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Abstract
Foragers often compete for resources that ripen (or otherwise improve) gradually. Whatstrategy is optimal in this situation? It turns out that there is no optimal strategy. Thereis no evolutionarily stable strategy (ESS), and the only Nash equilibrium (NE) is unstable:strategies similar to the NE can always invade. But in spite of this instability, the NE ispredictive. If harvesting attempts are costly or there are many competitors, the processtends to remain near the unstable NE. In this case, the resource often goes unharvested.Harvesting attempts–when they happen at all–usually occur when the resource is barelyripe enough to offset costs. The more foragers there are, the lower the chance that theresource will be harvested and the greater its mean value when harvested. This counter-intuitive behavior is exhibited not only by theoretical models and computer simulations,but also by human subjects in an experimental game.
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1. Introduction
Every summer, my backyard witnesses a conflict between humans and birds, all of whomwish to eat the same strawberries. Those who wait until the berries are ripe eat none, for bythen the others have come and gone. All of us eat sour berries or none at all, and none of us arehappy about it.Such interactions must be common in nature. They occur whenever
(1) Several individuals compete for the same resource.(2) The resource improves in value over time.(3) Some cost is involved in attempting to harvest the resource whether one succeeds inharvesting it or not.(4) Harvesting the resource ruins it for those who come later.

I know of three examples from ethnography. (1) The Barí are a horticultural people in Venezuelawhose fishing methods have been described by Bennett [1]. The Barí often fish by dumpingpoison into pools, where the stream is deep and slow. This kills most or all of the fish. New fishenter the pool only slowly, so that the pool improves in value over a period of weeks. The Barídefend territories, but different villages nonetheless exploit the same pools. The Barí thereforeface a dilemma. If they wait until the pool is full of fish, another village may exploit the pool first.But if they go too soon, the pool is hardly worth exploiting. (2) The Hadza are a foraging peoplein Tanzania [3]. Like most tropical foragers, they enjoy honey. Hives improve in quality duringthe spring and summer, so it is best not to exploit them too soon. But the Hadza also competefor honey not only with each other but also with birds and badgers. Humans and badgers bothdestroy hives when they exploit them, so little is left for subsequent foragers. (3) The Aché are apopulation in Paraguay whose economy involves both foraging and gardening. KimHill (personalcommunication) tellsme that garden products are seldomallowed to ripen because children roamthe gardens foraging for themselves. Parents who waited for the produce to ripen would harvestnothing. Hill has worked with the Aché for decades but has yet to eat a ripe watermelon.

2 Alan R. Rogers

Peer Community Journal, Vol. 2 (2022), article e34 https://doi.org/10.24072/pcjournal.133

https://doi.org/10.24072/pcjournal.133


These examples show that the interaction in my back yard is not an isolated example. Itillustrates a problem that must have confronted our ancestors for a very long time. Thus, it makessense to ask what strategy would have been favored by natural selection. Below, I introduce amodel that answers this question. First, however, I motivate the theory by showing how realpeople respond to similar dilemmas in classroom experiments.
2. A classroom experiment

Subjects were recruited from undergraduate anthropology classes, and the experiment wasapproved by the Institutional Review Board of the University of Utah. Subjects interacted witheach other via a computer program, which provided instructions, calculated scores, and kepttrack of each subject’s choices. The screen is shown in figure 1.Subjects play in groups of five. In each round of the game, each subject chooses between“going fishing,” which yields a certain return of 2 lab dollars, and attempting to harvest the berrypatch. Those who attempt the berry patch choose a value at which to harvest. A subject whochooses the value v will gain:
v lab dollars if no other subject chooses a value as small

v/n lab dollars if n subjects tie for the smallest valuenothing if some other subject chooses a smaller value
At the end of the game, subjects are paid 0.03 US dollars for each lab dollar.Figure 2 shows the results from two experiments, each with 5 subjects, and totalling 172trials. The students ignored the berry patch about half of the time. On those occasionswhen theydid visit it, they were most likely to visit when the patch’s value barely exceeded the opportunitycost (the payoff from going fishing).Now these students are not foragers, but each of them descends from a long line of foragers.It seems possible that our species has evolved a brain that is equipped to find the optimal solutionto such problems. To find out whether these students reached an optimal solution, we need amodel.

3. Model
In the experiment, the berry patch game was played 100 times. The model, however, willdeal only with a single round of the game: with what is called the “stage game.” There is aneasy way to justify this simplification: Because the game is played a fixed number of times, theNash Equilibrium (NE) of the repeated game must involve repetition of that of the stage game[8, pp. 155–156]. This easy justification is suspect, however, because it depends on a featureof the game that is unrealistic. In nature animals do not compete against an unchanging groupof competitors for a fixed number of rounds. In some ecological contexts, the game is playedonly once; in others it is played an unpredictable number of times against a variable group ofcompetitors. Games that are repeated a fixed number of times are evolutionary novelties, andwe may have evolved no adaptation to them. Nonetheless, it is always best to start simple, sothis paper will deal with a single repetition of the stage game. The results will be relevant togames that are played only once, but should be applied with caution to repeated games.In the model, K + 1 foragers want a single resource, but that resource benefits only theforagers who first attempt to harvest it. The value v of the resource increases from 0 at thebeginning of the season to a maximum of V as the resource ripens. Foragers who attempt toharvest the resource must decide how ripe to let the resource get before attempting to harvestit. The first forager to visit the resource gets it and thus gains v , its value when harvested. Thosewho try to harvest the resource later get nothing. If n individuals arrive at the same time, theneach has an equal probability of success so that the expected payoff is v/n. Those who ignorethe resource altogether can engage in some other activity that yields a certain payoff of c . I willrefer to this alternative activity as “going fishing.” For notational simplicity, I set V = 1, whichamounts to measuring all benefits and costs as fractions of V , the maximum potential benefit.T. Bergstrom (personal communication) observes that this can also be interpreted as a modelof an auction with K + 1 competitors. Each competitor first decides whether to pay an entry
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Figure 1 – Computer screen used in berry patch game
-------------------------------------- --------------------------------------

| ||last play (Fish) earned $2 |
| INSTRUCTIONS ||assets = $2 |
|A small berry patch ripens during the ||opponents = 4 |
|summer. It is worthless in April and ||round: 2 of 100 |
|worth $10 in August if the berries || |
|are still there. The first visitor || |
|harvests all the berries; later || |
|visitors get nothing. In case of a || |
|tie, the patch is divided among the || |
|winners. || |
| || |
|If you don’t visit the berry patch at | -------------------------------------
|all, you can go fishing, which always | -------------------------------------
|yields $2. ||Choices: |
| || f: go fishing |
|You are competing against 4 other ||value btw 0 and 10: |
|foragers. The game will last 100 || visit patch when it reaches value |
|rounds. || (value need not be an integer) |
| | -------------------------------------
|At the end, I will pay you 0.03 real | -------------------------------------
|dollars for every "lab dollar". ||Your choice: _ |
| || |
-------------------------------------- -------------------------------------

0 c 10
v

Fre
que

ncy

Q = 0.49
v̄ = 2.86

◦

◦

◦

◦
◦ ◦

◦ ◦
◦
◦

Figure 2 – Experimental results. Data from two experiments, each with 5 subjects andtotaling 172 trials. On each round of the game, subjects may choose to “go fishing” whichyields reward c = 2. Alternatively, they may visit the berry patch when it is worth a value
v , which they choose. Here, where 0 ≤ v ≤ 10. On the horizontal axis, values of v aregrouped into 10 bins. The vertical axis shows the frequency with which the values ineach bin were played.Q is the frequency with which “go fishing” was played, and v̄ is themean strategy among the other plays.
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Figure 3 – Dynamics with pure strategies

fee c , which allows participation in the auction. Participants then choose a bid, b := V − v ,and the prize goes to the highest bidder. In the literature on auctions, most authors have beenconcerned either with the case in which each participant values the prize differently but knowsonly his own valuation [10] or with the case in which each participant has a private estimateof the prize’s unknown value [11]. I take a different approach here, assuming initially that thevalue of the resource is known with certainty and is the same for all competitors. Computersimulations (described in the Supplementary Information [9]) indicate that the main results arenot sensitive to this assumption.These interactions are assumed to take place within some large population. Each generation,the members of the population are randomly divided into groups of size K + 1, and each groupthen plays the berry patch game. In evolutionary game theory, we are interested not in the payoffto some strategy within a particular group, but in the average payoff to that strategy across thepopulation.
3.1. Pure strategies.

An evolutionarily stable strategy (ESS) is a strategy that resists invasion by all alternative strate-gies [7]. In the present model, no pure strategy can be an ESS. To see why, first note that it neverpays to choose v < c because one can always do better than this by going fishing. Supposetherefore that nearly all of the population plays the strategy labeled v0 in figure 3. Since every-one in each group is playing the same strategy, the benefits are divided K + 1 ways and eachindividual earns v0/(K + 1). A rare mutant who played v = v1 (where v1 < v0) would always beatits neighbors to the berry patch. When rare, the mutant almost always occurs in groups by itselfand therefore does not have to share the resource. Consequently, it will earn v1. It will increasein frequency when rare provided that v1 > v0/(K + 1). But this is always true if v1 is sufficientlyclose to v0. Thus, any pure strategy between v = c and v = 1 can be invaded by mutants playinga slightly smaller value of v . The strategy v = c is not an ESS either, because each member ofa population playing this would earn c/(K + 1) and could do better by going fishing. The onlyother pure strategy is “go fishing,” which earns a payoff of c . But fishing is not an ESS either, for apopulation of fishers could be invaded by mutants playing v > c . There are thus no symmetricalequilibria in pure strategies.There do not seem to be any asymmetrical equilibria either. For example, suppose that withineach group individual A plays v = c and the rest go fishing. Then each individual earns c , yet thisis not a Nash equilibrium because A could do better by playing some v greater than c . Even if thiswere an equilibrium, it would pose a coordination problem. Asymmetrical equilibria are feasibleonly if there is some means of deciding in advance which player will play which role. Thus, it is
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of interest to consider the case in which asymmetrical equilibria are impossible, and there areno pure-strategy equilibria at all.If there is no equilibrium in pure strategies, how can we expect the population to behave?One possibility is that the dynamics will be cyclical as suggested in figure 3. There, the populationis initially fixed at v = v0, but the value of v gradually declines as successively smaller mutantsinvade. A mutant with strategy v receives payoff v when rare and v/(K + 1) when common.Eventually, v falls so low that this latter payoff is less than c , the payoff from going fishing. Fishingtherefore increases in frequency, as indicated by the path from v3 to “fishing” on the figure. Thisincrease continues until the resource is rarely harvested, and mutants playing large v can invade.This brings us back to our starting point. This story suggests that foraging behavior might exhibitcyclical dynamics, a point to which we will return.
3.2. A mixed equilibrium.

But there is another possibility: foragers may randomize their strategies by choosing v from aprobability distribution. Let I denote a strategy that chooses value v = x with probability density
f (x) and chooses not to visit the resource at all with probabilityQ . I assume that all values chosenby I fall within an interval [L,U], where c ≤ L < U ≤ 1. In other words, L is the lowermost valueever chosen and U the uppermost.The value of L is easy to determine. Suppose that L > c . Then a population playing I couldbe invaded by a mutant playing a fixed value of v that lay between c and L. Thus, I can be an ESSonly if L = c . Analogous arguments show that f (x) > 0 over the entire interval c < x < U andthat f must be a “pure density”: it must be positive throughout this interval. Before determiningthe value of U , I must first derive some formulas.The probability density f (v) is closely related to two other functions. The survival function
s(v) is the probability that a forager playing strategy I does not visit the resource by the time itsvalue is v . It equals
(1) s(v) =

∫ U

v
f (x)dx + Q

The hazard function h(v) is the conditional probability density of a visit when the resource hasvalue v , given that no visit has yet been made. For convenience, I record here a series of relation-ships among these functions, which are well-known within demography and survival analysis [5,p. 6].
s(v) = exp

[
−
∫ v

c
h(x)dx

](2)
f (v) = −ds(v)/dv(3)

= h(v)s(v)(4)
h(v) = −d ln s(v)/dv(5)

I denote by Π(v , IK ) the payoff to a forager playing pure strategy v against K opponentsplaying I . This payoff equals
(6) Π(v , IK ) = vs(v)K

since s(v)K is the probability that none of the K opponents visit the resource by the time itsvalue is v . The payoff to the mixed strategy I is an expected value:
(7) Π(I , IK ) =

∫ U

c
f (v)Π(v , IK )dv + Qc

To find a formula for s , I make use of the fact that if I is an ESS, then
(8) Π(x , IK ) = Π(y , IK )

for any two pure strategies x and y that are played by I with positive probability [2, theorem 1].In other words, all strategies receive the same payoff when playing against I . Consequently, the
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graph of Π(v , IK ) against v must be flat, and dΠ(v , IK )/dv = 0. This implies that
−ds(v)

dv
=

s(v)

Kv

The left-hand side of this expression above equals f (v) (equation 3). Consequently, the right-hand side must equal h(v)s(v) (equation 4), and the hazard function is
(9) h(v) = 1/Kv

Substituting into equations 2 and 4 gives the survival and density functions:
s(v) = (c/v)1/K(10)
f (v) =

c1/K

Kv1+1/K
(11)
A forager will fail to visit the resource with probability

Q := s(U) = (c/U)1/K

I assume that c > 0: that fishing pays, so that visiting the resource entails an opportunitycost. This requires that Q > 0—that foragers go fishing at least occasionally. Since fishing is partof the mixed equilibrium, the return from attempting to harvest the berry patch must on averageequal the return c from fishing. On average, therefore, the net benefit from foraging must equal
c , the opportunity cost. This insight can be verified by substituting equation 10 into equation 6,which yields Π(v , IK ) = c irrespective of v . Since each pure strategy yields payoff c against I , itfollows that an individual playing I against I will earn c too.We are now in a position to determine the value of U , the uppermost pure strategy that isever played by I . Consider the fate of a rare mutant playing v = 1 against a population playing I .The mutant’s fitness is

Π(1, IK ) = s(U)K = c/U

Meanwhile, the I -strategists each earn Π(I , IK ) = c . The mutant’s fitness is greater unless U = 1.Thus, U must equal 1 if I is an ESS. Strategy I chooses pure strategies from the entire intervalbetween c and 1; it ignores the resource with probability
(12) Q = s(1) = c1/K

This result apparently holds in contexts more general than the present model, for it has alsobeen derived in related models of auctions with entry fees [6, Eqn. 9]. The mean value of vamong foragers who visit the resource is
(13) v̄ = (1− Q)−1

∫ 1

c
vf (v)dv =




− c ln c

1−c if K = 1
c1/K−c

(K−1)(1−c1/K )
otherwise

3.3. Stability of the mixed equilibrium.
We have just seen that when everyone plays I , all strategies receive equal payoffs. This guar-antees that I is a Nash equilibrium but not that it is evolutionarily stable. I resists invasion onlyif the fitness of any alternative strategy would decline as its frequency increased. To express thecondition under which this is true, we need notation for payoffs against a heterogeneous mix-ture of opponents. Let Π(x , J1IK−1) denote the payoff to some strategy x against K opponentsof whom 1 plays strategy J andK−1 play I . Appendix section A shows that I resists all invasionsif

(14) Π(I , J1IK−1) > Π(J, J1IK−1)

for all (pure or mixed) strategies J that differ from I . This is the multi-player analog of inequality 3of Bishop, Cannings, and Maynard Smith [2, p. 90]. Section A.1 shows that I resists invasion byall pure strategies when
(15) Q > 1/2, or equivalently, 2Kc > 1.
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Figure 4 – Unstable dynamics in a simulation with pure strategies, assuming c = 0.1,
K = 2, and 2Kc = 0.4. In this simulation 2Kc < 1, so the NE does not resist invasion bypure strategies. In each generation there were 3333 groups of size 3. The dashed linesshow v̄ = 0.32 (upper panel) andQ = 0.32 (middle panel), the values predicted by the NE(equations 13 and 12). In the lower panel, the stars and circles show empirical frequencydistributions of the strategy variable v . The distribution shown with stars was calculatedfrom the simulation’s final generation, while that shown with circles aggregates over alarge number of generations—all generations since the first in which v̄ fell to the valuepredicted by equation 13. The solid line shows the Nash equilibrium.

The NE resists pure-strategy invaders only if foragers are more likely to ignore the berry patchthan to try to harvest it. The larger the values of c and K , the more likely this is to be so. Onthe other hand, the NE never resists invasion by mixed strategies that are similar to the NE(section A.2). Consequently, the NE is evolutionarily unstable, and this game has no ESS.To explore the dynamics of this process, I turn now to computer simulations.
4. Computer simulations

4.1. Mixtures of pure strategies.
Consider first a population in which each individual plays a pure strategy. Each simulationbegins with all individuals playing v = 1. The first event in the life cycle is mutation, which as-signs new strategies to one per cent of the population. Of these mutants, half become fishersand half are assigned a value of v chosen at random on the interval between 0 and 1. After muta-tion, fitnesses are assigned using the model above. Reproduction is haploid, with each individualproducing offspring in proportion to her fitness.Figures 4–5 show simulations with increasing values of 2Kc . These should show increasingstability (ineq. 15), and indeed they do. In the less stable simulation (fig. 4), 2Kc is well belowunity,so I can be invaded. As the figure shows, v̄ and Q both oscillate wildly. In figure 5, 2Kc > 1, so

I cannot be invaded by pure strategies. In this case, v̄ and Q̄ each converge rapidly toward theNE.
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Figure 5 – Stable dynamics in a simulation with pure strategies, assuming c = 0.1, K = 4,and 2Kc = 1.6. In this simulation, 2Kc > 1, so the NE resists invasion by pure strategies.
In the lower panels of these figures, the stars and circles represent empirical frequency distri-butions of the strategy variable v . The stars show distributions calculated from each simulation’sfinal generation, while the circles show a distribution averaged over many generations. The solidline shows the predicted frequencies at theNE, as calculated from equation 10. The starred distri-bution fits the NE poorly in figure 4 but fairly well in figure 5. The long term average distribution(shown by circles) fits the NE well in both cases.Additional simulations (not shown) confirm this pattern: the system oscillates when 2Kc < 1but converges when 2Kc > 1, as predicted by inequality 15.

4.2. Simulations with mixed strategies.
Now suppose that each individual plays one of three mixed strategies, of which one is theNE and the other two are perturbed away from the Nash. To generate a perturbed strategy, Idivide the interval [c , 1] into two segments of equal length. Within each half of this interval, thehazard is the Nash hazard (Eqn. 9) times a multiplier that is drawn independently and at randomfrom a gamma distribution with mean 1 and variance 2.At the beginning of the simulation, individuals are assigned the Nash strategy with probabil-ity 0.99. Otherwise, they are assigned one of the two perturbed strategies, chosen at random. Ineach generation, there are 2000 groups of size K + 1. Each individual chooses a strategy by sam-pling from her ownmixed strategy and then plays the berry patch game with the other membersof her group. The fitness of an individual equals her payoff in this game. The offspring generationis formed by sampling parents at random with replacement, weighted by parental fitnesses. Thefinal step in each generation is mutation, which affects 1% of individuals per generation. Whenan individual mutates, it adopts a different strategy, chosen at random from among the othertwo.Figure 6 shows the results of one simulation, in which c = 0.3 and K = 4. For these pa-rameters, 2Kc = 4.8, so condition 15 implies that the Nash equilibrium would resist invasion by

Alan R. Rogers 9

Peer Community Journal, Vol. 2 (2022), article e34 https://doi.org/10.24072/pcjournal.133

https://doi.org/10.24072/pcjournal.133


QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

v meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv meanv mean

Nash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategyNash strategy

Non−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategiesNon−Nash strategies

NashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNash

NashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNashNash

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Generation
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Figure 8 – Root mean squared deviation (RMSD) from the Nash equilibrium, as a functionof K and c . The mean squared deviation (MSD) of a strategy is calculated by numericallyintegrating the squared difference between its density function and that of the NE. TheMSD of an entire simulation is the average of MSD across strategies and generations,excluding the first 1000 generations. The RMSD (plotted above) is the square root of theMSD of the simulation. Each point is a simulation of 5000 generations.

pure strategies. Yet mixed strategies can clearly invade. The non-Nash strategies initially rise infrequency and then settle down to relatively stable values. Figure 7 shows the first 2500 gener-ations of this simulation as ternary plot. After the first few generations, the strategy frequenciesare constrained within a small region. Although there are no obvious cycles, it is impossible totell whether the dynamics are cyclical or chaotic. Cycles may be obscured by the stochasticityof the simulation.
In spite of the instability of the NE, the red and blue lines in Fig. 6 are not far from the values(Q ≈ 0.74 and v̄ ≈ 0.56) it predicts. This suggests that the NE may be predictive even though itis not an ESS. Fig. 8 supports this idea. It plots the root mean squared deviation (RMSD) fromthe NE against c and N . Simulations that remain near the NE have small values of the RMSD.For example, RMSD equals 0.089 for the simulation in Fig. 6. This is among the smaller valuesin Fig. 8, and this small value is consistent with the fact that Q and v̄ remain near the NE valuesthroughout the simulation in Fig. 6. Figure 8 shows that the RMSD declines with c and also with

K . Furthermore, the spread of this statistic also declines. This implies that—even though there isno ESS—the process tends to stay in the neighborhood of the NE when either the opportunitycost (c ) or the number (K ) of competitors is large.
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5. Properties of a population playing the NE
These results suggest that the NE may often be a good description of the population eventhough it is not an ESS. Let us therefore ask how a population that played the NE would behave.In such a population, foragers should often ignore the berry patch. This follows from the factthat the NE is predictive only when either c or K are large. In such cases, Q will also be large(Eqn. 12), so foragers will often go fishing rather than visiting the berry patch.Surprising results emerge when one asks such questions as “How does the value of the har-vested resource change with the number of competitors?” Intuition suggests that when the num-ber of competitors is large, the resource will usually be harvested sooner and at a lower value.As we shall see, however, the model implies precisely the opposite.Consider the probability distribution of the resource’s value at the time it is harvested. IfK+1foragers are all playing strategy I , then the survival function of this new random variable is

(16) sK (v) = s(v)K+1 = (c/v)1+1/K

This survival function gives the probability that the resource survives unharvested at least untilits value is v . Equations 5 and 4 now give the hazard function and probability density:
hK (v) = (1 + 1/K )/v(17)
fK (v) =

(1 + 1/K )c1+1/K

v2+1/K
(18)
The probability that the resource is never harvested equals

QK := sK (1) = QK+1 = c1+1/K

For example, if c = 1/2 then the resource remains unharvested 1/4 of the time with two com-petitors but 1/2 the time with an infinite number. Apparently (but contrary to intuition), largernumbers of foragers leave more fruit on the tree.The probability density of the value of resourcewhen it is harvested, given that it is harvestedat all, is fK (v)/(1− QK ). The mean value of the resource when harvested is therefore
(19) v̄K = (1− QK )−1

∫ 1

c
vfK (v)dv =

(K + 1)c(1− c1/K )

1− c1+1/K

In the special cases of two competitors and of an infinite number, v̄1 = 2c/(1 + c) and v̄∞ =
−c(ln c)/(1−c). With c = 0.6, these two cases give v̄1 = 0.75 and v̄∞ = 0.77. Note that v̄∞ > v̄1.This means that on average (and contrary to intuition), the mean value of the resource whenharvested increases with the number of competitors.

6. Return to experimental data
The experimental data are re-plotted in Fig. 9 along with corresponding theoretical results.The fit between observation and the NE is far from perfect: The observed value of Q is low(1/2 rather than 2/3), and the data give too much weight to values of v between 2 and 3. Itis tempting to interpret these discrepancies in ecological terms or in terms of the differencesbetween model and experiment. For example, the predominance of low values of v might resultfrom risk aversion. Or the discrepancies might reflect the fact that the model describes a one-shot game, whereas the subjects played multiple rounds.I am reluctant, however, to interpret the results in this way. Even in the best of circumstances,we only expect populations to be near the NE, not at it. We should not expect precise numericalagreement, even when all the model’s assumptions hold. Emphasis should instead be on themodel’s qualititative predictions.In qualitative terms, there is good agreement between the NE and the results in Fig. 9. Aspredicted, these human subjects often ignored the berry patch. And when they did attempt toharvest, they tended to do so when the reward barely offset the cost. Although these similaritiesdo not show that human behavior was shaped by the evolutionary process described here, theyare broadly consistent with that view.
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Figure 9 – The Nash equilibrium (solid line and values under “Exp”) compared with datafrom Fig. 2. In the experiment, K = 4, v ranged from 0 to 10, and “going fishing” yieldedpayoff c = 2. In the model, payoffs are re-expressed as fractions of the maximum payoff,so that c and v both lie between 0 and 1.
7. Discussion

In real berry patches, the berries do not all ripen on the same schedule, and multiple for-agers make multiple trips to compete for the berries that are currently (somewhat) ripe. Thepresent model is thus an abstraction, intended to capture the essential features of competitionfor a resource that increases gradually in value. It is possible that the model’s artificial featuresexaggerate its instability. Nonetheless, it probably captures some of what goes on in nature.In the currentmodel, no pure strategy can be evolutionarily stable, so any equilibriummust bemixed. Yet the only mixed Nash equilibrium is evolutionarily unstable—it does not resist invasionby othermixed strategies. Nonetheless, the dynamics of this process remain in the neighborhoodof the NE if either the cost of harvesting or the number of competitors is large. In such cases,the NE provides a useful description in spite of its instability.It does not, however, provide a precise numerical description. Because the NE is evolutionar-ily unstable, populations should seldom be at it, although they may often be near it. We shouldtherefore emphasize the model’s qualitative implications rather than its numerical ones. Thesequalitative implications are surprising. When a population is near the NE, the resource should of-ten go unharvested, most harvesting attempts should occur when resource is barely ripe enoughto offset costs, and harvesting attempts should decline in frequency as the resource ripens. Themore foragers there are, the greater the chance that the resource will go unharvested and thehigher its mean value when harvested.These conclusions apply not only to foraging but also more generally whenever there is com-petition for something that gradually increases in value. Paul Smaldino (personal communication)compares the berry patch to scientific publishing: the longer you work on a piece of research,the better it gets, but also the greater the chance that someone else will publish your result first.
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Appendix A. When does I resist invasion?
Each forager competes in a group with K others. Let P0 denote the probability that a ran-dom forager competes with K non-mutants playing I and let P1 denote the probability that shecompetes against one mutant playing J and K − 1 non-mutants playing I .1 If J is rare, we canneglect the possibility that more than one opponent plays J ; hence P0 + P1 = 1. The fitnessesof J-strategists and I -strategists are

WJ = P0Π(J, IK ) + P1Π(J, J1IK−1)

WI = P0Π(I , IK ) + P1Π(I , J1IK−1)

where the notation Π(s, J1IK−1) refers to the expected payoff to strategy s when playing against
K competitors, of whom 1 is playing J and the other K − 1 are playing I . Strategy I is an ESSif and only if WI > WJ . The definition of I implies that Π(J, IK ) = Π(I , IK ) [2, theorem 1]. Itfollows thatWI >WJ if and only if
(20) Π(I , J1IK−1) > Π(J, J1IK−1)

A.1. Invasion by pure strategies.
This section shows that the NE resists invasion by all pure-strategy invaders if and only if

Q > 1/2. I assume that pure strategists either fish or play v ∈ [c , 1], because strategies v < care dominated by the fishing strategy.Consider first the payoff to a mutant that plays pure strategy v in a group with one othermutant. The two mutants playing pure strategy v beat the K − 1 I -strategists to the resourcewith probability s(v)K−1, in which case they split the prize and each receive v/2. Thus,
Π(v , v1IK−1) =

v

2
s(v)K−1

=
c

2

(
v

c

)1/K

Π(I , v1IK−1) =

∫ v

c
f (x)xs(x)K−1dx + Qc

= c

(∫ v

c

dx

Kx
+ Q

)

= c
(
ln[(v/c)1/K ] + c1/K )(21)

Stability requires that Π(I , v1IK−1) > Π(v , v1IK−1), which is equivalent to
ln(v1/K/Q) + Q − v1/K/2Q > 0

1In a finite population, P0 and P1 would be different for a J strategist than for an I strategist. These differencesare small however in large populations, and they disappear in infinite ones.
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or
(22) Q > g(y) := y/2− ln y

where y := (v/c)1/K . I resists invasion by all v ∈ [c , 1] only if (22) holds for all y ∈ [1, 1/Q]. Thefunction g(y) has a global minimum at y = 2 and decreases with y when y < 2.2If (22) holds for all y ∈ [1, 1/Q], then it must hold for y = 1, in which case (22) becomes
Q > 1/2. This condition is not only necessary but also sufficient: ifQ > 1/2, then y ∈ [1, 1/Q]⇒
y < 2. This implies that g(y) decreases throughout the range of y and reaches its maximum at
y = 1. When (22) holds for this maximal value, it holds everywhere. Thus, inequality 22 holds ifand only if Q > 1/2.It remains to consider the case of a mutant that always fishes, never visiting the berry patchat all. Let us call this strategy F . The payoff to F is always c , no matter what its opponents do.Strategy I will resist invasion by F provided that

Π(I ,F 1IK−1) > c

This payoff can be found by setting v = 1 in Eqn. 21. The resulting expression is greater than cfor all permissible values of c andK . Thus, strategy I always resists invasion by F . This completesthe justification of inequality 15.
A.2. Invasion by a mixed strategy.

This section will show that I never resists invasion by nearby mixed strategies. Subscriptswill be used to distinguish quantities referring to different strategies: the survival and densityfunctions of strategy I are denoted by sI and fI , and the corresponding functions of strategy Jare sJ and fJ . The payoffs to I and J against groups with one J are
Π(I , J1IK−1) =

∫ 1

c
fI (v)vsJ(v)sI (v)K−1dv + QI c(23)

Π(J, J1IK−1) =

∫ 1

c
fJ(v)vsJ(v)sI (v)K−1dv + QJc(24)

Substituting vsI (v)K−1 = c/sI (v) and QI = 1− ∫ 1c fI (v)dv leads to
Π(I , J1IK−1) = c

[∫ 1

c
fI (v)

(
sJ(v)− sI (v)

sI (v)

)
dv + 1

]

Π(J, J1IK−1) = c

[∫ 1

c
fJ(v)

(
sJ(v)− sI (v)

sI (v)

)
dv + 1

]

To measure the difference between the two payoffs, define
D = [Π(I , J1IK−1)− Π(J, J1IK−1)]/c

=

∫ 1

c

[
(s ′J − s ′I )(sJ − sI )/sI

]
dv(25)

where the arguments of sJ and fJ have been suppressed and fI and fJ have been re-expressedas −s ′I and −s ′J (see equation 3). To prove that I is evolutionarily unstable, I must show that
D < 0 for some J . Now D = 0 when J = I , for then D is then the difference between twoidentical quantities. Consequently, I can prove that I is evolutionarily unstable by showing that
D is greater when J = I than otherwise. To this end, I use the calculus of variations to show that
D reaches a local maximum where sJ = sI .The integrand within the definition of D can be written as

Z (sJ , s ′J , v) = (s ′J − s ′I )(sJ − sI )/sI

The function sJ that maximizes D must satisfy the Euler equation [4, p. 7],
∂Z

∂sJ
− d

dv

(
∂Z

∂s ′J

)
= 0

2The first derivative, g ′(y) = 1/2 − 1/y , equals zero only at y = 2. The second derivative, g ′′(y) = y−2 > 0, ispositive.
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Solving this differential equation with initial condition sJ(c) = 1 gives sJ(v) = (c/v)1/K , whichis identical to sI (v) (see equation 10). Thus, the only strategy that can possibly maximize D isstrategy I , as defined in equations 9–11.The calculus of variations requires functions with exogeneously determined endpoints. Con-sequently, I will stipulate that sJ(1) and sI (1) are both equal to QI , as given in equation 12. If Ican show that I cannot resist invasion by strategies that are constrained in this fashion, then itcertainly cannot resist invasion by strategies chosen without constraint.The Euler equation provides only a necessary condition and does not guaranteee that sImaximizes D rather than minimizing it. To ensure that sI is indeed a minimum, one must showthat the “second variation” of D is positive. The second variation is [4, p. 35]
D2 =

ε2

2!

∫ 1

c

(
t2
∂2Z

∂s2J
+ 2tt ′

∂2Z

∂sJ∂s
′
J

+ t ′2
∂2Z

∂s ′J
2

)
dv

where ε is a small perturbation and t a function of v that is arbitrary except for the requirementthat t(c) = t(1) = 0. In the present case, ∂2Z/∂s2J = ∂2Z/∂s ′J
2 = 0, and ∂2Z/(∂sJ/∂s

′
J) = 1/sI .Thus, the integral in D2 becomes ∫ 1

c

tt ′

sI
dv

Integrating by parts produces
∫ 1

c

tt ′

sI
dv =

t(v)2

sI (v)

∣∣∣∣∣

1

c

−
∫ 1

c
t

(
t ′

sI
− ts ′I

s2I

)
dv

= 0−
∫ 1

c

tt ′

sI
dv +

∫ 1

c

t2s ′I
s2I

dv

or ∫ 1

c

tt ′

sI
dv =

1

2

∫ 1

c

t2s ′I
s2I

dv ≤ 0

The sign of the final term follows from the observations that (t/sI )
2 ≥ 0 and s ′I ≤ 0 becausesurvival functions cannot increase. This indicates that the second variation is negative, whichimplies that sI maximizes D . This shows that I is not an ESS. It can be invaded by any mixedstrategy that is sufficiently similar to it.
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