
C EN T R E
MER S ENN E

Peer Community Journal is a member of theCentre Mersenne for Open Scientific Publishing
http://www.centre-mersenne.org/

e-ISSN 2804-3871

Peer Community Journal
Section: Mathematical & Computational Biology

RESEARCH ARTICLE
Published2022-06-07

Cite asAlan R. Rogers (2022) Anefficient algorithm for estimatingpopulation history from geneticdata, Peer Community Journal,2: e32.
Correspondencerogers@anthro.utah.edu

Peer-reviewPeer reviewed andrecommended byPCI Mathematical &Computational Biology,
https://doi.org/10.24072/pci.

mcb.100003

This article is licensedunder the Creative CommonsAttribution 4.0 License.

An efficient algorithm forestimating population historyfrom genetic data
Alan R. Rogers ,1
Volume 2 (2022), article e32
https://doi.org/10.24072/pcjournal.132

Abstract
The Legofit statistical package uses genetic data to estimate parameters describing pop-ulation history. Previous versions used computer simulations to estimate probabilities,an approach that limited both speed and accuracy. This article describes a new deter-ministic algorithm, which makes Legofit faster and more accurate. The speed of thisalgorithm declines as model complexity increases. With very complex models, the de-terministic algorithm is slower than the stochastic one. In an application to simulateddata sets, the estimates produced by the deterministic and stochastic algorithms wereessentially identical. Reanalysis of a human data set replicated the findings of a previousstudy and provided increased support for the hypotheses that (a) early modern humanscontributed genes toNeanderthals, and (b) a ”superarchaic” population (which separatedfrom all other humans early in the Pleistocene) was either large or deeply subdivided.
1Dept. of Anthropology, University of Utah, USA

http://www.centre-mersenne.org/
mailto:rogers@anthro.utah.edu
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.24072/pci.mcb.100003
https://orcid.org/0000-0003-3987-3346
https://doi.org/10.24072/pcjournal.132

1. Introduction
Legofit is a publicly-available statistical package that uses genetic data to estimate the his-tory of size, subdivision, and gene flowwithin a set of populations. Because it ignores the within-population component of genetic variation, it avoids the need to estimate parameters describ-ing recent population history and is able to focus on a deeper time scale. It operates by fittingmodels of history to the frequencies of “nucleotide site patterns,” which describe the sharing ofderived alleles by subsets of populations. In recent publications, it has shown that Neanderthalsand Denisovans separated earlier than previously thought, that their ancestors endured a bot-tleneck in population size, and that these ancestors interbred with a preexisting “superarchaic”population, which had inhabited Eurasia since early in the Pleistocene. It has also confirmed avariety of results first obtained by other methods [23, 21, 24].Legofit’s estimation procedure evaluates the fit of model to data at many sets of parametervalues. In previous versions of Legofit, each evaluation required a lengthy computer simulation.These calculations were feasible because they could be done in parallel. Nonetheless, Legofitwas most useful on high-performance computing clusters. This stochastic algorithm also limitedthe accuracy with which models could be fit to data.This article describes a new deterministic algorithm, which increases both speed and accu-racy.With the simulated data discussed below, the deterministic algorithm is over 1600 times asfast as the stochastic one. Because of its greater accuracy, it also provides a better fit of modelto data and improves Legofit’s ability to discriminate among models.

2. Methods
The new algorithm involves two novel components. The first of these involves a well-knownMarkov chain [25, 8, 28] that is seldom used because of the numerical difficulties. Below, sec-tion 2.3 shows a way around these difficulties. The new algorithm also relies on two resultsdescribing how descendants are partitioned among ancestors. One of these (Eqn. 7) is old andthe other (Eqn. 8) new. Before discussing these, however, let us review the basics of Legofit. Asin previous publications, I use capitalization to distinguish the Legofit package from the legofitprogram within that package.

2.1. Model of population history.
Fig. 1 shows a gene tree embeddedwithin a network of populations. In Legofit, the populationnetwork is modeled as a set of connected segments, each with a simple history. Each segmentdescribes a single randomly-mating population, during an interval of constant population size.The root segment has no parent, and tip segments have no children. All other segments haveat least one parent and one child. Segments that receive gene flow have two parents: one fornative ancestors and the other for immigrants. Most segments have finite length, but the rootsegment is infinite.The population history in Fig. 1 could be modeled using the network of segments in Fig. 2.Note that the branch ending at Y in Fig. 1 has three segments (y, y1, and y2) in Fig. 2. This isbecause that branch is interrupted by two episodes of gene flow, and gene flow can occur onlyat the ancient end of a segment. Thus, segment y extends from the present back to the firstepisode of gene flow, y1 extends from the first episode to the second, and y2 extends from thesecond episode back to the separation of populations X and Y .The size of population Y cannot be estimated, because there is never more than a singlelineage within Y . At time zero, there is a single haploid sample, because Y is a population thathas been sampled. This lineage may derive from segment d0, from n2, or from y2. But there isno way, under this model of history, for any of the segments that compose Y to contain morethan one lineage. Consequently, no coalescent events are possible within Y , and its populationsize does not affect site pattern frequencies. This population size is therefore treated as a fixedconstant rather than a parameter to be estimated.On the other hand, segment n2 may contain either 1 or 2 lineages. It will always contain atleast 1 lineage, which is ancestral to the lineage sampled in segment n. In addition, it may contain

2 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://github.com/alanrogers/legofit
https://doi.org/10.24072/pcjournal.132

X Y N D
yn: 0 1 1 0

ynd: 0 1 1 1

...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.............
.............
..........

...............
...............
...............
...............
...............
...

...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
...............
...............
...............
...............
........

.............
.............
.............
.............
.............
.............
.............
.............
................
...............
...............
......

.............
.............
.............
.............
.............
.............
.............
.............
.......

.............
.............
.............
.............
.............
.............
.............
.............
.......

.............
.............
.............
.............
.............
.............
.............
.............
................
...............
...............
...............
...............
...................
...................

...................
...................

...................
...................

...................
..............
.............
.............
.....

..

..
...

α

ε............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
.............
..........
..........
..........
........

............
............
............
............
...

............
............
............
.....

...........
...........
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
.............
.............
.............
..............
.............
.............
........

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..............
................

................
................

................
................

.................
...............

...............
...............

..............
......

Figure 1 – Population network with embedded gene tree. A mutation on the solid redbranch would generate site pattern yn (shown in red at the base of the tree). One on thesolid blue branch would generate ynd . “0” and “1” represent the ancestral and derivedalleles. Key:X , Africa;Y , Eurasia;N , Neanderthal;D , Denisovan. After Rogers [21, Fig. 1].

x y

y1

y2

n

n2

d0

d

ndxy

xynd

Figure 2 – Network of segments used in legofit analysis. Squares represent seg-ments from which we have “observed” (i.e. simulated) data. Arrows indicate ancestor-descendant relationships, and dashed lines represent gene flow. Segments in the samerow need not be contemporary.
the lineage sampled in segment y. Consequently, population size in segment n2 is an estimableparameter.In order to reduce the parameter count, it is possible to specify that several segments sharea single population-size parameter.
2.2. Nucleotide site patterns.

Legofit works with the frequencies of nucleotide site patterns, which are illustrated in Fig. 1.A nucleotide site exhibits the yn site pattern if random nucleotides drawn from populations Yand N carry the derived allele, but those drawn from other populations carry the ancestral allele.Fig. 1 shows the gene genealogy of a particular nucleotide site, embedded within the network ofpopulations. A mutation on the red branch would generate site pattern yn, whereas one on the

Alan R. Rogers 3

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

blue branch would generate ynd . Mutations elsewhere would generate other site patterns. Thegene genealogy will vary from locus to locus, so averaging across the genome involves averagingacross gene genealogies. We are interested in the properties of such averages.LetBi represent the length in generations of the branch generating site pattern i . I employ the“infinite sites” model of mutation [10], which assumes that themutation rate is small enough thatwe can ignore the possibility of multiple mutations on any given branch. Under this assumption,a polymorphic site exhibits pattern i with probability
(1) Pi =

E [Bi]∑
j∈Ω E [Bj]

where E [Bi] is the expected length of the branch generating site pattern i , and Ω is the set ofsite patterns under study [21, Eqn. 1]. Previous versions of Legofit used coalescent simulationsto estimate these expectations. The sections that follow describe a deterministic algorithm.
2.3. The matrix coalescent.

The new algorithm is based on a model that calculates the probability that there are k ances-tral lineages at the ancient end of a segment, given that there are n descendant lineages at therecent end. This model also calculates the expected length of the interval within the segmentduring which there are k lineages, where 1 ≤ k ≤ n. The model employs a continuous-timeMarkov chain, which begins with n haploid lineages at the recent end of the segment. As wetrace the ancestry of this sample into the past, the original sample of n lineages falls to n − 1,then n − 2, and so on until only a single lineage is left, or we reach the end of the segment.The number, n, of descendants equals 1 for tip segments. For ancestral segments, nmay takeseveral values with different probabilities. The legofit program sums across these possibilities,weighting by probability.This Markov chain is well known ([25, appendix I]; [8]; [28]) but seldom used, because accu-rate calculations are difficult with samples of even modest size. Legofit, however, is designed foruse with small samples. Furthermore, it is possible (as shown below) to factor the calculationsinto two steps, one of which can be done in exact arithmetic and only needs to be done once atthe beginning of the computer program. Numerical error arises only in the second step, and aswe shall see, that error is small.Within a segment, the population has constant haploid size 2N , although 2N can vary amongsegments. (“Haploid” population size is twice the number of diploid individuals.) It will be con-venient to measure time backwards from the recent end of each segment in units of 2N gen-erations. On this scale, time is v = t/2N , where t is time in generations. Let x(v) denote thecolumn vector whose ith entry, xi (v), is the probability of observing i lineages at time v , where
1 ≤ i ≤ n. I ignore the absorbing state x1, so that indices of arrays and matrices range from 2to n. Because there are n lineages at time zero (the recent end of the segment), the initial vectorequals x(0) = [0, ... , 0, 1]T . At time v [28, Eqn. 8],
(2) x(v) = CE(v)Rx(0)

Here, E(v) is a diagonal matrix of eigenvalues whose ith diagonal entry is e−βiv , where βi =
i(i−1)/2. C = [cij] and R = [rij] are matrices of column eigenvectors and row eigenvectors, bothof which are upper triangular. They are calculated by setting diagonal entries equal to unity, andthen applying [28, p. 1642],

ci ,j = ci+1,j ×
(

i(i + 1)

i(i − 1)− j(j − 1)

)
, i = j − 1, ... , 2

ri ,j = ri ,j−1 ×
(

j(j − 1)

j(j − 1)− i(i − 1)

)
, j = i + 1, ... , n

Letm(v) denote the vector whose kth entry, mk(v), is the expected duration (in units of 2Ngenerations) of the interval during which the segment contains k lineages, within a segment oflength v . This vector equals
(3) m(v) = B−1(x(v)− x(0))

4 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

where

B =




−β2 β3

−β3
. βn
−βn




Eqn. 3 holds not only for finite segments, but also when v → ∞. In the infinite case, x(∞) = 0,because we are considering only the transient states (x2, ... , xn), which disappear in the long run.Eqn. 3 is easy to calculate, because B−1 has a simple form. For the case of n = 4,
B−1 =



−1/β2 −1/β2 −1/β2

−1/β3 −1/β3

−1/β4


 .

This model presents challenging numerical issues. To deal with these, let us re-organize thecalculations to do as much as possible in exact arithmetic. I illustrate this re-organization usingthe case of n = 3, for which Eqn. 2 becomes
x(v) =

(
1 −3/2
0 1

)(
e−β2v 0

0 e−β3v

)(
1 3/2
0 1

)(
0
1

)

=

(
1 −3/2
0 1

)(
e−β2v 0

0 e−β3v

)(
3/2

1

)

=

(
1 −3/2
0 1

)(
3/2 0

0 1

)(
e−β2v

e−β3v

)

=

(
3/2 −3/2

0 1

)(
e−β2v

e−β3v

)

= Gw(v)(4)
wherew(v) = (e−β2v , e−β3v)T is a vector of eigenvalues,G = Cdiag(Rx(0)) is a matrix of columneigenvectors with columns scaled by the entries of vector Rx(0), and diag(Rx(0)) is a diagonalmatrix whose main diagonal equals the vector Rx(0). The matrix G can be calculated in exactrational arithmetic. This is done at the beginning of the computer program for each possiblevalue of n, and the resulting values are stored for later use.Next, substitute (4) into (3) to obtain
(5) m(v) = z + Hw(v)

where z = −B−1x(0) = (1/β2, ... , 1/βn)T , and H = B−1G, both of which can be calculated inadvance for each possible value of n, using exact arithmetic. For example, if n = 3,
m(v) =

(
1

1/3

)
+

(−3/2 1/2
0 −1/3

)(
e−β2v

e−β3v

)

In an infinite segment, Eqn. 5 is simplym(∞) = z.This algorithm calculates xk(v) and mk(v) only for k = 2, 3, ... , n. Values for k = 1 are ob-tained by subtraction: x1(v) = 1−∑n
k=2 xk(v), andm1(v) = v−∑n

k=2 mk(v). Finally, to re-express
mk(v) in units of generations, define
(6) Lk(t, 2N) = 2Nmk(t/2N)

where t is the length of the current segment in generations, and 2N is its haploid populationsize. Lk(t, 2N) is the expected duration in generations of the interval during which the currentsegment contains k lineages.Several of the quantities in this algorithm—G, H, and z—are calculated in exact rational arith-metic. Although there is no roundoff error, these calculations will overflow if n is too large. With32-bit signed integers, there is no overflow until n > 35. This is more than enough for Legofit,

Alan R. Rogers 5

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

which requires that n ≤ 32, so that site patterns can be represented by the bits of a 32-bitinteger.Roundoff error does occur in this algorithm, because all quantities are eventually converted todouble-precision floating point during the calculation of Eqns. 4 and 5. To assess the magnitudeof this error, I compared results to calculations done in 256-bit floating-point arithmetic, usingthe Gnu MPFR library [7]. I considered values of v ranging from 0 to 9.5 in steps of 0.5, andalso v → ∞. The maximum absolute error is 3.553 × 10−15 when n = 8; 2.700 × 10−13 when
n = 16; and 1.543× 10−8 when n = 32. These errors are all much smaller than those of Legofit’sstochastic algorithm.The theory just described allows us to calculate the probability that n descendants have k ≤ nancestors in some previous generation. To relate this theory to the frequencies of site patterns,we must discuss how the coalescent process partitions descendants among ancestors.
2.4. Partitioning descendants among ancestors.

A “segment” is an interval within the history of one subpopulation. Let n represent the numberof descendant lineages at the recent end of the segment, and let k ≤ n represent the number ofancestral lineages at some earlier point within the segment. The theory in section 2.3 calculatesthe probability of k at any time within the segment and also provides the expected length of thesubinterval containing k lines of descent.For all segments except the root, we need both of these quantities. We need the expectedlengths of subintervals, because these lengthsmeasure the opportunity for mutation. In addition,we need to assign a probability to each of the ways in which the set of descendants can be par-titioned among ancestors at the ancient end of the segment. These partitions and probabilitiesare used in calculations on earlier segments within the network.For the root segment, we still need the expected lengths of subintervals. But because thereare no earlier segments to worry about, we don’t need to assign probabilities to partitions. Thisis fortunate, because the number of set partitions increases rapidly with the size of the set [11,p. 418], and the set of descendants is largest in the root segment.To address these needs, I present two algorithms. One sums across partitions of the set ofdescendants and is used in all segments except the root. The other avoids this sum and is usedonly at the root.
2.4.1. Summing across set partitions. Section 2.3 calculated the expected length of the intervalduring which there are k ancestors, given that there are n descendants at the recent end of thesegment. If a mutation strikes one ancestor, it will be shared by all descendants of that ancestor.The subset comprising these descendants corresponds to a nucleotide site pattern.Suppose that at some time in the past there were k ancestors. These ancestors partitionthe set of descendants into k subsets. Let x1, x2, ... , xk denote the sizes of the k subsets, i.e.,the numbers of descendants of the k ancestors. The conditional probability, given k , of such apartition is [3, theorem 1.5, p. 11]
(7) A = k!

(
n − 1

k − 1

)−1(
n

x1, ... , xk

)−1

The left side of table 1 shows all ways of partitioning a set of 4 descendants among 2 ances-tors along with the probability of each partition. The descendants of each ancestor define anucleotide site pattern. For example, the first partition is “1112,” which says that the first threedescendants share a single ancestor. A mutation in this ancestor would be shared by these de-scendants, and so the descendants correspond to a site pattern.This result is used in an algorithm that calculates (a) all possible partitions of descendantsat the ancient end of the segment along with their probabilities, and (b) the contribution of thecurrent segment to the expected branch length of each site pattern. The algorithm loops firstacross values of k , where 1 ≤ k ≤ n. For each k , it loops across set partititions using Ruskey’salgorithm [11, pp. 764–765]. The probability that a given partition occurs at the ancient end of asegment, given the set of descendants at its recent end, is the product of xk(t/2N) (Eqn. 2) and

6 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

Table 1 – Set partitions, integer partitions, and their probabilities, for the case in which
n = 4 and k = 2. Under “set partitions,” the value in position j of each string is the indexof the ancestor of descendant j . Thus, “1122” means that descendants 1 and 2 descendfrom one ancestor, whereas 3 and 4 descend from another. Ancestors are numbered inorder of their appearance in the list of descendants. Integer partitions are discussed insection A.2 of the appendix.

Set Integerpartitions Pr partitions Pr1112 1/6 3 + 1 2/31121 1/61211 1/61222 1/6

1122 1/9 2 + 2 1/31212 1/91221 1/9

A (Eqn. 7). Each partition also makes a contribution to the expected branch length associatedwith k site patterns—one for each ancestor. That contribution is the product of Lk(t, 2N) (Eqn. 6)and A (Eqn. 7). These contributions are summed across partitions and segments to obtain theexpected branch length of each site pattern.

2.4.2. A faster algorithm for the root segment. Consider the event that a particular set of d de-scendants (and no others) descend from a single ancestor in some previous generation, giventhat there were k ancestors in that generation. This event is of interest, because a mutation inthis ancestor would be shared uniquely by the d descendants. The probability of this event is

(8) Qdk =

{
1 if k = 1

k
(n−d−1

k−2

)(n−1
k−1

)−1(n
d

)−1 if k > 1

To justify this result, consider first the case in which k = 1. This requires that all n descendantsdescend from a single ancestor, so d must equal n. There is only one way this can happen, andbecause the probability distribution must sum to 1, it follows that Qdk = 1. The result for k > 1is derived in appendix A.
Example 1. Suppose k = n. In this case, each ancestor has 1 descendant, so d = 1, and Q1,nmust equal 1. Equation 8 agrees:

Q1,n = n

(
n − 2

n − 2

)(
n − 1

n − 1

)−1(
n

1

)−1

= n × 1× 1× 1

n
= 1

Example 2. Suppose that k = n − 1. In this case, we are reckoning descent from the previouscoalescent interval, in which there were n − 1 ancestors. Consider first the case in which d = 1.Among the n descendants, 2 derive from an ancestor that split, and n−2 derive from one that didnot split. This implies that Q1,n−1 equals (n− 2)/n, the probability a random descendant derivesfrom an ancestor that did not split.
The case of d = 2 is also easy. There are (n2) ways to choose 2 descendants from n, andonly one of these pairs derives from a single ancestor in the previous coalescent interval. Thus,

Alan R. Rogers 7

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

Q2,n−1 =
(n

2

)−1. Equation 8 confirms both of these results:
Q1,n−1 = (n − 1)

(
n − 2

n − 3

)(
n − 1

n − 2

)−1(
n

1

)−1

= (n − 1)× (n − 2)× 1

n − 1
× 1

n
= (n − 2)/n

Q2,n−1 = (n − 1)

(
n − 3

n − 3

)(
n − 1

n − 2

)−1(
n

2

)−1

= (n − 1)× 1× 1

n − 1
×
(
n

2

)−1

=

(
n

2

)−1

Example 3. We can also evaluate Eqn. 8 by comparing its results to Eqn. 7. Table 1 shows allpartitions and their probabilities for the case in which k = 2 and n = 4. Notice that subsets ofsizes 1, 2, and 3 have probabilities 1/6, 1/9, and 1/6. Eqn. 8 yields identical values:
Q1,2 = 2

(
2

0

)(
3

1

)−1(
4

1

)−1

= 2× 1× 1

3
× 1

4
= 1/6

Q2,2 = 2

(
1

0

)(
3

1

)−1(
4

2

)−1

= 2× 1× 1

3
× 1

6
= 1/9

Q3,2 = 2

(
0

0

)(
3

1

)−1(
4

3

)−1

= 2× 1× 1

3
× 1

4
= 1/6

In the root segment, the program uses the following algorithm: Loop first across values of k ,where 1 ≤ k ≤ n. For each k , loop across values of d . If k = 1, then d = n. Otherwise, d cantake any integer value such that 1 ≤ d ≤ n − k + 1. For each d , calculate Qdk using Eqn. 8, andloop across ways of choosing d of n descendants, using algorithm T of Knuth [11, p. 359]. Eachsuch choice corresponds to a nucleotide site pattern. Add QdkLk(t, 2N) to the expected branchlength associated with this site pattern.
2.5. Simulated data sets.

To evaluate the new algorithm, I used 50 data sets simulated with msprime [9], using themodel in Fig. 1, which is identical to that used in a previous publication [21]. Each simulatedgenome consisted of 1000 chromosomes, each with 2 × 106 nucleotide sites. Each simulateddata set consisted of 4 genomes, one each from populations X , Y , N , and D , which representthe African, European, Neanderthal, and Denisovan populations. XY is the population ancestralto X and Y , ND is that ancestral to N and D , and XYND is that ancestral to X , Y , N , and D . Themutation rate was 1.4× 10−8 per base pair per generation, and the recombination rate was 10−8

per base pair per generation.The time parameters in the simulation model, expressed in generations, are as follows:
TXYND = 25920 separation of XY and ND

TND = 15000 separation of N and D
TXY = 3788 separation of X and Y
TD = 1734 age of Denisova fossil
TA = 1760 age of Altai Neanderthal fossil
Tα = 1897 time of Neanderthal admixture
Tε = 1896 time of Denisovan admixture

Admixture proportions are:
mα = 0.05 fraction of segment y2 derived from n2
mε = 0.025 fraction of segment y derived from d0

8 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

mα

0.
02

6
17

50
19

50
40

00
14

60
0

46
00

52
00

0.040

0.026

mε

TA

1884 1896

1750 1950

TD

2NN

6500 9500

4000

2ND

TXY

2000 6000

14600

TND

2NXY

40000

4600 5200

2NND

0.
04

0
18

84
18

96
65

00
95

00
20

00
60

00
40

00
0

63500
63

50
02NXYND

Figure 3 – Scatter plot of each parameter against each other, based on 50 simulated datasets.

Population sizes are expressed as “haploid” counts, which represent twice the number of diploidindividuals. These parameters are:
2NXYND = 64964.1 ancestral population XYND

2NXY = 44869.2 population ancestral to X and Y
2NND = 5000 population ancestral to N and D

2NN = 9756.8 Neanderthal population, N
2ND = 5000 Denisovan population, D
2NX = 20000 modern African population, X
2NY = 20000 modern European population, Y

Simulation code is in section S1 of Supplementary Information [22]. Simulation results are inthe archive [20].

Alan R. Rogers 9

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

2.6. Analysis of simulated data.
The data analysis pipelines for the deterministic and stochastic algorithms are detailed insec. S2 of Supplementary Information [22]. In both cases, the analysis was based on a model ofhistory specified by the input file a.lgo (sec. SB.1 of Supplementary Information [22]). This filedefines the network of segments shown in Fig. 2.Several of the parameters of the simulation model were treated as fixed constants, becausetheir values have no effect on expected site pattern frequencies: 2NX , 2NY , Tα, and Tε. Anotherparameter, TXYND , was fixed at its true value to calibrate the molecular clock. The remaining 11parameters were estimated.For both algorithms, data analysis involved 5 stages. In stage 1, legofit was run on eachof 50 simulated data sets. Each run produced two output files: a .legofit file, which containsparameter estimates, and a .state file, which records the state of the optimizer at the end of therun. The optimizer uses the differential evolution algorithm [17]. This algorithmmaintains a swarmof points, each of which represents a guess about the values of the free parameters. There areten times as many points as free parameters, as recommended by Price, Storn, and Lampinen[17].Although differential evolution is good at finding global optima, it is possible that some of thestage 1 runs will get stuck on different local optima. Stage 2 is designed to avoid this problem.Each job in stage 2 begins by reading all 50 of the .state files produced in stage 1, and samplingamong these to construct a swarm of points. This allows legofit to choose among local optima.Figure 3 plots pairs of free parameters after stage 2 of the analysis. Each sub-plot has 50points, one for each simulated data set. Several pairs of parameters are tightly correlated, andthese correlations reflect “identifiability” problems: different sets of parameter values imply al-most identical site pattern frequencies. To ameliorate this problem, stage 3 of the analysis usesthe pclgo program to perform a principal components analysis, which re-expresses the free vari-ables in terms of uncorrelated principal components (PCs). In previous publications [23, 21, 24],we used this step to reduce the dimension of the analysis, by excluding components that explainlittle of the variance. However, excluding dimensions can introduce bias, especially in the pres-ence of identifiability problems, so I chose here to retain the full dimension. Even without anyreduction in dimension, re-expression in terms of PCs improves the fit of model to data, becauseit allows legofit to operate on uncorrelated dimensions.Stages 4 and 5 are like stages 1 and 2, except that the free variables are re-expressed in termsof PCs.The program uses KL divergence [13] to measure the discrepancy between observed andpredicted site pattern frequencies. Minimizing KL divergence is equivalent to maximizing multi-nomial composite likelihood. The optimizer stops after a fixed number of iterations or when thedifference between the best and worst KL divergences falls to a pre-determined threshold. Thisthreshold was 3× 10−6 for the deterministic algorithm and 2× 10−5 for the stochastic algorithm.This difference reflects the fact that the deterministic algorithm is capable of much greater pre-cision.

2.7. Analysis of speed as a function of model complexity.
As model complexity increases, the number of states increases. This reduces the speed ofthe deterministic algorithm and increases memory usage. To study this effect, I used the legosimprogram,which calculates the site pattern frequencies implied by a givenmodel. I studied a seriesof models without migration or changes in population size. The models differed in the numberof populations, which ranged from four to nine. Timings were done on a 2018 MacBook Air.

2.8. Analysis of real data.
I used the deterministic algorithm to replicate the analysis of Rogers, Harris, and Achenbach[24]. (Data sets and analysis files are in directory xyvad of the archive [20].) That paper stud-ied modern human sequence data from Europe and Africa [15], along with three high-coverage

10 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

X Y N D S
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

...............
...............
...............
...............
..

...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
...............
...............
...............
...........

...
δ

γ
...

.............
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............
....

.............
.............
.............
.............
.............
.............
.............
.............
......

.............
.............
.............
.............
.............
.............
.............
.............
......

..

...
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............
...............
...............
..................
..................
..................
..................
..................
..................
.................
.............
.............
.............
.............
.............
.............
.....

..

...
α

β
...

Figure 4 – A population network including four episodes of gene flow. Upper case letters(X , Y , N , D , and S) represent populations (Africa, Europe, Neanderthal, Denisovan, andsuperarchaic). Greek letters label episodes of admixture.

archaic genomes: two Neanderthals (Altai [19] and Vindija [18]), and one Denisovan [16]. It an-alyzed these data under eight different models, all of which are based on the history in Fig. 4.In that figure, capital roman letters refer to populations: X is Africa, Y is Europe, N is Ne-anderthal, D is Denisovan, and S (for “superarchaic” [19]) is a population that separated fromall other humans early in the Pleistocene. Greek letters label episodes of admixture. Episode
α refers to admixture from Neanderthals into Europeans, β to admixture from superarchaicsinto Denisovans [27, 26, 19, 18, 12], γ to admixture from early moderns into Neanderthals [12],and δ to admixture from superarchaics into the “neandersovan” ancestors of Neanderthals andDenisovans [24].Following Rogers, Harris, and Achenbach [24], I considered eight models, all of which include
α, and including all combinations of β, γ, and/or δ. I label models by concatenating Greek letters.For example, αβ is the model that includes α and β but not γ and δ. This analysis is described insection S3 of Supplementary Information [22].

3. Results and Discussion
I used both algorithms—one deterministic and the other stochastic—to fit 50 simulated datasets. In each case, this involved 200 runs of the legofit program—4 for each of 50 data sets—and 1 run of pclgo. Altogether, the deterministic version of this analysis took 18.7 CPU minutes.Because these calculations were parallelized, the elapsed time was only 1.7 minutes. Using thestochastic algorithm, the same analysis took 514.8 CPU hours, or 11.4 hours of elapsed time.For this model, the deterministic algorithm is 1654 times as fast as the stochastic one.These timings were done on a node at the Center for High Performance Computing (CHPC)at the University of Utah, using 96 parallel threads of execution. To get a sense of how long thesecalculations would take on a less powerful computer, I did one run of legofit on a 2018MacBookAir, using the deterministic algorithmwith 2 threads. That took 26.2 seconds of CPU time or 13.7seconds of elapsed time. By comparison, the CHPC node did this job in 12.4 seconds of CPUtime, or 1 second of elapsed time. The high-performance node is nearly 14 times as fast as theMacBook Air, implying that the full analysis would take 24 minutes on the MacBook Air. Thus,the deterministic algorithm makes Legofit feasible on small computers.Figure 5 shows the residual error in site pattern frequencies under the two algorithms. Resid-uals are substantially smaller under the deterministic algorithm because of its greater accuracy.

Alan R. Rogers 11

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

ynd
xnd
xyd
xyn
nd
yd
yn
xd
xn
xy
d
n
y
x

−0.001 0.000 0.001
Observed Minus Fitted Frequencies

S
ite

 P
at

te
rn

Deterministic algorithm

ynd
xnd
xyd
xyn
nd
yd
yn
xd
xn
xy
d
n
y
x

−0.001 0.000 0.001
Observed Minus Fitted Frequencies

S
ite

 P
at

te
rn

Stochastic algorithm

Figure 5 – Residual error of deterministic and stochastic algorithms, based on 50 simu-lated data sets. Each circle refers to a different simulated data set.

0

5

10

15

Execution
time
(sec)

4 5 6 7 8 9

Populations

Deterministic

Stochastic

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.............

Figure 6 – Execution time of legosim, excluding system calls, in models withoutmigration.For the stochastic algorithm, each run used two million iterations.

When parameters are estimated by computer simulation, each additional decimal digit of preci-sion requires a 100-fold increase in the number of iterations. This imposes a limit on the accuracyof the stochastic algorithm, even with the fastest computers.To estimate site pattern frequencies, both algorithms integrate over the states of the sto-chastic process. The number of states increases with model complexity, so both algorithms areslower when the model is complex. Figure 6 illustrates the effect on speed. In complex models,the stochastic algorithm is faster than the deterministic one.Figure 7 shows the parameter estimates from the 50 data sets (blue dots) along with the trueparameter values (red crosses). The two algorithms behave similarly. It does not appear that thesmaller residual error of the deterministic algorithm (Fig. 5) translates into more accurate param-eter estimates. This is probably because most of the spread in the parameter estimates reflectsthe identifiability problems seen in Fig. 3. To understand this effect, note the tight correlationbetween TXY and 2NXY in Fig. 3. This correlation exists because it is hard to distinguish the casein which 2NXY is large and TXY small from that in which the opposite is true. Because of thisambiguity, both parameters exhibit large uncertainties in Fig. 7.

12 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

mα − mε

mα + mε

mε

mα

0.00 0.02 0.04 0.06 0.08
Admixture Fraction

Deterministic algorithm

TXY

TND

TA

TD

100 200 300 400
Thousands of Years

2NXYND

2NXY

2NND

2NN

2ND

20000 40000 60000
Haploid Population Size (2N)

mα − mε

mα + mε

mε

mα

0.00 0.02 0.04 0.06 0.08
Admixture Fraction

Stochastic algorithm

TXY

TND

TA

TD

100 200 300 400
Thousands of Years

2NXYND

2NXY

2NND

2NN

2ND

20000 40000 60000
Haploid Population Size (2N)

Figure 7 – Parameter estimates from 50 simulated data sets, using the deterministic andstochastic algorithms. Blue circles are estimates and red crosses are the true parametervalues.

Some bias is evident in these estimates. For example, the estimates of mα tend to be a littlelow and those of mε a little high [21]. This reflects the negative correlation between these pa-rameters that can be seen in Fig. 3. Because the two source populations (N and D) are so similar,they are hard to distinguish.We get a better estimate of the sum (mα +mε) than of the difference(mα − mε). There is also some bias in 2ND and 2NN . In spite of these biases, the swarms of es-timates tend to enclose the true parameter values, so the biases in these estimates are modestcompared with their uncertainties. It should not, however, be assumed that this will always bethe case.To illustrate the new algorithm in a full-scale analsis of real data, I replicated the analysis ofRogers, Harris, and Achenbach [24]. Table 2 shows the CPU time used by each algorithm in anal-ysis of the eight models in that publication. For this set of models, the deterministic algorithmis always faster, but its execution time ranges across several orders of magnitude. These exe-cution times are not strictly comparable, because they involve several compute clusters, whichvary in processor speed. These differences are minor, however, compared with the enormousdifferences in run time seen in table 2.To choose among models, I used the bootstrap estimate of predictive error, “bepe” [21, 4,5]. This method uses variation among data sets (the real data plus 50 replicates generated by amoving-blocks bootstrap [14]) to approximate variation in repeated sampling. It fits the modelto one data set and then tests this fit against all the others. Table 3 uses all models to comparethe bepe values calculated by the deterministic and stochastic algorithm. In all cases, the deter-ministic algorithm yields a smaller bepe value than the stochastic algorithm, indicating a betterfit of model to data. The order of the eight models, however, is the same. Because the deter-ministic algorithm yields smaller bepe values, one should use the same algorithm (stochastic ordeterministic) for all models in any analysis. Otherwise, model selection will be biased in favorof deterministic results because of their smaller bepe values.

Alan R. Rogers 13

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

Table 2 – CPU time expended in analysis of each model from Rogers, Harris, and Achen-bach [24]. Each analysis involves 204 runs of legofit and 1 run of pclgo. Elapsed timeswere much shorter, because calculations were done in parallel. “Acceleration” is the ratioof execution speed in the deterministic model to that in the stochastic model. Modelsare arranged in order of increasing execution time with the deterministic algorithm.
log10 secondsModel Deterministic Stochastic Acceleration

α 1.60246 5.94980 22250.5
αβ 2.60384 5.81015 1608.1
αγ 2.83806 5.94417 1276.8
αβγ 3.67736 6.03901 230.0
αδ 4.42860 6.16730 54.8
αβδ 4.86285 6.04239 15.1
αγδ 5.47544 6.14022 4.6
αβγδ 6.04505 6.20171 1.4

Table 3 – Bootstrap estimate of predictive error (bepe) values and bootstrap model av-erage (booma) weights, based on the data of Rogers, Harris, and Achenbach [24]. Valuesfor the stochastic algorithm are also from that publication. Models are arranged in orderof decreasing bepe values.
Deterministic StochasticModel bepe weight bepe weight

α 1.13× 10−6 0 1.16× 10−6 0
αδ 0.82× 10−6 0 0.87× 10−6 0
αγ 0.61× 10−6 0 0.62× 10−6 0
αγδ 0.40× 10−6 0 0.44× 10−6 0
αβ 0.14× 10−6 0 0.18× 10−6 0
αβγ 0.14× 10−6 0 0.17× 10−6 0
αβδ 0.11× 10−6 0.02 0.15× 10−6 0.16
αβγδ 0.10× 10−6 0.98 0.13× 10−6 0.84

When several models provide reasonable descriptions of the data, it is better to averageacross models than to choose just one. This allows uncertainty about the model itself to beincorporated into confidence intervals. For this purpose, Legofit uses bootstrap model averaging,“booma” [2, 21]. The booma weight of the ith model is the fraction of data sets (including thereal data and 50 bootstrap replicates) in which that model “wins,” i.e. has the lowest value ofbepe. The weights of all models are shown in table 3.The new analysis, using the deterministic algorithm, replicates the main result of Rogers,Harris, and Achenbach [24]: that the most complex model (αβγδ) is preferred over all others.The strength of this preference, however, is stronger under the deterministic algorithm. The2nd-place model (αβδ) gets 16% of the weight with the stochastic algorithm but only 2% withthe deterministic one. The greater precision of the deterministic algorithm apparently improvesLegofit’s ability to discriminate amongmodels. The difference between thesemodels is thatαβγδincludes gene flow from early modern humans into Neanderthals, as proposed by Kuhlwilm et al.[12]. The current results strengthen the case for this hypothesis.The model-averaged estimates of all parameters are shown in table S1 of Supplementary In-formation [22]. The two algorithms provide similar estimates, but there are two differences. First,the deterministic algorithm provides an unrealistic estimate of TXY , the separation time of Euro-peans and Africans. This estimate—323 generations, or about 9000 y—is clearly too small. Thismay indicate that something is missing from themodel or that identifiability problems have intro-duced bias. Further work would be needed to evaluate these alternatives. Second, the estimateof NS is even larger—over 700,000—with the deterministic algorithm than with the stochastic

14 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

one. This supports our previous suggestion that the superarchaic population was large or deeplysubdivided [24].

4. Conclusions
Legofit’s new deterministic algorithm increases both speed and accuracy. The increase in ac-curacy results in smaller residual errors and better discrimination between alternative hypothe-ses. It has no large effect on confidence intervals, however, because these are primarily measur-ing uncertainty arising from statistical identifiability problems. The increase in speed is dramaticwith models of small to moderate complexity and makes Legofit practicable on laptop comput-ers. The deterministic algorithm slows dramatically, however, as models increase in complexity.For very complex models, the stochastic algorithm is still needed.The deterministic algorithm replicated all the findings of Rogers, Harris, and Achenbach [24].Because of its greater accuracy, it provided stronger support for the hypothesis that early mod-ern humans contributed genes to Neanderthals [12]. It also strengthened the evidence that thesuperarchaic population was large or deeply subdivided [24].Legofit is open source and freely available at https://github.com/alanrogers/legofit.

Acknowledgements
I thank Greg Martin for comments on appendix B, Elizabeth Cashdan for editorial sugges-tions, and those who reviewed the manuscript for PCI Mathematical and Computational Biology.Analysis files are archived at OSF [20]. A preprint version of this article has been peer-reviewedand recommended by Peer Community In Mathematical and Computational Biology (https://doi.

org/10.24072/pci.mcb.100003).

Data, script, and code availability
Analysis files are archived at https://doi.org/10.17605/OSF.IO/74BJF.

Conflict of interest disclosure
I declare no financial conflict of interest. I am a recommender for PCI Mathematical andComputational Biology.

Funding
This work was supported by NSF BCS 1638840, NSF BCS 1945782, and the Center for HighPerformance Computing at the University of Utah.

Supplementary information availability
Supplementary Information is available at https://doi.org/10.5281/zenodo.6615163.

Appendix A. The probability that d of n descendants derive from 1 of k ancestors
Eqn. 8 presents a formula for Qdk , the probability that a particular set of d descendants,chosen from a total of n, derives from a single unspecified ancestor, given that there were kancestors in that ancestral generation. If k = 1, Qdk = 1 as explained above. The result for k > 1can be derived in two different ways.

Alan R. Rogers 15

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://github.com/alanrogers/legofit
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.17605/OSF.IO/74BJF
https://doi.org/10.5281/zenodo.6615163
https://doi.org/10.24072/pcjournal.132

A.1. Short argument.
Suppose that some ancestor has d descendants. The probability that a particular group of ddescendents derives from this ancestor is 1

/(n
d

), where (nd) is the number of ways of choosing ddescendants from a total of n. If r ancestors have d descendants each, the probability of descentfrom one of these is r/(nd). In reality, r is a random variable, and the probability becomes Qdk =

E [r]
/(n

d

), where E [r] is the expected value of r .To derive E [r], number the ancestors from 1 to k , and let yi represent the number of descen-dants of the ith ancestor, where yi > 0 and ∑ yi = n. I will refer to a particular set of values,
y1, ... , yk , as an allocation of descendants among ancestors. The number of such allocations is(n−1
k−1

) [6, pp. 38–39]. Furthermore, each allocation has the same probability, (n−1
k−1

)−1, under thecoalescent process [3, p. 13]. The k ancestors are statistically equivalent, which implies that
E [r] =

∑k
i=1 Pr{yi = d} = k Pr{yi = d} for an arbitrary ancestor i . If this ancestor has d de-

scendants, there are (n−d−1
k−2

)ways, each with probability (n−1
k−1

)−1, to allocate the n−d remaining
descendants among the k − 1 remaining ancestors. Thus Pr{yi = d} =

(n−d−1
k−2

)(n−1
k−1

)−1, and Qdkequals the expression in Eqn. 8.
A.2. Longer argument.

The k ancestors define a partition of the set of descendants into k subsets, each correspond-ing to a different ancestor. Let x1, x2, ... , xk denote the sizes of the k subsets, i.e., the numbersof descendants of the k ancestors. The probability of such a partition is given above in Eqn. 7.Suppose that a set of d descendants (and no others) derive from a single ancestor in interval k .This can happen only if xi = d for some i . The ancestors are numbered in an arbitrary order, solet us set xk = d and rewrite Eqn. 7 as
A = k!

(
n − 1

k − 1

)−1(
n

d

)−1(
n − d

x1, ... , xk−1

)−1

To calculate Qdk , we need to sum this quantity across all ways to partition the set of n − dremaining descendants into k − 1 subsets.This is not the same as summing across values of xi , because each array of xi values maycorrespond to numerous partitions of the set of descendants. This is illustrated in table 1, wherethe left side lists the 7 ways of partitioning a set of 4 descendants among 2 ancestors, alongwith the probability of each partition as given by Eqn. 7. The first four set partitions have equalprobability, because each one divides the descendants into subsets of sizes 3 and 1, and the xjvalues of these partitions therefore make equal contributions to Eqn. 7. Similarly, the last threeset partitions have equal probability, because each divides the ancestors into two sets of size 2.These two cases: 3 + 1 = 4 and 2 + 2 = 4 are the two ways of expressing 4 as a sum of twopositive integers. Eqn. 7 implies that all set partitions corresponding to a given integer partitionhave equal probability.
There are (n−d

x1,...,xk−1

)/∏
m cm! set partitions for a given partition of the integer n−d into k−1

summands [1, theorem 13.2, p. 215]. In this expression, cm is the number of times m appearsamong x1, ... , xk−1. Multiplying this into A and summing gives
(9) Qdk = k!

(
n − 1

k − 1

)−1(
n

d

)−1∑(∏

m

cm!

)−1

where the sum is over ways of partitioning n − d into k − 1 summands. Appendix B shows thatthis sum equals (n−d−1
k−2

)
/(k − 1)!. Substituting into Eqn. 9 reproduces Eqn. 8.

Appendix B. An identity involving integer partitions
The partition of a positive integer n into k parts can be written as n =

∑k
i=1 xi , where the

xi are positive integers. This same partition is also n =
∑

i ici , where ci is the number of times i

16 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.24072/pcjournal.132

appears among the xi values. In other words, ci is the multiplicity of i in the partition. In termsof these multiplicities, k =
∑

ci . This appendix will show that
(10) ∑(∏

i

ci !

)−1

=
1

k!

(
n − 1

k − 1

)

where the sum is across all partitions of an integer n into k parts.This identity follows from the fact that there are (n−1
k−1

) ways to put n balls into k boxes sothat no box is empty [6, pp. 38–39]. Let us call each of these an “allocation” of balls to boxes.For each allocation, there is a corresponding partition of the integer n into k parts. The numberof allocations often larger than the number of partitions. For example, there are (2
1

)
= 2 ways toput 3 balls into 2 boxes, **|* and *|**, where the stars represent balls and the bar separatesboxes. Both allocations, however, correspond to a single partition, 3 = 2 + 1, of the integer 3.For a given integer partition, c1, c2, ..., there are k!/

∏
ci ! distinct ways to allocate balls to boxes.(This is the number of ways to reorder the boxes while ignoring the order of boxes with equalnumbers of balls.) The sum of this quantity across partitions must therefore equal (n−1

k−1

). Dividingboth sides by k! produces identity 10. Greg Martin posted a different proof of this identity onStackExchange.
References

[1] George E. Andrews. The Theory of Partitions. Reading, MA: Addison Wesley, 1976.[2] Steven T Buckland, Kenneth P Burnham, and Nicole H Augustin. “Model Selection: an In-tegral Part of Inference”. In: Biometrics 53.2 (1997), pp. 603–618. DOI: 10.2307/2533961.[3] Richard Durrett. Probability Models for DNA Sequence Evolution. 2nd. New York: Springer,2008. DOI: 10.1007/978-0-387-78168-6.[4] Bradley Efron. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation”. In: Journal of the American Statistical Association 78.382 (1983), pp. 316–331.DOI: 10.1080/01621459.1983.10477973.[5] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. New York: Chap-man and Hall, 1993. DOI: 10.1007/978-1-4899-4541-9.[6] William Feller. An Introduction to Probability Theory and Its Applications. 2nd. Vol. II. NewYork: Wiley, 1971.[7] Laurent Fousse et al. “MPFR: A Multiple-Precision Binary Floating-Point Library with Cor-rect Rounding”. In: ACM Transactions on Mathematical Software 33.2 (2007), 13–es. ISSN:0098-3500. DOI: 10.1145/1236463.1236468.[8] RC Griffiths and Simon Tavaré. “The Age of a Mutation in a General Coalescent Tree”. In:Stochastic Models 14.1-2 (1998), pp. 273–295. DOI: 10.1080/15326349808807471.[9] Jerome Kelleher, AlisonM Etheridge, and GileanMcVean. “Efficient Coalescent Simulationand Genealogical Analysis for Large Sample Sizes”. In: PLoS Computational Biology 12.5(2016), pp. 1–22. DOI: 10.1371/journal.pcbi.1004842.[10] Motoo Kimura. “The Number of Heterozygous Nucleotide Sites Maintained in a FinitePopulation Due to Steady Flux of Mutation”. In: Genetics 61 (1969), pp. 893–903. DOI:
10.1093/genetics/61.4.893.[11] Donald E. Knuth. The Art of Computer Programming: Volume 4A, Combinatorial Algorithms.Part 1. New York: Addison-Wesley, 2011. ISBN: 0-201-03804-8.[12] Martin Kuhlwilm et al. “Ancient Gene Flow from Early Modern Humans into Eastern Ne-anderthals”. In: Nature 530.7591 (2016), pp. 429–433. ISSN: 1476-4687. DOI: 10.1038/
nature16544.[13] Solomon Kullback and Richard A Leibler. “On Information and Sufficiency”. In: The Annalsof Mathematical Statistics 22.1 (1951), pp. 79–86.[14] Regina Y. Liu and Kesar Singh. “Moving Blocks Jacknife and Bootstrap Capture Weak De-pendence”. In: Exploring the “Limits” of the Bootstrap. Ed. by Raoul LePage and Lynne Billard.New York: Wiley, 1992, pp. 225–248.

Alan R. Rogers 17

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://math.stackexchange.com/questions/938280/on-multiplicity-representations-of-integer-partitions-of-fixed-length
https://doi.org/10.2307/2533961
https://doi.org/10.1007/978-0-387-78168-6
https://doi.org/10.1080/01621459.1983.10477973
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1080/15326349808807471
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1093/genetics/61.4.893
https://doi.org/10.1038/nature16544
https://doi.org/10.1038/nature16544
https://doi.org/10.24072/pcjournal.132

[15] Swapan Mallick et al. “The Simons Genome Diversity Project: 300 Genomes from 142Diverse Populations”. In: Nature 538 (2016), pp. 201–206. ISSN: 1476-4687. DOI: 10 .
1038/nature18964.[16] Matthias Meyer et al. “A High-Coverage Genome Sequence from an Archaic DenisovanIndividual”. In: Science 338.6104 (2012), pp. 222–226. DOI: 10.1126/science.1224344.[17] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: A PracticalApproach to Global Optimization. Berlin: Springer Science and Business Media, 2006. ISBN:978-3-540-20950-8.[18] Kay Prüfer et al. “A High-Coverage Neandertal Genome from Vindija Cave in Croatia”. In:Science 358.6363 (2017), pp. 655–658. DOI: 10.1126/science.aao1887.[19] Kay Prüfer et al. “The Complete Genome Sequence of a Neanderthal from the Altai Moun-tains”. In: Nature 505.7481 (2014), pp. 43–49. DOI: 10.1038/nature12886.[20] Alan R. Rogers. “An Efficient Algorithm for Estimating Population History from GeneticData”. In: Open Science Framework (2021). Code and data for an article of the same namepublished in Peer Community Journal. DOI: 10.17605/OSF.IO/74BJF.[21] Alan R. Rogers. “Legofit: Estimating Population History from Genetic Data”. In: BMC Bioin-formatics 20 (2019), p. 526. DOI: 10.1186/s12859-019-3154-1.[22] Alan R. Rogers. “Supplementary Information for “An efficient algorithm for estimating pop-ulation history from genetic data””. In: Zenodo (2022). DOI: 10.5281/zenodo.6615163.[23] Alan R. Rogers, Ryan J. Bohlender, and Chad D. Huff. “Early History of Neanderthals andDenisovans”. In: Proceedings of theNational Academyof Sciences, USA114.37 (2017), pp. 9859–9863. DOI: 10.1073/pnas.1706426114.[24] Alan R. Rogers, Nathan S. Harris, and Alan A. Achenbach. “Neanderthal-Denisovan Ances-tors Interbredwith aDistantly-RelatedHominin”. In: ScienceAdvances6.8 (2020), eaay5483.DOI: 10.1126/sciadv.aay5483.[25] Simon Tavaré. “Line-of-Descent andGenealogical Processes, and their Applications in Pop-ulation Genetics Models”. In: Theoretical Population Biology 26 (1984), pp. 119–164. DOI:
10.1016/0040-5809(84)90027-3.[26] P. J. Waddell. “Happy New Year Homo erectus? More Evidence for Interbreeding with Ar-chaics Predating theModern Human/Neanderthal Split”. In: ArXiv 1312.7749 (2013). DOI:
10.48550/arXiv.1312.7749.[27] Peter J Waddell, Jorge Ramos, and Xi Tan. “Homo denisova, Correspondence Spectral Anal-ysis, Finite Sites Reticulate Hierarchical Coalescent Models and the Ron Jeremy Hypothe-sis”. In: ArXiv 1112.6424 (2011). DOI: 10.48550/arXiv.1112.6424.[28] Stephen Wooding and Alan R. Rogers. “The Matrix Coalescent and an Application to Hu-man SNPs”. In: Genetics 161 (2002), pp. 1641–1650. DOI: 10.1093/genetics/161.4.
1641.

18 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132

https://doi.org/10.1038/nature18964
https://doi.org/10.1038/nature18964
https://doi.org/10.1126/science.1224344
https://doi.org/10.1126/science.aao1887
https://doi.org/10.1038/nature12886
https://doi.org/10.17605/OSF.IO/74BJF
https://doi.org/10.1186/s12859-019-3154-1
https://doi.org/10.5281/zenodo.6615163
https://doi.org/10.1073/pnas.1706426114
https://doi.org/10.1126/sciadv.aay5483
https://doi.org/10.1016/0040-5809%2884%2990027-3
https://doi.org/10.48550/arXiv.1312.7749
https://doi.org/10.48550/arXiv.1112.6424
https://doi.org/10.1093/genetics/161.4.1641
https://doi.org/10.1093/genetics/161.4.1641
https://doi.org/10.24072/pcjournal.132

