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Abstract
1. Mutation, the source of genetic diversity, is the raw material of evolution; however,
the mutation process remains understudied, especially in plants. Using both a simulation
and reanalysis framework, we set out to explore and demonstrate the improved perfor-
mance of variant callers developed for cancer research compared to single nucleotide
polymorphism (SNP) callers in detecting de novo somatic mutations.
2. In an in silico experiment, we generated Illumina-like sequence reads spiked with
simulated mutations at different allelic fractions to compare the performance of seven
commonly-used variant callers to recall them. More empirically, we then reanalyzed
two of the largest datasets available for plants, both developed for identifying within-
individual variation in long-lived pedunculate oaks.
3. Based on thein silico experiment, variant callers developed for cancer research outper-
form SNP callers regarding plantmutation recall and precision, especially at low allele fre-
quency. Such variants at low allelic fractions are typically expected for within-individual
de novo plant mutations, which initially appear in single cells. Reanalysis of published
oak data with Strelka2, the best-performing caller based on our simulations, identified
up to 3.4x more candidate somatic mutations than reported in the original studies.
4. Our results advocate the use of cancer research callers to boost de novo mutation
research in plants, and to reconcile empirical reports with theoretical expectations.
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Introduction 

DNA sequence mutation is the raw material for evolutionary change, but, despite its crucial role, many 
fundamental questions around the mutation process are still open. Notwithstanding its apparent 
simplicity, the understanding of mutation processes is one of the most common conceptual difficulties for 
biologists (Smith & Knight, 2012; Prevost et al., 2013). Mutations are often assumed to occur at a relatively 
constant pace (i.e. following the hypothesis of a 'perfect' molecular clock). Despite the extremely low 
number of direct mutation rates estimates currently available in the literature, mutation rates are, 
however, known to be highly variable across the tree of life, differing by several orders of magnitude among 
species and kingdoms, and are considered as an evolvable trait per se Lynch et al., (2016). In mammals, the 
somatic mutation rate varies directly with life span (Cagan et al., 2022). Mutations are assumed to be 
random, but the rate at which different nucleotides mutate strongly depends on the genomic context, in 
particular the surrounding nucleotides (Martincorena & Campbell, 2015), hereafter referred to as a 
mutation spectrum. The mutation spectra themselves are now believed to evolve over time (Milholland  et 
al., 2017), even at relatively short evolutionary timescales (Harris & Pritchard, 2017). The relative 
contribution of DNA replication and DNA repair errors to mutation rates represents another timely 
evolutionary question in the field (Gao et al., 2019). 

Unlike most animals that transmit to the next generation only mutations present in their germ cells (i.e. 
sperm and eggs), plants are expected to produce heritable somatic mutations as they grow throughout 
their lives, departing from the so-called Weismann's germ plasm theory (Weismann, 1893; but see also 
Lanfear, 2018). As a consequence, long-lived species, such as trees, are generally assumed to accumulate 
more heritable mutations than short-lived species per generation (Hanlon et al., 2019). To generate new 
knowledge on plant mutation processes (Schoen & Schultz, 2019), several studies examined within-
individual variation in long-lived trees, whose individuals can live for more than a thousand years 
(Schöngart et al., 2017). Two studies used the pedunculate oak (Quercus robur), a long-lived diploid and 
highly heterozygous European tree species, as a plant model to identify somatic mutations. Schmid-Siegert 
et al., (2017) identified 17 mutations by comparing sequencing data from two branches of a 234-year-old 
individual. The authors therefore argued that their results are consistent with a low mutation rate in 
pedunculate oak. Plomion et al., (2018) identified 46 mutations using three branches of a younger century-
old individual, which is an almost 10-fold higher rate after taking the tree age difference into account. 
Plomion et al., (2018) also recovered these new mutations on acorn embryos collected on the same 
branches as those used for the de novo mutation identification, therefore producing empirical support for 
departure from Weismann's germ plasm theory in oaks. A shared limitation of both studies is that the 
authors used a single variant caller for de novo mutation detection, without investigating beforehand the 
robustness of the results from the selected variant caller. The absence of a simulation work to identify the 
best suited detection method prior to the empirical investigations therefore represents a major limit with 
regards to the accuracy and completeness of the previously reported de novo mutations. 

Variant callers are designed each for a specific purpose, with choices made by the developer on 
sequence read filtering, and models and thresholds of sensitivity for the output of variants. Broadly, we 
can distinguish 1. Single nucleotide polymorphism (SNP) callers designed to detect heterozygous sites, i.e. 
sites with an expected allelic fractions of 0.5 in the analysed sample, and 2. Cancer callers, designed to 
detect sites that are mutated in a fraction of mutated cells in a sample, i.e. with expected allelic fraction  
≤0.5. When used to detect mutations, SNP callers primarily detect candidate mutations per sample against 
the reference genome and validate mutation robustness by comparing results between sample pairs (Fig. 
1). The per-sample strategy used in SNP callers carries the risk of overlooking low-frequency mutated reads 
in one or more samples, which risks invalidating the mutation in the other sample. To better address the 
specificities of detecting low frequency mutations, the development of tools to detect mutations in humans 
is rapidly expanding in cancer research (Kim et al., 2018; Alioto et al., 2015), where cancer callers identify 
mutations by comparing two samples, one mutated and one normal sample, against the reference genome 
(Fig. 1). Detecting mutations in cancers is conceptually similar to detecting somatic mutations in plants, 
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i.e., the aim is to detect mutations that potentially affect only a small fraction of the sequenced tissue. 
However, cancer research frequently uses very high sequencing depths (100X - 1000X), while the depth 
available for plants is often considerably lower (e.g., 34X for Hanlon et al., 2019; 40X for Wang et al., 2018; 
or 70X for Schmid-Siegert et al., 2017), bar a few exceptions (240X for Orr et al., 2019; 250X for Plomion et 
al., 2018; or 1000X for Watson et al., 2016). Despite the advantage of cancer callers to identify mutations, 
the specific challenge of detecting low frequency mutations is so far poorly addressed in plants, where SNP 
callers have been the most frequently used method to detect somatic mutations (Schmid-Siegert et al., 
2017; Watson et al., 2016; Hanlon et al., 2019; Orr et al., 2019). To demonstrate the advantages of using 
cancer callers in somatic mutation detection for basic and applied plant research, we evaluated the 
performance of the cancer callers compared to SNP callers using biological characteristics and sequencing 
depth typical of plant studies. 

Here, we performed both an in silico and an empirical data-based evaluation of the performance of 
variant callers to detect somatic mutations, using simulated reads with known mutations and two large 
published datasets on the same species (pedunculate oak, Quercus robur) that applied different strategies 
for sequencing depth and mutation detection (Schmid-Siegert et al., 2017; Plomion et al., 2018; see Fig. S1 
(Schmitt et al., 2022)). We particularly explored the cancer callers in a plant research context to answer the 
following questions: (1) Can cancer research methods, both in terms of protocols (i.e. sequencing depth) 
and tools (i.e. callers), improve the detection of plant somatic mutations?; and (2) Can reanalyses of within-
individual sequencing data provide new insights regarding plant mutation processes? 

Methods 

Study design 
We developed two workflows: 1) to generate Illumina-like sequencing reads including mutations with 

varying biological and sequencing parameters; and 2) to detect mutations with multiple variant callers (Fig. 
S1). We used singularity containers (Kurtzer et al., 2017) and the snakemake workflow engines (Köster et 
al., 2012) to build automated, highly reproducible (FAIR), and scalable workflows. We then used both 
workflows to test for the best performing variant caller for mutation detection in silico based on biological 
and sequencing parameters. We finally used the identified variant caller to detect mutations in 
pedunculate oak, Quercus robur L., by re-analysing data from two somatic mutation projects on oaks led 
by INRAE Bordeaux, France (Plomion et al., 2018) and the University of Lausanne, Switzerland (Schmid-
Siegert et al., 2017). 

Generation of mutations 
To ensure the feasibility of the project and to limit the computational load, a first step is to subsample 

one or several sequences of user-defined length in the reference genome. The first workflow named 
generateMutations therefore uses a bespoke R script named sample_genome to generate these subsets 
(Schmitt, 2022a). The workflow then takes advantage of the two scripts included in simuG (v1.0.1, Yue & 
Liti, 2019), vcf2model.pl, and simuG.pl, respectively, 1) to build a model of heterozygous sites distribution 
for an haploid reference genome based on a user-defined set of known heterozygous sites in vcf format 
and 2) to build the second reference haploid genome comprising a user-defined number of heterozygous 
sites to accurately represent diploidy. Typically, the user can define a number of heterozygous sites based 
on the product of nucleotide diversity (𝜋) and genome length (L). The workflow then uses a homemade R 
script named generate_mutations to spike randomly the reference genome with a user-defined number of 
de novo mutations which are drawn in a binomial distribution using a user-defined transition/transversion 
ratio (R). Finally, the workflow takes advantage of InSilicoSeq (v1.5.3, Gourlé et al., 2019) defined with the 
model option hiseq to generate datasets of mutated and non-mutated in silico Illumina-like sequencing 
reads with a user-defined sequencing depth (C), sequentially using (1) the reference haploid genome; (2) 
considering reference and alternate allele versions at heterozygous sites, as the workflow was developed 
for a diploid species; and (3) considering, or ignoring, the simulated de novo mutations which all feature 
the same user-defined allelic fraction (AF). 
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Figure 1: SNP callers (top rows) detect candidate mutations per tissue sample (dark green and light 
green) against the reference genome (blue) and validate the robustness of mutations by comparing 

results between sample pairs, while cancer callers identify mutations by comparing two samples, one 
mutated (tissue A, dark green) and one normal (tissue B, light green), against the reference genome 
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(blue). At low sequencing depth (A & E), neither the SNP nor the cancer variant callers detect a low (A) or 
high (E) frequency mutation. At intermediate sequencing depths (B & F), both SNP and cancer callers 

detect high-frequency mutations (F), but cancer callers are expected to be better at detecting low-
frequency mutations than SNP callers (B), which were originally designed to detect the expected high-

frequency heterozygous sites. At high sequencing depths (C & G), both the SNP and cancer callers detect 
high frequency (C) and low frequency (G) mutations. However, with intermediate sequencing depth (D & 
H), a poorly represented heterozygous site in one tissue may remain undetected in that tissue by the SNP 

caller while it may be detected in the second tissue and thus be considered a mutation, resulting in a 
false positive (D). By comparing the two samples together, cancer callers will avoid this error (H). 

Detection of mutations 
The second workflow named detectMutations (Schmitt, 2022b) aims to detect somatic mutations from 

mapped sequencing reads on a genome reference. Paired-end sequencing reads of every library are quality 
checked using FastQC (v0.11.9) before trimming using Trimmomatic (v0.39, Bolger et al., 2014) keeping 
only paired-end reads without adaptors and a phred score above 15 in a sliding window of 4 bases. Reads 
are aligned against the reference per chromosome using BWA mem with the option to mark shorter splits 
(v0.7.17, Li & Durbin, 2009). Alignments are then compressed using Samtools view in CRAM format, sorted 
by coordinates using Samtools sort, and indexed using Samtools index (v1.10, Li et al., 2009). Duplicated 
reads in alignments are marked using GATK MarkDuplicates (v4.2.6.1, Auwera et al., 2013). Finally, the 
workflow uses seven variant callers to detect mutations, including variant callers developed originally for 
SNP calling and variant callers developed initially for cancer research. SNP callers to detect variants 
included GATK HaplotypeCaller with GATK GenotypeGVCFs (Auwera et al., 2013) and freebayes (v1.3.2, 
Garrison & Marth, 2012) using and reporting genotype qualities, without priors on allele balance, with a 
minimum alternate allelic fraction of 0.03, a minimum repeated entropy of 1 and a minimum alternate 
allele count of 2. Cancer callers developed for mutation detection included VarScan (v2.4.3, Koboldt et al., 
2009), Strelka2 (v2.9.10, Kim et al., 2018), MuSE (v0.1.1, Fan et al., 2016), Mutect2 (using a panel of normal 
and without soft clipped bases; within v4.2.6.1; Benjamin et al., 2019), and Somatic Sniper (v1.0.5.0, 
filtering reads with mapping quality less than 25, filtering mutations with quality less than 15 with prior 
probability of a mutation of 0.0001; Larson et al., 2012). Then we only focused on the simulated mutations, 
and therefore excluded from the analyses the known heterozygous sites provided by the user thanks to 
the vcf file for GATK, freebayes, Somatic Sniper, and Strelka2 using BEDTools subtract (v2.29.2, Quinlan & 
Hall, 2010) or directly within the variant caller for Mutect2 and VarScan. 

In silico experiment 
We used the generateMutations workflow to generate 1,000 mutations in the oak genome with varying 

biological and sequencing parameters. To ensure consistency between the in silico experiment and the 
reanalysis of empirical data, we used the reference genome "Qrob_PM1N'' of Quercus robur 3P from 
Bordeaux, ENA accession number PRJEB8388 (Plomion et al., 2018), thus assessing the behaviour of variant 
callers in the same genomic context as used for the empirical work. To reduce the computational load, we 
only generated mutations on the first megabase of the first chromosome of the oak assembly 
("Qrob_Chr01") in order to later focus the detection on this region. To check that the conclusions regarding 
the callers are independent of the considered genomic region, we  ran five independent investigations 
based on randomly selected genome areas of a megabase in length. Our results were highly congruent 
over all our investigations (Pearson's correlations across all callers and all simulations, recall: 0.999, 
precision: 0.947, but see Table S1 for differences among callers). We used known heterozygous sites from 
the reference genome (Plomion et al., 2018) to simulate back ten thousand heterozygous sites (N = 𝜋 x L = 
104, assuming 𝜋 = 0.01 (Plomion et al., 2018) and L = 1 Mb). We used varying values of 
transition/transversion ratio (R = [2, 2.5, 3]), allelic fraction (AF = [0.05, 0.1, 0.25, 0.5]), and sequencing 
depth (C = [25, 50, 100, 150, 200]), resulting in 60 simulated datasets of mutated and associated base reads 
(3R x 4AF x 5C). We then used the detectMutations workflow to detect (recall) spiked mutations with every 
variant caller (Mutect2, freebayes, GATK, Strelka2, VarScan, Somatic Sniper, and MuSe). Using known 
spiked mutations, we assessed the number of true positive (TP), false positive (FP), and false negative (FN) 
for each variant caller to detect mutations and each combination of biological and sequencing parameters. 
We used the resulting confusion matrix to calculate the recall ( #$

#$%&'
) and the precision rates ( #$

#$%&$
). The 
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recall rate represents the ability of the variant caller to detect all mutations, while the precision rate 
represents the ability of the variant caller to not confound other sites with mutations. We finally assessed 
each variant caller to detect mutations using the recall and the precision rates with varying 
transition/transversion ratio (R), allelic fraction (AF), and sequencing depth (C) to identify the best 
performing variant caller based on biological and sequencing parameters. 

Oak data reanalyses 
We re-analyzed publicly available data on pedunculate oak from two projects conducted in Lausanne, 

Switzerland (Schmid-Siegert et al., 2017) and Bordeaux, France (Plomion et al., 2018) (SRA PRJNA327502 
and ENA PRJEB8388, respectively). Sequenced reads of every library were quality checked, trimmed, and 
mapped with the same strategy than previously described for the simulation work, i.e. using FastQC, 
Trimmomatic, and BWA mem. We then used the best-performing variant caller at low coverage and allelic 
fraction based on our in silico investigation, Strelka2, and the variant caller for mutation detection from 
the original publication to compare the results, i.e., GATK with Best Practices for the data from Schmid-
Siegert et al. (2017) and Mutect2 for the data from Plomion et al. (2018). The former comprised 2 libraries 
of medium sequencing depth (60X) representing one lower and one upper branch. The latter comprised 3 
libraries of high sequencing depth (160X) representing 3 branches (lower, mid, and upper). For both data 
sets, we compared each pair of sample points sequentially as the reference library and the potentially 
mutated library to distinguish mutations among branches from heterozygous sites and sequencing errors. 
For the data from Plomion et al. 2018, we further filtered out candidate somatic mutations by using a cross-
validation procedure to keep a coherent temporal pattern among mutations following the original 
publication (Plomion et al., 2018). Contrary to a general expectation and a common view in the field 
(Schmid-Siegert et al., 2017, Orr et al., 2019), detected mutations do not always accumulate following the 
developing plant architecture (Zahradníková et al., 2020; Ren et al., 2021). As a consequence, our cross-
validation represents a conservative strategy for the mutation detection, but it should be noted that this 
strategy could have removed some true somatic mutations.  We used these raw datasets to identify the 
mutations from the original studies after realigning the megabase containing the mutation on the 3P 
genome using BLAT (Kent, 2002). For both datasets, we finally kept candidate mutations with (1) a read 
depth for both the normal and mutated samples between half and two times the mean sequencing depth 
(30-120X and 80-320X for Schmid-Siegert et al., (2017) and Plomion et al., (2018) datasets, respectively), 
(2) an absence of the mutated allele in the normal sample, and (3) a minimum of 10 copies of the mutated 
allele in the mutated sample. In addition, Strelka2 calculates an empirical variant score (EVS) based on a 
supervised random forest classifier trained on data from sequencing runs under various conditions, which 
provides an overall quality score for each variant (Kim et al., 2018). We took advantage of the EVS to define 
a conservative set of candidate mutations for both datasets, hereafter referred to as the EVS datasets. 
Given that the proportion of the genome falling within the sequencing depth boundaries used for the 
detection (i.e. between 50 and 200% of the mean sequencing depth) varies depending on the dataset, we 
weighted the observed number of mutations by the proportion of the genome satisfying the sequencing 
depth criteria to provide a more accurate and comparable estimate of the real total number of mutations. 
Across both empirical studies, the proportion of the genome with 50-200% sequencing depth varies 
between 71 and 87%. 

Results 

To advocate the use of cancer callers in somatic mutation detection for plant research, we simulated 
sequencing data containing new mutations at a given allelic fraction (i.e. fraction of simulated reads per 
genomic position carrying the mutated allele), and using varying depths of sequencing (for variable 
transition/transversion ratios, see Fig S2). We then evaluated the performance of variant callers as a 
function of allelic fraction and sequencing depth. We found marked differences in: (1) the recall, the ability 
to recover the simulated mutations; and (2) the precision, the proportion of true simulated mutations 
among all variants detected. For allelic fractions equal to, or lower than, 0.25, cancer variant callers 
(Strelka2, Mutect2, MuSE, but not Somatic Sniper) outperform SNP callers such as GATK, freebayes, and 
VarScan (Fig. 2 and S3), mainly based on the recall. For allelic fractions over 0.25, all variant callers perform 
similarly well, except for freebayes, which identified many false positives. Over the 80 tested parameter 
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combinations, Strelka2 was the best performing variant caller for various allelic frequencies and 
sequencing depths (in 57/80 simulated datasets, with an average recall of 0.95 for a precision of 0.98, Fig. 
S2-4 and Table S2 and S3) and an excellent computational efficiency (second fastest caller, Fig. S9). 

We further investigated the performance of the best performing variant caller based on our in silico 
experiment, Strelka2, on two empirical datasets on pedunculate oak (Schmid-Siegert et al., 2017; Plomion 
et al., 2018) in comparison to the variant callers used in the original publications, i.e., GATK and Mutect2, 
respectively. Mapping the raw data of  Schmid-Siegert et al., (2017) and Plomion et al., (2018) on the oak 
genome that we used as a mapping reference for our empirical study, we successfully mapped 14 and 60 
of the mutations detected in the original articles, respectively. Across variant callers, we recovered 12 
(86%) and 60 (100%) of these original mutations in our total list of candidate somatic mutations (Fig. 3A), 
strongly supporting the results shown by the two previous studies. However, our analyses were able to 
detect far more candidate mutations than initially reported. The filtering based on sequencing depth 
reduced the proportion of the genome covered with adequate sequencing depth to 72% (assuming 30-
120X) for Schmid-Siegert et al., (2017) and to 84% (assuming 80-320X) for Plomion et al., (2018). Similarly, 
the cross-validation between branches following the plant development (see Materials and Methods for 
details) filtered out 27% of mutations detected for the dataset of Plomion et al., (2018). Using filtering 
based on sequencing depth and mutated allele copies with cross-validation, Strelka2 produced a smaller 
set of candidate mutations than GATK but similar to Mutect2, with an estimated number of mutation 
candidates 2- to 4.3-fold higher than that of the original studies (Fig.  3A). Adding Strelka2 recommended 
filtering based on empirical variant scores (EVS) yielded the most conservative dataset with a 1.5 to 3.4-
fold increase compared to the original number of mutations. Due to lack of access to biological material 
from the original studies, conclusions were drawn from this list of conservative candidate somatic 
mutations (but see discussion regarding validation of mutations). The distribution of allelic fractions of 
detected mutations partly explains differences among detection methods (Fig. 3A), with Strelka2 and 
Mutect2 detecting mutations with lower allelic fractions than the candidate mutations presented in the 
original publications, especially for the Plomion et al., (2018) study that used higher sequencing depths 
allowing the identification of these numerous low frequency mutations. 
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Figure 2: Variant caller performances to identify simulated mutations for varying allelic fractions and 
sequencing depths (see Fig. S5 for all parameter combinations).  The recall is the ability to detect 

(recover) the simulated mutations. The precision is the proportion of simulated mutations among all 
variants detected (i.e. including false positives). Each point represents the averaged mutation recall or 

precision (10 simulations) for increasing allelic fraction and sequencing depth. The shaded area 
represents the variation of recall and precision rates over the 10 replicates computed for all callers, but 
only visible for the precision of Muse, Mutect2, and VarScan. Linetype distinguishes SNP callers (dashed) 

and cancer callers (solid).	

Based on the set of conservative mutations detected by Strelka2 (EVS), we then explored annotations 
and mutation spectra in both datasets (Fig. 3B-C), which have rarely been explored in model plant species 
(but see first evidence based on mutation accumulation lines in Arabidopsis thaliana in Weng et al., 2019) 
and never in the wild. The proportions of mutations found in different genomic regions (e.g. genic, 
intergenic) were highly correlated between both original studies and proportional to the representation of 
the genomic regions, supporting a random distribution of mutations throughout the genome (Fig. 3B). 
Mutation spectra of the two studies are significantly correlated (Pearson’r=0.49, p<10-5), with an 
enrichment in C>T transitions, particularly in some specific genomic contexts (Fig. 3C). 
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Figure 3: Candidate mutation spectra depending on variant callers and filtering in Schmid-Siegert et 
al., (2017) and Plomion et al., (2018). A. Allelic fraction distribution for every dataset, including the 
candidate mutations from the original article present in the raw data from the reanalysis (red), the 

results of GATK with Best Practices (blue), Mutect2 after filtering (green), and Strelka2 after filtering 
(purple), and the results of Strelka2 using the filtering based on empirical variant scores named EVS 

(orange). The labels indicate the number of candidate mutations in each dataset. Per caller comparisons 
are available in Fig. S7. B. Annotation of the mutations detected by Strelka2 across chromosomes using 
the filtering based on empirical variant scores named EVS for Schmid-Siegert et al., (2017, green) and 

Plomion et al., (2018, orange) compared to the genomic expectation (grey, see Supplementary Note S1). 
Error bars represent the standard deviation (SD) of the observed percentages across chromosomes, and 
the annotation above the columns indicates the significance of the Student's t-test two-sided comparing 
the mean percentage of mutations to the mean genomic expectation, with ns, **, and *** corresponding 
to non-significant, p<0.01, and p<0.001 differences, respectively. C. Context-dependent mutation spectra 

depending on mutation types for the results of Strelka2 using the filtering based on empirical variant 
scores named EVS. Mutation types have been summarised into six main classes with thicker lines for 
transversion compared to transition, and then differentiated depending on their 5’ and 3’ genomic 
contexts, see Fig. S8-9. Pearson’s correlation r measures the two-sided correlation of the mutation 
spectra between Schmid-Siegert et al., (2017) and Plomion et al., (2018). All figures compare the 

reanalysed data and not the original results. 

Discussion 

Mutation research in plants still primarily uses SNP callers and methodologies that are not developed 
for the specificity and complexity of within-individual de novo mutation detection. We demonstrated that 
plant mutation research could benefit from the development of tools and protocols initially designed for 
human cancer research, which is a rapidly expanding field (Kim et al., 2018). We quantified expected 
marked differences in the performance of variant callers for mutation detection based on sequencing 
depth and allelic fraction. We demonstrated that cancer callers performed better than SNP callers for 
mutation detection at low or intermediate allelic fraction or with low sequencing depth, and similarly well 
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for high allelic fraction. The overall higher detection efficiency demonstrates the benefit of using tools and 
protocols initially designed for human cancer research. Low allelic fraction mutations, potentially due to 
the chimeric nature of plant shoot apical meristems structures (Burian, 2021), might be very important due 
to their great abundance that may balance out their low chance of transmissions. Therefore, plant 
mutation studies should make greater use of cancer variant callers such as Strelka2 rather than SNP callers 
such as GATK to detect somatic mutations, in agreement with previous studies on germline mutations 
detection (Chen et al., 2019), especially for detecting low frequency mutations and when using low 
sequencing depth. The importance of allele fraction-dependency in variant detection is not restricted to 
somatic mutations, but also concerns for instance polyploid species, which includes many agriculturally 
important autopolyploid plant species (e.g. potato, sugarcane). Our simulation framework therefore 
provides general insights regarding the impact of allele fraction in mutation detection which go beyond 
somatic mutation detection. 

Validation of mutations 
Intuitively, after identifying candidate mutations, one expects their "validation". In our study, it was 

impossible to validate mutations using genotyping or resequencing because we performed a reanalysis of 
already available sequence data, without having access to the biological material. Yet, we argue that 
validation is more complex than generally thought. We specifically discuss (i) allele fraction, (ii) fraction-
aware approach, and (iii) offspring validation. High frequency mutations (e.g. AF=0.5) will be easily 
confirmed by genotyping or Sanger sequencing. But if one considers that low frequency mutations are only 
present in a fraction of the tissue, SNP genotyping technologies are hindered by the complexity of defining 
the genotype clustering while Sanger sequencing is hindered by the difficulty of isolating the allelic assay 
from the background when reading the chromatogram. Therefore, such validation strategies are 
conservative and favour high frequency mutations. To unambiguously validate low-frequency mutations 
using intra-individual samples, an allelic fraction-aware approach can be used, such as a hybridisation 
capture-based sequencing strategy targeting regions of candidate mutations with high-coverage 
sequencing. However, this would mean that the validation is based on another round of sequencing, 
bringing back all the biases of the bioinformatics steps. Another strategy could be genotyping of inherited 
mutations in offspring, working at the family rather than the individual level, which also has its limitations 
(see Note S2). From our point of view, the current literature on somatic mutations in plants does not 
mention the limits of validation, focusing on "fully validated" mutations, thus probably favouring high 
frequency mutations. However, high-frequency mutations are expected to be relatively rare compared to 
low-frequency mutations, which affect conclusions about the total number of somatic mutations. In the 
relatively near future, the use of single cell sequencing approaches to reveal intra-individual genetic 
variation is likely to eliminate the problem at its source, avoiding the use of mixed samples of mutated and 
non-mutated cells, leading to simple detection and validation. 

Limits and future directions 
Our study provided a first simple case of evaluating the performance of callers to detect somatic 

mutations in plants. Our study was limited to variant callers in the cases of mutated and normal sample 
pairs using the recommended default parameters. Future studies should consider and quantify the 
performance of other types of callers, such as subclonal or mosaic variant callers (e.g. deepSNV and 
MosaicForecast). Future studies could also consider exploring tuning parameters for the specific task of 
detecting plant somatic mutations. We hope that the open-source automated, highly reproducible, and 
scalable workflows constructed for our study, generateMutations and detectMutations, will allow further 
exploration of these questions. Our study also overlooked the importance of genome size, as plants can 
have larger genomes than humans. Trees have a very wide range of genome sizes, from small genomes 
(0.35 GB) to very large genomes (>20 GB), and our study focused on the relatively small oak genome (0.75 
GB). A large genome will obviously be a barrier to high sequencing depth with a fixed budget, but with 
regard to mutation detection, our study argues for the use of cancer callers in large genomes as they also 
outperform SNP callers in terms of computational time (Fig. S9). Similarly, our study did not take into 
account the role of polyploidy as we only focused on a diploid species. We assume that for ploidy greater 
than two, the performance of cancer callers relative to SNP callers will increase since the cancer caller will 
be even more efficient at low frequencies. But future studies could also take advantage of our tools to 
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explore the role of polyploidy in caller performance. Another problem that may arise when analysing 
sample pairs with cancer callers is the rapid increase in pairwise comparisons when using a larger sample 
size than previous studies (e.g., N=3 in Plomion et al. 2018). A simple solution is the use of a single reference 
sample such as a cambium sample from the base of the tree, which is therefore considered as the closest 
genome to the seed, to compare it to all samples from branches (Hanlon et al., 2019). 

Conclusion 
By reanalyzing the raw oak data (Schmid-Siegert et al., 2017; Plomion et al., 2018), we found that the 

marked differences in the performance of variant callers could account for the discrepancies in genome-
wide plant somatic mutation rate estimates. Our reanalysis using the best-performing caller based on our 
simulations, Strelka2, suggests an up to 3.4-fold higher number of mutations than previously reported, a 
value closer to the expectations based on the theory (Schoen & Schultz, 2019; Burian, 2021). We argue 
that knowledge and methodological transfers from cancer to plant mutation detection are expected to 
contribute strongly to the upward trend of  this field and to reconcile empirical reports with theoretical 
expectations. 

Acknowledgements 

The manuscript benefited from the comments of Nicolas Bierne and five anonymous reviewers. 
Preprint version 4 of this article has been peer-reviewed and recommended by Peer Community In 
Genomics (https://doi.org/10.24072/pci.genomics.100024). 

Data, scripts, code, and supplementary information availability 

Reanalyzed reads and corresponding genomes were extracted from GenBank under accession 
BioProject PRJNA327502 and from European Nucleotide Archive under project accession code PRJEB8388. 
generateMutations and detectMutations pipelines are available online: 
https://doi.org/10.5281/zenodo.7274868 and https://doi.org/10.5281/zenodo.7274872. Supplementary 
materials are available online: https://doi.org/10.5281/zenodo.7274948. 

The following Supporting Information is available for this article: 
 
Note S1. Genomic expectations for the annotation of the mutations 
Note S2. ‘Validation’ of mutations in offsprings 
Fig. S1. Study scheme 
Fig. S2. Variation in the performance of variant callers for mutation detection with varying biological 

and sequencing parameters 
Fig. S3. Variation in the performance of variant callers for mutation detection with varying biological 

and sequencing parameters 
Fig. S4. Best performing variant callers for mutation detection depending on allelic fraction (allelic 

fraction) and coverage (sequencing depth) 
Fig. S5. Mutation recall and precision rates for SNP and cancer variant callers by allelic fraction and 

sequencing depth 
Fig. S6. Observed allelic frequencies of candidate mutations depending on variant callers and filtering 

in Schmid-Siegert et al., (2017) and Plomion et al., (2018) 
Fig. S7. Percentage of nucleotide change types of candidate mutations depending on variant callers and 

filtering in Schmid-Siegert et al., (2017) and Plomion et al., (2018) 
Fig. S8. Context-dependent mutation spectrum depending on variant callers and filtering in Schmid-

Siegert et al., (2017) and Plomion et al., (2018) 
Tab. S1. Mean and standard deviation in performance of variant callers for mutation detection across 

all simulations 
Tab S2. Mean and standard deviation in performance of variant callers for mutation detection with 

varying allelic fraction and sequencing depth 

Sylvain Schmitt et al. 11

Peer Community Journal, Vol. 2 (2022), article e68 https://doi.org/10.24072/pcjournal.187

https://doi.org/10.24072/pcjournal.187


Conflict of interest disclosure 

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in 
relation to the content of the article. The authors declare they have no conflict of interest relating to the 
content of this article. MH is a recommender for PCI Evol Biol. 

Funding 

This study was funded through an Investissement d’Avenir grant of the ANR: CEBA (ANR-10-LABEX-
0025). 

Authors’ contributions 

All authors conceived the ideas; SS developed the pipelines, conducted the virtual experiment and the 
data reanalyses; SS analysed outputs and led the writing of the manuscript. All authors contributed critically 
to the drafts and gave final approval for publication. 

References 

Alioto, TS, Buchhalter I, Derdak S, Hutter B, Eldridge MD, Hovig E, Heisler LE, Beck TA, Simpson JT, Tonon L, 
Sertier AS, Patch AM, Jäger N, Ginsbach P, Drews R, Paramasivam N, Kabbe R, Chotewutmontri S, Diessl 
N, Previti C, Schmidt S, Brors B, Feuerbach L, Heinold M, Gröbner S, Korshunov A, Tarpey PS, Butler AP, 
Hinton J, Jones D, Menzies A, Raine K, Shepherd R, Stebbings L, Teague JW, Ribeca P, Giner FC, Beltran 
S, Raineri E, Dabad M, Heath SC, Gut M, Denroche RE, Harding NJ, Yamaguchi TN, Fujimoto A, Nakagawa 
H, Quesada V, Valdés-Mas R, Nakken S, Vodák D, Bower L, Lynch AG, Anderson CL, Waddell N, Pearson 
JV, Grimmond SM, Peto M, Spellman P, He M, Kandoth C, Lee S, Zhang J, Létourneau L, Ma S, Seth S, 
Torrents D, Xi L, Wheeler DA, López-Otín C, Campo E, Campbell PJ, Boutros PC, Puente XS, Gerhard DS, 
Pfister SM, McPherson JD, Hudson TJ, Schlesner M, Lichter P, Eils R, Jones DTW, Gut IG (2015). A 
comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. 
Nature Communications, 6. https://doi.org/10.1038/ncomms10001  

Auwera GA, Carneiro MO, Hartl C, Poplin R, Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, 
Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2018) From FastQ Data to High-
Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in 
Bioinformatics, 43, 483–492. https://doi.org/10.1002/0471250953.bi1110s43  

Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L (2019) Calling Somatic SNVs and Indels 
with Mutect2. bioRxiv. https://doi.org/10.1101/861054  

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. 
Bioinformatics, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 

Burian A (2021) Does Shoot Apical Meristem Function as the Germline in Safeguarding Against Excess of 
Mutations? Frontiers in Plant Science, 12, 1–9. https://doi.org/10.3389/fpls.2021.707740 

Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, … Martincorena I (2022) 
Somatic mutation rates scale with lifespan across mammals. Nature, 604(7906), 517–524. 
https://doi.org/10.1038/s41586-022-04618-z  

Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, 
Sun RX, Dong MQ, He SM (2019) A high-speed search engine pLink 2 with systematic evaluation for 
proteome-scale identification of cross-linked peptides. Nature Communications, 10. 
http://dx.doi.org/10.1038/s41467-019-11337-z  

Fan Y, Xi L, Hughes DST, Zhang J, Zhang J, … Wang W (2016) MuSE: accounting for tumor heterogeneity 
using a sample-specific error model improves sensitivity and specificity in mutation calling from 
sequencing data. Genome biology, 17, 178. http://doi.org/10.1186/s13059-016-1029-6  

Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR, Jorde LB, Amster G, Przeworski M (2019) 
Overlooked roles of DNA damage and maternal age in generating human germline mutations. 

12 Sylvain Schmitt et al.

Peer Community Journal, Vol. 2 (2022), article e68 https://doi.org/10.24072/pcjournal.187

https://doi.org/10.24072/pcjournal.187


Proceedings of the National Academy of Sciences of the United States of America, 116, 9491–9500. 
https://doi.org/10.1073/pnas.1901259116 

Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv, 1–9. 
https://doi.org/10.48550/arXiv.1207.3907  

Gourlé H, Karlsson-Lindsjö O, Hayer J, Bongcam-Rudloff E (2019) Simulating Illumina metagenomic data 
with InSilicoSeq. Bioinformatics, 35, 521–522. https://doi.org/10.1093/bioinformatics/bty630 

Hanlon VCT, Otto SP, Aitken SN (2019)  Somatic mutations substantially increase the per-generation 
mutation rate in the conifer Picea sitchensis. Evolution Letters, 3, 348–358. 
https://doi.org/10.1002/evl3.121 

Harris K, Pritchard JK (2017) Rapid evolution of the human mutation spectrum. eLife, 6, 1–17. 
https://doi.org/10.7554/eLife.24284 

Kent WJ (2002) BLAT—The BLAST-Like Alignment Tool. Genome Research, 12, 656–664. 
https://doi.org/10.1101/gr.229202  

Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X, Kim Y, Beyter D, Krusche P, 
Saunders CT (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nature 
Methods, 15, 591–594. https://doi.org/10.1038/s41592-018-0051-x  

Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L (2009) 
VarScan: Variant detection in massively parallel sequencing of individual and pooled samples. 
Bioinformatics, 25, 2283–2285. https://doi.org/10.1093/bioinformatics/btp373 

Köster J, Rahmann S (2012) Snakemake-a scalable bioinformatics workflow engine. Bioinformatics, 28, 
2520–2522. https://doi.org/10.1093/bioinformatics/bts480 

Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS 
ONE, 12, 1–20. https://doi.org/10.1371/journal.pone.0177459  

Lanfear R (2018) Do plants have a segregated germline? PLoS Biology, 16, 1–13. 
https://doi.org/10.1371/journal.pbio.2005439 

Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L (2012) 
Somaticsniper: Identification of somatic point mutations in whole genome sequencing data. 
Bioinformatics, 28, 311–317. https://doi.org/10.1093/bioinformatics/btr665 

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics, 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The 
Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079. 
https://doi.org/10.1093/bioinformatics/btp352 

Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and 
the evolution of the mutation rate. Nature Reviews Genetics, 17, 704–714. 
http://dx.doi.org/10.1038/nrg.2016.104  

Martincorena I, Campbell PJ (2015). Somatic mutation in cancer and normal cells. Science, 349, 1483–1489. 
https://doi.org/10.1126/science.aab4082  

Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J (2017) Differences between germline and somatic 
mutation rates in humans and mice. Nature Communications, 8, 1–8. 
http://dx.doi.org/10.1038/ncomms15183  

Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L, Bustos-Segura C, Foley W, Haff T, Hsieh JF, Morales-
Suarez A, Cartwright RA, Lanfear R (2020) A phylogenomic approach reveals a low somatic mutation 
rate in a long-lived plant. Proc. R. Soc. B, 287, 20192364-20192364. 
http://doi.org/10.1098/rspb.2019.2364  

Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost 
G, Lesur I, Bartholomé J, Faivre-Rampant P, Kohler A, Leplé JC, Chantret N, Chen J, Diévart A, Alaeitabar 
T, Barbe V, Belser C, Bergès H, Bodénès C, Bogeat-Triboulot MB, Bouffaud ML, Brachi B, Chancerel E, 
Cohen D, Couloux A, Da Silva C, Dossat C, Ehrenmann F, Gaspin C, Grima-Pettenati J, Guichoux E, Hecker 
A, Herrmann S, Hugueney P, Hummel I, Klopp C, Lalanne C, Lascoux M, Lasserre E, Lemainque, A, 
Desprez-Loustau ML, Luyten I, Madoui MA, Mangenot S, Marchal C, Maumus F, Mercier J, Michotey C, 
Panaud O, Picault N, Rouhier N, Rué O, Rustenholz C, Salin F, Soler M, Tarkka M, Velt A, Zanne AE, Martin 
F, Wincker P, Quesneville H, Kremer A, Salse J (2018) Oak genome reveals facets of long lifespan. Nature 
Plants, 4, 440–452. http://dx.doi.org/10.1038/s41477-018-0172-3  

Sylvain Schmitt et al. 13

Peer Community Journal, Vol. 2 (2022), article e68 https://doi.org/10.24072/pcjournal.187

https://doi.org/10.24072/pcjournal.187


Prevost L, Knight J, Smith M, Lurain UM (2013). Student writing reveals their heterogeneous thinking about 
the origin of genetic variation in populations. National Association on Research in Science Teaching. 
https://www.colorado.edu/sei/content/student-writing-reveals-their-heterogeneous-thinking  

Quinlan AR, Hall IM (2010) BEDTools: A flexible suite of utilities for comparing genomic features. 
Bioinformatics, 26, 841–842. https://doi.org/10.1093/bioinformatics/btq033 

Ren Y, He Z, Liu P, Traw B, Sun S, Tian D, Yang S, Jia Y, Wang L (2021) Somatic Mutation Analysis in Salix 
suchowensis Reveals Early-Segregated Cell Lineages. Molecular Biology and Evolution, 38, 5292–5308. 
https://doi.org/10.1093/molbev/msab286  

Schmid-Siegert E, Sarkar N, Iseli C, Calderon S, Gouhier-Darimont C, Chrast J, Cattaneo P, Schütz F, Farinelli 
L, Pagni M, Schneider M, Voumard J, Jaboyedoff M, Fankhauser C, Hardtke CS, Keller L, Pannell JR, 
Reymond A, Robinson-Rechavi M, Xenarios I, Reymond P (2017) Low number of fixed somatic mutations 
in a long-lived oak tree. Nature Plants, 3, 926–929. http://dx.doi.org/10.1038/s41477-017-0066-9 

Schmitt S (2022). generateMutations: singularity & snakemake workflow to generate in silico mutations. 
Zenodo, https://doi.org/10.5281/zenodo.7274868  

Schmitt S (2022). detectMutations: singularity & snakemake workflow to detect mutations with several 
callers. Zenodo, https://doi.org/10.5281/zenodo.7274872  

Schmitt S, Leroy T, Heuertz M, Tysklind T (2022). Supplementary material of Somatic mutation detection: 
a critical evaluation through simulations and reanalyses in oaks. Zenodo, 
https://doi.org/10.5281/zenodo.7274948  

Schoen DJ, Schultz ST (2019) Somatic Mutation and Evolution in Plants. Annual Review of Ecology, 
Evolution, and Systematics, 50, 49–73. https://doi.org/10.1146/annurev-ecolsys-110218-024955 

Schöngart J, Bräuning A, Barbosa ACMC, Lisi CS, Oliveira JM (2017) Dendroecology. Tree-Ring Analyses 
Applied to Ecological Studies. Springer. https://doi.org/10.1007/978-3-319-61669-8 

Smith MK, Knight JK (2012) Using the Genetics Concept Assessment to document persistent conceptual 
difficulties in undergraduate genetics courses. Genetics, 191(1), 21–32. 
https://doi.org/10.1534/genetics.111.137810  

Wang L, Ji Y, Hu Y, Hu H, Jia X, Jiang M, Zhang X, Zhao L, Zhang Y, Jia Y, Qin C, Yu L, Huang J, Yang S, Hurst 
LD, Tian D (2019) The architecture of intra-organism mutation rate variation in plants. PLoS Biology, 17, 
1–29. https://doi.org/10.1371/journal.pbio.3000191 

Watson JM, Platzer A, Kazda A, Akimcheva S, Valuchova S, Nizhynska V, Nordborg M, Riha K (2016) 
Germline replications and somatic mutation accumulation are independent of vegetative life span in 
Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113, 
12226–12231. https://doi.org/10.1073/pnas.1609686113 

Weismann A (1893) The germ-plasm: a theory of heredity. Scribner's. 
http://www.esp.org/books/weismann/germ-plasm/facsimile/ 

Weng ML, Becker C, Hildebrandt J, Neumann M, Rutter MT, Shaw RG, Weigel D, Fenster CB (2019) Fine-
grained analysis of spontaneous mutation spectrum and frequency in arabidopsis thaliana. Genetics, 
211, 703–714. https://doi.org/10.1534/genetics.118.301721 

Yue, J.X. & Liti, G. (2019). SimuG: A general-purpose genome simulator. Bioinformatics, 35, 4442–4444. 
https://doi.org/10.1093/bioinformatics/btz424 

Zahradníková E, Ficek A, Brejová B, Vinař T, Mičieta K (2020) Mosaicism in old trees and its patterns. Trees 
- Structure and Function, 34, 357–370. https://doi.org/10.1007/s00468-019-01921-7  

14 Sylvain Schmitt et al.

Peer Community Journal, Vol. 2 (2022), article e68 https://doi.org/10.24072/pcjournal.187

https://doi.org/10.24072/pcjournal.187

