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Abstract
Forest loss is an environmental issue that threatens ecosystems in the Dominican Re-public (the DR). Although shifting agriculture by slash-and-burn methods is thought tobe the main driver of forest loss in the DR, empirical evidence of this relationship is stilllacking. Since remotely sensed data on fire occurrence is a suitable proxy for estimatingthe spread of shifting agriculture, here I explore the association between forest loss andfire during the first 18 years of the 21st Century using zonal statistics and spatial au-toregressive models on different spatio-temporal layouts. First, I found that both forestloss and fire were spatially autocorrelated and statistically associated with each otherat a country scale over the study period, particularly in the western and central part ofthe DR. However, no statistical association between forest loss and fire was found inthe eastern portion, a region that hosts a large international tourism hub. Second, de-forestation and fire showed a joint cyclical variation pattern of approximately four yearsup to 2013, and from 2014 onwards deforestation alone followed a worrying upwardtrend, while at the same time fire activity declined significantly. Third, I found no signif-icant differences in forest loss patterns between the deforested area of small (<1 ha)and large (>1 ha) clearings of forest. I propose these findings hold potential to informland management policies that help reduce forest loss, particularly in protected areas,mountain areas, and the vicinity of tourism hubs.
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Introduction
Deforestation is a major concern for countries embracing the achievement of SustainableDevelopment Goal (SDG) 15 (Department of Economic and Social Affairs of the United NationsSecretariat, 2010; UN System Task Team on the Post-2015 UN Development Agenda, 2012).During the last decades, most countries have established reforestation programs to halt and re-verse land degradation, but little effort has been made in preventing forest loss in preservedareas and secondary forests (Buřivalová et al., 2021; Heinrich et al., 2021). In addition, a con-ceptual framework for developing indicators for the SDG 15 is missing, making it hard to assesswhether or not the goal is being met (Hák et al., 2016).A global assessment of 21st-Century forest cover change, derived from Landsat satellite ob-servations, was published in 2013 and has since been updated yearly (MC Hansen et al., 2013).Several research teams used the outcomes of Hansen et al.’s work to assess the changes andtrends of forest cover in different countries and to explore the causes of deforestation (e.g.,commodity-driven deforestation, shifting agriculture, and wildfires) (Curtis et al., 2018; Kalaman-deen et al., 2018).Despite the ecological importance of the forest ecosystems in the Dominican Republic (here-after, the DR) (Cámara Artigas, 1997; Cano and Veloz, 2012; Hager and Zanoni, 1993; Olsonet al., 2001), comprehensive assessments of forest loss are rare. The available evidence suggeststhat there is a close relationship between forest loss and shifting agriculture, the latter drivenmainly by slash-and-burn practices (Cámara Artigas, 1997; Lloyd and León, 2019; Myers et al.,2004; OEA, 1967; Ovalle deMorel and Rodríguez Liriano, 1984; Tolentino and Peña, 1998;Wen-dell Werge, 1974; Zweifler et al., 1994). Although the Ministry of Agriculture and the NationalBureau of Statistics of the DR have conducted agricultural censuses, their efforts have failed toprovide consistent and spatially dense data on the intensity and extent of shifting agricultureactivity over the last decades (ONE, 1982, 2016). Therefore, even a simple correlation analy-sis between forest loss and agricultural activity is unfeasible with the available data publishedby government institutions. A further limitation is the fact that traditional regression analysiscannot provide a systematic assessment of statistical association between variables that exhibitspatial autocorrelation, so spatial autoregressive models are needed (Anselin, 1988; RS Bivandet al., 2013).Considering these limitations, I explore here the statistical associations between fire andforest loss in the DR in the first 18 years of the 21st Century, using spatial autoregressive modelsapplied to public data remotely and consistently collected. Specifically, and referring to those 18years, I answer the following questions: 1) Was fire statistically associated with forest loss and,if so, was fire a suitable predictor of forest loss? 2) Was there a greater degree of association offire with small forest clearings than with larger ones? 3) Did spatial clustering or temporal trendof forest loss and fire exist? I hypothesize that both fire and forest loss were significantly andincreasingly associated over time, that fire was a suitable predictor of forest loss regardless ofthe size of the clearings, and that both fire and forest loss were spatially autocorrelated over thestudy period.This is the first study providing empirical evidence of the association between fire and forestloss in the DR. I assert that the results obtained increase knowledge on spatio-temporal patternsof forest loss. In addition, the findings could assist decision-makers in assessing the achievementof the SDGs, and in designing more effective policies for the long-term planning of nature con-servation and for preventing wildfire and forest loss.

Material and methods
Data download and preparation.

I used two types of datasets for this research (see Fig. 1): the collection of forest change layersfrom MC Hansen et al. (2013) and the fire point/hotspot locations from NASA (2019a,b). Fromthe forest change data, I used the loss year and the tree cover thematic tiles, which I downloadedfrom the Global Forest Change 2000-2018 data service (Hansen/UMD/Google/USGS/NASA,
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Figure 1 – Graphical abstract of the methodology. See text for details and see the Dataand code availability section for provided scripts.
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2019). The tree cover tiles classify the land area in tree canopy densities for the year 2000 as abaseline—where trees mean “vegetation taller than 5 m in height”—and the loss year tiles recordthe first year when the canopy reduced its density relative to the baseline year. Although Tropeket al. (2014) commented that the study underestimates forest loss,MHansen et al. (2014) arguedthat such criticism is based on a misconception of the definition of forest used in their study.I stitched together the tiles from these datasets to form a seamless mosaic, and then warpedthe results on to the UTM/WGS84 datum, from which I later produced continuous maps of theDR mainland territory by masking out the ocean/lake areas (Fig. 2). Since these products do notdistinguish plantations (e.g., oil palm and avocado plantations) from forest, I acknowledged thislimitation when running exploratory analysis and building spatial models.

Figure 2 – Loss year layer from 2001 to 2018 for the Dominican Republic, according toMC Hansen et al. (2013). Labelled points denote the location of some cities chosen asreference.

Moreover, the fire/hotspot data consisted of two products of the NASA’s Fire Informationfor Resource Management System (FIRMS) processed by the University of Maryland, providedas point layer files by the LANCE/ESDIS platform, covering two overlapping periods of time(NASA, 2019a,b). The most comprehensive dataset, labeled as “MODIS Collection 6 standardquality Thermal Anomalies / Fire locations” (MCD14ML), comprised fire data from 2000 to 2018.The second product, labeled as “VIIRS 375m standard Active Fire and Thermal Anomalies prod-uct” (VNP14IMGTML), comprised locations of fires and thermal anomalies since 2012 up to thepresent time.Since theMODIS dataset covered the longest time period, I used it as the reference databasefor the multi-year analyses. Furthermore, considering that the VIIRS time series described justthe last third of the analyzed period, I used this set for assessing the consistency and sensitivityof the MODIS data. To do this, I generated a subset of the MODIS and VIIRS datasets fromthe 2012-2018 period, summarizing the number of fire points per month. With this subset, Iperformed a cross-correlation analysis and fitted a linear model using the number of MODIS firepoints permonth as the independent variable and the number of VIIRS fire points as the response
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variable (Venables and Ripley, 2002). After the consistency check, I used only theMODIS datasetfor further analyses.The FIRMS source web service states that there are missing data at known dates in theMODIS product, but, since this issue affects a minimal portion of the time series—few days of2001, 2002, 2007 and 2009, overall, less than 30 days—, I decided to acknowledge it and usethe entire dataset without applying missing data algorithms.Most of the fire data points from the FIRMS collections accounted for actual fires and thermalanomalies, but there were also noisy records (e.g., false positives) that could affect the results.Thus, I removed the persistent thermal anomalies records with little or no potential to producewildfires, such as those originating from landfills with spontaneous combustion and industrialfurnaces. I refer to the resulting outcome as “the noise-free versions of the fire points datasets” orsimply “the noise-free versions” (see Supplementary Information section and Fig. S1 for details).For consistency reasons, I reprojected the point data files to conform to theUTM/WGS84 datum.Last, I applied a mask comprising the DR land area to each dataset used in the study.
Spatio-temporal approaches.

I used two different spatio-temporal approaches to answer the questions posed in this study,which I refer to as “the long-term approach” and “the annual approach”, respectively (Fig. 1). Inboth approaches, I applied spatial statistical techniques to explore association patterns betweenforest loss and fire, using statistical summaries generated from zonal grids and value layers.
Long-term approach. In this approach, I assessed the association between forest loss and fire inthe study period—2001-2018—using a zonal grid. I focused the analysis on the areas with 25%or higher tree cover in year 2000 as a baseline, which I refer to as “forest cover in 2000”, orsimply “forest cover” (Fig. 3). I used this baseline for two reasons: 1) The 2000 tree cover servesas a baseline for global forest change studies (MC Hansen et al., 2013); 2) 25% tree cover is anappropriate threshold to cover different vegetation types, including tropical semi-deciduous andseasonally dry forests.The zonal grid created for this approach consisted of 482 adjacent hexagons, each with anominal surface area of 100 km2 and having at least 45% of its area on mainland territory (Fig. 3).With this setting, the total area of the zonal grid was approximately 46,200 km2, which is indeedslightly smaller than the DR territory (approximately 48,400 km2).To generate the fire data layer, I used the noise-free version of the MODIS dataset as inputand selected the fire points falling into the above defined forest cover. Then, I computed thenumber of fire points for each hexagon of the zonal grid. Last, I divided the number of points ineach cell by its area (in km2) and by the number of years, which resulted in fire density (Fig. 1).Moreover, to generate the forest loss data layer, I pooled forest loss surface area representingthe period 2001 to 2018, then divided it by the corresponding cell size and by 18 years to obtainthe average forest loss per unit area per yearWhile the long-term approach provides a useful summary of the relationships between firedensity and forest loss for the period analyzed, most of the trends and other insightful patternswould remain unknown without an annual analytical approach.
Annual approach. For this approach, I analyzed temporal trends and statistical association be-tween forest loss and fire on an annual basis with time series and spatio-temporal analyses.I used the forest loss year raster to generate 18 annual maps. From each map, I grouped theconnected cells belonging to the same patch using the Queen’s case neighborhood, and thencalculated the surface area of the clumped patches. Additionally, I produced annual maps of“small forest clearings” with patches of less than 1 ha in size, and maps of “medium- and large-sized forest clearings” (or “large clearings”) with patches larger than 1 ha (Fig. 1). Then, I computedthe annual forest loss separately by size of clearing, summing up the surface area values of theindividual patches of each loss map, and assessed the homogeneity of annual average valuesusing a paired t-test. Finally, I used the annual data to generate a time series of forest loss andfire occurrence, from which I extracted the trend and cyclical components using the “Christiano-Fitzgerald” and “Hodrick-Prescott” filters (Balcilar, 2019).
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Figure 3 – DR forest cover in the year 2000. Areas with a canopy closure equal to orgreater than 25% in tree cover map of MC Hansen et al. (2013) were classified as forest.The hexagonal grid overlaid was used for zonal statistics computations of the long-termapproach. See text for details.
To perform the spatio-temporal analysis, I summarized the annual forest loss and fire densityover a regular hexagon grid of 253 hexagons, each of which had a maximum area of approxi-mately 195 km2. This larger area than for cells used in the long-term approach was chosen toreduce the skewness of variables distributions and improve adherence to normality. Afterward,I performed a zonal statistical analysis of forest loss, using separate metrics for large and smallclearings. For large clearings, I used the relative area of annual forest loss (measured in km2 per100 km2), since that metric is suitable for characterizing the deforestation activity on a given cell.For small clearings, density of patches (measured in number of patches per 100 km2) was used,since the relative area may be irrelevant for summarizing small clearings on a given cell.Finally, to obtain the yearly subsets of fire points, I used the noise-free version of theMODISdataset for the 2001-2018 period. I generated annual maps of fire points using the date field ofthe dataset. Then, from the annual maps of large clearings, buffer zones were created aroundthe patches at a maximum distance of 2.5 km. Afterward, I generated the corresponding annualsubsets of fire points, selecting only those falling within the patches and/or their buffer zones(Fig. S6). Last, I summarized, over the hexagon grid, the yearly density of MODIS fire points per100 km2.

Spatial modeling.
For both the long-term and annual approaches, I conducted exploratory spatial data analy-sis (ESDA) and fitted several models using maximum likelihood estimation. First, I assessed thenormality of the variables using Shapiro-Wilk tests and QQ plots, and applied Tukey’s Ladderof Power transformations to those variables departing from normality before performing spatialanalysis, in order to fulfill the normality assumption or to reduce the skewness of the variables(Mangiafico, 2019).For each of the grids used in this study, I created neighbour objects between hexagons basedon the criterion of contiguity. As expected, each hexagon became the neighbour of six other
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contiguous hexagons, except for those located at the edge of the grid. Then, I defined spatialweights from the neighbour objects using the “W-style”—row standardization—, in which theweights of all the neighbour relationships for each areal unit summed 1.As a prerequisite for modeling, I tested whether fire density and forest loss variables showedspatial autocorrelation, using Moran scatterplots and Moran’s I tests (Sokal and Oden, 1978).I also generated local indicators of spatial association maps (hereafter “LISA maps”), to repre-sent high-high and low-low clusters of fire density and forest loss across the DR (Anselin, 1995,1996; Anselin and Rey, 2010; R Bivand, Altman, et al., 2017; R Bivand, Hauke, et al., 2013; RBivand and Piras, 2015; R Bivand andWong, 2018; RS Bivand et al., 2013). A high-high cluster—hereafter HH cluster—is a group of cells in which high values are surrounded primarily by otherhigh values. Conversely, a low-low cluster—hereafter LL cluster—is a group of cells with low val-ues surrounded by other low values.Since both fire density and forest loss variables showed significant patterns of spatial autocor-relation, I analyzed the statistical association between them using spatial autoregressive models.Specifically, I fitted spatial lag and spatial error models using fire density as a predictor variableand forest loss as a response variable. In the long-term approach, I evaluated the prediction per-formance of spatial lag and spatial error models. The most suitable model was chosen based onthe results of the Lagrange Multiplier diagnostic for spatial dependence in linear models, theresults of the Breusch-Pagan test for heteroskedasticity of residuals, and the Akaike informationcriterion (AIC) (Akaike, 1998; Anselin, 1988; RS Bivand et al., 2013; Breusch and Pagan, 1979;LeSage, 2015). In the annual approach, I generated yearly spatial error models to assess the sta-tistical association between fire and forest loss. In general, and unless otherwise indicated, forall statistical tests, I used a significance level α = 0.05, and for error estimation I used a 95%confidence level.All the results, including statistical summaries, maps, and graphics were produced with QGISand R programming environment, using parallel computing packages for generating the zonal sta-tistics outcomes, as well as multiple packages for data visualization and spatial modeling (Green-berg and Mattiuzzi, 2018; Hijmans, 2019; Kuhn et al., 2019; Pebesma, 2018, 2019; QGIS Devel-opment Team, 2020; R Core Team, 2020; Tennekes, 2018; Venables and Ripley, 2002; Weston,2019; Wickham, 2017) (see also the Data, script and code availability section).
Results

MODIS data consistency and sensitivity.
The MODIS dataset showed high consistency with the VIIRS dataset for the period 2012-2018. The cross-correlation between the two time series was close to 1 and positive for lag 0(see Supplementary Information section for details). In terms of sensitivity, for every fire pointdetected by the MODIS sensor on a monthly basis, the VIIRS sensor detected six times morehotspots. Likewise, the latter detected an average of eight points that were not detected by theformer. However, although the sensitivity of theMODIS sensor was lower than that of the VIIRSsensor—which was expected given its lower resolution—, its performance was highly correlatedacross time and thus appropriate for the purposes of this study.

Long-term analytical approach of forest loss and fire.
Overall statistics. The surface area of forest loss relative to the forest cover in the year 2000, wasapproximately 3,100 km2 during the period 2001-2018, which represents c. 7% of the entiregrid analyzed (Table 1). Moreover, during the same period, the MODIS sensor recorded almost11,700 points within forest cover areas.
Spatial patterns. Most of the DR mainland territory experienced low levels of forest loss from2001 to 2018 (i.e., < 6 km2 per 100 km2). However, high levels of forest loss were common in sev-eral mountain ranges and protected areas, such as Los Haitises karst region, Samaná Peninsula,Sierra de Bahoruco, and the Cordillera Central southern and northwestern borders (Fig. 4-A). Itshould be particularly emphasized that inaccessible areas in Los Haitises, Sierra de Bahoruco
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Table 1 – Forest loss and number of fire points within forest cover, summarized using a gridof 482 hexagons, for the period 2001-2018. The baseline year for the forest is 2000†.
Attribute Period 2001-2018(fire data from MODIS)Total number of fire points 11,666Average number of fire points per 100 km2 25.13Average number of fire points per 100 km2 per year 1.4Maximum number of fire points per 100 km2 per year 13.22Total forest loss area in km2 (approximate percentage relativeto the entire grid) 3135.22 (6.8%)
Average forest loss area (km2) per 100 km2 6.72Average forest loss area (km2) per 100 km2 per year 0.37Maximum forest loss area (km2) per 100 km2 per year 1.82
† The values of this table were summarized using zonal statistics techniques relative to a hexagonal grid. Thus, actualvalues of the entire DR may be slightly larger, since forest loss patches and fire points outside the grid were ignored.

and southern Cordillera Central, reached worrisome records of forest loss greater than 25 km2
per 100 km2. Additionally, the Eastern Region—Punta Cana and its surroundings, where tourismdevelopment has grown steadily since the 1990s—experienced high rates of forest loss duringthis period.

Figure 4 – (A) Forest loss (in km2 per 100 km2) for the period 2001-2018. (B)Number offire points per 100 km2 within forest cover for the period 2001-2018 using MODISdataset. The baseline year for forest cover is 2000. Reference locations: 1 Los Haitises;2 Samaná Peninsula; 3 Cordillera Central mountain range; 4 Sierra de Bahoruco; 5Cordillera Septentrional; 6 Sierra de Neyba; 7 Eastern Region.
Furthermore, the density of fire points in the 2001-2018 period showed a distribution pat-tern similar to that of forest loss. High densities of fire points were fairly common in many areas,such as the southern margin of Cordillera Central, Sierra de Bahoruco, Sierra de Neyba, and LosHaitises, with more than 30 fire points per 100 km2 detected by the MODIS sensor (Fig. 4-B).The analyses of the spatial autocorrelation of the transformed variables consistently showedthe presence of positive autocorrelation patterns (Table S1, Figs. 5 and S5). The prevalence ofHH clusters indicates that forest loss was notably widespread during the period 2001-2018 inLos Haitises, Sierra de Bahoruco, Samaná Peninsula, and the Eastern Region (Fig. 5-A).Moreover, HH clusters of fire density were notably widespread in the southern margin ofCordillera Central, Los Haitises, western Cordillera Septentrional, Sierra de Neyba, and Sierra deBahoruco (Fig. 5-B). There is a noticeable high degree of agreement between forest loss and firedensity LISA maps in parts of Los Haitises, Sierra de Bahoruco, and other areas, suggesting thatan association exists between these variables. A notable exception is the Eastern Region, whereHH clusters of forest loss were not correspondingly matched by HH clusters of fire points.
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Figure 5 – LISA maps (local indicators of spatial association maps) of (A) forest loss perunit area averaged per year for the period 2001-2018, and (B) fire points per km2
averaged per year within forest cover for the same periods using the MODIS dataset.The Tukey’s Ladder of Powers transformed versions of the variables were used asinputs in all cases. Each hexagon was classified either as HH cluster—group of cells inwhich high values are surrounded by other high values—(depicted in red), LLcluster—cells with low values surrounded by other low values—(depicted in blue), or nosignificant spatial association (grey) regarding the corresponding variable.

Spatial dependence between Forest loss and Fire density. The results of the diagnostic for spatialdependence indicated that a spatial error specification was suitable for the data of the 2001-2018 period (Table S2). Both the coefficient and the intercept estimates for each model werepositive and significant in the spatial error models (p ≪ 0.01; Table 2). AIC value was lower inthe spatial error model than that of its equivalent linear model. In addition, the Breusch-PaganandMoran’s I tests showed no trace of heteroskedasticity and spatial autocorrelation of residuals,respectively.
Table 2 – Spatial error model fitting results of forest loss as a function of fire density forthe 2001-2018 period (MODIS fire data)

Summarystatistic FORESTLOSS0118∼FIRESMODIS†
Intercept (Std. Error; Pr(> |z|)) 0.099 (0.005; p ≪ 0.01)Coefficient (Std. Error; Pr(> |z|)) 0.250 (0.015; p ≪ 0.01)
λ (LR test value, p-value) 0.732 (243.26; p ≪ 0.01)Moran’s I test for residuals (p-value) -0.002 (p = 0.5)Breusch-Pagan test statistic (p-value) 0.46 (p = 0.5)AIC (AIC for standard linear model) -2183.9 (-1942.7)Nagelkerke pseudo-R2 0.60

†FORESTLOSS0118 stands for the transformed version of forest loss per unit-area averaged per year of the period2001-2018. FIRESMODIS stands for the transformed version of number of fires per km2 averaged per year,detected by the MODIS sensor (2001-2018).
Lastly, considering only fire as a driver of forest loss, on average, each fire point detected bythe MODIS sensor between 2001 and 2018 was associated with 1.5 ha forest loss, implying asubstantial effect size of fire density on forest loss in the DR.

Annual approach.
Time series analysis. Using a paired t-test, I found no significant differences between proportionaldeforestation area originating from small and large clearings—t=-2.08, df=17, p=0.053. Further-more, in several years of the study period (2001, 2003, 2011), the total area of deforestationoriginating from small clearings was greater than that from large clearings (see Fig. 6).
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Figure 6 – Composition of annual forest loss area by size of clearing
The yearly average forest loss area recorded in large clearings was 0.2 km2/100 km2, andreached a maximum of nearly 0.4 km2/100 km2. Further, the yearly average number of smallclearings was 237 patches per 100 km2, and the maximum reached approximately 400 patchesper 100 km2 (Figs. 7.A-B and S7.A-B). Regarding fire density, the MODIS sensor detected nearlytwo fire points per 100 km2 per year on average, and a maximum of 3.5 points per 100 km2 peryear (Figs. 7.C and S7.C).Forest loss activity and fire occurrence showed a joint cyclical pattern of variation with aperiod of approximately 4 years from 2001 through 2013, with relative high peaks of activity in2001, 2005, 2008 and 2012 (see Fig. S7). However, the time-series of forest loss and fire activitydiverged considerably from each other, starting in 2014. In particular, forest loss increased rathersteeply from 2014 to 2017, whereas the number of fire points decreased significantly during thesame period (Fig. 7). Hence, this is the first time in the past two decades in which fire and forestloss followed diverging trends nationwide.

Spatio-temporal patterns. Regarding spatio-temporal features, both forest loss and fire densityshowed patterns of cyclical variation of their spatial autocorrelation, and featured multiple spa-tial layouts of HH clusters and LL clusters in shifting locations throughout the DR over the periodunder investigation. Moran’s I tests, which were applied to the transformed versions of the vari-ables, yielded significant results for every year of the study period. In addition, the Moran’s I teststatistic showed a cyclical and varied pattern for all the variables analyzed over the study period(Fig. 8).Concerning patterns of forest loss, the HH clusters were concentrated mainly in five loca-tions during the study period: Los Haitises-Samaná Peninsula, Cordillera Central, Sierra de Ba-horuco, and Northwestern and Eastern Regions, the last being the largest tourism hub of the
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Figure 7 – Yearly averages per 100 km2 of (A) Forest loss area (in km2) of large clearings(>1 ha in size); (B)Number of small clearings (<1 ha in size); (C)Number of fire pointsremotely sensed by the MODIS sensor in or around forest loss patches

Figure 8 – Moran’s I (used to assess spatial autocorrelation) evolution from 2001 to2018 for the transformed versions of yearly averages per 100 km2 of: (A) Forest lossarea of large clearings (>1 ha in size); (B)Number of small clearings (<1 ha in size);(C)Number of fire points located inside or around forest loss patches recorded by theMODIS sensor.

DR—including the resort town of Punta Cana and other tourist destinations (Figs. 9, 10, S8 andS9). The Eastern Region, in particular, showed very distinctive spatio-temporal patterns of forestloss over the study period; therefore, I analyzed that region separately.
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Figure 9 – Yearly LISA maps (local indicators of spatial association maps) of transformedforest loss density data of large clearings. Red represents HH clusters, blue depicts LLclusters, and grey shows no significant spatial association.

Figure 10 – Yearly LISA maps (local indicators of spatial association maps) oftransformed forest loss density data of small clearings. See Figure 9 for colour legend ofhexagons.
During the three-year period 2001-2003, HH clusters of both small and large forest clearingswere concentrated in Los Haitises-Samaná Peninsula and at the southern and northern ends ofwestern DR. From 2004 to 2012, large forest clearings were significantly concentrated in thenorthwest of the DR—which peaked in 2004, and in the periods 2006-2008 and 2010-2011, insouthern Cordillera Central and Sierra de Bahoruco. In addition, HH clusters of small clearingswere widespread in Los Haitises in 2003, 2005, 2007-2008, and 2010. Subsequently, duringthe period 2013-2018, HH clusters of both large and small clearings were concentrated in LosHaitises and in Samaná Peninsula, as well as in western and southeastern portions of CordilleraCentral and Sierra de Bahoruco. Of note was widespread deforestation in Los Haitises and itssouthern end, which comprises an active oil palm plantation. These hotspots are shown on theLISA maps by large HH clusters of small clearings during the period 2013-2014, as well as byHH clusters of both large and small clearings in the period 2017-2018.In addition, concerning the Eastern Region, HH clusters of large clearings began to developin 2002 and stopped in subsequent years, then emerged intermittently from 2005 onwards,
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showing peaks of activity in 2009 and 2011 and a steady increase between 2013 and 2018.Notably, HH clusters of small clearings were detected in this region in 2003, in 2005-2009, andin years 2011 and 2013, but no new clusters of this type were observed in subsequent years.Regarding fire density, during the entire period investigated, HH clusters were concentratedespecially in the western half of the DR, particularly in the Northwestern Region, Sierra de Baho-ruco, and Cordillera Central (Figs. 11 and S10). Also, during both the first years and in the middleof the period, HH clusters were present in Los Haitises and Samaná Peninsula.

Figure 11 – Yearly LISA maps (local indicators of spatial association maps) oftransformed MODIS fire density data. See Figure 9 for colour legend of hexagons.
As shown in the LISA maps of MODIS fire density, the spatial patterns of fire density slightlyresembled those of forest loss over the period under study (Fig. 11). However, the degree ofagreement between forest loss and fire density was greater in theWestern and Central Regions—Sierra de Bahoruco, Northwestern Region, Cordillera Central—than in the eastern half of thecountry—Los Haitises and the Eastern Region. Particularly, although the eastern half showedextensive forest loss activity, few HH clusters of fire density were recorded in this region duringthe period under investigation. In fact, during the six-year period 2013-2018, HH clusters offire completely disappeared from the Eastern Region (Fig. 11). Hence, fire activity showed adiverging trend in relation to that of deforestation in Los Haitises and the Eastern Region.In addition, three remarkable features regarding the distribution of HH clusters of fire den-sity merit mention in this section. (Figs. 11 and S10). The first is a large concentration of HHclusters in 2005 over southern Cordillera Central, related to an uncontrolled wildfire that dev-astated almost 80 km2 of pine forest. As a result, more than 100 fire points per 100 km2 werereached, which is a historical record. Second, for three years in a row—2013, 2014, 2015—theMODIS sensor detected a high concentration of hotspots over Sierra de Bahoruco, attributableto multiple wildfires that swept large areas of different types of mountain forests during thoseyears. Third, in 2014 and 2015, the MODIS sensor detected a relatively high number of firepoints in Valle Nuevo, southern Cordillera Central, which are depicted in Fig. S10 as HH clusters,and which are also consistent with the fire history of the area.Finally, the spatial error models yielded consistent results for forest loss as a function offire density (Table 3). The main finding was that, when modeling the variables over the entiregrid—i.e., nationwide analysis—fire density was significantly associated with forest loss, which isconsistent with the results of the long-term approach. Particularly, both fire density coefficientand intercept were significant in every annual model, regardless of the size of deforestationclearings, whether large or small. Moreover, regional subsets showed that fire density was asuitable predictor of forest loss most of the time in Western and Central regions, whereas inLos Haitises-Samaná Peninsula and the easternmost region, fire density failed as a predictor offorest loss for many years.
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Table 3 – Number of years in which the coefficients of the annual spatial error modelswere not significant, considering the entire grid and different regional subsets.
Variables of themodels (transformed ver-sions) Regional subset (see Fig. 12) Number of years† (listing in parenthesis)

Forest-loss per unit-area in large
clearings vs. MODIS fire density

Entire grid -Western -Central 1 year (16)Los Haitises-Samaná 11 years (1, 2, 7, 9-14, 16, 17)Eastern 9 years (1-4, 7, 10, 15-17)
Forest-loss per unit-area in small
clearings vs. MODIS fire density

Entire grid -Western -Central 3 years (4, 12, 16)Los Haitises-Samaná 7 years (1, 2, 4, 7, 12, 14, 17)Eastern 15 years (1-12, 15-17)
†Number of years with non-significant coefficient at α = 0.01

Figure 12 – Regions for annual model analyses. (A) Western, (B) Central, (C) LosHaitises-Samaná, and (D) Eastern.

Discussion
I hypothesized that fire and forest loss were significantly associated during the first 18 yearsof the 21st Century in the DR, and that fire was a suitable predictor of forest loss, regardless ofthe size of the forest clearings. The evidence found in the present study supports this hypothesisconsistent with other studies that found a significant association between forest loss and slash-and-burn agriculture (Lloyd and León, 2019; Myers et al., 2004; Wendell Werge, 1974; Zweifleret al., 1994). Moreover, the association between fire and forest loss is particularly consistent inthe western half of the DR, which is likely due to the more pronounced dry season in that regionand to the presence of large mountain systems, i.e., Cordillera Central, where shifting agricultureis widespread.However, the evidence also suggests that, in the eastern half of the country, which includesLos Haitises and the easternmost region, fire was not a suitable predictor of forest loss. Two con-jectures may explain this finding: 1) Frequent cloudy skies over the region, which may preventthe MODIS sensor from recording fire hotspots; 2) Factors other than fire that may drive forestloss, such as commodity-driven agriculture, shifting agriculture by means of downing vegeta-tion without burning—or by indeed performing burns but with little impact on forest cover—and
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expansion of tourism infrastructure facilities. The first conjecture is unlikely to explain the ob-served pattern, since fire activity in cloudy conditions, considered on an annual average basis,would have little effect as a driver of pervasive deforestation. The second conjecture provides amore likely explanation for deforestation peaks not associated with fires, since it fits quite wellwith the tree cover decimation mechanisms that are typically used in this part of the DR, i.e., for-est clearing to expand shifting agriculture driven primarily by subsistence needs. Since there aremany contextual differences between Los Haitises and the easternmost tourism hub, I discussthe implications of holding this hypothesis true for each area separately.In Los Haitises National Park, shifting agriculture was likely the most suitable driver of de-forestation, since it is a well-documented concern in this protected area (Dirección Nacional deParques, 1991; Gesto de Jesús, 2016). Shifting agriculture is commonly driven by slash-and-burnsystems, but in this case the “burn” component was likely to have little effect as a driver of de-forestation in that area. Overall, the evidence suggests that shifting agriculture was widespreadwithin the protected area, particularly in the period 2014-2017. However, the political and so-cioeconomic circumstances that led to a deforestation peak in Los Haitises and surroundingsremain unknown. Future research may provide insights into the specific causes that explain thispeak in shifting agriculture, and may also provide guidelines on how to prevent the recurrenceof deforestation peaks in the future, given that Los Haitises is an important protected area ofthe country.It is worth mentioning that, in this part of the DR, another probable source of deforestationwithout burning is the frequent renewal by cutting of palm trees in a large plantation situatedjust south of Los Haitises—a typical case of commodity-driven deforestation. Although this plan-tation is outside the boundaries of the national park, its impact on the biodiversity and ecologyof the area is unknown.Finally, in the easternmost region, much of the forest loss activity was probably driven by theexpansion of tourism facilities, and by increased agricultural and livestock activities, ultimatelycaused by a higher demand from tourism. This is a concerning trend for the future of the DRforests, because although the protected areas of the region are relatively well preserved, thereis a lack of policies aimed at the conservation and proper management of the forests in thevicinity of tourism facilities.Regarding spatial patterns, I also hypothesized that both forest loss and fire experienced agrowing spatial autocorrelation over the study period. Although a high degree of spatial auto-correlation was a common characteristic in both forest loss and fire density variables over thestudy period, no evidence was found to support a hypothesis of a growing autocorrelation trend.Instead, a cyclical variation of autocorrelation was the most common feature observed, which Iinterpret as a consequence of both deforestation recovery and drought-no drought cycles. How-ever, further research is needed to determine the precise causes of those singular cycles.I also suggest that the results of this study may assist decision makers in designing effectivepolicies to prevent wildfires and forest loss. More specifically, I recommend focusing on forestloss and fire prevention in the core zones of protected areas, and implementing a natural regen-eration program by letting nature evolve on its own where forest cover is lacking, especially inthe buffer zones of mountain protected areas of western DR. Of particular concern are the coreand buffer zones of José del Carmen Ramírez, Los Haitises, Valle Nuevo and Sierra de BahorucoNational Parks, as well as other protected areas in the northern margin of Cordillera Central.These areas, especially the hotspot locations highlighted as HH clusters in the LISA maps, re-quire more attention and resources to prevent wildfires and deforestation. In addition, there isa lack of special policies to prevent deforestation in areas surrounding major cities and tourismhubs. The recommendations in these areas are to avoid further deforestation activities and to al-low regeneration in the most affected ecosystems, such as wetlands and areas of high endemismthat previously had forests.The main limitations of this study were those imposed by the intrinsic characteristics of thedata available, which are ultimately related to the data acquisition mechanisms of the MODISoptical sensor. Although detecting fires under cloud cover is virtually impossible with this sensor,I surmise that the impact of false negatives on yearly analyses is quite limited. Another constraint
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met in this study was the use of fixed-size cells for the computations of zonal statistics, whichmay have prevented the determination of multiscalar patterns. Therefore, future research usingregular and non-regular grids as zone layers, or taking advantage of computer vision andmachinelearning techniques, may provide insights about the significant multiscalar association patternsthat may exist between forest loss and fire.In conclusion, fire is a fairly common feature associated with shifting agriculture, so assessingthe former is an indirect means for understanding the latter, which ultimately may help preventfuture impact on forest ecosystems. Therefore, proper fire assessment using remotely collecteddata and advanced spatial statistical techniques may inform land management policies and con-servation strategies to help reduce forest loss, particularly in protected areas, mountain areas,and the vicinity of tourism hubs. The analytical approaches used and the results obtained in thisstudy hold potential to assist in this task.
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Supplementary Information
Supplementary methods.

To generate “the noise-free versions of the FIRMS collections”, I wrote an algorithm thatspotted extremely dense point clusters. Afterward, I confirmed whether those clusters fell intoindustrial or landfill areas, by visually checkingwith basemaps and satellite images. Inmost cases,those points were tagged as “other static land source” in the “Type” field of the datasets. Pointsthat met at least the visual examination criteria were excluded from the dataset. In addition, Iexcluded all points tagged with a low confidence value (Fig. S1).In addition, I applied a mask comprising the DR land area to each dataset used in the study.I generated the mask by combining a shapefile containing the international DR border, down-loaded from https://www.one.gob.do/informaciones-cartograficas/shapefiles, with thedatamask included in the forest change dataset. Permanent water bodies were excluded fromthe analysis, using their extent area as seen in the 2000 Landsat ETM+ imagery.
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Figure S1 – MODIS fire points/hotspots from 2001 to 2018 for the DR mainland. Thisis a noise-free version of the original dataset, which excludes unrelated fire points (e.g.,burning landfills and industrial furnaces). See text for details.

MODIS data consistency and sensitivity assessment.

Figure S2 – Cross-correlation of number of fire points per month sensed by MODISand VIIRS sensors for the period 2012-2018
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Figure S3 – Number of fire points per month sensed by MODIS and VIIRS sensors forthe period 2012-2018

Figure S4 – Scatter plot of the number of fire points per month sensed by MODIS andVIIRS sensors for the period 2012-2018

Long-term approach.

Table S1 – Transformation parameters and normality test results for forest loss and firevariables
Variable Tukey’s Ladder of Powers, λ Shapiro-Wilk test,

W (p-value) Moran’s I test,
I (p-value)Average forest loss per unitarea per year (2001-2018) λ = 0.33 W = 0.99 (p = 0.81) I = 0.48 (p ≪ 0.01)

Average fire density per km2
per year (MODIS dataset)(2001-2018) λ = 0.33

W = 0.98
(p < 0.01) I = 0.55 (p ≪ 0.01)
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Figure S5 – Moran scatterplots of the transformed versions of the analyzed variables.(A) Average forest loss per unit area per year of the period 2001-2018. (B) averagenumber of fire points per km2 per year in the period 2001-2018 using MODIS dataset.

Table S2 – Lagrange Multiplier tests for spatial dependence in linear regression modelsof forest loss as a function of fire density for the period 2001-2018 (MODIS fire data)
FORESTLOSS0118∼FIRESMODIS†

Lagrange Multiplier test Statistic p valueFor error dependence (LMerr) 330.00 ≪0.01For a missing spatially lagged dependentvariable (LMlag) 227.22 ≪0.01
Robust variant of LMerr 106.49 ≪0.01Robust variant of LMlag 3.72 0.05

†FORESTLOSS0118 stands for the transformed version of forest loss per unit-area averaged per year of the period2001-2018. FIRESMODIS stands for the transformed version of number of fires per km2 averaged per year,detected by the MODIS sensor (2001-2018)
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Annual approach.

Figure S6 – Example of the 2013 forest loss areas and their vicinity (red shaded areas)used in the annual trend approach. These areas were generated by adding a buffer zoneof 2.5 km around each patch larger than 1ha in area from the loss year dataset(MC Hansen et al., 2013). The hexagonal grid, depicted as an overlay, was used forzonal statistics computations. See text for details.

Figure S7 – Time series decomposition of yearly averages per 100 km2 of (A) Forest lossarea (in km2) of large clearings (>1 ha in size); (B)Number of small clearings (<1 ha insize); (C)Number of fire points remotely sensed by the MODIS sensor in or aroundforest loss patches
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Figure S8 – Yearly forest loss area (in km2 per 100 km2) from patches greater than 1 hain size for the period 2001-2018

Figure S9 – Yearly number of forest loss patches smaller than 1ha (in km2 per 100 km2)for the period 2001-2018
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Figure S10 – Yearly number of MODIS fire points per 100 km2 within patches of forestloss and surroundings for the period 2001-2018
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