupied by the species is bounded between 0 and 1. So the population dynamic 
can be view as a logistic regression with a carrying capacity (K) of 1: 

𝑑𝑃
𝑑𝑡 = 𝑟∗𝑃 f1 −

𝑃
𝐾i 

where r* is the growth rate of a time-continuous system (0 = stable, negative = decline, positive = increase). 
Thus, we have: 

𝑃 =
𝐾𝑃 𝑒j∗^

𝐾 + 𝑃 (𝑒j∗^ − 1) =
𝐾

1 + 𝐾 − 𝑃𝑃 𝑒8j∗^
 

If we set K = 1, we have: 

𝑃 =
1

1 + 1− 𝑃𝑃 𝑒8j∗^
 

If we logit transform 𝑃 , we get: 

log f
𝑃

1 − 𝑃 i = log(𝑃 ) − log	(1 − 𝑃 ) = − log f
𝐾 − 𝑃
𝑃 i + 𝑟∗𝑡 

Switching from r* to r,  so from continuous to discrete time we get: 

log f
𝑃

1 − 𝑃 i = − log f
𝐾 − 𝑃
𝑃 i + 𝑡 × log	(𝑟) 
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where r is the growth rate of a discrete time system (1 = stable, below 1 = decline, above 1 = increase). If 
we set 𝑎 = log	(𝑟) and 𝑏 = − log kl8mn

mn
o, we have: 

log f
𝑃

1 − 𝑃 i = 𝑏 + 𝑎𝑡 

Thus, by regressing linearly logit(occupancy probability) against time we can estimate, as previously, 
the logarithm of the growth rate, which is a measure of abundance trend independent of the initial 
abundance (i.e. the rarity) of species (Figure S3).  

So, here we used a GLM with a binomial error structure, using a logit link function, which allows to 
estimate logit	(𝑃 ) = 𝑏 + 𝑎𝑡. 
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Figure S1: Taxonomic distribution of time series. (a) Number of species across taxonomic groups and 
(b) source datasets, as a function of their taxonomic resolution. 
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Figure S2: Representation of a geometric decline over time. (a) Abundance, measured as number of 
individuals, against time, for two species declining with a rate of 20% per year (growth rate = 0.8). 

Zooming on a part on the bottom of the y-axis, we can see that both species decline with the same rate, 
but since one is rare and the other is common, variations in number of individuals are much larger for the 
common species. (b,c,d) represents the same dynamics as in a, but applying the transformation log(x+ε) 

to the abundance, with three values of ε. 

 

22 François Duchenne et al.

Peer Community Journal, Vol. 2 (2022), article e33 https://doi.org/10.24072/pcjournal.131

https://doi.org/10.24072/pcjournal.131


Figure S3: Representation of a geometric decline over time. (a) Occupancy probability, measured as the 
proportion of grid cell occupied by a species on a given area, against time, for two species declining at a 
growth rate of 0.8, as in figure S2. Zooming on a part on the bottom of the y-axis, we can see that both 
species decline with the same rate, but since one is rare and the other is common, variations in number 

of individuals is much larger for the common species. (b) represents the same dynamics as in a, but when 
applying the transformation logit(x) to the occupancy probability. On the logit scale we can see that 

declines are linear and identical (same slopes) between both species, and can easily be estimated with a 
linear model. 
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Figure S4: Simulated data showing how standardization can affect abundance trends. (a) abundance 
values over time and associated abundance trends, for one strongly declining species, with high inter-

annual variation in abundance (green), and for another species slightly declining, with low inter-annual 
variation in abundance (purple). (b) shows the same data as in (a) but after standardization of abundance 

values within each time series (minus mean and then divided by standard deviation). In (b) abundance 
trends are calculated on standardized data, giving similar trends among species while in fact the green 

species is declining more than the purple one. Because purple species exhibit low inter-annual variability 
in abundance, the absolute value of its trend is artefactually increased by the standardization.  
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Figure S5: Truncated time series with only one non-zero yearly estimate of abundance produce 
extreme value of abundance trends. Density distribution of the absolute value of abundance trends, 

log(growth rate), as function of the number of non-zero yearly estimate of abundance contained in the 
truncated time series (1 vs >1). To preserve readability the x-axis is square-root transformed.  
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Figure S6: Same figure as in the main text (Figure 3b), but for each source dataset. Proportion of 
abundance trends from truncated time series with different directions (positive vs. negative), as a 

function of the number of turning points in the corresponding original time series. Boxplots represent 
minimum and maximum values (bottom and top of vertical lines), first and third quartiles (Q1 and Q3, 
bottom and top of boxes) and median (thick horizontal lines); colours indicate sample size (number of 

original time series). Points with values outside of the range [Q1-1.5(Q3-Q1), Q3+1.5(Q3-Q1)] are 
considered as outliers and represented as full circles. 
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Figure S7:  Estimated growth rate when a decline of 15%/year is simulated. This is the same plot than in 
the left panel of Figure 4d, but without the outliers to improve readability of average biases. The dashed 

horizontal line shows the value of the logarithm of the true (simulated) growth rate. 

 

François Duchenne et al. 27

Peer Community Journal, Vol. 2 (2022), article e33 https://doi.org/10.24072/pcjournal.131

https://doi.org/10.24072/pcjournal.131


Figure S8: Random effects of taxonomic order on abundance trends. The dots show the mean of the 
posterior distribution while the error bars show the confidence interval at 95% (quantile 2.5% and 

97.5%). 
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Figure S9: Estimated abundance trends of truncated time series as a function of average abundance. 
Abundance trends (log growth rate) as a function of the average abundance of the original time series 

(measured on the original abundance scale), per source dataset and habitat.  
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 Table S1: Description of the 4 datasets used. 

 
  

Dataset’s 
name 

Kind of abundance 
estimate 

Original spatial 
scope 

Spatial scope 
used here 

Taxonomical 
resolution of 
time-series 

Original 
temporal 
coverage 

Temporal 
coverage 
used here 

Outhwaite 
et al. 2019 

Annual occupancy 
estimate (i.e. the 
proportion of 1km2 grid 
cells in a region 
occupied by a species, a 
proxy for abundance) 

Great-Britain or 
United-Kingdom or 
region (Wales, 
England, Scotland, 
Northern Ireland) 
levels 

Time-series at 
Great-Britain 
level 

Species level 1970-2015 1970-2015 

Crossley et 
al. 2019 

Local annual abundance 
count 

Local time series 
spread across the 
USA 

Local time series 
spread across the 
USA 

Species level 
mostly (cf. Figure 
S1) 

1943-2019 1970-2019 

van Klink 
et al. 2020 

Local annual abundance 
count, aggregated from 
literature 

Local time series 
spread across the 
world 

Local time series 
spread across 
North America 
and Europe 

Order level 1925-2018 1970-2018 

BIOTIME 
database 

Local annual abundance 
count 

Local time series 
spread across the 
world 

Local time series 
spread across 
North America 
and Europe 

Species level 1874-2018 1970-2018 
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Table S2: Number of original time series across datasets, continents and habitats, at the end of the 
filtering process. 

Dataset Continent aquatic terrestrial 
BIOTIME Europe 142 3877 
BIOTIME North America 26 562 
Crossley North America 587 5161 
Outhwaite Europe 265 3081 
van Klink Europe 0 101 
van Klink North America 70 258 
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