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Abstract
With the advent of high throughput sequencing, the amount of genomic data available for animals
(Metazoa) species has bloomed over the last decade, especially from transcriptomes due to lower se-
quencing costs and easier assembling process compared to genomes. Transcriptomic data sets have
proven useful for phylogenomic studies, such as inference of phylogenetic interrelationships (e.g.,
species tree reconstruction) and comparative genomics analyses (e.g., gene repertoire evolutionary
dynamics). However, these data sets are often analyzed following different analytical pipelines, partic-
ularly including different software versions, leading to potential methodological biases when analyzed
jointly in a comparative framework. Moreover, these analyses are computationally expensive and not
affordable for a large part of the scientific community. More importantly, assembled transcriptomes
are usually not deposited in public databases. Furthermore, the quality of these data sets is hardly
ever taken into consideration, potentially impacting subsequent analyses such as orthology and phy-
logenetic or gene repertoire evolution inference. To alleviate these issues, we present Metazoan As-
semblies from Transcriptomic Ensembles (MATEdb), a curated database of 335 high-quality transcrip-
tome assemblies from different animal phyla analyzed following the same pipeline. The repository is
composed, for each species, of (1) a de novo transcriptome assembly, (2) its candidate coding regions
within transcripts (both at the level of nucleotide and amino acid sequences), (3) the coding regions
filtered using their contamination profile (i.e., only metazoan content), (4) the longest isoform of the
amino acid candidate coding regions, (5) the gene content completeness score as assessed against
the BUSCO database, and (6) an orthology-based gene annotation. We complement the repository
with gene annotations from high-quality genomes, which are often not straightforward to obtain from
individual sequencing projects, totalling 423 high-quality genomic and transcriptomic data sets. We
invite the community to provide suggestions for new data sets and new annotation features to be in-
cluded in subsequent versions, that will be analyzed following the same pipeline and be permanently
stored in public repositories. We believe that MATEdb will accelerate research on animal phyloge-
nomics while saving thousands of hours of computational work in a plea for open and collaborative
science.
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Introduction 

Phylotranscriptomics and the quest for resolving the Animal Tree of Life 
With the advent of high throughput sequencing techniques, genomic approaches to phylogenetics, 

and more specifically analyses based on transcriptomic data (commonly referred to as 
phylotranscriptomics), are quickly replacing single or few-gene approaches, enabling an in-depth 
phylogenetic interrogation of multiple lineages at an unprecedented level in a reliable manner (Cheon, 
Zhang, and Park 2020). Since the cost of sequencing and assembling transcriptomes is still much lower 
compared to genomes, this source of genomic data has been extensively exploited with the goal of 
accessing thousands of molecular markers that can be leveraged to explore phylogenetic 
interrelationships. For example, the inference of phylogenetic relationships based on a handful of genes 
has historically failed to provide enough resolution to illuminate animal interrelationships at both deep and 
shallow levels in many metazoan lineages. Conversely, phylotranscriptomic approaches have been 
successfully used to explore phylogenetic relationships within phyla in multiple animal lineages such as 
arthropods (Schwentner et al. 2017; Fernández et al. 2018; Lozano-Fernandez et al. 2019), annelids (Novo 
et al. 2016; Erséus et al. 2020), molluscs (Kocot et al. 2011; Zapata et al. 2014), echinoderms (Mongiardino 
Koch et al. 2018) or nematodes (Smythe, Holovachov, and Kocot 2019), among others. In addition, these 
approaches have also served to advance our understanding of the deepest relationships of the Animal Tree 
of Life (Laumer et al. 2019). 
 
Leveraging transcriptomes to interrogate gene repertoire evolution across animal lineages 

The plethora of transcriptomic datasets available in public databases can potentially be harnessed not 
only to understand phylogenetic interrelationships but also to investigate the dynamics of gene repertoire 
evolution. However, its immediate use would require effective data mining and integration. More 
specifically, since most genes are expressed basally in most tissues (Ramsköld et al. 2009; Gu et al. 2022), 
transcriptomic data from a species can be used as a proxy of its proteome. The combination and joint 
analysis of data from several species allows the interrogation of the dynamics of gene family evolution at 
macroevolutionary scales. This approach has been followed to investigate evolutionary dynamics in 
complex gene families in clades such as land plants (Geng et al. 2021), insects (Thoma et al. 2019) or 
molluscs (De Oliveira et al. 2016), and has also been leveraged to investigate macroevolutionary patterns 
of gene gain and loss across animal phyla (De Oliveira et al. 2016; Fernández and Gabaldón 2020).  

Unique among related databases, we present here Metazoan Assemblies from Transcriptomic 
Ensembles (MATEdb v1), a continuously updated and curated database of hundreds of high-quality 
transcriptome assemblies from different animal phyla. The database included both retrieved raw 
transcriptomic data from public databases and datasets generated by us. We performed a de novo 
transcriptome assembly and after a quality filtering process, we evaluated the integrity score of the gene 
content against the scores of the BUSCO database. We complement the repository with high-quality 
genome gene annotations, which are often not readily available from sequencing projects. We provide 
orthology-based gene annotations for all datasets as well. The main differences between MATEdb and 
other databases (e.g., MolluscDB, Liu et al. 2021)  are as follows: (i) the datasets included in MATEdb are 
all high quality (i.e. high BUSCO completeness). This is key to minimize biases during downstream analyses 
such as orthology inference or gene repertoire evolution studies; (ii) all datasets in MATEdb have been 
analyzed with the exact same pipeline. This is to our belief one of the most valuable features of our 
resource, since different versions of the same software (e.g. Trinity) change substantially (e.g. in our 
experience the number of ‘genes’ inferred with Trinity may vary up to one order of magnitude depending 
on the version); (iii) MATEdb pays more attention to lineage representation than to the total number of 
datasets included, i.e. we prioritize the inclusion of the main lineages within each phyla over the number 
of species included. We believe that MATEdb is a valuable resource that will promote and accelerate 
research on animal evolutionary studies while saving thousands of hours of computational work in a call 
for open and collaborative science. 
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Methods 

Taxonomic coverage 
Our goal is to provide a comprehensive data repository of high quality genomic and transcriptomic 

spanning all animal phyla with emphasis in a good representation of the main lineages within each phylum. 
We intend this manuscript to be the core of the database and the general description, and aim at updating 
it with new versions expanding to other animal phyla in the near future. The first version of MATEdb (v1) 
includes arthropods and molluscs. Taxon sampling is represented in Figure 1 and Table S1 (these files will 
be updated for the subsequent versions of the database). Taxon sampling was based on dataset availability 
in public repositories while maximizing taxonomic representation at the order and family level over closely 
related species. The wet lab protocol for newly generated data is described in Suppl. File S1 (in folder 
‘Protocols’). 
 

 
 
Figure 1. Taxonomic representation of taxa included in MATEdb v1. Taxonomic rank (e.g., phylum, class, 

etc.), data type (i.e., genome or transcriptome), BUSCO score for the longest isoform datasets and 
proteome size is shown in the outer rings. 

 
Analytical pipeline 

The analytical pipeline followed is depicted in Figure 2. In brief, the main steps were as follows: (1) 
raw data were downloaded from public repositories (most of them from the Sequence Read Archive (SRA) 
in NCBI); (2) adapters and low-quality reads were trimmed; (3) filtered raw reads were de novo assembled; 
(4) assembly completeness was explored based on the percentage of metazoan single-copy genes 
recovered; (5) Open Reading Frames (ORFs) were inferred from the assemblies; (6) ORFs were 
decontaminated (e.g., filtering out non-metazoan ORFs); (7) the longest isoform per gene (sensu Trinity) 
was parsed, which can be directly used as the input for phylogenomic studies. Further details about the 
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software versions and parameters implemented throughout the pipeline are shown in Figure 2 (see also 
Table S2). 
 
 

 
Figure 2. Pipeline followed to generate the MATEdb database. All steps are discussed in detail below. 

 
Compilation of transcriptomic data ensembles  

RNA-seq raw data for the selected samples (accession numbers are available as Supplementary 
Material, Table S1) were retrieved from SRA (Leinonen et al. 2011) by using the fastq-dump program of the 
SRA Toolkit v.2.10.7 (http://ncbi.github.io/sra-tools/). Paired-end sequences were preferably chosen over 
single reads when possible. Moreover, raw data published in MolluscDB (Liu et al. 2021 and Caurcel et al. 
2021) repositories were manually downloaded. 

For the projects in which transcriptome data sequencing was not extracted from the whole specimen 
but on specific tissues, a pool was created to combine all raw data referred to the same organism and the 
same project. Each accession was independently downloaded, although they were considered a unique 
data set for the rest of the analyses. 
 
Compilation of genomic data 

Coding DNA Sequences (CDS) and proteome files including all predicted proteins within genome 
assembly were downloaded from the different data repositories referenced in Supplementary Material, 
Table S1. 

Transcriptome assembly processing 

Downloaded sequenced reads were checked for quality using package fastp v.0.20.0 
(https://github.com/OpenGene/fastp; Chen et al. 2018) by trimming adapters and primers, filtering reads 
with phred quality <Q5, and filtering reads with N base number >5. De novo assembly of clean data was 
constructed using Trinity v2.11 (Grabherr et al. 2011) with default parameters. After Trinity execution, all 
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headers in resultant assemblies were normalized by adding custom unique code plus gene and isoform 
identifiers for each sequence (see Supplementary Material, Table S2). For the cases in which 
transcriptomes consisted of a pool of libraries belonging to a single specimen, each of the datasets was 
trimmed independently and then merged together during the assembly process with Trinity.  

We assessed the quality of assembled transcriptomes using completeness scores of BUSCO v4.1.4 
(Manni et al. 2021) with the metazoa_db10 (for molluscs) and the arthropoda_db10 (for arthropods). 
BUSCO software employs sets of benchmarking universal single-copy orthologs from OrthoDB 
(www.orthodb.org; accessed on 10 February 2021) to provide quantitative measures of the completeness 
of genomic assemblies in terms of expected gene content.  

Transcriptome assemblies with a gene completeness percentage (considering the sum of both 
complete and fragmented genes) higher than 85% were retained. As an exception to this, there are some 
transcriptome assemblies which have been included despite their low BUSCO score due to their taxonomic 
relevance (e.g., they were the only representatives of their lineage, such as in the case of Remipedia). In 
any case, the lowest threshold for BUSCO scores allowed in MATEdb was ca. 70%. 

Candidate coding regions were predicted on assemblies, using TransDecoder v5.5.0 
(https://github.com/TransDecoder/TransDecoder) in two different steps aiming to improve the reliability 
of the prediction. First, all ORFs with a minimum length of 100 amino acids were extracted with the 
TransDecoder.LongOrfs module. Then, 25% of the total number of previously predicted ORF was computed 
and used as input to train the Markov Model behind the TransDecoder.Predict module, which resulted in 
a more accurate output than the one done with the default settings. For further details see Supplementary 
Material, Table S2. 

Contaminant sequences present in the transcriptome assemblies were filtered out based on 
BlobTools2 analysis (Challis et al. 2020). First, assemblies were subjected to a Diamond (Buchfink, Xie, and 
Huson 2015) BLASTP search (--sensitive --max-target-seqs 1 --evalue 1e-10) against the NCBI non-
redundant (NCBI NR) protein sequence database (http://www.ncbi.nlm.nih.gov/). Contigs that were 
classified as bacterial, plant, or fungal sequences were removed from the assembly. All commands needed 
during the decontamination process with BlobTools were applied through the execution of several custom 
scripts (“blobtools.sh” and “extract_phyla_for_blobtools.py”), included in the Github repository. 

Finally, the longest ORFs of each transcript were retained as final candidate coding regions for further 
analyses. This step was performed by applying a modified version of the python script 
“choose_longest_iso.py” from (Fernández et al. 2014) to adapt to the new Trinity headers, also included in 
the Github repository (“fetch_longest_iso.py”).  
Genome data processing 

We downloaded the predicted proteome for published genomes mostly from the NCBI genome library 
(https://www.ncbi.nlm.nih.gov/genome/). Then, gene completeness was assessed using BUSCO in protein 
mode. As it was established for transcriptome assemblies, only those proteome assemblies with BUSCO 
completeness score higher than 85% (complete plus fragmented percentages). In addition, we carried out 
a filtering step to keep the longest isoform of each gene using a custom script similar to that used with 
transcriptomes filtering (“remove_isoforms_proteome.sh”). This script takes the annotation file as a 
reference to create the new Trinity-like headers and finally returns the filtered proteome file. For further 
details on scripts, please check the Github repository. 
 
Functional annotation of gene repertoire 

The longest isoform gene list for each dataset was annotated with eggNOG-mapper v2 (Cantalapiedra 
et al. 2021). This permits a higher precision than traditional homology searches (i.e. BLAST searches), as it 
avoids transferring annotations from close paralogs (duplicate genes with a higher chance of being involved 
in functional divergence). 

 

Database availability 
 
Scripts and commands 

The scripts and commands used for every step and the supplementary Tables S1 and S2 are publicly 
available in the following repository: https://github.com/MetazoaPhylogenomicsLab/MATEdb 
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Files deposited in the repository 
The data repository is composed of (1) a de novo transcriptome assembly, (2) its candidate coding 

regions within transcripts (both at the level of nucleotide and amino acid sequences), (3) the coding regions 
filtered using their contamination profile (i.e., only metazoan content), (4) the longest isoform of the amino 
acid candidate coding regions, (5) the gene content completeness score as assessed against the BUSCO 
database, and (6) an orthology-based gene annotation. We complement the repository with genome 
annotations from high-quality genomes that are often not straightforward to obtain from the sequencing 
projects (in the case of genomes, only files (4), (5) and (6) are provided in MATEdb). 
 
Software availability 

We provide a Docker container for easy deployment of the tools used to generate the files in the 
database with the appropriate software versions along with their dependencies 
(https://hub.docker.com/repository/docker/vargaschavezc/matedb). The software included is the 
following: SRA Toolkit version 2.10.7, fastp version 0.20.1, Trinity version 2.11.0, BUSCO version 4.1.4, 
TransDecoder version 5.5.0, Diamond 2.0.8, BlobTools 2.3.3 and eggNOG-mapper 2.1.6.   
 

Author contribution 

This database is the result of the collaborative effort of lab members from the Metazoa 
Phylogenomics Lab to offer the scientific community the possibility to reuse some of the data generated 
for their individual projects. VT, CSG, JL-F, GIMR, PBG, LA and KE contributed assemblies to the data 
repository. Author order is based on the overall contribution to the database, with female lab members 
listed first in case of similar contributions. GIMR created the pipeline custom scripts for the genome data 
analyses and designed the MATEdb logo. CVC and RF contributed to the creation and management of the 
database. CVC created and curated the Github repository and prepared the Docker container. RF provided 
resources and wrote the first version of the manuscript. All authors contributed to the writing and 
approved the manuscript. 
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