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Abstract
Human-mediated introductions are reshuffling species distribution on a global scale. Conse-
quently, an increasing number of allopatric taxa are nowbrought into contact, promoting intro-
gressive hybridization between incompletely isolated species and new adaptive gene transfer.
The broadcast spawning marine species, Ciona robusta, has been recently introduced in the
native range of its sister taxa, Ciona intestinalis, in the English Channel and North-East Atlantic.
These sea squirts are highly divergent, yet hybridization has been reported by crossing exper-
iments and genetic studies in the wild. Here, we examined the consequences of secondary
contact between C. intestinalis and C. robusta in the English Channel. We produced genomes
phased by transmission to infer the history of divergence and gene flow, and analyzed in-
trogressed genomic tracts. Demographic inference revealed a history of secondary contact
with a low overall rate of introgression. Introgressed tracts were short, segregating at low fre-
quency, and scattered throughout the genome, suggesting traces of past contacts during the
last 30 ky. However, we also uncovered a hotspot of introgression on chromosome 5, char-
acterized by several hundred kb-long C. robusta haplotypes segregating in C. intestinalis, that
introgressed during contemporary times the last 75 years. Although locally more frequent
than the baseline level of introgression, C. robusta alleles are not fixed, even in the core re-
gion of the introgression hotspot. Still, linkage-disequilibrium patterns and haplotype-based
tests suggest this genomic region is under recent positive selection. We further detected in
the hotspot an over-representation of candidate SNPs lying on a cytochrome P450 gene with
a high copy number of tandem repeats in the introgressed alleles. Cytochromes P450 are a su-
perfamily of enzymes involved in detoxifying exogenous compounds, constituting a promising
avenue for functional studies. These findings support that introgression of an adaptive allele is
possible between very divergent genomes and that anthropogenic hybridization can provide
the raw material for adaptation of native lineages in the Anthropocene.
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Introduction

Human-mediated introductions often result in interlineage introgression (Ottenburghs 2021; North et
al. 2021). Pervasive introgression implies that most co-occurring introduced and native genomes of sister
species are still to some extent permeable to interspecific gene flow, with various outcomes from
genome-wide genetic swamping to adaptive introgression at few specific genomic regions (McFarlane and
Pemberton 2019). In the marine realm, harbors, docks and piers are prime locations for such
hybridization events between non-native and native lineages, sometimes resulting in singular outcomes
(Touchard et al. 2022). For example, Simon et al. (2020) identified a unique ecotype of marine mussels in
these artificial habitats (“docks mussels”), resulting from a recent admixture between two closely-related
European mussel species. These anthropogenic hybridizations can also promote secondary contact
between divergent genomes with long histories of allopatric divergence (Viard et al. 2020). They provide
unique opportunities to investigate the outcomes of hybridization between co-occurring genetic lineages
at a late stage of the speciation continuum.

Sea squirts are among the most critical invasive marine organisms forming a significant component of
the non-indigenous community in artificial marine habitats (Shenkar and Swalla 2011; Zhan et al. 2015).
For this reason, they were among the first marine taxa to be studied to test the hypothesis of the
relationship between climate change and biological invasions (Stachowicz et al. 2002). Ciona robusta is a
sea squirt species native to the Northwest Pacific introduced in the early 2000s to the English Channel in
the native range of Ciona intestinalis (Bouchemousse et al. 2016a). The two species are found in sympatry
in these regions (Nydam and Harrison 2011). However, their relative abundance varies locally over
seasons (Bouchemousse et al. 2016b), and they display contrasting genetic diversity patterns, with low
mitochondrial diversity in C. robusta supporting its recent introduction (Bouchemousse et al. 2016a). C.
robusta and C. intestinalis represent a pair of species at the end of the speciation continuum with 14% of
net synonymous divergence, which is well above the ~2% suggested delineating the end of the grey zone
of speciation in a study of 61 pairs of animal populations (Roux et al. 2016). Despite this high molecular
divergence, first and second-generation crosses between the two species show successful hybridization in
the laboratory (Bouchemousse et al. 2016b; Malfant et al. 2018). Moreover, the two species produce
gametes synchronously in the wild, with juveniles recruiting simultaneously (Bouchemousse et al. 2016b).
However, the use of >300 ancestry-informative markers on 450 individuals showed limited evidence for
recent hybridization in the wild, with only one F1 and no later generation hybrids found in the sympatric
range (Bouchemousse et al. 2016c). Therefore, efficient reproductive barriers seem to restrict
hybridization in nature.

Despite the paucity of first-generation hybrids, Le Moan et al. (2021) found compelling evidence of
contemporary introgression between C. robusta and C. intestinalis in the sympatric range (Bay of Biscay,
Iroise Sea and the English Channel) from RADseq-derived SNPs. Instead of genome-wide admixture, Le
Moan et al. (2021) detected a single genomic hotspot (~1.5 Mb) of long introgressed C. robusta tracts into
its native congener on chromosome 5. The absence of such introgression tracts in allopatric populations
suggests introgression occurred after the recent introduction of C. robusta. At a fine spatial scale within
the sympatric range, the introgressed tracts displayed chaotic frequencies across sympatric localities,
which has been attributed to human-mediated transport among harbors (Hudson et al. 2016). The
features of the introgression hotspot identified between the two species, namely being i) unidirectional,
ii) localized in a single genome region, and iii) made up of long tracts, are reminiscent of the footprint of
positive selection. Therefore, Le Moan et al.'s work (2021) provides a seminal example of a contemporary
introgression breakthrough between two species at a late stage of the speciation continuum. It underlines
the need to densely scan genomes with genome-wide markers, notably when considering divergent
genomes that may only show very localized introgression hotspots (Ravinet et al. 2018; Maxwell et al.
2019; Stankowski et al. 2020; Yamasaki et al. 2020).

Here, we extend Le Moan et al.’s study (2021) using whole-genome sequences fully phased by
transmission in both C. robusta and C. intestinalis taken from their sympatric range (English Channel) to i)
specifically delineate the core region of the genomic breakthrough, ii) test for the footprint of selection,
and iii) identify candidate loci driving the putatively adaptive introgression. We also examined a
non-introgressed Ciona roulei population in the Mediterranean Sea, used as a control. Based on
experimental crosses and genome-wide analyses, recent studies showed that C. roulei is a
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“Mediterranean lineage” of the accepted species C. intestinalis, and thus its species status needs to be
revised (Malfant et al. 2018; Le Moan et al. 2021). However, we will continue to name it “C. roulei“ in this
study. Based on whole genomes, we recovered the observation of Le Moan et al. (2021) for a genomically
localized introgression breakthrough on chromosome 5 from C. robusta to the sympatric C. intestinalis,
absent in the C. roulei population of the Mediterranean Sea. We also inferred the divergence history of
the two species and confirmed that they have hybridized in the past, far before their introduction in
Europe (Roux et al. 2013). However, when including chromosome 5, we recovered a signal of
contemporary introgression. Next, we inferred the haplotype ancestry of the C. intestinalis genomes and
delineated migrant genomic tracts. In sharp contrast with a genomic background interspersed with small
and sparse introgressed tracts attributed to past admixture, we found a distinct pattern of very long
introgressed tracts segregating at intermediate frequencies at the introgression hotspot on chromosome
5. Finally, using haplotype-based tests, we provided evidence that the high linkage disequilibrium (LD)
observed in the genomic hotspot is due to some sort of positive selection. Inspecting annotated genes at
the core of the introgression breakthrough, our best candidate for selection was a cytochrome P450 gene,
on which differentiated SNPs were over-represented and that showed a high copy number tandem repeat
in the C. robusta introgressed haplotype.

Methods

Sampling and whole-genome sequencing
Sixteen parent-offspring trios (six interspecific, six within Ciona intestinalis and four within Ciona

robusta) were generated by crossing wild-caught parents in the laboratory at Roscoff (Table S1). Species
were first identified using morphological criteria (Sato et al. 2012; Brunetti et al. 2015). Morphological
species identification was further validated using a diagnostic mitochondrial locus (mtCOI, following
Nydam and Harrison 2007). For C. intestinalis, seven of the parents used were sampled in the marina of
the Aber Wrac'h (Finistère, France), and nine others in the marina of Moulin Blanc, Brest (Finistère,
France). For C. robusta, the ten parents used were also sampled in Moulin Blanc. The two parents and one
randomly selected descendant for each trio were fixed in absolute ethanol, and their whole genomic DNA
was extracted using a CTAB protocol. Five individuals were sampled in Banyuls-Sur-Mer (Méditerranée,
France) belonging to Ciona roulei. Based on crossing experiments and genetic analyses, the species status
of C. roulei has been repeatedly questioned (Nydam and Harrison 2010; Malfant et al. 2018; Le Moan et
al. 2021). In particular, recent genetic analyses clearly showed that C. roulei is a distinct lineage of C.
intestinalis, specific to the Mediterranean Sea (Le Moan et al. 2021). Therefore, we used these individuals
as a positive control for a non-introgressed population of C. intestinalis. For C. roulei samples, genomic
DNA was extracted using a Nucleospin Tissue kit (Macherey-Nagel). After quality control, DNA extracts
were sent to the LIGAN genomics platform (Lille, France) where whole-genome sequencing libraries were
prepared separately for each of the 48 individuals, and were sequenced on an Illumina Hi-Seq 2000
instrument using 100 bp PE reads. Three poorly sequenced parents (ad2, ad18 and ad31; Table S1) were
excluded from analyses.

Furthermore, four Ciona edwardsi individuals were sampled in Banyuls-Sur-Mer. C. edwardsi is
reproductively isolated from the other taxa included in this study, and it was used as an outgroup
(Malfant et al. 2018). These individuals were fixed in RNAlater, and their DNA was extracted using a
Nucleospin Tissue kit (Macherey-Nagel). Libraries were prepared separately for each of the four
individuals, and were sequenced on an Illumina Hi-Seq 4000 instrument using 150 bp PE reads at
FASTERIS (Plan-les-Ouates, Switzerland).

Genotyping and haplotyping pipeline
We followed the GATK best practice pipeline (Van der Auwera et al. 2013) including haplotype

phasing-by-transmission, as applied in Duranton et al. (2018). All scripts used in the pipeline are available
in the Supplementary Scripts. We generated seven different datasets with various levels of filtering, and
with or without haplome phasing, which are described in the Supplementary Data (see Table S5 for
details).

All analyses were made using the newly available C. robusta assembly as the reference genome
(GCA_009617815.1; Satou et al. 2019). As a cautionary note, analyses in Le Moan et al. (2021) were made
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using the previous C. robusta reference genome published in 2011 (GCA_000224145.1), therefore
coordinates do not correspond between the two studies. After quality control with FastQC v0.11.2, reads
were aligned to the C. robusta reference genome using BWA-mem v0.7.5a (Li and Durbin 2009), and
duplicates were marked using Picard v1.119. The individual bam files of the introgression hotspot were
used as dataset #7. The mean read depth was 21x across all samples (Table S1).

A series of steps were then performed using GATK v3.4-0 (McKenna et al. 2010), including: i) local
realignment around indels, ii) individual variant calling in gVCF format using the HaplotypeCaller (options:
dontUseSoftClippedBases, heterozygosity=0.01, minimum base quality score=30), iii) joint genotyping
using GenotypeGVCFs (heterozygosity=0.01), iv) genotype refinement based on family priors.
Hard-filtering was then applied to the SNPs and indels to produce a database of high-confidence variants.
The database was then used to recalibrate variant quality scores with the VQSR algorithm. After
recalibration, a second round of genotype refinement based on family priors was applied.

We then introduced a step of genotype verification (and correction where required) to check for
reference bias and miscalling. First, we computed the individual variant allele fraction (VAF) at each site,
i.e. the ratio of the alternate allele depth to the total (alternate+reference) depth. Then, a distribution
across sites was plotted for the three possible genotypes (homozygous reference: 0/0, heterozygous: 0/1,
homozygous alternate: 1/1). While the distributions for the homozygous genotypes were shaped as
expected (i.e. 99% of the sites had a VAF < 0.1 for 0/0 and VAF > 0.9 for 1/1), the distribution of
heterozygous genotypes was normally distributed around VAF=0.5, but showed additional peaks near 0
(and near 1 to a lesser extent). Therefore, we corrected the miscalled 0/1 genotypes to 0/0 when the
variant allele depth was below the 99th quantile of the 0/0 distribution and to 1/1 when it was above the
1st quantile of the 1/1 distribution. In addition, heterozygous genotypes with a VAF < ⅓ or > ⅔ were
assigned as missing data (excluding the ones we corrected near VAF=0 or 1). We also considered as
missing data the genotypes with a total depth below ten reads or above the 99th quantile of the depth
distribution (to exclude repeated regions). Finally, low-quality variants were excluded from the VCF
(QUAL<30), and we applied a stringent filter on individual genotype quality (GQ<30). Different missing
data thresholds were then applied to produce datasets #2 (five missing genotypes), #5 (no missing
genotypes allowed) and #6 (three missing genotypes).

Phased genomes were obtained using the tool PhaseByTransmission of GATK v3.4-0. All trios were
phased given parents and offspring genotype likelihoods, setting a de novo mutation prior to 1e-8
/bp/year (estimated for sea squirts in Tsagkogeorga et al. 2012). Only sites where Mendelian transmission
could be determined unambiguously were phased. The non-missing phased SNPs were then used as a
reference panel for BEAGLE v4.0 (Browning and Browning 2007). BEAGLE was run without imputing
genotypes (impute=false) on the filtered VCF, with all variants being unphased. The parent-offspring
relationships in the reference panel were specified to inform phasing-by-transmission with BEAGLE,
except for the five C. roulei samples, which were not included in a trio and were statistically phased.
Datasets #1, #3 and #4 are based on this phased VCF.

A genomic region with high coverage failed to be genotyped in the introgression hotspot (defined
between 700 Kb and 1.5 Mb). This region was set as the “missing data region” and defined from
1,009,000 to 1,055,000 bp.

Analyses of population structure
We used a Principal Component Analysis (PCA) to assess the partition of genetic variation in our

sample of 45 individuals (i.e. all individuals except the three poorly sequenced parents, and the C.

edwardsi individuals). SNPs were LD-pruned with PLINK v1.9 (Purcell et al. 2007) using a window size
(WD) of 20 SNPs, a window step size (CT) of 5 SNPs and a linkage threshold (r2) of 0.1. PLINK was then
used to run a PCA on the unlinked SNPs. We recorded the amount of genotypic variance explained by
each principal component (PC) and the SNP weights on each PC. Only the first two PCs were relevant to
visualize population structure and were plotted using the R package tidyverse.

We used VCFtools v0.1.15 (Danecek et al. 2011) on all SNPs to calculate the per-site nucleotide
diversity (site-pi) in each population and the per-site FST (weir-fst-pop, Weir and Cockerham 1984)
between populations. We then calculated the average and maximum of these statistics for each
chromosome in non-overlapping windows of 10 Kb. Windows with less than 10 SNPs were excluded. The
linkage disequilibrium on chromosome 5 (where an introgression hotspot was detected) in the C.
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intestinalis individuals was estimated with the function “hap-r2” of VCFtools. It was based on calculating
the r2 among all fixed SNPs (phased) between C. robusta and C. roulei.

Detection of introgression with summary statistics
To evaluate the extent of genome-wide admixture, we computed the D-statistic (Green et al. 2010;

Patterson et al. 2012) from a polarized set of SNPs using the outgroup species, C. edwardsi. The following
topology was applied: ((( P1 = C. roulei ; P2 = C. intestinalis) ; P3 = C. robusta ) ; O = C. edwardsi ).
Therefore, a positive value of D indicates an excess of ABBA sites, and so an excess of shared ancestry of
C. robusta with C. intestinalis over that shared with C. roulei. We also estimated the fraction of the
genome introgressed with the fd statistic (Martin et al. 2015), calculated in non-overlapping windows of
100 SNPs. The D and fd statistics were computed following Simon Martin’s tutorial:
https://github.com/simonhmartin/tutorials/blob/master/ABBA_BABA_whole_genome/README.md.

Detection of introgression with local ancestry inference
We used Chromopainter (available in fineSTRUCTURE v2.0.7) to perform local ancestry inference

based on the phased dataset. C. intestinalis was considered as the recipient population, while C. robusta
and C. roulei (the latter being a non-introgressed population of C. intestinalis) were the donor
populations. We used ten iterations of the expectation-maximization algorithm to estimate the
probability of each position along each C. intestinalis haplotype to come from C. robusta or C. roulei. We
then determined the boundaries of each ancestry tract. A given position was considered originating from
C. robusta if this probability was >0.95. To define the tracts, an extension from this focal position was then
made as long as this probability was above 0.5 at the surrounding positions (Duranton et al. 2018).

Various statistics were then calculated focusing on the introgressed tracts originating from C. robusta
(i.e. those found in C. intestinalis haplotypes, but with a C. robusta ancestry): i) the C. robusta ancestry
fraction per individual, ii) the tract length, and iii) the frequency of the alleles lying on the tracts. No filter
on the minimal tract length was applied, and missing data were not allowed for the allele frequency
calculation.

We performed additional analyses on the coding sequences (CDS). They were obtained by extracting
the biallelic SNPs from the phased VCF. Then, the VCF was converted into a fasta file, and exons were
extracted with bedtools v2.25.0 based on the annotation file (HT.Gene.gff3) of the reference genome. The
CDS were classified as introgressed or not using the bounds inferred from Chromopainter. The following
statistics were calculated for the CDS: i) the pairwise nucleotide diversity (π, Tajima 1983), ii) the raw
divergence between C. robusta and C. intestinalis (dXY, Nei and Li 1979), and iii) the Gmin measured as
minimum(dXY)/average(dXY) (Geneva et al. 2015).

Testing for selection
Selection for an adaptive variant is expected to reduce haplotype variation in flanking regions,

producing unusually long haplotypes (Sabeti et al. 2002). To capture such a signal, we measured the
extended haplotype homozygosity (EHH) score from the phased dataset using SelScan v2.0.0 (Szpiech
2021). Target SNPs were identified as the C. robusta alleles with the highest frequency to the left (959,519
bp) and right (1,061,854 bp) of the “missing data region” on chromosome 5. The maximum extension
from the target SNP for a single EHH computation was 100 Kb. Then, we calculated with SelScan the
(absolute) integrated haplotype score (iHS). Values were normalized using the norm v1.3.0 utility with 100
frequency bins over 50-Kb non-overlapping windows. Finally, we estimated the proportion of SNPs in each
window associated with extreme iHS values (iHS>3, which refers to the 99th quantile of the iHS
distribution).

We also tested for the footprint of selective sweeps using SweepFinder v2.0 (DeGiorgio et al. 2016)
and adaptive introgression using VolcanoFinder v1.0 (Setter et al. 2020). These methods are based on
polarized SNPs (using the outgroup species C. edwardsi) and do not use phase information. Chromosomes
were scanned with the two methods by applying a log-ratio test for selection at test sites spaced by 1Kb.

Finally, SplitsTree4 V4.17.0 (Huson and Bryant 2006) was used on the phased dataset to produce
neighbor-joining trees from 50-Kb windows framing the “missing data region” on chromosome 5.
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Analyses of copy number variation
To overcome the absence of genotyping in the “missing data region” (due to our filtering of repeated

regions), we analyzed the read depth of the variants directly from the unfiltered bam files. Counts of the
reference and alternate alleles were collected with GATK (CollectAllelicCounts) from the bam files,
excluding duplicate reads and positions with a base quality (BQ) < 20. Candidate SNPs were defined based
on their variant allele fraction (VAF = alternate read depth / total read depth). The following criteria were
applied to identify variants differentiated between C. robusta and C. roulei (the latter is used as a
non-introgressed C. intestinalis population), and introgressed into C. intestinalis: VAF <= 50% in C.
intestinalis, VAF >= 85% (or 90%) in C. roulei and VAF <= 15% (or 10%) in C. robusta. The copy number at
each candidate SNP was then calculated as its allele read depth normalized by the per-site read depth
averaged across all sites (excluding sites with less than ten reads) for each individual. Variants were
annotated using the HT.Gene.gff3 file of the reference genome.

Demographic inferences
We reconstructed the divergence history of C. robusta and C. intestinalis from the folded joint site

frequency spectrum (jSFS) using moments (Jouganous et al. 2017). No missing data was allowed, and the
SNPs were LD-pruned with PLINK v1.9 using a window size (WD) of 10 SNPs, a window step size (CT) of 10
SNPs and a linkage threshold (r2) of 0.5. We defined five demographic scenarios, following (Fraïsse et al.
2018): SI = strict isolation, IM = isolation with continuous migration, SC = secondary contact, AM = ancient
migration, PER = periodic connectivity with both an ancient and a current period of gene flow. Different
versions of these scenarios were tested, following (Fraïsse et al. 2021): bbN = genomic heterogeneity of
the effective population sizes (to capture the effect of background selection), bbM = genomic
heterogeneity of the effective migration rates (to capture the effect of interspecies barriers to gene flow),
2N2M = combining both types of heterogeneities, “” = no heterogeneities. Parameters were as follows: T
= times in years (assuming two generations per year in European waters), Ne = effective population sizes
in numbers of individuals, m = migration rates (independently estimated in both directions), %Barriers =
fraction of the genome experiencing null migration (i.e. species barriers and their associated loci),
%Nereduced = fraction of the genome experiencing reduced Ne due to background selection, HRF = factor by
which Ne is reduced. See Tables S3 and S4 for details. The scripts used to define the demographic models
and run the inferences are available in the Supplementary Scripts.

Each demographic model was then fitted to the observed jSFS, with singletons masked. We ran five
independent runs from randomized starting parameter values for each model. Likelihood optimization
was performed using a “dual annealing” algorithm (optimize_dual_anneal). It consists of a series of global
optimizations, each followed by a local optimization (“L-BFGS-B” method). Settings of the global
optimizations were as follows: maximum number of search iterations = 100, initial temperature = 50,
acceptance parameter = 1, and visit parameter = 1.01. The maximum number of search iterations for the
local optimization was set to 100. Model comparisons were made using the Akaike information criterion
(AIC), calculated as 2*k - 2*ML, where k is the number of parameters in the model, and ML its maximum
log-likelihood value across the five runs.

Results

Sequencing and mapping quality
A total of 48 whole genomes were sequenced with an average of 41M reads per individual (Table S1),

including 22 C. intestinalis (three were excluded due to poor sequencing), 15 C. robusta, 6 interspecific
hybrids and 5 C. roulei. An additional 4 C. edwardsi individuals were sequenced to be used as an
outgroup, with an average of 88M reads per individual (Table S1). Reads were aligned against the C.
robusta reference genome (GCA_009617815.1). Differences in the mapping quality were observed
between species in agreement with their genetic distance to the reference (Table S1). On average, 80% of
the reads mapped in proper pair in C. robusta, 60% in C. intestinalis, 59% in C. roulei, 68% in the
interspecific hybrids and 44% in the outgroup C. edwarsi. The average depth was broadly similar among
species, ranging from 18X to 26X.
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Genome-wide analysis of population structure
A principal component analysis on genome-wide unlinked SNPs (Figure 1B) showed, as expected, that

the C. robusta individuals are clearly distinguished from the C. intestinalis individuals sampled in the
sympatric populations of the English Channel (Brest and Aber Wrac’h, named ‘Aber’ in the following text)
and from the non-introgressed population of the Mediterranean Sea (Banyuls, C. roulei). This primary
component of genetic variation was carried out by the first PCA axis (21.2% of explained variance). In
comparison, the second axis (6.7%) revealed a slight genetic differentiation between C. intestinalis and C.
roulei, validating previous findings with RADseq (Le Moan et al. 2021).

Figure 1: Genetic population structure. A. Geographical location of the samples in the English Channel and
Iroise Sea (C. robusta and C. intestinalis) and the Mediterranean Sea (C. roulei). Numbers in brackets refer to

the sample size of each population. “Lab F1s” indicates the intraspecific and interspecific offspring produced in
the laboratory. Further information on samples is provided in Table S1. The color code (C. robusta in red, C.

intestinalis in blue and C. roulei in green) is used throughout the manuscript. B. Principal Component Analysis
of 45 individuals genotyped at 194,742 unlinked SNPs (pruning threshold: r2 > 0.1). Numbers in brackets refer
to the proportion of variance explained by each axis. Three poorly sequenced parents were removed from the

analysis (see Table S1). C. SNP weights to the first axis of the PCA (after removing the SNPs contributing less
than the 75th quantile of the weight distribution). The introgression hotspot on chromosome 5 is highlighted

with an arrow. Dataset #1 “phased SNPs with offspring” was used.
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The intraspecific F1 individuals produced in the lab (Table S1) fall within the genetic variance of their
species, while the interspecific F1s fall halfway between the two species along the first axis (Figure 1B),
validating their F1 hybrid status. The intraspecific variance along the first axis was substantial within C.
intestinalis. At the same time, this was not the case for C. robusta and C. roulei, suggesting that
interspecific introgression affects specifically C. intestinalis individuals in the English Channel.

The SNPs contributing to species divergence on the first axis are distributed genome-wide (Figure 1C).
Still, a decline of SNP contribution on the first axis at the start of chromosome 5 indicated a reduction of
the divergence between C. robusta and the sympatric C. intestinalis populations locally in the genome.
This pattern is supported by the observation of a consistently high divergence across the genome
between C. robusta and C. intestinalis (the maximal FST calculated in non-overlapping 10 Kb windows is
equal to one), except at the start of chromosome 5, where the maximal FST value declined from 1 to 0.69
(Figure S1A). This striking decline, located between 700 Kb and 1.5 Mb, was not observed between C.
robusta and C. roulei (Figure S1B). Moreover, in C. intestinalis, it did not correlate with a reduction of
diversity (π), suggesting it is likely due to interspecific introgression rather than intraspecific selective
sweeps. This pattern is very different from what was observed for the averaged FST (Figure S1) which
strongly varied across the genome. It was notably higher at the beginning or in the middle of the
chromosomes in regions of low intraspecific genetic diversities. These large-scale averaged variations
were observed in all species, indicating that they may be due to the long-term effect of linked selection
acting on a shared recombination landscape (note that all chromosomes in C. intestinalis are metacentric,
except chromosomes 2, 7 and 8, which are submetacentric (Shoguchi et al. 2006).

Genome-wide analysis of introgression
We calculated the Patterson’s D statistic using C. edwardsi as an outgroup to test for genome-wide

admixture between the two species. We found evidence for an excess shared ancestry of C. robusta with
the sympatric C. intestinalis relative to C. roulei across all chromosomes (Figure S4A). To locate
introgressed genomic regions, the fraction of the genome that has been shared between species (fd) was
then calculated in non-overlapping windows. fd varied around zero along each chromosome (Figure S4C),
but we observed an outlying increase on chromosome 5 between 700 Kb and 1.5 Mb showing a high
admixture level between C. robusta and C. intestinalis (Figure S4D). This fd increase had its maximum
(25% of admixture level) centered on the introgression hotspot of chromosome 5 and was only present in
the sympatric range. None of the other chromosomes showed outlying genomic regions, neither with C.
intestinalis, nor with C. roulei (Figure S4C). Furthermore, the averaged per-chromosome admixture
proportion was weakly negatively correlated with chromosome length (Figure S4B), a known proxy for the
recombination rate (Kaback 1996). Such correlation is consistent with higher recombination rates (shorter
chromosomes) producing weaker barriers to introgression (Martin and Jiggins 2017). However,
chromosome 5 was a clear outlier (i.e. it has a higher fd value than expected given its length).

We detected introgression tracts in C. intestinalis genomes using local ancestry inference on 640,044
phased SNPs and considering C. robusta and C. roulei as the parental populations. The inferred tracts
showed similar introgression patterns to the raw haplotypes obtained from SNPs fixed between C. robusta
and C. roulei (Figure S2). This suggests that local ancestry inferences indeed detect the introgressed
genomic regions while being less noisy than when considering raw haplotypes. The proportion of C.
robusta ancestry inferred was low (0.1% on average per individual), suggesting that the introgression rate
at the genome level is low. Furthermore, there was no significant correlation in C. robusta ancestry
between chromosomes (except in 5 pairs) among the C. intestinalis individuals (Table S2). Introgressed
tracts were short (median size of 380 bp) and widespread across the genome (Figure 2). These short
tracts had a bimodal frequency distribution with a majority segregating at low frequency and a minority
fixed in C. intestinalis. They likely have originated from past admixture events between the two species
and then progressively been chopped down by recombination over time while they drifted towards loss
or fixation. The introgression hotspot on chromosome 5 immediately appears as an outlier on the
chromosome map (Figure 2). Its underlying tracts were much longer (maximal size of 156 Kb) than those
outsides of the hotspot, and they segregated at intermediate frequencies (none of the long tracts on the
hotspot was fixed), in line with a recent introgression event.

We then analyzed the coding sequences inside and outside the genomic tracts identified as being
introgressed (Figure S3). Chromosome 5 carries by far the largest number of introgressed CDS: 65 of 69
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were located on this chromosome, while the four other introgressed CDS were located on three different
chromosomes (3, 8 and 13). Among all CDS on chromosome 5, 6% were detected as being on introgressed
tracts, demonstrating that the hotspot does contain introgressed genes. As introgression has not reached
fixation in C. intestinalis, we would expect an increase in diversity within C. intestinalis (π) and a decrease
in interspecies divergence (dXY) for the CDS on introgressed tracts compared to the rest of the genome.
However, this is not what was observed (Figure S3A), probably because the C. robusta introgressed alleles
segregate at an intermediate frequency that negligibly impacts diversity. Therefore, we computed the Gmin

statistic, defined as the ratio of the minimum dXY to the average dXY, which is better suited to capture the
effect of recent introgression events (Geneva et al. 2015). As expected if introgressed tracts originate
from recent introgression events, we found that Gmin was significantly lower in the introgressed CDS than
in the rest of the genome (Figure S3B).

Figure 2: Local ancestry patterns of
the C. intestinalis genomes sampled
in the English Channel and Iroise Sea
using 640,044 phased SNPs. C.
robusta and C. roulei were used as
the donor populations. A. Physical
mapping across the 14 chromosomes
of the frequency of the C. robusta
tracts introgressed into C. intestinalis.
The color gradient (blue to yellow to
red) follows the gradient in allele
frequency from low (0.038) to high
(1.0); regions in white correspond to
null introgression. The direction of
the arrow indicates the coordinate
direction from top (start) to bottom
(end). The R package RIdeograms was
used for the plotting. B. Length
distribution of the C. robusta
introgressed tracts (n=1,143 tracts).
The maximum tract length is 156 Kb,
the average is 2.6 Kb, and the median
is 0.38 Kb. A blue dashed line depicts
the 95th quantile of the length
distribution (8.3 Kb), and it was used
as a threshold to delineate long
tracts. A total of 38 of 57 long tracts
were detected on chromosome 5 (red
portion of each bar). C. Allele
frequency of the SNPs lying on the C.
robusta introgressed tracts
(n=621,249 variants). The maximum
frequency is 1, the average is 0.14,
and the median is 0.08. On the right,
the frequency of variants lying on
short tracts (upper panel) or long
tracts (lower panel) is depicted. The
red portion of each bar indicates the
tracts on chromosome 5. Allele
frequency was calculated, excluding
any position with missing data.
Dataset #3a “phased SNPs” was
used.
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The history of divergence and gene flow between C. robusta and C. intestinalis
In order to address whether short and long C. robusta tracts introgressed in the C. intestinalis

genomes could result from different introgression events, we reconstructed the divergence history
between the two species based on their joint site frequency spectrum. Divergence models in which the
history of gene flow can take different forms were tested. The possibilities of having a heterogeneity of
effective population sizes and effective migration rates to model the effects of linked selection and
species barriers were also included in the models. This is because previous work showed that when these
features were not considered, the inferences led to ambiguous results in sea squirts (Roux et al. 2016).
We first excluded chromosome 5 from the inferences to capture the prominent history between the two
species (Figure 3 and Table S3 for details). Divergence with periodic connectivity and the effects of linked
selection was the best model, closely followed by a secondary contact model. The divergence between
the two species started with gene flow (during ~400 Ky), then it was followed by a ~1.5 My period of
isolation. Only in the 30,000 last years, C. robusta, or a related lineage, and C. intestinalis came into
secondary contact. This long period of introgression could explain the presence of the short introgressed
tracts in C. intestinalis. In line with this scenario, the estimates of migration rates show that introgression
is highly asymmetrical from C. robusta toward C. intestinalis. Furthermore, we observed a ten-fold lower
effective population size in C. robusta than C. intestinalis, which matches the difference in nucleotide
diversities between the two species and can be explained by the recent introduction of C. robusta in
Europe (Figure S1). Repeating the demographic analyses with chromosome 5 in the dataset led to very
similar parameter estimates, except for the divergence times (Figure S5 and Table S4 for details). Indeed,
the best model was now a secondary contact, where a long period of isolation (~2 My) was followed by a
contemporary period of introgression (in the last 200 years), which may capture the signal left by the long
introgressed tracts on chromosome 5.

We used a neutral recombination clock to refine the time estimate since admixture at the
introgression hotspot on chromosome 5. The average length of the introgressed tracts can be estimated
using the formula L̄ = [ (1 − f ) * r * (t − 1) ]-1, where r is the local recombination rate (crossovers per base
pair per generation), f is the admixture proportion, and t is the time since the admixture event in
generations (Racimo et al. 2015). Given that the average length of introgressed tracts at the hotspot is
19,898 bp, the mean frequency of introgression is 0.106, and the recombination rate is 3.82e-07 M/bp
(Duret, pers. comm.), we found that the contemporary admixture between C. robusta and C. intestinalis
occurred about 75 years ago (assuming two generations per year; Bouchemousse et al. 2017). Note that
this point estimate for the date of introgression has to be considered carefully as several factors can
produce uncertainty around it. For example, a rapid rise in frequency due to selection at the hotspot can
create longer tracts than expected under neutral models. Additionally, we used the genome-wide
recombination rate for r, while the local recombination could be lower around the hotspot. Finally, some
introgressed tracts could be a bit longer than measured due to small regions lacking sufficient ancestry
signal (Figure S7).

The introgression hotspot on chromosome 5
We have shown that maximal FST values between C. robusta and C. intestinalis form a valley at the

start of chromosome 5 (Figure 4A). This pattern is due to long C. robusta tracts segregating in the
sympatric populations of C. intestinalis (Figure 4B). The introgression tracts were variable in size. They
shared ancestral recombination breakpoints, clearly visible in the linkage disequilibrium (LD) heatmap
between pairs of diagnostic SNPs along chromosome 5 (Figure 4D). The hotspot region between 700 Kb
and 1.5 Mb exhibited stronger LD (r2 median of 0.3) than the rest of chromosome 5 (r2 median of 0.007).
Introgression was maximal on either side of the “missing data region” from 1,009,000 to 1,055,000 bp (a
region of significantly increased read depth: 100x in average inside the region vs 25x outside). But we
found no evidence of introgressed tracts in the hotspot that have completely swept to fixation in C.
intestinalis (Figure 4C).

To explicitly test if some sort of selection could explain this pattern on chromosome 5, we used
various methods. We first sought the footprint of a classic selective sweep, where a de novo beneficial
mutation arises on a C. robusta haplotype and quickly sweeps toward fixation, reducing diversity and
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Figure 3: Inference of the divergence history between C. robusta and C. intestinalis with moments. A. AIC
value of the best run for each model. B. Observed site frequency spectrum (SFS), modeled SFS and residuals of

the best model. Maximum likelihood values of the parameters are provided. C. Same as in B but for the
second-best model. Analyses were based on the folded SFS after LD-pruning the SNPs. Five demographic

scenarios were modeled: SI = strict isolation, IM = isolation with continuous migration, SC = secondary contact,
AM = ancient migration, PER = periodic connectivity. Different versions of these scenarios were tested: bbN =

genomic heterogeneity of the effective population sizes, bbM = genomic heterogeneity of the effective
migration rates, 2N2M = both types of heterogeneities, “” = no heterogeneities. Five replicates were run for
each model. Parameters are as follows: T = times in years, assuming two generations per year in European
waters (the “GF” label refers to gene flow), Ne = effective population sizes in numbers of individuals, m =
migration rates (direction given by the arrow), %Barriers = proportion of the genome with null migration,

%Nereduced = fraction of the genome experiencing reduced Ne, HRF = factor by which Ne is reduced. Full details
are provided in Table S3. Dataset #5 “all SNPs without missing data” was used, excluding chromosome 5.

creating a signal of long-range LD around it. This signal can be captured by the extended haplotype
homozygosity (EHH), which measures the decay of identity-by-descent between haplotypes as a function
of the distance from a focal SNP. Taking as targets the SNPs with the highest C. robusta frequency to the
left and right of the “missing data region”, we observed a slower EHH decay on the C. robusta haplotypes
compared to other haplotypes in the sympatric C. intestinalis populations, but not in the C. roulei
population (Figure 4E). To test for significance, the absolute normalized integrated haplotype score (iHS)
was then calculated in 50-Kb windows along chromosome 5, and we estimated the proportion of SNPs in
each window associated with outlying values of iHS.
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Figure 4: Analyses of the introgression hotspot on chromosome 5. A. Maximum FST between C. robusta
and C. intestinalis was calculated in non-overlapping 10 Kb windows along chromosome 5. Windows with less

than 10 SNPs were excluded. The x-axis is in bp. B. Haplotypes of the C. intestinalis individuals in the two
sampled localities (sample IDs are depicted on the right, see Table S1). Each individual displays two haplotypes
delimited by horizontal lines. The C. robusta introgressed tracts are shown as red bars. The white background
represents the non-introgressed tracts and missing data. The tract boundaries were determined based on the
ancestry probability of each position, as shown in Figure S7. C. Frequency of the C. robusta alleles lying on the
introgressed tracts along chromosome 5. Allele frequency was calculated, excluding any position with missing

data (e.g., the nearly fixed SNP at position 28,801 bp on panel B was excluded and designated with the first
cross on panel C). The grey horizontal band running through all panels refers to the “missing data region” (due
to high coverage) in the core region of the hotspot (from 1,009,000 to 1,055,000 bp). D. Linkage disequilibrium
pattern between the 111,951 SNPs fixed between C. robusta and C. roulei. The color scale indicates the level of

LD from blue (low) to red (high). E. Haplotype-based selection test using SelScan. EHH is shown for the C.
robusta haplotype (red) and the other haplotypes (black) in C. intestinalis (upper panel) and C. roulei (lower
panel) using a 100 Kb maximal extension. A separate analysis was done on the left and right of the “missing

data region” (grey band) using the most frequent C. robusta allele closest to the grey band as target SNP.
Absolute iHS was calculated based on the EHH results and normalized in windows of 50 Kb. The threshold value

of the normalized iHS was set to 3 (which refers to the 99th quantile). F. Neighbor-joining tree of a 50 Kb
window to the left of the “missing data region” at the center of the chromosome 5 hotspot. Colored dots are

red, dark blue and light blue for individuals of C. robusta, C. instestinalis from Brest and C. intestinalis from
Aber, respectively. Dataset #2 “all SNPs with missing data” was used for the FST, #3a “phased SNPs” for

Chromopainter haplotypes, #3c “FASTA version of phased SNPs” for the NJ tree and #4 “ancestry informative
phased SNPs” for the LD triangle.

This proportion was the highest in the core region of the introgression hotspot in C. intestinalis (8%)
and C. robusta (20%), but not in C. roulei (0%). This result indicates a low haplotype diversity over an
extended region in both the donor C. robusta and the introgressed alleles of the recipient C. intestinalis
populations. The genealogies of the 50-kb windows framing the “missing data region” further support a
reduced diversity of the C. robusta clade (Figures 4F and S8). Moreover, the alleles sampled in the
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introgressed C. intestinalis genomes cluster within the star-like C. robusta clade, suggesting that a recent
selective sweep happened in C. robusta and a single beneficial haplotype introgressed into C. intestinalis.

Finally, we used a complementary approach (VolcanoFinder) to directly test for adaptive introgression
using all SNPs from the C. intestinalis recipient species only. Again, the method is suitable for detecting an
adaptively introgressed allele that has swept to fixation in the recipient species, producing
intermediate-frequency polymorphism in its flanking regions. Although introgression was incomplete in
our case (generating a soft sweep pattern, which may lead to a decrease in power), we nonetheless
observed a signal of adaptive introgression on the hotspot of chromosome 5 (Figure S6B). Several other
regions in the genome showed extreme values of the log-likelihood ratio test (Figure S6A). However,
contrary to the introgression hotspot, these regions also displayed signals of de novo selective sweeps
within C. intestinalis (detected with SweepFinder) that globally correlated with genomic regions of
reduced diversity (Figure S1). In contrast, a signal of de novo selective sweep within C. robusta was
detected in the introgression hotspot (Figure S6B), supporting the view that beneficial alleles in this
species recently swept to fixation and were adaptively introgressed into the sympatric C. intestinalis.

Figure 5: Copy number variation at two candidate SNPs on the cytochrome P450 family 2 subfamily U
gene. The two SNPs (labeled with their position in bp) lie in the “missing data region” of the introgression
hotspot on chromosome 5. Candidates were defined as having a variant allele fraction, VAF <= 50% in C.

intestinalis, a VAF >= 90% in C. roulei and a VAF <= 10% in C. robusta. No candidates were found in the other
direction (i.e. with the minor VAF in C. roulei). Copy number at each SNP was calculated as its allele read depth

normalized by the per-site read depth averaged across all sites (excluding sites with less than ten reads) for
each individual (labeled on the left). A copy number of one (vertical dashed line) means that the SNP lies on a

single-copy locus. Values for the C. robusta allele (red) and the C. intestinalis allele (blue) are separately shown.
Read depth was obtained from the bam files. Horizontal dashed lines separate the different species, and C.
intestinalis individuals introgressed at the hotspot (see Figure 4) were labeled as “introgressed”. Dataset #7

“unfiltered mapping files” was used.

Copy number variation at the introgression hotspot
We then annotated the introgression hotspot region of chromosome 5 (700 Kb - 1.5 Mb) to identify

putative candidate genes under selection. To overcome the difficulty posed by the high coverage of the
“missing data region” at the center of the hotspot, we relied on the variant allele fraction (VAF) calculated
from read depth to find candidate SNPs. Because the reference genome used throughout this paper is
from C. robusta, the variant allele represents the alternate allele in the C. robusta genome. Candidate
SNPs were defined as being differentiated between C. robusta and C. roulei, therefore having a low VAF in
the former and a high VAF in the latter, and being exclusively introgressed in the sympatric C. intestinalis
(VAF below 50%). Using a lenient threshold of VAF higher than 85% in C. roulei and below 15% in C.
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robusta, we found 28 candidate SNPs in the 800-Kb region of the hotspot distributed across six different
protein-coding genes and two non-coding loci (Figure S9). Only variants in the “missing data region” (20
of 28 SNPs) showed a coverage pattern in line with multi-copy genes. Notably, 16 of these SNPs were
located on the cytochrome P450 family 2 subfamily U gene. Three other cytochromes from family 2 were
found in the “missing data region” (subfamilies J/D/R; Figure S10), but none contained candidate SNPs.

We did not find candidate SNPs where the C. robusta allele had swept to fixation in C. intestinalis. The
SNP showing the highest introgression frequency (0.85, i.e. only two non-introgressed C. intestinalis
individuals out of 13 sampled) was located in a single-copy non-coding locus at position 1,067,404 bp.
Nevertheless, this pattern should be interpreted with caution as many individuals had a shallow read
depth at this SNP. Considering the multi-copy genes, the 16 variants on the cytochrome P450 all exhibited
the same pattern of a high copy number of the introgressed C. robusta allele, while this was not the case
for the other multi-copy genes (Figure S9). Two candidate SNPs on the cytochrome P450 are represented
in Figure 5. They showed that C. robusta individuals carried from five to twenty copies of the reference
allele, while C. roulei individuals had one or two copies of the alternate allele. As for the introgressed C.
intestinalis, they were heterozygous with one copy of the C. intestinalis allele and at least ten copies of
the C. robusta allele, while the non-introgressed C. intestinalis individuals were like C. roulei. This pattern
suggests the presence of multiple copies in tandem repeats of the C. robusta allele on cytochrome P450,
which might play a critical role in adaptation, and have favored its introgression into C. intestinalis.

Discussion

We used phased genomes from whole-genome trio sequencing to document the fine-scale genomic
consequences of the human-mediated contact between the invasive C. robusta and the native C.
intestinalis sea squirt species in Europe. A Mediterranean C. roulei population was also whole-genome
sequenced to be used as a non-introgressed control. Despite their high divergence, we have
demonstrated that the introduced and native species still hybridize in their sympatric range, showing a
localized introgression hotspot in the native species. We provided several lines of evidence for a sweep of
a selected allele in C. robusta that adaptively introgressed into C. intestinalis at the hotspot and identified
a tandem repeat variation at the cytochrome P450 locus to be a promising candidate.

Introgression between highly divergent sea squirt genomes
Introgression between highly divergent lineages has been rarely reported, partly because there is a

bias against studying the end of the speciation continuum (Kulmuni et al. 2020). Indeed, the few cases
documenting introgression between divergent species consistently showed that it was rare and localized
to small genomic regions, suggesting that most introgression events were deleterious in the recipient
genome. Moreover, introgression occurred more often in regions depleted in conserved elements and
regions with high recombination rates, consistent with the idea that introgressed tracts escape the effect
of species barriers through recombination (Martin and Jiggins 2017). Examples include drosophila flies
(Turissini and Matute 2017), coccidioides fungi (Maxwell et al. 2019), nine-spined sticklebacks (Yamasaki
et al. 2020), sea snails (Stankowski et al. 2020) or aspen trees (Shang et al. 2020).

In line with these previous studies, we observed limited introgression between the two divergent sea
squirt species in the sympatric range. We tested whether the presence of many short and few very long C.
robusta introgressed tracts in the genome of the sympatric C. intestinalis species could be explained by a
complex history of gene flow between the two species. Therefore, we fitted models that could include
genomic heterogeneities in effective population sizes and migration rates as well as periodic connectivity
between the two species. Despite a firm species boundary with about two-thirds of the genome linked to
species barriers, we found signals of past introgression (in the last ~30 Ky), far preceding their
contemporary contact in Europe. This is in line with the low rates of natural hybridization between the
two species (Bouchemousse et al. 2016c). The past introgression between C. robusta and C. intestinalis is
puzzling given natural transoceanic migration was impossible during glacial periods. The signal of
introgression we detected might come from a ghost (extinct or unsampled) lineage (Tricou et al. 2022)
related to C. robusta that colonized the Altlantic at the previous interglacial and came into contact with C.
intestinalis during the last glacial maximum. Indeed cryptic lineages are often found in the genus Ciona
(Zhan et al. 2010; Mastrototaro et al. 2020) that may prove better candidates for a 30 Ky old introgression
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event. The pattern of high differentiation we observed along the genomes also suggests highly polygenic
barriers that maintain the species boundaries between C. intestinalis and C. robusta (or its relatives). As
species diverged for ~1.5 to 2 million years in strict isolation, they had time to accumulate many barriers
in their genomes, contributing to selection against introgression upon secondary contact.

These inferences were made excluding chromosome 5 to capture the prominent history between the
two species. When including this chromosome, and so the long introgressed tracts in the introgression
hotspot, we found evidence for a much more recent introgression event dated 200 years ago. This
estimate was then refined using a recombination clock and the introgressed tract length distribution. We
found that the contemporary introgression event may have occurred about 75 years ago, consistent, this
time, with the human-induced introduction of C. robusta in the English Channel (Bouchemousse et al.
2016a; Nydam and Harrison 2011).

Is there an adaptive breakthrough on chromosome 5?
On top of the many short introgressed tracts (average length of 2.6 Kb) widespread in the C.

intestinalis genome and mostly segregating at a low frequency, we observed a very localized introgression
signal between 700 Kb and 1.5 Mb on chromosome 5. This hotspot of introgression harbored very long
introgression tracts (maximal length of 156 Kb) that were more frequent than the baseline introgression
level. This pattern contrasts with the tract length distribution observed in a secondary contact between
two divergent Drosophila fly species that diverged 3 My ago (Turissini and Matute 2017). Introgression
produced mostly small tracts (1 to 2.5 Kb on average), but the longest tracts were only 7.5 to 10 Kb long,
ten times smaller than what was observed in the sea squirt hotspot. The situation in sea squirts
resembles more the introgression pattern between two fungi species that diverged 5 My ago (Maxwell et
al. 2019). Most introgression tracts were 3 to 4 Kb long on average and segregated at low frequency, but
there was a long tail of longer tracts (maximal length of 100 Kb), some of them being found in high
frequency within species.

Adaptive introgressed alleles are expected to increase in frequency in the recipient population.
However, alleles might also increase in frequency simply due to allele surfing at the front wave of a range
expansion (Klopfstein et al. 2006). In our study, we only sampled populations in the English Channel (Aber
and Brest), but Le Moan et al. (2021) demonstrated that the introgression hotspot was present in multiple
localities (10 of 18) across the contact zone (Bay of Biscay, Iroise Sea and the English Channel). The
populations we sampled in Aber and Brest were among the most introgressed, together with populations
in the western UK coastline. However, there was no evidence for a wave of introgression in line with
geography: the distribution of introgressed tracts was a geographic mosaic, likely due to human-mediated
transportation (Le Moan et al. 2021).

Furthermore, the introgression of genomic tracts across a species barrier is highly random at short
time scales. Therefore, one expects a large variance in the tract length distribution under neutral
admixture (Sachdeva and Barton 2018). Observing long haplotypes at intermediate frequency could thus
be explained with purely neutral processes, especially if the hotspot corresponds to a region of reduced
recombination (duplicated repeats may be an underestimated way to arrest recombination locally in the
genomes, e.g., Kim et al. 2022). Still, the singularity of such a region found in the genome of sympatric C.
intestinalis individuals seems difficult to explain without invoking some sort of selection. We identified
signals of selection based on haplotype variations in the flanking regions of the most introgressed alleles
(Sabeti et al. 2002; Staubach et al. 2012). Indeed, the introgression hotspot is characterized by unusually
long-range LD in the introgressed C. intestinalis population. The genealogy at the hotspot shows that the
haplotypes sampled in C. intestinalis cluster together with the start-like clade of the C. robusta
haplotypes. This indicates that a recent selective sweep occurred in the C. robusta population, leading to
the fixation of a beneficial allele, which then introgressed into the sympatric C. intestinalis populations.
This scenario was supported using an independent method based on polarized SNPs (Setter et al. 2020;
Szpiech et al. 2021).

Nevertheless, we cannot claim yet that the hotspot on chromosome 5 contains alleles that were
adaptively introgressed sensu stricto. Indeed, the introgression is not fixed in the studied C. intestinalis
population (maximal frequency of 0.31), nor in other distant localities of the contact zone included in Le
Moan et al. (2021). Le Moan et al. (2021) suggested that the maintenance of polymorphism at these
alleles could be explained with some sort of balancing selection: if the introgressed tracts are under
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overdominance or frequency-dependent selection, and suffer a fitness reduction when frequent and
homozygous in a foreign genetic background. Therefore, an incomplete sweep aligns with balancing
selection acting on the introgressed alleles (e.g., humans and neanderthals: Sams et al. 2016). In addition,
this pattern is also expected if admixture is very recent, typically when it has been human-mediated, as
then allele replacement may still be ongoing in the recipient population. For example, this may be the
case in honeybees where a haplotype of European ancestry, implicated in reproductive traits and
foraging, was found at high frequency, but not fixed, in Africanized honeybees (Nelson et al. 2017),
confirmed in Calfee et al. (2020). Incomplete introgression in a single region has also been documented in
cotton bollworm, where an insecticide resistance allele at a cytochrome P450 gene increased in frequency
after introducing an invasive congener carrying the adaptation (Valencia-Montoya et al. 2020).

A usual suspect: cytochrome P450
In the middle of the introgression hotspot, we identified a region with high coverage that we could

not analyze using called genotypes (from 1,009,000 to 1,055,000 bp). Therefore, we examined the read
depth at candidate SNPs in this genomic region to identify further variants introgressing at a high
frequency. This analysis pinpointed 28 candidate SNPs, of which one in a non-coding region was at a high
frequency (0.85), but its overall low read depth calls for caution. The second most introgressed SNPs
(n=16) were located on the cytochrome P450 family 2 subfamily U gene, and all showed the same
introgression pattern with a frequency of 0.35. Strikingly, the C. robusta alleles had a read depth pattern
consistent with them being multi-copy (5 to 20 copies), while this was not the case for the C. intestinalis
alleles sampled in the non-introgressed individuals.

These candidate variants could potentially be involved in adaptation. Notably, the cytochrome P450
gene is an exciting candidate. It belongs to a large gene class of oxidase enzymes responsible for the
biotransformation of small endogenous molecules, detoxifying exogenous compounds, and it is involved
in regulating the circadian rhythm. Cytochrome P450 family 2 is the largest and most diverse CYP family in
vertebrates, and the U and R subfamilies were present in the vertebrate ancestor (Nelson 1998). A recent
study experimentally showed that the candidate gene we identified here (cytochrome P450 2U) is
involved in the inflammatory response in C. robusta (Vizzini et al. 2021). Although this phenotype
indicates resistance toward toxic substances, future functional study of potential fitness differences
between the tandem repeat C. robusta allele and the single copy C. intestinalis allele will be needed to
determine what adaptive role these alleles play. Note, however, that if the tandem-repeat variant
provides adaptation to pollution in harbors, this would result in local selection and explain the absence of
fixation (the native alleles being fitter in wild habitats), as discussed above.

At a larger phylogenetic scale, resistance genes were identified as gene families enriched in adaptive
introgressions (Moran et al. 2021). Notably, human-induced selection such as insecticide exposure drives
strong and rapid development of resistance. In that context, gene amplification of detoxification enzymes
is a crucial feature for adaptation as it increases the number of functional enzymes and/or allows
neofunctionalization of the new copies. There are many examples of such processes involving
cytochromes P450 in insects. Insecticide resistance is due to gene amplification that produces
over-expression of the cytochrome P450 gene in the aphid Myzus persicae (neonicotinoids resistance,
Puinean et al. 2010), Drosophila melanogaster (DDT resistance, Schmidt et al. 2010), Anopheles funestus
(pyrethroid resistance, Wondji et al. 2009), and Anopheles coluzzii (ITN resistance, Main et al. 2018).
Neonicotinoids resistance due to neofunctionalization of a duplicated cytochrome P450 was
demonstrated in the brown planthopper, Nilaparvata lugens (Zimmer et al. 2018). Another example of
high copy numbers of cytochrome P450 conferring insecticide resistance was found in the moth
Spodoptera frugiperda (Yainna et al. 2021). In contrast, resistance against pyrethroid in the moth
Helicoverpa armigera and introgressed Helicoverpa zea was due to a chimeric cytochrome P450 gene
resulting from recombination between two copies in tandem (Valencia-Montoya et al. 2020).

Even though we are not yet at the step of functionally characterizing the cytochrome P450 candidate
gene, we highlighted in this work the critical role of biological invasions in driving adaptive introgression
across species boundaries. Our work also illustrates that phased genomes offer the opportunity to detect
introgression signals between divergent species, even when they are rare and localized in the genome.
Genomically localized introgression breakthroughs are still an understudied pattern that recent genomic
surveys have only begun to unravel.
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