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Abstract
Microsatellites are powerful markers for empirical population genetics, but may be af-
fected by amplification problems like stuttering that produces heterozygote deficits be-
tween alleles with one repeat difference. In this paper, we present a simple procedure
that aims at detecting stuttering for each locus overall subsamples and only requires
the use of a spreadsheet interactive application on any operating system. We compare
the performances of this procedure with the one of MicroChecker on simulations of
dioecious pangamic populations, monoecious selfing populations and clonal populations
with or without stuttering, and on real data of vectors and parasites. We also propose a
cure for loci affected and compare the results with those expected without stuttering. In
sexual populations (dioecious or selfers), the new procedure appeared more than three
times more efficient than MicroChecker. Cure was able to restore Wright’s FIS of stut-
tered data to the expected value, and particularly so in selfing simulations. In clones, lack
of segregation artificially increased false stuttering detection, and only highly significant
stuttering tests and loci strongly deviating from others, could be usefully cured, in which
case FIS estimate could be much improved. In doubt, and whenever possible, removal of
affected and not curable loci may help to shift population genetics parameter estimates
towards more reliable values.
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Introduction 

Despite the recent democratization of NGS based techniques, microsatellite loci are still very useful 
markers, in particular for empirical population genetics of non-model and small organisms, as many 
parasites and/or their vectors, which are difficult (or impossible) to study with direct methods as direct 
observation (as for birds) or as mark-release-recapture approaches. Sequencing and single nucleotide 
polymorphism markers (SNPs) still represent expensive alternatives in time, money and expertise, which 
lies beyond the reach of many laboratories and most of the time at the expense of sample sizes. Three 
decades ago, microsatellite markers were presented as the most powerful genetic markers (Jarne & 
Lagoda, 1996). However, researchers began to detect the different problems that can arise, as null alleles, 
allelic dropout, short allele dominance or stuttering (Wattier, Engel et al., 1998; De Meeûs, Humair et al., 
2004; Chapuis & Estoup, 2007; Guichoux, Lagache et al., 2011). The last kind of detection tools and possible 
cures only arose very recently (Wang, Schroeder et al., 2012; De Meeûs, 2018; Manangwa, De Meeûs et 
al., 2019; De Meeûs, Chan et al., 2021). 

Stuttering is the result of the Taq polymerase slippage during the PCR amplification of the targeted 
DNA strand. This generates several PCR products that differ from each other by one repeat and can cause 
difficulties when discriminating between fake and true homozygotes, such as heterozygous individuals for 
dinucleotide microsatellite allele sequences with a single repeat difference (De Meeûs et al., 2021). 
Stuttering produces heterozygote deficits as compared to Castle-Weinberg (CW) expected genotypic 
proportions (Castle, 1903; Weinberg, 1908), also known as Hardy-Weinberg (HW) expectations (please 
have a glance at (De Meeûs et al., 2021) for an explanation why we prefer using CW instead of HW). This 
phenomenon is locus specific and the deviation produced, as measured by wright's FIS (Wright, 1965), 
proportional to the intensity with which each locus is affected. 

Today, and to our knowledge, the only procedure to detect stuttering is the one used in MicroChecker 
(Van Oosterhout, Hutchinson et al., 2004). Though it works well enough, it only studies each locus one by 
one, which is fine because stuttering presence and intensity are expected to be locus specific. Nonetheless, 
MicroChecker tests for stuttering in each subsample separately, though a global test might be more 
powerful. Furthermore, MicroChecker was developed under Microsoft® Windows in 2003 (Windows XP), 
and it begins to display incompatibility issues with most current systems. A simple alternative, which can 
detect and test for the presence of stuttering at each locus overall subsamples on any platform kind would 
thus be welcome and timely. 

In this paper, we present a very simple procedure that only requires the use of a spreadsheet interactive 
computer application such as Apache® OpenOffice Calc or Microsoft® Excel. We compare the performances 
of this new procedure with the one implemented in MicroCheker on simulated data without (null 
hypothesis) or with (alternative hypothesis) stuttering, in dioecious populations of various sizes with 
random mating, hermaphrodites with selfing or clonal populations. We also checked how the cure of loci 
with stuttering signature, as proposed in a previous work (De Meeûs et al., 2021), restore the values 
expected for some parameters. We finally reanalyzed four real data sets on vectors and/or their parasite: 
the tick Ixodes scapularis in North America (De Meeûs et al., 2021); Glossina palpalis palpalis, vector of 
African trypnosomiasis in Côte d'Ivoire (Berté, De Meeus et al., 2019); the snail Galba truncatula and the 
fluke it transmits, Fasciola hepatica in France (Correa, De Meeûs et al., 2017); and Trypanosoma brucei 
gambiense, the agent of sleeping sickness in Guinea and Côte d'Ivoire (Koffi, De Meeûs et al., 2009). On 
these datasets, we checked if more loci with stuttering could be diagnosed, cured the loci with suspicion 
of stuttering, following the technique proposed recently (De Meeûs et al., 2021) to verify if some 
conclusions could be changed. 

Methods 

Despite the recent democratization of NGS based techniques, microsatellite loci are still very useful 
markers, in particular for empirical population genetics of non-model and small organisms, as many 
parasites and/or their vectors, which are difficult (or impossible) to study with direct methods as direct 
observation (as for birds) or as mark-release-recapture approaches. Sequencing and single nucleotide 
polymorphism markers (SNPs) still represent expensive alternatives in time, money and expertise, which 
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lies beyond the reach of many laboratories and most of the time at the expense of sample sizes. Three 
decades ago, microsatellite markers were presented as the most powerful genetic markers (Jarne & 
Lagoda, 1996). However, researchers began to detect the different problems that can arise, as null alleles, 
allelic dropout, short allele dominance or stuttering (Wattier et al., 1998; De Meeûs et al., 2004; Chapuis 
& Estoup, 2007; Guichoux et al., 2011). The last kind of detection tools and possible cures only arose very 
recently (Wang et al., 2012; De Meeûs, 2018; Manangwa et al., 2019; De Meeûs et al., 2021). 

Stuttering is the result of the Taq polymerase slippage during the PCR amplification of the targeted 
DNA strand. This generates several PCR products that differ from each other by one repeat and can cause 
difficulties when discriminating between fake and true homozygotes, such as heterozygous individuals for 
dinucleotide microsatellite allele sequences with a single repeat difference (De Meeûs et al., 2021). 
Stuttering produces heterozygote deficits as compared to Castle-Weinberg (CW) expected genotypic 
proportions (Castle, 1903; Weinberg, 1908), also known as Hardy-Weinberg (HW) expectations (please 
have a glance at (De Meeûs et al., 2021) for an explanation why we prefer using CW instead of HW). This 
phenomenon is locus specific and the deviation produced, as measured by wright's FIS (Wright, 1965), 
proportional to the intensity with which each locus is affected. 

Today, and to our knowledge, the only procedure to detect stuttering is the one used in MicroChecker 
(Van Oosterhout et al., 2004). Though it works well enough, it only studies each locus one by one, which is 
fine because stuttering presence and intensity are expected to be locus specific. Nonetheless, 
MicroChecker tests for stuttering in each subsample separately, though a global test might be more 
powerful. Furthermore, MicroChecker was developed under Microsoft® Windows in 2003 (Windows XP), 
and it begins to display incompatibility issues with most current systems. A simple alternative, which can 
detect and test for the presence of stuttering at each locus overall subsamples on any platform kind would 
thus be welcome and timely. 

In this paper, we present a very simple procedure that only requires the use of a spreadsheet interactive 
computer application such as Apache® OpenOffice Calc or Microsoft® Excel. We compare the performances 
of this new procedure with the one implemented in MicroCheker on simulated data without (null 
hypothesis) or with (alternative hypothesis) stuttering, in dioecious populations of various sizes with 
random mating, hermaphrodites with selfing or clonal populations. We also checked how the cure of loci 
with stuttering signature, as proposed in a previous work (De Meeûs et al., 2021), restore the values 
expected for some parameters. We finally reanalyzed four real data sets on vectors and/or their parasite: 
the tick Ixodes scapularis in North America (De Meeûs et al., 2021); Glossina palpalis palpalis, vector of 
African trypnosomiasis in Côte d'Ivoire (Berté et al., 2019); the snail Galba truncatula and the fluke it 
transmits, Fasciola hepatica in France (Correa et al., 2017); and Trypanosoma brucei gambiense, the agent 
of sleeping sickness in Guinea and Côte d'Ivoire (Koffi et al., 2009). On these datasets, we checked if more 
loci with stuttering could be diagnosed, cured the loci with suspicion of stuttering, following the technique 
proposed recently (De Meeûs et al., 2021) to verify if some conclusions could be changed. 

Material and Methods 

Simulations 
Simulations were undertaken with EASYPOP (v. 2.0.1) (Balloux, 2001). We simulated random mating 

dioecious populations (pangamy), like what probably occurs in the wild for ticks (De Meeûs et al., 2021), 
Nematocera flies (Prudhomme, De Meeûs et al., 2020), Hemipteran bugs (Gomez-Palacio, Triana et al., 
2013), or tsetse flies (Berté et al., 2019). We also simulated selfing monoecious populations, as flukes and 
water snails (Correa et al., 2017). The total size of populations was NT=10,000 individuals subdivided into 
either n=100 subpopulations of N=100 individuals, or n=500 and N=20, with an even sex ratio (dioecy) or 
with selfing rate s=0.3 (monoecy). The model of migration followed an Island model with migration rate 
m=0.01. We simulated 20 independent loci with a mutation rate of u=0.0001 that followed a mixed model 
with 70% of mutations following a stepwise mutation model (SMM) and 30% following a KAM model. The 
maximum possible number of alleles was K=20. Each simulation started with maximum variability and was 
run for 10,000 generations. At the end of each simulation, 20 individuals (10 males and 10 females in 
dioecious populations), when N≥20, were randomly sampled in 10 subpopulations. As can be seen with the 
real datasets reanalyzed in the present work, such a sampling design approximately represents what is 
classically obtained for most parasites or vectors studies. 
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Simulations of monoecious populations with 30% of selfing allowed checking the interaction of 
stuttering detection in inbred populations with a high expected heterozygote deficit (here 18%). 

A subset of simulations with n=100, N=100 (same values for other parameters as above) but with 100% 
clonal propagation, was finally undertaken, to fit with diploid clonal pathogens as trypanosomes (Koffi et 
al., 2009) or yeasts as Candida albicans (Nébavi, Ayala et al., 2006). 

Each parameter set was replicated 10 times. 
In the supplementary material, we provided an example with the results files of the first simulation, 

with the root name "TestStutterDioeciousNoStutter-n1000N100-1" and extensions "txt", "equ", "dat", and 
"gen", for the parameters used, the statistics along the simulation (all generations) and the resulting data 
files in Fstat and genepop formats, respectively.  

Generating stuttering 
Data were analyzed with Fstat 2.9.4 (Goudet, 2003) updated from (Goudet, 1995) to get information 

on the identity of alleles kept at the end of simulations. For each simulation, data files were imported into 
a spreadsheet keeping each allele of each locus separated in a single column. Mimicking stuttering needed 
to follow several steps. We first arbitrarily considered that 10% of possible alleles affected by stuttering 
was enough. This means that two alleles (out of 20 possible ones) needed to be recoded for stuttering. 
Because of genetic drift, not all the 20 possible alleles were present at the end of each simulation. For each 
locus, among the allele still present, only the first two alleles separated by a single repeat were concerned. 
For each individual carrying one of these alleles as the second allele, if different by a single repeat from the 
first allele, the second allele was recoded as identical to the first one. Let us assume that the first two alleles 
separated by a single repeat were, for instance, allele 5 and 6 for the first locus (Locus1). If allele 5 was in 
cell B2 and allele 6 in cell C2 in the spreadsheet, the command for generating stuttering in a cell from a 
free zone (e.g. the first free column after the last column of the data) would be: 

=B2, for the first allele (no change), and 
=IF(ABS(B2-C2)=1,IF(OR(B2=5,B2=6),B2,C2),C2), for the second allele of that locus. This way, individuals 

4/5, 5/6, or 6/7 are recoded as homozygotes for the first allele. 
This command was then copied and pasted to transform the whole locus. 
A template, using the first simulation, can be found in the supplementary material files as the 

spreadsheet file "TestStutterDioecious-n1000N100-1-10%Stuttering.xlsx". 
Because of drift, some loci in some subsamples did not display allele with one repeat difference. Such 

manipulation thus generated data with 0% to 100% of alleles displaying stuttering for all of the 20 loci, but 
with various intensity from one locus to the other, and from one subsample to the other, as expected in 
real situations. This also allowed checking the kind of variance stuttering can generate on parameter 
estimates (see below). 

Detection of stuttering and testing with MicroChecker 
All datasets (raw and with stuttering) were analyzed with MicroChecker with 10,000 randomizations. 

All loci were considered as mononucleotidic, as simulated by Easypop. Stuttering was detected when the 
observed heterozygosity for alleles with one repeat difference was below the 95% confidence interval 
(95%CI) for random mating expectation. This was observed from the graphic outputs of MicroChecker 
(Figure 1).  

For each locus, we summed the number of times MicroChecker found a significant heterozygote deficit 
probably due to stuttering over the 10 subsamples. We compared this quantity with the expected 5% under 
the null hypothesis with a one sided exact binomial test with R (R-Core-Team, 2020) (command 
"binom.test"). The alternative hypothesis was that there are more than 5% significant tests. This test was 
repeated 20 times across the different loci. To take into account this repetition of independent tests, we 
used the Benjamini and Hochberg's (BH) false discovery rate (FDR) procedure (Benjamini & Hochberg, 
1995) with R (R-Core-Team, 2020) (command "p.adjust") to identify which tests are really significant (see 
(De Meeûs, Guégan et al., 2009)). 
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Figure 1: Examples of significant stuttering tests using MicroChecker graphic outputs. Black crosses 
represent the number of observed genotype of a given class and red diamonds stand for the 

corresponding values expected under the null hypothesis (random mating). The abscissa are the different 
genotypic classes in terms of size differences between the two alleles within an individual (e.g. 0 stands 

for homozygous genotypes). 1-A: an example with a significant homozygous excess and a significant 
deficit of heterozygotes with one repeat size difference between the two alleles. 1-B: an example where 
only the deficit of heterozygotes with one repeat size difference between the two alleles was significant. 

In the present paper, both situations are considered significant while only the first one is for 
MicroChecker. 

Alternative method to detect and test for stuttering 
We needed to compute the expected frequency of individuals heterozygous for two alleles with one 

repeat difference, for each locus over all subsamples. All allele frequencies outputted and sorted by Fstat 
were copied in a spreadsheet. Let us assume, for instance, that subsample size was in cell B3, that the size 
of the smallest allele of the first locus of the first subsample was in cell A4 and its frequency in cell B4, and 
allele size and allele frequency of the second allele was in cells A5 and B5 respectively. Then the expected 
frequency of individuals heterozygous for two alleles with one repeat difference was obtained by typing 
the following command in, for instance, cell C4: 

=IF(ABS($A4-$A5)=1,2*B4*B5*B$3,0) 

Thierry De Meeûs & Camille Noûs 5

Peer Community Journal, Vol. 2 (2022), article e52 https://doi.org/10.24072/pcjournal.165

https://doi.org/10.24072/pcjournal.165


As can be seen, for two successive alleles with more than one repeat difference, this expected 
frequency was set to 0. Please, note that for a dinucleotidic locus the difference in size must be two (e.g. 
ABS($A4-$A5)=2). For imperfect dinucleotidic loci, the conditional command would be of the form  

=IF(OR(ABS($A4-$A5)=1, ABS($A4-$A5)=2),2*B4*B5*B$3,0), to include both the cases of one base 
difference, which may also generate stuttering, and of two bases (one repeat) difference . 

Now, if the penultimate allele is on line 10 of the spreadsheet, the sum of all expected heterozygotes 
with one repeat difference for the concerned locus and subsample was obtained by typing the following 
command in, for instance, cell C12: 

=SUM(C4:C10). 
Finally, if this sum for the last subsample is in column U, then, the total number of expected 

heterozygotes with one repeat difference across all subsamples for that locus was obtained with: 
=SUM(C12:U12). 
Then, we needed to compute the observed frequency of such heterozygotes. For this, we copied the 

raw data (one allele per column) in a spreadsheet. Let us assume that the first allele of the first locus of the 
first individual was in cell B2 and the last allele of the last locus of the first individual was in cell AO2. In cell 
AQ2 we typed: 

=IF(ABS(B2-C2)=1,1,0). 
Please, note again that for dinucleotidic loci, the difference in size would be two, and it should be one 

and two for imperfect dinucleotidic loci. We then copied this command in all remaining cells corresponding 
to the rest of the dataset. In the cell AQ202 (below the last line of the data), to compute the total of 
observed heterozygous individuals for alleles with one repeat difference, we typed: 

=SUM(AQ2:AQ201). 
A template, for the first simulation, is available in the spreadsheet file "TestStutterDioeciousNoStutter-

n1000N100-1-FstatRes.xlsx". 
We then compared the observed and expected frequencies with a one sided exact binomial test with 

R, the alternative hypothesis being "there are less heterozygote observed with 1 repeat difference than 
expected". This provided 20 independent p-values that we corrected for False Discovery Rate with the 
Benjamini and Hochberg's procedure. 

With selfing, natural homozygosity increase may artificially enhance stuttering detection. Nevertheless, 
since there is no easy way to estimate precisely the selfing rate in case of stuttering, we did not adapt 
stuttering detection.  

For clonal propagation, full clonality exhibits specific signature regarding genetic diversity, FIS and 
linkage disequilibrium (De Meeûs & Balloux, 2004, 2005; De Meeûs, Lehmann et al., 2006; Séré, Kabore et 
al., 2014; Stoeckel & Masson, 2014; De Meeûs, 2015). Nevertheless, as shown by the simulations we 
undertook, the absence of segregation makes it impossible to predict the expected frequency of specific 
heterozygous classes. This led us to entirely modify stuttering detection in that case. Knowing that the 
expected proportion of homozygous sites is QI=1/K in clonal populations (De Meeûs, 2015), the expected 
total heterozygosity should be HI=(K-1)/K (K is the total number of possible alleles). The quantity K is never 
known, so we considered the total number of alleles observed Ko, as an underestimate, with HI'=(Ko-1)/Ko. 
Some heterozygote kinds are expected to be more frequent than others. We thus considered frequencies 
pi and pj of alleles i and j, to weight expected values by 2pipj and built an "expected" heterozygote frequency 
between alleles i and j as: 

(1) 𝐻𝑒𝑥𝑝𝑖𝑗 =
2𝑝𝑖𝑝𝑗(

𝐾𝑜−1

𝐾𝑜
)

(∑ 2𝑝𝑖𝑝𝑗
𝐾𝑜
𝑖,𝑗≠𝑖 )

=
2𝑝𝑖𝑝𝑗(

𝐾𝑜−1

𝐾𝑜
)

(1−∑ 𝑝𝑖2
𝐾𝑜
𝑖 )

 

We can see that this way the sum of all Hexpij indeed reaches HI'. For each locus, Hexpij was computed for 
each heterozygous class with one repeat difference within each subpopulation. We then summed all these 
expected frequencies over all heterozygote classes with one repeat difference and multiplied it by 20 
(subsample size) to obtain the expected number of heterozygotes with one repeat difference for a given 
subsample. We then summed the results obtained across all the 10 subsamples to obtain the total number 
of expected heterozygotes with one repeat difference and compared it, for each locus, to the one observed 
in the simulation. Since Ko≤K, these expectations may be under-estimates of the real expected frequencies. 
We might thus expect a deficiency in stuttering detection. Alternatively, since drift should favor particular 
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heterozygous classes by chance, we also expect a total lack of other heterozygous classes, which may lead 
to strongly significant spurious stuttering signatures. 

Estimation of fixation indices estimation and linkage disequilibrium 
Wright's F-statistics (Wright, 1965) estimated with Weir and Cockerham's estimators (Weir & 

Cockerham, 1984) were computed. FIS measures inbreeding of individuals relative to inbreeding of their 
subpopulation and FST measures inbreeding of subpopulations relative to the total inbreeding. We also 
computed the 95% confidence intervals of bootstrap over loci of these statistics. These were estimated 
and computed with Fstat 2.9.4 (Goudet, 2003) updated from Fstat 1.2 (Goudet, 1995). 

Amplification problems can increase the variance of F-statistic estimation across loci, and this affects 
more the FIS than the FST (De Meeûs, 2018). We used the jackknife over loci estimate of the standard error 
of FIS and FST (StdrdErrFIS and StdrdErrFST) of Fstat to measure the effect of stuttering on parameter 
variation across loci. In particular, in case of null alleles, StdrdErrFIS is at least twice StdrdErrFST (De Meeûs, 
2018). We thus measured the ratio RSE=StdrdErrFIS/StdrdErrFST. 

Linkage disequilibrium can be favored by allele miscoring (De Meeûs et al., 2021). We thus tested 
linkage disequilibrium between all pairs of loci with the G-based randomization test of Fstat over all 
subsamples because it is the most powerful for combining tests across subsamples (De Meeûs et al., 2009). 
The False Discovery Rate for dependent tests series was computed following Benjamini and Yekutieli 
procedure (Benjamini & Yekutieli, 2001) with R (command p.adjust). 

Statistical comparisons of method performances 
Performance of tests were compared with the Fisher exact test with R-commander package (Fox, 2005; 

Fox, 2007) for R. 
We also undertook generalized linear mixed models with the package lme4 (Bates, Maechler et al., 

2015) of R to explain the number of times a test appeared significant. We used a Poisson distribution with 
a log link. The models were of the form  

NSig~n+N+Mating+Stuttering+Mating:Stuttering+(1|Rep) 
where NSig was the number of loci that outputted a significant stuttering test or the number of locus 

pairs that appeared in significant LD, n is the total number of subpopulations, N was the size of 
subpopulations, Mating was the mating system (either pangamic dioecy or Monoecy with 30% selfing), 
Stuttering was either 0 (no stuttering) or 10 (10% stuttering), ":" stood for interaction between two 
variables, and (1|Rep) was the random effect of replicates. 

Cured data sets 
Stuttering correction was made for loci that appeared with a significant stuttering at the BH level with 

the new method described in the present paper. We used the rules described in (De Meeûs et al., 2021): 
for each incriminated locus, all alleles with one repeat difference were pooled together. Each group of 
pooled alleles contained one allele with a frequency of at least 5%. The main principle behind this rule is 
that rare alleles should keep small weights in the data. Pooling rare alleles together may artificially create 
a fairly frequent artificial allele, with a strong though artificial weight. Pooling rare alleles with a reasonably 
frequent one is supposed to attenuate this problem. If no frequent allele was available, then two solutions 
were chosen. If the sum of the frequencies of these alleles remained below 0.05, these were not pooled. 
Otherwise, to minimize the impact that these successive alleles may jointly have on the heterozygote 
deficit, and to avoid pooling rare alleles together, they were pooled with the closest allele with frequency 
above or equal to 0.05, even if more than one repeats distant from the closest one.  

In rare cases, all alleles were one repeat different. To prevent obtaining a monomorphic locus in that 
case, we pooled alleles two by two, taking care of one of the two alleles pooled displayed a frequency of 
at least 0.05. In case of uneven number of alleles, the last allele was not left alone and pooled with the 
previous pair in allele size. 

Cured data were reanalyzed and statistics compared with the results expected under the null 
hypothesis (without stuttering). The efficiency of the correction was checked for each locus in each 
replicate of each simulation. We retained only the corrected loci for which the correction produced a lower 
FIS as compared to the value obtained with the uncured locus. The average FIS and 95% bootstraps 
confidence intervals were thus computed on data sets with efficiently cured loci and uncured remaining 
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loci. These values were compared to those obtained under the null hypothesis (no stuttering), and to 
expected value for Wright's FIS, FIS_exp. For pangamic dioecious populations we used equation 8 from Balloux 
(2004) (Balloux, 2004): FIS_exp=-1/(2N+1). For selfing populations, we used the classic FIS_exp=s/(2-s) (e.g. (De 
Meeûs, McCoy et al., 2007) page 213). 

Real data sets 
Five data sets were reanalyzed: two regarding dioecious species, two regarding monoecious species 

and the last regarding a clonal species. 
The first real data set reanalyzed was on the tick Ixodes scapularis the vector of Lyme disease in western 

USA (De Meeûs et al., 2021). We used the data cured for short allele dominance (SAD) as explained in the 
originator paper (De Meeûs et al., 2021) but uncured for stuttering. 

The second data set concerned the tsetse fly Glossina palpalis palpalis, an important vector of sleeping 
sickness in Côte d'Ivoire (Berté et al., 2019), for which loci X55-3 and pGp23 displaying uncured SAD and 
locus GPCAG, obviously under selection, were removed. Because some loci were X-linked, only females 
were kept. Three dinucleotidic loci (pGp20, pGp24, B3) displayed some discrepancies of allele sizes and 
were marked as mononucleotidic for MicroChecker. For these loci, heterozygotes with single and double 
nucleotide differences in size were checked for heterozygote deficit due to stuttering.  

The third and the fourth data sets concerned the highly selfing snail Galba truncatula and its parasite 
Fasciola hepatica, also monoecious but almost panmictic, in France (Correa et al., 2017). For both species, 
microsatellite profiles did not fit with the expected pure dinucleotidic motives and, again, stuttering was 
considered between alleles of 1 base and two bases differences in size. 

Finally, the clonal species studied was Trypanosoma brucei gambiense 1 in Western African foci of 
sleeping sickness (Koffi et al., 2009), for which one locus (Trbpa1/2), suspected of being under selection, 
was removed. For this data, we used a derived version of Séré et al superimposition criterion (Séré et al., 
2014). In pure clonal populations, the expected value for FIS is FIS_exp=-(1-HS)/HS, where HS is Nei's estimator 
of local genetic diversity (measured within subsamples) (Nei & Chesser, 1983). This criterion can only be 
used for sufficiently polymorphic loci with HS≥0.5. To express the goodness of fit of observed FIS towards 
this value, we designed a superimposition index SC=|FIS-FIS_exp|/max(|FIS|,| FIS_exp|), where "max" means 
the maximum value of the two FIS's absolute values. 

Results and discussion 

A synthetic view of simulation results, averages detail computations and test tables are available in the 
supplementary file S1 for sexual simulations and in the supplementary file S2 for clonal simulations. 

Detection of stuttering in sexual populations 
The results of these analyses are summarized in Figure 2. Stuttering detection per locus was weak in 

general, with 0‰ and 5‰ significant tests for MicroChecker and the alternative methods, respectively, 
under the null hypothesis (H0: there is no stuttering) in monoecious populations. For Microchecker, the 
total proportion of significant tests over all loci and subsamples was 2‰ in that case. No test stayed 
significant after Benjamini and Hochber correction. In populations with 30% selfing, but still under H0 (i.e. 
no stuttering), these proportions increased to 10% for the alternative method only. It dropped to 2.5‰ 
after Benjamini and Hochberg correction. For MicroChecker over all loci and subsamples, 2% only appeared 
significant under H0 with selfing. With stuttering (H1), the number of significant tests reached 7% and 24% 
in dioecious populations for MicroChecker and alternative methods respectively (5% and 17% respectively 
with Benjamini and Hochberg). This reached 14% and 47% respectively with 30% selfing (10% and 38% 
respectively with Benjamini and Hochberg). 

Figure 2: Statistical comparisons, within each kind of simulation, between MicroChecker and the 
alternative method (New method), between reproductive systems and, within the alternative method, 
between dataset without or with 10% stuttering to detect stuttering under the null hypothesis with no 
stuttering or with 10% of alleles affected, and for different system of mating (dioecious pangamy or 30% 
of selfing). Significant differences (all p-values<0.0001) are indicated by different letters and correspond to  
Fisher exact test comparing number of significant (S) and not significant (NS) tests (before Benjamini and 
Hochberg correction) between the two methods. Asterisks stand for comparisons, within a single 
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parameter set, between Microchecker and the alternative method. To this respect, the p-value within 
dioecious pangamic (Pangamy) populations with 0% selfing was p-value=0.2494. 

 

Figure 2: Statistical comparisons, within each kind of simulation, between MicroChecker and the 
alternative method (New method), between reproductive systems and, within the alternative method, 
between dataset without or with 10% stuttering to detect stuttering under the null hypothesis with no 

stuttering or with 10% of alleles affected, and for different system of mating (dioecious pangamy or 30% 
of selfing). Significant differences (all p-values<0.0001) are indicated by different letters and correspond 
to  Fisher exact test comparing number of significant (S) and not significant (NS) tests (before Benjamini 

and Hochberg correction) between the two methods. Asterisks stand for comparisons, within a single 
parameter set, between Microchecker and the alternative method. To this respect, the p-value within 

dioecious pangamic (Pangamy) populations with 0% selfing was p-value=0.2494. 

As can be seen from Figure 2, selfing significantly increased stuttering detection, even under H0, where 
it significantly appeared above the 5% threshold (p-value<0.0001).  

Expectedly, stuttering was much more easily detected in populations with stuttering than under H0 
(Figure 2). 

The stuttering proportion used here (10%) was relatively small, since the realized actual proportion of 
alleles affected at the end of simulations was in general much lower on average. This also explains why the 
power of stuttering detection appeared quite small. With higher values, we may expect that the method 
proposed here will be very accurate, especially in inbred populations (selfers). 

Fixation indices and linkage disequilibrium 
The results for F-statistics are presented in Table 1. With 10% stuttering, we observed a significant 

heterozygote deficit of 4% in pangamic dioecious populations. With 30% selfing, FIS reached 20%. Here, the 
difference between 0 and 10% of allele submitted to stuttering was not significant (95% CI overlap).  

The ratio between standard errors of FIS and FST was 1.04 on average under H0 in 95% CI=[0.95, 1.14] 
and reached 1.77 in 95%CI=[1.52, 2] with stuttering. It thus increased slightly with stuttering but rarely 
reached RSE=2 on average, as was observed in case of null alleles (De Meeûs, 2018). 
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Table 1: Results obtained for FIS, its 95% confidence interval (95%CI, 5000 bootstraps over loci) and 
for the ratio of jackknife over loci standard error between FIS and FST (RSE), for 0 or 10% of stuttering and 

for pangamic dioecious populations or monoecious populations with 30% selfing. 

Stuttering Mating FIS 95%CI FIS RSE 

0 
Pangamy 0.0002 [-0.0211, 0.0214] 1.0756 

30% selfing 0.1761 [0.1573, 0.1947] 0.9912 

10% 
Pangamy 0.0408 [0.0086, 0.0768]] 1.8172 

30% selfing 0.2202 [0.1892, 0.2542] 1.6735 

 

The proportion of locus pairs in significant LD varied between 8% and 53% depending on the population 
structure and mating system (average 18%). With the Benjamini and Yekutieli False Discovery Rate 
correction, this varied between 0% (majority of cases) and 15% (average 3%). The effect of stuttering on 
LD was never significant, whatever the mating system (all p-values>0.388). This could be expected since in 
our simulations, stuttering was not correlated between loci. In real datasets, however, it may occur that 
stuttering happen in samples with issues (poor preservation, mutations affecting the zone of primers' 
anchorage, low DNA concentration). In that case, several loci of the same individuals will be affected 
together, then producing fake significant LDs, as was observed for the tick I. scapularis (De Meeûs et al., 
2021).  

Generalized linear mixed models 
The generalized linear mixed models confirmed the results seen above with more accuracy.  
For the number of significant tests, the results figure in Table 2. All parameters appeared to display a 

significant effect that stayed so after BH correction. The most important parameters were stuttering 
(positive effect), mating system (selfing increases the effect) and their interaction (more effect of stuttering 
in random mating dioecious populations). Number of subpopulations and subpopulation sizes displayed a 
rather weak (though significant) negative effect, but this is probably an artefact due to inconsistencies of 
results as a function of n or N (see supplementary File S1). For instance, N=50, under H0 with random 
mating, provided the smallest numbers of significant stuttering while N=100 provided more significant 
results than N=200. In the same framework, for subpopulation numbers, it was n=500 that provided the 
smallest number of significant tests, followed by 100 and 50. Similar observations can be done for 10% of 
alleles affected by stuttering and/or in monecious populations with 30% selfing (see supplementary File 
S1). 

Table 2: Summary of the generalized linear mixed model for the number of loci found with a 
significant stuttering (response variable) with the new alternative multi-subsamples method. Explanatory 
variables were: n (number of subpopulations), N (subpopulation size), mating system (dioecious pangamy 
or monoecy with 30% selfing) and stuttering intensity (0 or 10%). In case of qualitative variables (mating 
system), the modalities with least positive effects are compared to the one with the most positive effect 

(not shown in the output of the analysis). ":" stands for the interaction between two variables. 
Coefficient estimates (Estimate), standard error (SE), the Z statistic and its p-value are given. 

 Estimate SE Z p-value 

(Intercept) 1.2942 0.2787 4.644 <0.0001 

n -0.0024 0.0007 -3.541 0.0004 

N -0.0027 0.0013 -2.043 0.0411 

Mating[T.Dioecious] -2.8398 0.5995 -4.737 <0.0001 

Stuttering 0.1518 0.0172 8.8 <0.0001 

Mating[T.Dioecious]:Stuttering 0.2367 0.0608 3.892 <0.0001 
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For LD, results are presented in Table 3. The main effects were hold by n, with a positive impact, and 
mating system with a strong negative impact of random mating as compared to selfing. Subpopulation 
sizes seemed to play a weaker though significant role. Nevertheless, the pattern of simulations explored 
introduced a strong collinearity between n and N. If n is removed from the model, then N become highly 
significant with a much stronger (as expected) negative impact (Coefficient of estimate=-0.006). Stuttering 
did not influence at all the occurrence of significant linkage disequilibrium between pairs of loci. These 
conclusions did not change when the Benjamini and Hochberg procedure was applied to these series of p-
values. 

Table 3: Summary of the generalized linear mixed model for the number of locus pairs found with a 
significant linkage disequilibrium. Explanatory variables were: n (number of subpopulations), N 

(subpopulation size), mating system (dioecious pangamy or monoecy with 30% selfing) and stuttering 
intensity (0 or 10%). In case of qualitative variables (mating system), the modalities with least positive 

effects are compared to the one with the most positive effect (not shown in the output of the analysis). 
":" stands for the interaction between two variables. Coefficient estimates (Estimate), standard error 

(SE), the Z statistic and its p-value are given. 

 Estimate SE Z p-value 

(Intercept) 3.1325 0.1754 17.858 <0.0001 

n 0.0040 0.0004 11.164 <0.0001 

N -0.0020 0.0009 -2.15 0.0316 

Mating[T.Dioecious] -0.5683 0.1029 -5.522 <0.0001 

Stuttering -0.0056 0.0104 -0.543 0.5872 

Mating[T.Dioecious]:Stuttering 0.0067 0.0134 0.501 0.6162 

 
Clonal populations 

The proportion of significant stuttering detection was very large, even under H0: 53% of significant 
tests, 50% with Benjamini and Hochberg. Under H1, these proportions increased slightly (61 and 57.5 % 
respectively), but not significantly so (for the uncorrected tests, the Fisher exact test outputted a p-
value=0.157). Wilcoxon rank sum tests found no significant difference between data without stuttering 
and data with 10% stuttering for FIS or RSE (p-value=0.2481 and p-value=0.4698, respectively). The 
expectation for FIS following Balloux et al (2003)'s Equation 10 (Balloux, Lehmann et al., 2003), for an infinite 
allele model, and set for full clonality, gives: 

(2) 𝐹IS =
𝛾[𝑞𝑠−𝛾(𝑞𝑠−𝑞𝑑)]

2𝑁(1−𝛾)[𝛾(𝑞𝑠−𝑞𝑑)−1]−𝛾[𝑞𝑠−𝛾(𝑞𝑠−𝑞𝑑)]
 

with γ=(1-u)²; qs=(1-m)²+m²/(n-1), and qd=(1-qd)/(n-1). 
With the actual parameters, this gave FIS_exp=-0.3284. The averages of FIS and 95% bootstrap confidence 

intervals (95%CI) were FIS=-0.3649 in 95%CI=[-0.409, -0.315] without stuttering; and FIS=-0.3443 in 95%CI=[-
0.3962, -0.2845], with 10% stuttering. Both confidence intervals largely overlapped and contained FIS_exp. 

Clonal populations generated very high proportions of false stuttering detections. This was because 
without segregation of alleles, only some classes of heterozygotes propagate by chance. Heterozygote 
classes with one repeat difference are quite rare. Indeed, if all 20 alleles were present (which never 

happened), there would be 19 heterozygote classes with one repeat difference amongst (20
2
)=190 possible 

heterozygous states, hence a proportion of 0.1. Nevertheless, not all allele combinations were kept by drift, 
which means that in many instances, even if some alleles were one repeat different at the end of 
simulations, no such heterozygotes were kept by drift. This produced many tests with very small p-
values<0.0001, but also many with very high p-values>0.5: 43 % and 53 % respectively. Put it another way, 
many simulations ended with no individuals heterozygous for two alleles with one repeat difference, and 
many others with too many of those (more than 20%): 40 % and 20 % respectively. This also explains why 
stuttering did not have much impact on the global results, such as FIS estimates. It means that much more 
than 10% stuttering will be needed to significantly affect parameter estimates in clonal organisms. 
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Nevertheless, given the lack of performance of the expected frequency of heterozygotes with one repeat 
difference proposed in the present paper, direct attempts of stuttering cure may be the best option in 
populations with very high clonal rate (0.9<c≤1). This would apply to all loci with excessive heterozygote 
deficit. If the cure successfully lowers the FIS of a given loci, then it probably means that this locus was 
indeed affected by stuttering. Loci with unsuccessful cure should just represent outliers that are expected 
in such populations with very small rates of meiotic sex (Balloux et al., 2003). Intermediate populations 
(0.2≤c≤0.9), should converge towards panmictic expectations, but only at equilibrium, which may take 
some time (Reichel, Masson et al., 2016), while smaller clonal rates should swiftly fit panmictic 
expectations to this respect. In such situations, , using the panmictic expectations will probably display 
better detection performances. 

Cured data 
The alleles that were indeed pooled are highlighted with the same color and can be found in excel files 

that are contained in the supplementary file S3 (zipped file) "PoolingProtocolCureSupFileS3.zip ". 
In dioecious pangamic simulations, cured data did not entirely fix the stuttering problem. Indeed, using 

the new method for stuttering detection, eight tests (1.3 %) remained significant after BH correction, which 
is significantly more than the initial absence of significant test (Fisher exact test, p-value=0.0076), before 
stuttering was introduced (H0). In monoecious populations with 30% selfing, two tests remained significant 
(0.5 %), which is not significantly more than the initial result (one significant test) under H0 (p-value=1). 

Regarding FIS estimates, in pangamic simulations, the fit between the expected values and the one 
observed in simulations under the null hypothesis, was not very good and better for larger n's (not shown). 
We thus preferred the more complex but more accurate equation 11 in (Vitalis, 2002): 

(3) 𝐹IS_exp = −
𝛾[𝑞𝑠−𝛾(𝑞𝑠−𝑞𝑑)]

2𝑁[1−𝛾(𝑞𝑠−𝑞𝑑)]+𝛾[𝑞𝑠−𝛾(𝑞𝑠−𝑞𝑑)]
 

With this equation, the fit was very good, as can be seen in Figure 3. 

 

Figure 3: Comparison of Wright's FIS estimates obtained in different simulations in dioecious 
pangamic populations, without stuttering, with 10% stuttering and with 10% stuttering cured data. The 
FIS_exp, according to Vitalis (2002), is represented, as are the line of FIS=0, and 95% bootstraps confidence 

intervals (Li and Ls). 
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From this figure, we can see that stuttering had a significant impact on FIS estimates, driving it 
sometimes quite far above the expected value. Cured data, though always providing values higher as 
compared to H0, always included the expected value in their 95% confidence intervals. 

As can be seen from Figure 4, in monoecious simulations with 30% of selfing, the fit is almost perfect 
between FIS_exp and the value obtained under H0 (no stuttering). Stuttering expectedly significantly 
increased observed FIS, while cured data presented values that were almost superimposed with expected 
ones. 

 

Figure 4: Comparison of Wright's FIS estimates obtained in different simulations in monoecious 
populations with 30% selfing, without stuttering, with 10% stuttering and with 10% stuttering cured data. 

The FIS_exp=s/(2-s), is represented, as are the 95% bootstraps confidence intervals (Li and Ls) around 
observed values. 

In conclusion, 10% stuttering significantly increased FIS and the cure used reasonably restored the FIS 
expected under the null hypothesis, and particularly so in inbred populations (with 30% of selfing). 

Real datasets 
For I. scapularis from Western USA, MicroChecker test only found one locus with significant stuttering 

out of nine (i.e. 11%), after exact binomial tests and Benjamini and Hochberg correction. Alternatively, the 
new method developed here found three loci out of nine loci with a significant stuttering (33%). Cured data 
provided results in agreement with a pangamic reproductive strategy, as was already observed by the 
authors (De Meeûs et al., 2021). 

For Glossina palpalis palpalis in Côte d'Ivoire no binomial tests provided a significant result with 
MicroChecker statistics. For the new method presented here, two loci (B3 and XB110) out of seven 
(22.22%) displayed a significant stuttering. Cured data set was obtained by pooling alleles following De 
Meeûs et al (2019)'s rules (De Meeûs et al., 2021) (see Appendix 2, A2.1). This cure provided a slightly lower 
FIS=0.221 (instead of 0.231) for locus B3, but a higher one for locus XB110 (FIS=0.277 instead of 0.252), 
meaning that the heterozygote deficit at this locus was better explained by another phenomenon (i.e. null 
alleles).  

In G. truncatula, after Benjamini and Hochberg correction, 50% of loci displayed a significant stuttering, 
while all six loci were significant with the new method (all p-BH<0.0104). Allele pooling for curing the data 
was as described in Appendix 2 (A2.2). This cure lowered the FIS for three loci, Lt9 (0.778 to 0.776), Lt16 
(0.958 to 0.006), and Lt24 (0.966 to 0.947) and increased it for the others. However, missing data (assumed 
null homozygotes) explained almost 50% of FIS variation, with a highly significant Spearman's rank 
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correlation between FIS and number of blank genotypes (ρ=0.9411, p-value=0.0025), while with the data 
set cured for loci Lt9, Lt16 and Lt24, the correlation dropped to a non-significant value (p-value=0.2589). 
When removing the correction for locus Lt16, which provided an outlier as compared to other loci, the 
correlation became significant again (p-value=0.0103), but with a smaller correlation (ρ=0.8804) and only 
41% of FIS variation explained by missing genotypes. 

For F. hepatica, no locus was significant with MicroChecker, while only one locus (Fh28) presented a 
significant stuttering signature after Benjamini and Hochberg correction (p-BH=0.0001). Pooling of alleles 
at this locus is described in Appendix 2 (A2.3). The FIS of cured data dropped from 0.644 to 0.536. However, 
we knew that null alleles explained well most of the observed heterozygote deficit (Correa et al., 2017), 
and the correlation between missing data and FIS, when excluding one locus (Fh25) that displayed too many 
missing genotypes, was initially significant (ρ=1, p-value=0.0417), with 83 % of the FIS variation explained 
by blank genotypes. In the cured data, it dropped to a not significant relationship (ρ=0.8, p-value=0.1667), 
with 72 % of FIS variation explained by missing genotypes.  

These discrepancies strongly suggested that stuttering detection in G. truncatula and F. hepatica 
corresponded to type error I, due to the fact that null alleles better explain the data and probably 
interacted with our stuttering detection test. It shows that several checks appeared necessary before 
deciding that a locus is significantly affected by stuttering and requires being cured, especially in selfing 
species. 

For the clonal T. brucei gambiense 1, we avoided using MicoChecker (for obvious reasons). With the 
method expounded in the present paper, three loci displayed a significant stuttering signature: micbg1, 
misatg4 and misatg9. These loci were cured as in Appendix 2 (A2.4). These loci presented a lower FIS when 
cured: from -0.647 to -818, from -0.579 to -0.72, and from -0.471 to -0.496 for micbg1, misatg4 and 
misatg9, respectively. Moreover, several observations suggested an improvement of the quality of the data 
after the cure for stuttering. The proportion of significant linkage disequilibrium between locus pairs 
increased from 53% (uncured data) to 80% (data cured for the three loci), and the superimposition SC 
increased from 0.9554 to 0.9782, from 0.9800 to 0.9975, and from 0.9539 to 0.9663 for micbg1, misatg4 
and lisatg9 respectively. Three loci with missing genotypes could be suspected to display null alleles, i.e. 
misatg4, misatg9 and m6c8. When these loci were removed, averaged superimposition increased to 
SC=0.9908. Here again, we can see that some checks allowed deciding that stuttering corrections were valid 
and significantly improved the quality of the data. After stuttering cure, removing other loci with suspected 
null alleles (i.e. with missing genotypes) drove the superimposition index defined in the Material and 
Methods section to almost unity, i.e. a perfect fit with the expected value under full clonality known to 
occur in that species (Weir, Capewell et al., 2016). 

Conclusions 

The new method developed here appeared at least three times more efficient (and often much more) 
than MicroChecker. Moreover, the use of spreadsheet programs makes its portability universal for any 
microcomputer. 

In dioecious pangamic populations, like ticks and tsetse flies, detection works well and cure improves 
population genetics parameter estimates but not perfectly so, which means that, for instance, FIS and FST 
will still be slightly overestimated in datasets cured for stuttering. So, whenever possible, removal of 
affected loci may help to shift such estimates towards (slightly) more accurate values. 

In monoecious selfers, detection works well and cure works very well, providing other confounding 
factors as null alleles do not interfere, in which case avoiding stuttering cure and correct for null alleles 
appear more appropriate. In doubt, and for subdivision measures, curing for null alleles may be achieved 
by the elimination of involved loci for strong selfers, or applying the INA correction (Chapuis & Estoup, 
2007), for reasonably panmictic populations. 

In highly clonal populations, only loci with the highest FIS as compared to other loci, may require 
stuttering cure, in which case parameter estimates may be much improved. For populations with 
intermediate clonal rates at genotypic equilibrium, or highly sexual populations, panmictic expected 
frequencies will be more accurate. Nonetheless, parameters' behavior in partially clonal populations is 
much harder to predict and will always need extreme caution.  
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In any way, cure must only be kept if FIS values are improved (lower than it was initially) and special 
care must be devoted to the behavior of their variation in relation to other factors as number of missing 
data (null alleles) or superimposition index (clonal populations). 

The stuttering detection and cure strategies proposed in the present paper will help interpreting 
microsatellite data with more accuracy and at the lowest cost. This will be particularly helpful in non-model 
organisms, as parasite-vector systems, for which microsatellite markers still represent the best cost benefit 
ratio.  
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Appendix 

Appendix 1: R-scripts and R-commander menu used to analyse the different datasets 
Regarding R-scripts, most are very small and basic: binom.test, for the exact binomial test; p.adjust, for 

adjusting the p-values in a series of p-values.  
For generalized linear mixed models with the package lme4, the commands were, for the number of 

significant stuttering tests (for instance): 
Dataset <- 

read.table("C:/DeMeeus/thierry/StutteringTest/DataMixedModelStutterSimul.txt",header=TRUE) 
SigStut1<-glmer(StutterSigSperLocus~n+N+Mating+Stuttering+(1|Rep), family=poisson(link = "log"), 

data=Dataset) 
summary(SigStut1) 
The Fisher exact tests were undertaken with R-commander, in the menu Statistics-Contingency table-

Enter and analyze two-way table. 

Appendix 2: Pooling of alleles used to cure real datasets 

A2.1. For Ixodes scapularis 
For Locus B3 allele 203 was recoded 201; allele 207 was recoded 205; allele 211 was recoded 209; and 

alleles 215 was recoded 213. For Locus XB110, alleles 179 was recoded 177; allele 183, was recoded 181; 
alleles 187 to 199 were recoded 185, allele 203 was recoded 201 and all rare alleles from 205 to 277 were 
also recoded 203. 

A2.2. For Galba truncatula 
For locus Lt9, 203 with 202, 210 and 212 with 208; for Lt16, 231 to 233 with 230; for Lt21, 107 with 

105, 112 with 111, 115 and 116 with 114; for Lt24, 208 and 210 with 207, 215 to 217 with 214, 220 and 
221 with 219; for Lt36, 187 to 190 and 192 with 185; and for Lt37, 115 with 113, and 123 with 212. 

A2.3. For Fasciola hepatica 
Alleles 182 to 183 with 180, allele 188 with 186, and alleles192 to 194 with 190. 

A2.4. For Trypanosoma brucei gambiense 1 
for micbg1, allele 164 was pooled with 162, and allele 194 with 192; for misatg4, allele 117 with 115, 

and 145 with 143; and for misatg9, alleles 130 and 128 with 126, allele 186 with 184, and alleles 194 and 
192 with 190. 
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