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Abstract
Deciphering the genetic bases of behavioural traits is essential to understanding how they
evolve and contribute to adaptation and biological diversification, but it remains a substan-
tial challenge, especially for behavioural traits with polygenic architectures. In this study,
we developed a population genomics approach coupled with functional predictions to
address the evolution and genetic basis of olfactory-based assortative mate preferences
in the house mouse, suspected to have evolved as a response to selection against hy-
bridisation. We used whole genome resequencing data and the C2 statistic of the pro-
gram BAYPASS, which contrasts allele frequencies corrected for population structure, to
characterize genetic differentiation between sets of populations with strong contrast in
behaviour (expressing or not assortative mate preferences) and we identified some re-
gions of the genome showing the expected significant and consistent association with be-
havioural divergence. A series of Olfactory and Vomeronasal Receptor genes, among the
most differentiated genomic regions and in line with functional predictions, stand out as
the prime candidates underlying this olfactory-based behavioural divergence. These genes
form large gene clusters in the genome, with two main candidate clusters extending up
to 1.8 Mb. Variant analyses indicate a potential dual role of regulatory and protein-coding
changes in the evolution of choosiness. This study shows that combining expectations on
the genomic patterns of divergence with functional expectations represents a promising
route to unravelling the genetic architecture of complex trait variation and provides novel
insights into the role of olfactory and vomeronasal receptors in mammal adaptation and
speciation.
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Introduction 

The evolution of behaviours plays a fundamental role in biological diversification, adaptation and 
speciation, but it remains a central challenge in biology to understand how behavioural traits evolve and 
the genetic basis of behavioural differences (Arguello and Benton 2017; Niepoth and Bendesky 2020; 
Jourjine and Hoekstra 2021). Behaviours involved in mate choice play a key role during the evolution of 
new species, as they act as premating components of reproductive isolation and may diverge rapidly 
through the action of direct and indirect selective effects (natural selection, sexual selection, reinforcing 
selection ( Servedio and Noor 2003; Smadja and Butlin 2011; Servedio and Boughman 2017; Kopp et al. 
2018; Mendelson and Safran 2021). Some progress has been made, often by using quantitative genetics 
approaches, in characterising genes underlying assortative mate preferences in some biological systems 
(e.g. in Drosophila flies: Laturney & Moehring 2012, Pardy et al. 2021; sticklebacks: Bay et al. 2017; 
Heliconius butterflies: Merrill et al. 2019; European corn borer moths: Unbehend et al. 2021), but they 
represent cases where the genetic basis of behavioural divergence is relatively simple. Determining the 
genetic basis of behavioural divergence for more polygenic traits and identifying the signature of divergent 
selection acting on these underlying genomic regions remain more challenging.  

In this study, we developed a population genomics approach based on the analysis of genetic 
differentiation between sets of populations with contrasted behaviours and selective pressures to address 
the evolution and genetic basis of olfactory-based assortative mate preferences in the house mouse. 
Population genomics has been successful in identifying targets of selection in the genome (Hohenlohe et 
al. 2010; Haasl and Payseur 2016) but its application to characterise the genetics of behavioural divergence 
remains largely unexplored (Kent et al. 2019; Niepoth and Bendesky 2020). With information on phenotype 
divergence among natural populations, on the proximal basis of the behavioural response, and on 
populations where these behaviours should be under selection, the house mouse system provides a 
predictive framework to address the evolution and genetics of behavioural divergence involved in 
reproductive isolation.  

The two European subspecies of the house mouse (Mus musculus musculus and M. m. domesticus) 
diverged in allopatry ~350-500 kya from Central Asia/Middle East regions before coming into secondary 
contact in Europe ~5 kya (Boursot et al. 1996; Geraldes et al. 2011). Some degree of postzygotic isolation 
has been demonstrated in this hybrid zone, mostly in the form of reduced hybrid fertility (Britton-Davidan 
et al. 2005; Albrechtova et al. 2012; Turner et al. 2012). However, the two subspecies also display some 
degree of sexual isolation where they meet and form a hybrid zone: assortative mate preferences 
(accompanied by a propensity to mate with the preferred partner) have been evidenced in both sexes of 
both subspecies, though preference is stronger in M. m. musculus (Smadja and Ganem 2002; Smadja et al. 
2004; Smadja and Ganem 2005; Ganem et al. 2008; Bimova et al. 2011; Latour et al. 2014; Smadja et al. 
2015).  

Several arguments suggest that these assortative mate preferences have evolved under selection, as a 
result of a reinforcement process (Servedio and Noor 2003; Butlin and Smadja 2018). Within each 
subspecies, assortative mate preferences are only displayed in populations from the hybrid zone (‘Choosy’ 
populations) where selection against hybridization is known to act, while populations from allopatry do 
not display any significant directional preferences (‘Non-Choosy’ populations) (Smadja and Ganem 2005; 
Smadja and Ganem 2008; Bimova et al. 2011; Latour et al. 2014; Smadja et al. 2015). This pattern of 
reproductive character displacement suggests a mechanism of reinforcement, by which assortative mate 
preferences would have evolved as an adaptive response to the existing postzygotic barriers in this hybrid 
zone. In this study, we used this information to identify the genes underlying the evolution of assortative 
mate preferences by articulating and testing predictions on the patterns of genomic divergence expected 
for loci experiencing reinforcing selection. One key prediction is that genetic divergence will be significantly 
elevated at loci underlying assortative mate preferences when sympatric (Choosy) and allopatric (Non-
Choosy) individuals of the same species are compared (Garner et al. 2018).  

To identify loci showing this expected pattern of divergence, we leveraged the high-quality reference 
genome available for this species (Waterston et al. 2002), produced whole-genome resequencing data for 
the same individuals and populations that had been behaviourally typed previously (Smadja et al. 2015), 
and finely characterised genomic divergence between Choosy and Non-Choosy populations within M. m. 
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musculus, the subspecies where the contrast in behaviour is the strongest between these two types of 
populations (Smadja et al. 2004; Smadja and Ganem 2005; Ganem et al. 2008; Latour et al. 2014). We opted 
for a pool-sequencing strategy as a cost-effective way to assess genetic differentiation among populations 
with contrasted behaviours (Bastide et al. 2013; Yang et al. 2015), particularly relevant in our case where 
mate preferences are statistically assessed in wild mice at the population level and show limited variability 
among individuals within populations (Smadja et al. 2004; Smadja and Ganem 2005; Smadja et al. 2015). 
To ensure the identification of genetic variants specifically divergent between Choosy and Non-Choosy 
populations, we combined multiple population comparisons (focal and control comparisons between 
groups of populations with or without contrasted behaviours) and a replicated design within each group 
compared. We used the program BAYPASS and its recently implemented C2 contrast statistic to identify 
outlier loci under selection between Choosy and Non-Choosy populations and associated with the 
behavioural contrast (Gautier 2015; Olazcuaga et al. 2021) (Figure 1 and Methods). The Bayesian 
hierarchical model implemented in BAYPASS represents a flexible and powerful framework to carry out 
association analyses and scans for selection since it efficiently accounts for the neutral correlation structure 
among allele frequencies in the sampled populations. In addition, it allows handling properly Pool-Seq data 
and accounts for the additional level of variation they introduce in the estimation of the parameter of 
interest. .  

We applied this combination of population comparisons for two types of outlier analyses at different 
genomic scales: SNP-based differentiation across the whole genome (based on the estimation of SNP-
based C2 contrast statistic), and gene-based differentiation across all annotated genes. While most existing 
statistical methods for detecting outliers focus on analysing SNPs one-by-one, SNP-based analyses may 
have some limitations, among which a loss of power due to stringent correction applied to limit false 
positives in this large number of comparisons (millions of SNPs in a genome) and weak sensitivity to 
detecting multiple causal variants effects. Leveraging methods developed in the context of GWAS in 
humans (Neale and Sham 2004; Huang et al. 2011; Chung et al. 2019), we complemented SNP-based 
analyses with gene-based analyses to gain power in detecting outliers by aggregating disparate signals 
within a gene as well as to make more direct link of the outlier analyses with the phenotype of interest. To 
capture different potential underlying genetic architectures of adaptive divergence (single causal variant 
versus multiple weakly selected variants within a gene), we analysed two commonly used gene-based 
statistics representing the highest SNP-based differentiation value of a gene and the average 
differentiation value of a gene (Wang et al. 2017; Dickson et al. 2020), called respectively C2_max and C2_mean 
in our study.  

Not all differentiated genomic regions between Choosy and Non-Choosy populations are expected to 
be associated with the behavioural trait of interest, since other traits and factors can differ between this 
set of populations. To further interpret genomic patterns of divergence and link phenotypic and genomic 
variation, we therefore combined this population genomics approach with functional expectations (Haasl 
and Payseur 2015; Ravinet et al. 2017; Wolf and Ellegren 2017), by leveraging existing knowledge on the 
implication of olfaction in the expression of these assortative mate preferences in the house mouse. 
Previous behavioural assays and chemical analyses have shown that subspecies recognition and associated 
assortative mate preferences could be driven (at least partly) by olfactory cues present in the mouse urine 
(Smadja and Ganem 2008; Hurst et al. 2017) and that urinary cues are sufficient to elicit mate choice 
between the two subspecies (Smadja and Ganem 2002; Smadja et al. 2004; Smadja and Ganem 2005; 
Ganem et al. 2008; Bimova et al. 2011). The olfactory system thus plays a major role in the expression of 
assortative mate choice between the two subspecies, and we expect some genes involved in odorant 
recognition to be associated with the evolution of sexual isolation in the house mouse hybrid zone. This 
includes Olfactory Receptor (OR) genes expressed in the main olfactory epithelium and primarily involved 
in the recognition of airborne chemicals present in the environment (odorants and pheromones), and 
Vomeronasal Receptor (VR) genes expressed in the vomeronasal organ and known to play a key role in 
both volatile and non-volatile kairomone and pheromone recognition (Isogai et al. 2011; Chamero et al. 
2012; Hayden and Teeling 2014; Liberles 2014; Bear et al. 2016). These genes are organized in very large 
multi-gene families in the mouse genome (more than 1,200 ORs and 530 VRs (Zhang and Firestein 2002; 
Ibarra-Soria, M. Levitin, et al. 2014; Ibarra-Soria, M.O. Levitin, et al. 2014)). Here, we considered those 
genes as key candidates among the possible genetic determinants of assortative mate preferences and 
used this list of candidate genes to interrogate outlier regions and narrow down regions of interest.  
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Patterns of genomic differentiation between Choosy and Non-Choosy populations confirmed that some 
regions of the genome show the patterns of divergence expected under selection. Among those, a handful 
of olfactory and vomeronasal receptors showed genetic divergence associated with the observed 
behavioural divergence between hybrid zone and allopatric populations. Our study thus provides new 
insights into the role of olfactory and vomeronasal receptors in mammal adaptation and speciation. It also 
offers a novel experimental framework to identify loci showing the expected patterns of divergence under 
reinforcement, and confirms that combining expectations on the genomic patterns of divergence with 
functional expectations is a promising route to decipher the genetic architecture of behavioural trait 
variation.  

Results 

All supplementary figures and tables are available online (Smadja et al. 2022a).  

Sequence divergence between Choosy and Non-Choosy populations 
Whole-genome resequencing of pools of individuals representing two Choosy and two Non-Choosy 

populations of M. m. musculus (Table S2, and see Figure 1a and Table S1 for a detailed sample description) 
identified a total of 28,500,265 SNPs in the dataset after stringent filtering. Genetic dissimilarity indexes 
estimated from the scaled genome-wide covariance matrix of the population allele frequencies (Ω matrix, 
produced by the program BAYPASS) indicated that the two Choosy populations do not cluster 
together (Figure 1b). This result could be explained by the dense river network in Jutland acting as 
geographic barriers to migration and hence influencing population structure (Raufaste et al. 2005). 
Interestingly, this pattern of population relatedness makes the identification of outlier divergent loci in the 
Focal Test comparing Choosy and Non-Choosy populations (Figure 1c) conservative. A Control Test was 
performed to remove outlier loci from the Focal Test representing population-specific divergence and 
therefore not a consistent divergence between both Choosy versus both Non-Choosy populations (Figure 
1c and Methods).  

 

Figure 1: Sampling and experimental design. A) Populations of Mus musculus musculus sampled in 
localities in the M. m. musculus - domesticus hybrid zone (dark blue points) or further away from the 

centre of the hybrid zone (light blue points). Mean nucleotide diversity: Låsby (n=27, π = 0.002 +/- 
1.136e-05), Borum (n=33, π = 0.003 +/- 1.151e-05), Randers (n=29, π = 0.002 +/- 1.027e-05), Hobro (n=29, 

dissimilarity in genome-wide covariance matrix (Ω)  
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π = 0.002 +/- 1.159e-05); pairwise FST estimates between Choosy and Non-Choosy populations: FST 
Borum-Choosy1 - Randers-NonChoosy2  = 0.057; FST Låsby-Choosy2 - Randers-NonChoosy2 = 0.087; FST 

Hobro-NonChoosy1 - Borum-Choosy1 = 0.089; FST Hobro-NonChoosy1 - Låsby-Choosy2  = 0.114); FST 
within behavioural groups: FST Borum-Choosy1 - Låsby-Choosy2 = 0.065; FST Hobro-NonChoosy1 - 

Randers-NonChoosy2 = 0.076. B) Relatedness among populations based on the genome-wide covariance 
matrix (Ω) across population allele frequencies for autosomal chromosomes (similar results for the X 

chromosome). C) The two series of population comparisons were used to identify loci showing an 
association with behavioural divergence. The Focal Test compared replicated sets of Choosy and Non-

Choosy populations (Choosy1+Choosy2 versus Non-Choosy1+Non-Choosy2) to identify loci showing 
significant divergence (as measured by the contrast statistic C2 from the BayPass program) between 

populations with contrasted behaviour. The Control Test compared two other combinations of the same 
populations, this time not grouped by their behavioural profile (Choosy1+Non-Choosy2 versus 

Choosy2+Non-Choosy1). Only loci found divergent specifically in the Focal Test were retained as the final 
list of candidate loci. 

Outlier SNPs 
We confirmed, in both Focal and Control Tests, that the SNP-based C2 contrast statistic follows a χ2 

distribution with one degree of freedom as expected under the null hypothesis (Figure S1). We thus 
calculated χ2-associated p-values and FDR to identify outlier SNPs showing extreme genetic differentiation 
in each population comparison (Focal and Control). We identified 1,612,787 outlier SNPs (P < 0.05) in the 
Focal Test before multiple testing corrections, reduced to 6546 outlier SNPs after applying FDR correction. 
In the Control Test, 1,111,516 SNPs were identified as outliers before multiple testing corrections. We 
retained as the final list of ‘behavioural’ outlier SNPs those 4818 SNPs showing both significant 
differentiation between Choosy and Non-Choosy populations after FDR correction in the Focal Test and no 
significant differentiation in the Control Test (Table S3).  

Outlier genes  
In the Focal Test, at the P < 0.05 threshold, we identified 999 C2_max outlier genes (over 41,702 

annotated genes included in this permutation test) (Table S4a) and 1756 C2_mean outlier genes (over 39,598 
annotated genes included in this analysis) (Table S4b). In the Control Test, comparable numbers of outlier 
genes were found: 1108 C2_max outlier genes (Table S4c) and 1612 C2_mean outlier genes (over 39,447 tested 
genes, among which 1472 genes with no permutation results due to insufficient SNP number or too large 
gene size) (Table S4d). However, the large majority of genes found significant in the Focal Test were not 
found significant in the Control Test: 77 genes had significant C2_max in both the Focal and the Control Tests 
(considered as non-consistently associated with the behavioural contrast); as a result, from the 999 C2_max 
initial outlier genes in the Focal Test, 922 were retained as the final C2_max outlier genes; similarly, out of 
the 1756 initial C2_mean outlier genes, 1622 were retained as the final C2_mean outlier genes after removing 
134 outliers not consistently associated with the behavioural contrast. The union of these two cured outlier 
gene sets, composing the final and complete list of outlier genes, included 2118 genes, among which 496 
were C2_max specific outliers, 1196 were C2_mean specific outliers and 426 were C2_max and C2_mean outlier 
genes (Table S5).  

Among those 2118 outlier genes, we categorised the most strongly differentiated ones between 
Choosy and Non-Choosy populations according to (1) their level of differentiation at one of the two gene-
based contrast statistics (p-value C2_max < 0.01 or p-value C2_mean < 0.01), hereafter called highly significant 
outlier genes or (2) their level of differentiation at both gene-based statistics (see Methods and Table S5 
for details), hereafter called the ‘top’ outlier genes. We found a total of 479 highly significant outlier genes, 
among which 111 C2_max specific outliers, 142 C2_mean specific outliers and 226 C2_max+C2_mean outlier genes 
(Table S5, bold gene_IDs). Among these highly significant outlier genes, we further identified 95 outlier 
genes showing consistent signals of strong differentiation at both C2_max and C2_mean gene-based contrast 
statistics, that were consequently classified as ‘top outlier genes’ (Table S5, bold and underlined gene_IDs).  
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Functional impact and nature of candidate genomic regions associated with behavioural divergence 

Genic and regulatory regions primarily associated with behavioural divergence 
Using the ENSEMBL Variant Effect Predictor (VEP), we found that the 4818 outlier SNPs identified as 

significantly differentiated between Choosy and Non-Choosy populations include 1390 novel variants and 
3428 already annotated variants in the ENSEMBL database (71.1%). Those outlier SNPs overlap 977 
annotated genes, 2878 transcripts and 412 regulatory features (Table S6). Genic variants represent a 
majority of those outlier SNPs (54.03%), with 50.76% of intronic variants and the rest corresponding to 
exonic (1.31%) and UTRs (1.96%) variants (Table S6, Figure 2a). Protein-coding variants include 64% of 
synonymous variants, 32% of missense variants and 3% of stop-gained variants (respectively 0.48%, 0.24% 
and 0.02% of the total, Figure 2a). Non-genic variants are slightly less represented (45.97%) but include a 
large number of variants (32.91% of all outlier SNPs) potentially involved in gene regulation: down- and 
upstream variants as well as already known regulatory region variants (Table S6, Figure 2a). Only 13% of 
all outlier SNPs fall in intergenic regions. In comparison, predictions made on all SNPs (and not only outlier 
SNPs) in the dataset show fewer variants potentially involved in gene regulation (24%), fewer UTR variants 
(0.70%), fewer synonymous and missense variants (0.37% and 0.19% respectively) and 10 times less stop-
gained variants (0.0022%). In contrast, they show more intergenic and intronic variants (16.15% and 
57.62%, respectively).  

Olfactory and Vomeronasal Receptor genes as prime candidates 
Functional enrichment analyses using the program DAVID were performed on four gene datasets: genes 

within 5 kb of outlier SNPs (977 initial genes, 656 Ensembl gene IDs passing DAVID database criteria), the 
complete list of outlier genes (2118 initial genes, 1181 DAVID gene IDs), the list of highly significant outlier 
genes (479 initial genes, 291 DAVID gene IDs) and the list of ‘top’ outlier genes (95 initial genes, 64 DAVID 
gene IDs) (see Table S5 for a complete list of outlier genes, with their gene names and gene IDs). For the 
gene set within 5 kb of outlier SNPs, we found 14 highly significant functional annotation terms (Table S7a) 
and 17 significant functional annotation clusters (Table S7b). The three most enriched functional 
annotation clusters were membrane proteins, trans-membrane region proteins and olfactory receptor 
activity; Golgi apparatus, SH3 domain, glycoproteins, reduction-oxidation process and synapse were also 
part of enriched annotation clusters (Figure 2b). For outlier gene sets, olfactory receptor types of function 
were systematically found the most significantly enriched and enrichment score increased as the set of 
outlier genes is narrowed down to the most significant outlier genes (Figure 2b, Table S7c-h). For the gene 
sets corresponding to the most promising candidates, we found a very highly significant enrichment of only 
one group of functional categories corresponding to olfactory receptor functions (olfactory receptor/ G-
protein-coupled receptor/ GPCR family3 vomeronasal receptor type2) (Figure 2b & Table S7e-f: highly 
significant outlier genes p < 0.01, Table S7g-h: ‘top’ outlier genes).  

A total of 127 Olfactory Receptor (Olfr) genes and 27 Vomeronasal Receptor (Vmn) genes were 
identified as outlier genes (mostly on chromosomes 2, 7 and 9), and 55 Olfr and 13 Vmn are among the 
highly significant (p < 0.01) outlier genes (Table 1 and Table S5). Consistent with DAVID functional 
enrichment results, this corresponds to an over-representation of Olfr genes among the complete list of 
outlier genes (hypergeometric test, n Olf outliers = 127, n Olf all = 1356; n genes outliers = 2118; n genes all = 50942, p-
value = 1.90 e-17), and an over-representation of both Olfr genes (n Olf outliers = 55, n Olf all = 1356; n genes outliers 
= 479; n genes all = 50942, p-value = 1.37 e-19) and Vmn genes (n Vmn outliers = 13, n Vmn all = 543; n genes outliers = 
479; n genes all = 50942, p-value = 0.0021) among highly significant outlier genes. Among Vomeronasal 
Receptor gene candidates, 10 belong to family 1 of Vomeronasal Receptors and 17 to family 2 of 
Vomeronasal Receptors (Yang and Zhang 2007; Zhang et al. 2007), the proportion of family 2 Vmn genes 
increasing when reducing the outlier gene set to the most significant ones (number of family 1 Vmn genes 
= 1, number of family 2 Vmn genes = 12) (Table 1 and Table S5). The majority of Olfr outlier genes are 
C2_mean outliers while the majority of Vmn outlier genes are C2_max outliers (Table S5). Among the ‘top’ 
outlier genes defined when combining information from the C2_mean and C2_max statistics, we found 23 Olfr 
and 4 Vmn genes (Table 1 and Table S5).  
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Beyond the over-representation of Olfactory Receptor and Vomeronasal Receptor genes among outlier 
gene sets, some of them appeared among the top most significantly differentiated outlier genes: 10 Olfr 
and Vmn are among the 30 most differentiated C2_max outlier genes (Olfr304, Olfr907, Olfr911-ps1, 
Olfr913, Olfr915, Olfr908, Olfr914, Olfr143, Olfr906 and Vmn2r74) and 8 Olfr among the 30 most 
differentiated C2_mean outlier genes (Olfr906, Olfr908, Olfr914, Olfr907, Olfr143, Olfr151, Olfr894 and 
Olfr1265) (Table S5). Five Olfr genes, all in a gene cluster on chromosome 9, were common to these two 
lists and among the 10 most differentiated ‘top’ outlier genes: Olfr906, Olfr907, Olfr908, Olfr914 and 
Olfr143, with Olfr906, Olfr907 and Olfr908 among the 4 most differentiated ‘top’ outliers (Table 1 and 
Table S5). Comparatively to Olfr genes, Vmn outlier genes were proportionally less represented among the 
most differentiated genes, but four of them were found in the list of ‘top’ outlier genes: Vmn2r74, 
Vmn2r76, Vmn2r70 and Vmn2r12 (Table S5).  

Table 1 also reports, when available from VEP results (Table S6), the functional impact of outlier SNPs 
found in candidate outlier Vmn and Olfr genes. The large majority of reported functional consequences 
corresponded to up- and down-stream variants, UTR variants, intronic variants and synonymous variants. 
However, five Olfr genes on chromosome 9 (Olfr906, Olfr908, Olfr915, Olfr916 and Olfr250) and two 
receptor genes on chromosome 7 (Olfr304 and Vmn2r76) additionally showed a missense mutation 
between Choosy and Non-Choosy populations, and Olfr891 and Olfr895 on chromosome 9 showed a stop-
gain variant.  

Genes that are not Olfactory or Vomeronasal Receptor genes were also among outlier genes (Table S5). 
Most of them do not have a well-characterized function, and when they do, their link with the behavioural 
phenotype of interest is unclear. We nevertheless noted some genes involved in gene regulation (Khsrp, 
among the four most differentiated ‘top’ outlier genes), regulation of neural genes (Barhl2), acting as 
transcription factor (Gtf2f1), or expressed in testes and potentially inducing male infertility (Tex21, Dazl).  

Genetic characteristics of regions associated with behavioural divergence  

Association with some other genomic features 
No association with regions of reduced genetic diversity and coldspots of recombination : genetic 

diversity Π did not differ significantly between outlier and non-outlier gene regions (Table S8), indicating 
that there is no global reduction in genetic diversity in outlier gene regions. To assess how recombination 
rate correlates with candidate outlier gene regions, we used recombination rate estimates provided by 
Morgan et al. 2017. We found that recombination rates did not differ significantly between outlier and 
non-outlier gene regions (Table S8). Of 2118, 196 outlier genes occurred in a recombination coldspot 
(Figure 3), which did not correspond to an over-representation of outlier genes in coldspots of 
recombination (10,000 permutations, Z-score = -0.379, p = 0.663, Figure S2). 

SFS-based signatures of selective sweeps in genetic differentiation outliers : to test whether 
differentiation-based outlier regions also show a signature of selective sweeps estimated from SFS-based 
methods, we run the program POOL-HMM (Boitard et al. 2013) on the two Choosy populations, the expected 
targets of reinforcing selection. We found 936 annotated genes within which at least one significant 
selective sweep window was detected in the Choosy1-Borum population, among which 28 C2 outlier genes 
(including Olfr291 on chromosome 7, and Olfr1328, Olfr1339, Olfr1340 and Olfr1342 on chromosome 4) 
(Table S9a). In the Choosy2-Låsby population, we found 1247 genes with at least one significant selective 
sweep window, among which 31 C2 outlier genes (including Olfr32, Olfr1258 and Olfr1270 on chr2, and 
Olfr62, Olfr1339, Olfr1340 and Olfr1342 on chromosome 4) (Table S9b). However, only 3 C2 outlier genes 
were found with significant selective sweep windows in both Choosy populations (expected under a 
reinforcement scenario). Those three genes are Olfr1339, Olfr1340 and Olfr1342.  

No significant overlap between outlier genes and candidate hybrid sterility regions but some punctual 
associations exist : we also tested whether outlier genes significantly co-localise with the 54 genomic 
regions identified as candidates for hybrid sterility (postmating isolation candidates) between M. m. 
musculus and M. m. domesticus (Turner and Harr 2014; Mukaj et al. 2020). We found that 143 outlier genes 
identified in our study overlap with candidate sterility regions (see Table S5 and Figure 3), which is not 
more than expected by chance (10,000 permutations, Z-score = -2.686, p = 0.997; Figure S3a). However, 
we found that out of the nine highly supported candidate sterility regions (i.e. showing concordant 
association with the two sterility phenotypes: relative testis weight and testis expression, see (Turner and 
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Harr 2014)), 8 contained at least one outlier gene. The mean distance between outlier genes and sterility 
genomic regions was 23.70 Mb, which is more distant than expected by chance (10,000 permutations, Z-
score = 3.929, p = 0.0001, Figure S3b). We note that PRDM9 gene, located on chromosome 17 and known 
as a major hybrid sterility gene in the house mouse (Mukaj et al. 2020), is distant by ~ 5 Mb (less than 
expected by chance, Figure S3b) from the closest outlier gene (Vmn1r228, see Table S5).  

Clustered distribution of outlier loci in the genome 
Signals of outlier SNPs accumulate in two main genomic regions on chromosomes 9 and 7 : data from 

10-kb, 50-kb and 100-kb non-overlapping windows were examined, for each chromosome separately, for 
autocorrelation in genetic differentiation associated with the choosy/non-choosy trait, as measured by the 
BAYPASS C2 contrast statistic. We found some significant autocorrelation and partial autocorrelation 
between neighbouring windows (Figure S4), with the autocorrelation parameter rho of a first-order 
autoregressive process estimated between 0.70 and 0.77 (e.g. 50-kb-windows, chr9: rho = 0.74, p-value = 
0.039).  These results indicated that there is a long-range dependence in genetic differentiation measures 
(BAYPASS C2 contrast statistic) present over distances up to 100 kb. This dependence among C2 

measurements has a conservative effect on the identification of outlier SNPs: using only FDR and not an 
adjusted α based on the autocorrelation estimates, we corrected for an overinflated number of apparently 
independent tests, making the p-value cut-off conservative. Given this autocorrelation affecting SNP-based 
C2 measurements, we applied the local score approach (Fariello et al. 2017) to identify outlier genomic 
segments cumulating signals from single SNP markers and characterize their distribution along the 
genome. This analysis identified 557 significant local score genomic regions, distributed on all 
chromosomes (Figure S5, Table S10 and Figure 3). Their mean size (+/- SE) is 99.139 kb (+/- SE: 6.528 kb). 
Two regions stood out as the most significant ones: one 1-Mb long region on chromosome 9 (peak value 
of the local score = 12769.03, coordinates: 9:37721717-38752579), containing 52 outlier genes among 
which 40 outlier Olfactory Receptor genes (Table S5); one 0.8 Mb long region on chromosome 7 (peak value 
of the local score = 9260.49, coordinates: 7:85585560-86388933), containing 17 outlier genes, among 
which 10 Vomeronasal Receptor and 5 Olfactory Receptor outlier genes (Table S5).  

Two ~ 2 Mb long Olfactory and Vomeronasal Receptor gene clusters on chromosomes 9 and 7 represent 
the main candidate genomic regions underlying behavioural divergence: using the expected number of 
genes per 500 kb and assuming a random genome-wide distribution, a permutation test showed that 
outlier genes were not homogeneously distributed along the genome (p = 2e−05, 50,000 permutations) 
(Figure S6). We, therefore, analysed this pattern of genomic clustering in more detail, by investigating 
whether some outlier gene sets were more clustered in the genome than expected by chance. We 
identified 63 outlier gene sets found significantly clustered in the genome (Table S11 and Figure 3). The 
most significantly clustered outlier gene sets were found on chromosome 1 (cluster #3, p = 9.37E-14), 
chromosome 5 (cluster #20, p = 7.31E-05), chromosome 9 (cluster #39, p = 7.31E-05; cluster #35 (Olfr 
cluster), p = 5.24E-04), chromosome 11 (cluster #49, p = 5.24E-04), chromosome 12 (cluster #52, p = 5.24E-
04) and chromosome 7 (cluster #28 (Vmn+Olfr cluster), p = 2.97E-03). The mean size of those significant 
outlier gene clusters was 919.88 kb +/- SE: 66.10 kb. The largest gene clusters were found on chromosome 
2 (cluster #6: 3.7 Mb), chromosome 1 (cluster #3: 2.45 Mb), chromosome 7 (cluster #28 (Vmn+Olfr cluster): 
2.3 Mb; cluster #30 (Olfr cluster): 1.95 Mb) and chromosome 9 (cluster #35 (Olfr cluster): 1.8 Mb). These 
cluster sizes extend far beyond the estimated mean autocorrelation effect on each chromosome, present 
over distances up to 100 kb. Figure 3 recapitulates the distribution of significant local score regions, outlier 
genes including Olfr and Vmn ones, and significant outlier gene clusters along the genome.  

By counting the total number of outlier and ‘top’ outlier genes and applying weights to this content 
(see Table S11 for details), we could identify the gene clusters showing the strongest degree of genetic 
differentiation between Choosy and Non-Choosy populations. Three gene clusters stood out as the most 
differentiated ones: gene cluster #35 on chromosome 9, gene cluster #28 on chromosome 7, and to some 
extent gene cluster #5 on chromosome 2 (Table S11). Strikingly, these 3 gene clusters correspond to the 
three main Olfactory/Vomeronasal Receptor outlier gene clusters: cluster #35 contains 43 Olfr outlier 
genes; cluster #28 contains 14 Vmn and 6 Olfr outlier genes; cluster #5 contains 11 Olfr outlier genes. These 
three outlier gene clusters stand out from genome-wide patterns of differentiation (Figure 3, Figure S7) 
and the two most important ones on chromosomes 9 and 7 are detailed in Figure 4. Cluster #35 on 
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chromosome 9 contains the five Olfr outlier genes identified among the 10 most differentiated ‘top’ outlier 
genes (Table 1 and Table S5).  

Discussion 

In this study, we addressed the genetic basis of assortative mate preferences in the house mouse, 
expected to be evolving under the action of reinforcing selection, using a population genomics approach 
coupled with functional predictions. We identified some regions of the genome showing significant and 
consistent divergence between populations with contrasted behaviours (Choosy populations from the 
hybrid zone and Non-Choosy populations from allopatric areas). A series of Olfactory and Vomeronasal 
Receptor (OR and VR) genes, among the most differentiated regions and in line with functional predictions, 
stand out as the prime candidates potentially underlying this olfactory-based behavioural divergence. 
Those outlier genes form significantly clustered sets of genes in the genome, with two main candidate gene 
clusters on chromosomes 9 and 7, extending up to 1.8 Mb and containing several highly significant 
Olfactory and Vomeronasal Receptor outlier genes.  

Population genomics and the genetics of complex trait divergence 
Population differentiation scans, between two or more populations that differ in a behaviour trait of 

interest, have rarely been applied to address the genetic basis of polygenic behaviours (but see (Toews et 
al. 2019)). However, they can be powerful for mapping genetic variation at a high resolution, can be applied 
to natural populations, and can additionally provide evidence of selection (Niepoth and Bendesky 2020). 
Potential drawbacks to these approaches include their agnosticism to phenotypic traits and the challenges 
to interpret signals of genetic differentiation (e.g. populations often differ in more than one trait, other 
factors than divergent selection can drive genetic differentiation - Cruickshank & Hahn 2014; Ravinet et al. 
2017; Wolf & Ellegren 2017). In this study, we took advantage of this powerful population genomics 
approach but combined it with specific experimental and data analysis strategies as well as clear functional 
predictions to overcome its potential limitations and to refine interpretations of the results in terms of 
genetic variation associated with the observed behavioural divergence.  

Our strategy to investigate population differentiation, with whole-genome resequencing data, at 
different genomic scales (SNPs, genes, different gene-based statistics) enabled us to identify highly 
supported candidate regions found consistently divergent regardless of the scales and the statistics used, 
while also characterising more comprehensively the catalogue of genomic regions and architectures 
potentially underlying this behavioural shift. Genome-wide SNP-based differentiation analyses, despite 
their limitations (Huang et al. 2011), informed about the respective role of genic versus non-genic regions 
(mostly regulatory regions) in population differentiation, while confirming functional enrichment results 
obtained with gene-based analyses. However, our study confirmed that genome-wide gene-based 
differentiation analyses are efficient for gaining power and precision as well as for facilitating the link with 
the phenotype of interest (Neale and Sham 2004; Huang et al. 2011; Chung et al. 2019). The identification 
of enriched functional categories and the most promising individual genes was eased. Moreover, by 
capturing different potential underlying genetic architectures of divergence (single versus multiple small-
effect causal variants within a gene) (Wang et al. 2017), the two different gene-based statistics (C2_max and 
C2_mean) provided two lists of outlier genes partially overlapping but also complementary. For example, 
most Olfactory Receptor candidates are C2_mean outlier genes, while most Vomeronasal Receptor ones are 
C2_max outlier genes.  
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The use of the C2 contrast statistic of BAYPASS enabled us to assess genetic differentiation based on 
contrasts of allele frequencies corrected for population structure (Olazcuaga et al. 2021). The combination 
of biological replicates per behaviour group and multiple population comparisons (Focal and Control tests) 
allowed us to identify the genomic regions consistently differentiated between Choosy and Non-Choosy 
populations, beyond population-specific differentiation (Figure 1). These multi-way comparisons across 
populations had been advocated as a promising way forward to separate processes acting similarly on all 
populations from processes that are specific to a single population or population comparison (Wolf and 
Ellegren 2017) but are rarely implemented (but see Roesti et al. 2014; Vijay et al. 2016). In our study, this 
procedure narrowed down the list of genomic regions of interest, the control test removing respectively 
26% and 7.65% of the outlier SNPs and genes, with the final sets of outlier SNPs and genes eventually 
representing 0.017% and ~5 % of the total number of SNPs and annotated genes in the dataset. Yet, this 
corresponds to a relatively large number of outlier SNPs and genes (4818 and 2118 respectively) that show 
the expected patterns of genetic differentiation associated with behavioural divergence and 
reinforcement.  

Importantly, we do not expect all of these differentiated genomic regions between Choosy and Non-
Choosy populations to be involved in the observed behavioural divergence nor to be subject to reinforcing 
selection. Because these sets of populations can differ in more than one trait and selective regime, some 
differentiated regions may not affect the behaviour of interest. Moreover, neutral clines across the M. m. 
domesticus/M. m. musculus hybrid zone can produce genetic structure at specific loci between Choosy 
populations and Non-Choosy populations and hitchhiking effects can induce genetic differentiation at 
variants in the vicinity of causal variants. By selecting populations that are known to show distinct mating 
preferences despite being closely related and inhabiting a similar environment (in Jutland Denmark, 
separated by no more than 50 km), we minimized the risk of confounding selective effects, but the list of 
outlier loci extends very likely beyond the variants directly associated with the behavioural divergence. 
One key step of this study was therefore to confront genome scan results with functional predictions, here 
available from a series of previous studies that had characterised the behaviour of interest in detail (Smadja 
and Ganem 2002; Smadja et al. 2004; Smadja and Ganem 2005; Ganem et al. 2008). Matching very clear 
functional analyses’ results (functional enrichment, nature of outlier genes), indicating a prominent role of 
some Olfactory and Vomeronasal Receptor genes, with information on the involvement of olfactory-based 
processes in the expression of assortative mate preferences, provides very strong support for considering 
these highly significantly differentiated Olfactory and Vomeronasal Receptor genes as the prime candidates 
potentially associated with behavioural divergence and reinforcing selection (Table 1). Since our previous 
studies had shown that individuals from Non-Choosy populations can discriminate between mating signals 
of the two subspecies, but do not establish a directional mate choice (Smadja and Ganem 2005; Smadja 
and Ganem 2008), the genomic regions identified in our study likely underlie the evolution of choosiness 
rather than discrimination. Our study illustrates the importance of integrating detailed phenotypic 
characterisation with genomic data to gain power and accuracy in population genomic approaches that 
tackle the genetics of complex trait divergence.  

Genetic architecture of candidate regions and selective regimes 
Autocorrelation analyses indicated a long-range dependence in genetic differentiation measures 

present over distances up to 100 kb, consistent with previous estimates of background linkage 
disequilibrium in wild house mouse genomes (Laurie et al. 2007; Staubach et al. 2012) and that could inflate 
the number of outlier loci (Hahn 2006). However, local score analyses (Fariello et al. 2017), which take into 
account this autocorrelation and background linkage disequilibrium, consistently pointed to numerous 
outlier local score genomic segments spread across several chromosomes (Figure 3). Whatever the criteria 
we applied (significance, consistency across analyses and statistics) to stringently narrow down the list of 
candidate genes and genomic regions, evidence supports a highly polygenic basis underlying the mate 
preference shift. From the initial list of 2118 outlier genes containing 127 Olfactory Receptor (Olfr) and 27 
Vomeronasal Receptor (Vmn) genes, the most restricted set of ‘top’ outlier genes still include 95 genes 
spread across several chromosomes and among which 23 are Olfr and 4 are Vmn genes. A highly polygenic 
basis for assortative mate preferences fits predictions from a previous phenotypic cline analysis in the 
house mouse suggesting the involvement of a polygenic autosomal system with dominance and epistasis 
(Ganem et al. 2008). This result is also in line with the few studies addressing the genetics of variation in 
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olfactory-mediated behaviours in insects (Swarup et al. 2013; Arya et al. 2015) and mammals (Santos et al. 
2018).  

Given the highly polygenic nature of genetic architecture underlying the behavioural shift and the 
apparent strong linkage disequilibrium among genes involved in this phenotypic divergence, candidate loci 
are likely under polygenic selection, expected for such complex traits (Latta 1998; Sella and Barton 2019). 
Interestingly, previous studies have shown that polygenic adaptation can play a major role in the evolution 
of species-specific innate behaviours through the modifications of pre-existing genetic networks (Anholt 
2020) and in the rapid evolution of chemosensory systems (Librado and Rozas 2016). The fact that we did 
not find signatures of selective sweeps using SFS-based methods in most candidate outlier regions may be 
another indication of polygenic adaptation, known to be more detectable with pairwise tests for allelic 
differentiation (Stölting et al. 2015; Schneider et al. 2021). This result, together with the absence of a 
significant reduction of genetic diversity in outlier regions, may also suggest that those candidate regions 
are more likely subject to soft sweeps than hard sweeps (Pritchard et al. 2010; Wang et al. 2022). The two 
types of outlier genes (C2_max and C2_mean) may here not reflect different selection regimes but just different 
variant architectures within outlier genes. Since outlier gene regions are not associated with regions of 
reduced genetic diversity or reduced recombination rate, a general effect of background selection inflating 
the levels of genetic differentiation in our data seems unlikely. However, future analyses on individual data 
and a more extensive sampling of Choosy populations would be an interesting perspective to get fine-scale 
estimates of recombination rate along these genomes and more directly test for signatures of polygenic 
selection/soft sweeps (Kern and Schrider 2018).  

Another striking result is that outlier loci showed consistent signals clustered distributions in the 
genome. While the signals of outlier SNPs via local score analyses accumulated in two main genomic 
regions on chromosomes 9 and 7, clustering analyses of outlier genes consistently identified numerous 
sets of genes significantly clustered in the genome, amongst which the two most significant clusters 
pinpointing the same candidate regions on chromosomes 9 and 7. These two clusters of outlier genes 
contain several candidate Olfactory and/or Vomeronasal Receptor genes and extend up to 1.8 Mb (Figure 
4). These patterns suggest strong linkage disequilibrium in these large candidate regions, potentially 
indicative of the strength of selection acting on its targets or of complex correlations among loci belonging 
to the same gene regulatory network (Fagny and Austerlitz 2021). Within these clusters, it is difficult to say 
which genes and nucleotides are the direct targets of selection and pinpointing individual genes’ 
contributions to the observed behavioural shift in these genomic clusters will require additional 
experiments. Nevertheless, some outlier genes are more significantly differentiated than others in those 
clusters and can be considered prime candidates (Vmn2r70, Vmn2r74, Vmn2r76, Olfr304 and Olfr308 in 
the cluster on chromosome 7; Olfr143, Olfr906, Olfr907, Olfr908 and Olfr914 in the cluster on chromosome 
9). 

The source of this genetic variation specific to the M. m. musculus Choosy populations is still unknown. 
Considering our results, it may originate from standing variation present in allopatric populations or 
differential introgression of Mus musculus domesticus alleles across the hybrid zone. The large genomic 
clusters identified as outlier regions could fit the second scenario, which echoes the recent evidence of 
adaptive introgression of OR and VR gene clusters across species boundaries in the Mus genus (Ullrich et 
al. 2017; Baird et al. 2022; Banker et al. 2022). This scenario would be compatible with the role of these 
genomic regions in reproductive isolation with the nearby subspecies M. m. domesticus: the selective 
pressure of reinforcement could have favoured the adaptive introgression of alleles conferring choosiness 
on either side of the hybrid zone (a case of one-allele mechanism), the direction of the choice being possibly 
expressed via a matching rule, i.e. towards a mating partner matching the chooser’s genomic background 
(or mating signal type). These mechanisms are theoretically predicted to favour the evolution and 
maintenance of the barrier trait in the context of gene flow (Kopp et al. 2018). Additional genomic data for 
M. m. domesticus populations from the other side of the hybrid zone in Denmark would be needed to first 
test if variation comes from introgression.   

Overall, these results on the genetic architecture and selective regimes associated with the divergence 
in mate preferences correspond to theoretical predictions for loci involved in adaptation and 
reinforcement. Concentrated architectures of adaptive loci are expected in the presence of gene flow 
(Yeaman and Whitlock 2011; Yeaman 2013), and fit with the few other empirical studies testing for this 
pattern of clustering in natural systems (e.g. (Fustier et al. 2017; Roda et al. 2017). Moreover, the selective 
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regime of reinforcement corresponds to indirect selection on prezygotic isolating traits in hybrid zone 
populations, usually from standing genetic variation present in allopatry (Felsenstein 1981; Kirkpatrick and 
Servedio 1999) via linkage disequilibrium between loci under direct selection (hybrid sterility genes) and 
assortative mating loci. We were expecting a co-localisation between candidate hybrid sterility genomic 
regions (Turner and Harr 2014) and outlier regions that could facilitate the maintenance of linkage 
disequilibrium among those co-adapted traits (mate preference and hybrid sterility). With the exception 
of a few co-localising regions, we did not find any significant physical overlap between these two sets of 
genes. However, this test may miss some unidentified hybrid sterility genes and is quite stringent (testing 
overlap and not physical linkage). For example, the outlier gene cluster on chromosome 9 lies in physical 
proximity with a candidate hybrid sterility region (Figure 3). Moreover, linkage disequilibrium can still 
evolve and be maintained between unlinked or loosely linked and is not necessary under the scenario 
mentioned above of a case of one-allele mechanism (Servedio 2009; Butlin and Smadja 2018; Hench et al. 
2019). Our study provides an important addition to the rare studies that have investigated the genetics of 
reinforcement (Ortiz-Barrientos et al. 2004; Hopkins and Rausher 2011; Ospina et al. 2021), by testing 
predictions on expected genomic patterns of differentiation to characterize the genetic basis of a complex 
premating isolating trait and the genomic signatures of reinforcing selection acting on it. 

The role of Olfactory and Vomeronasal Receptor genes in the evolution of mate choice divergence 
Chemoreceptor genes are one of the most extensive and diverse multigene families in most vertebrate 

and non-vertebrate genomes (Sánchez-Gracia et al. 2011; Ibarra-Soria, M. Levitin, et al. 2014; Benton 2015; 
Bear et al. 2016). Yet, their precise role in key evolutionary processes such as adaptation and speciation 
remains largely unknown, although chemosensory processes have been identified as key players at the 
phenotypic level (Smadja and Butlin 2009). Comparative analyses have provided great insights into the role 
of OR or VR repertoire evolution in diversification and ecological adaptations (e.g. dietary specialisation 
(Hayden et al. 2014; Yohe et al. 2021) or adaptation to different life-styles (Shi and Zhang 2007; Hayden et 
al. 2010; Khan et al. 2015; Jiao et al. 2019). At microevolutionary scales, studies are scarce due to the 
difficulty of analysing these gene families and linking their genetic variation to relevant adaptive 
phenotypes and selective regimes (but see (Smadja et al. 2012; Li et al. 2015; Poelstra et al. 2018; Auer et 
al. 2020). Our study provides one of the clearest and most detailed examples of the involvement of 
olfactory and vomeronasal receptors in the evolution of an adaptive behavioural trait, assortative mate 
choice, and how natural selection drives their genetic divergence.  

Our results indicated the highly significant enrichment of this category of receptor genes among outlier 
genomic regions (Figure 2B), in agreement with our functional prediction. General variant effect predictor 
analyses pointed to the possible dual role of regulatory and protein-coding changes in the evolution of 
behavioural divergence, with the presence of missense and stop gained variants as well as variants in 
already known regulatory regions or putative regulatory regions in downstream / upstream gene regions 
(Figure 2A). For candidate Olfr and Vmn genes, many SNP variants fall within upstream or downstream 
gene regions, UTR regions or intronic regions potentially affecting gene regulation, but we identified a few 
protein-coding changes affecting Olfr250, Olfr906, Olfr908, Olfr915, Olfr916 in the candidate cluster on 
chromosome 9, and Olfr304 and Vmn2r76 in the cluster on chromosome 7 (Table 1). Consistent with a 
putative role of regulatory changes are the results of two of our previous studies investigating the 
expression and copy-number divergence between the same Choosy and Non-Choosy populations. We 
found significant differential expression at some Vomeronasal Receptor genes expressed in the 
vomeronasal organ (Loire et al. 2017), four out of five (Vmn2r69, Vmn2r70, Vmn2r73, Vmn2r75) being 
among the Vmn outlier genes identified in the present study and all belonging to the promising candidate 
gene cluster on chromosome 7. We also identified deletions specific to the Choosy populations in upstream 
or intronic regions of some Olfactory Receptor genes (Olfr907 in the candidate cluster on chromosome 9, 
Olfr301, in the candidate cluster on chromosome 7, Olfr564 and Olfr461 on chromosomes 7 and 6), that 
could affect their expression or the expression of nearby Olfr genes (North et al. 2020). The combination 
of nucleotide, structural and expression variation primarily at Olfactory and Vomeronasal Receptor genes 
could therefore shape the evolution of this complex behavioural trait under selection (Niepoth and 
Bendesky 2020; Fagny and Austerlitz 2021).  

The Olfactory and Vomeronasal Receptor prime candidates are members of some specific phylogenetic 
clades of closely-related receptors within each gene superfamilies. This result echoes previous insights 
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obtained by Isogai et al.  on the functional characterisation of Vomeronasal Receptors in the house mouse 
(Isogai et al. 2011). They showed that distinct mouse VR receptor subfamilies have evolved towards the 
specific recognition of certain animal groups (heterospecific signals from predators or sympatric closely 
related species/subspecies, male or female conspecific signals) or chemical structures (volatile steroids, 
non-volatile proteins). Interestingly, some members of V2R clades 3 and 6 (our main VR candidate clusters) 
were shown to be involved in the recognition of closely-related and sympatric species or conspecifics of 
the opposite sex, leading the authors to suggest that “through the activation of specialized receptors, M. 
musculus may readily discriminate scents emitted by closely related but reproductively incompatible 
species, a property that could be linked to the reproductive isolation of these species”. Considering the 
results of our study, and if we extrapolate Isogai’s results to ORs, we can hypothesize a specialization of 
some VR and OR gene clusters towards the function of assortative mating in the hybrid zone.  

In the future, several interesting follow-up from our work will help to better understand the role of 
these candidate receptors in the evolution of assortative mating. Comparative transcriptomics on the main 
olfactory epithelium will complement the study carried out on VNO (Loire et al. 2017) to assess whether 
changes in expression affect Olfr genes between Choosy and Non-Choosy populations. Haplotagging (Meier 
et al. 2021) and long-range sequencing will help to further test for polygenic selection and structural 
changes in these candidate genomic regions. Finally, functional characterisation of the candidate OR and 
VR gene clusters could be tackled by leveraging the molecular tools developed by Isogai et al. (i.e. activity-
dependent immunolabelling of sensory neurons coupled with in situ hybridisation) and applying them to 
wild mice from hybrid zone. With this approach, we could test whether those receptors are activated by 
subspecific cues (i.e. urinary stimuli), as expected if involved in the expression of assortative mate 
preferences.  

Methods 

Samples 
We trapped M. m. musculus wild adult mice in Jutland, Denmark in several sites (indoor farms and 

other human dwellings) and maintained them in the laboratory under controlled conditions before being 
behaviourally tested and euthanized for dissection. Sampling sites represented two distinct geographical 
areas in Jutland, which are characterised by populations with distinct mate preference behaviours but 
sufficiently geographically close to avoid any geographical effect of distant allopatry: (1) the border of the 
hybrid zone on the M. m. musculus side (50 km North to the genetic centre of the hybrid zone (defined in 
Raufaste et al. 2005)) where strong assortative mating was previously documented (Smadja et al. 2004; 
Smadja and Ganem 2005; Ganem et al. 2008) and confirmed on these newly sampled populations (Latour 
et al. 2014; Smadja et al. 2015) (‘Choosy’ populations), (2) another area in Jutland but further north from 
the hybrid zone, where a previous study did not find any significant directional mate preference in these 
sampled populations (‘Non-Choosy’ populations) (Latour et al. 2014; Smadja et al. 2015). 

Two populations per geographical area were included as biological replicates, each composed of 
several trapping sites (four populations in total, hereafter called « Borum Choosy1 », « Låsby Choosy2 », 
« Hobro Non-Choosy1 » and « Randers Non-Choosy2) (see Figure 1a and Table S1) for a detailed sample 
description). For all individuals from each of the four populations nBorum = 33, nLåsby = 27, nHobro = 29, nRanders 
= 29), spleen was extracted rapidly after death by cervical dislocation, immersed in ethanol and stored at -
80°C. We extracted genomic DNA from individual mouse spleens, using the Macherey-Nagel kit standard 
protocol. 

Data generation and variant processing  

Whole-genome re-sequencing 
To assess genomic divergence in two independent comparisons of Choosy and Non-Choosy 

populations, at the level of the whole genome (genome size: 2.7 Gb), we carried out a pool-sequencing 
approach. Pooled samples representing each population were obtained by mixing individual DNA extracts 
from each population in equimolar proportions. Library preparation and sequencing were carried out at 
the MGX-Montpellier GenomiX platform (Institut de Génomique Fonctionnelle - Institut de Génétique 
Humaine, Montpellier, France). Sequencing libraries (average insert size: 478 bp (Borum Choosy1), 497 bp 
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(Låsby Choosy2), 478 bp (Hobro Non-Choosy1) and 445 bp (Randers Non-Choosy2)) were prepared using 
two methods to increase sequence diversity: Illumina TruSeq DNA Sample Prep Kit v2 (three-quarters of 
samples), and Illumina Nextera DNA sample preparation kit. Overall, ¾ of all sequence data was obtained 
using the TruSeq protocol. All libraries were sequenced on an Illumina HiSeq2000 machine using a paired-
end 100-bp read-length protocol, targeting an average raw coverage per pool of 30X, chosen as a cost-
effective optimum given the large house mouse genome and pool size/pool coverage balance 
recommendation for pool-seq sequencing (Futschik and Schlotterer 2010; Gautier et al. 2013; Schlötterer 
et al. 2014). Sequencing reads were trimmed and cleaned of adaptor sequences using Trimmomatic (Bolger 
et al. 2014). 

Mapping, SNP identification and filtering 
We applied stringent and optimized mapping and SNP filtering conditions to obtain accurate allele 

frequency estimations from pool-seq data (Gautier et al. 2013; Schlötterer et al. 2014). The program 
Bowtie2 v2.2.3 (Langmead and Salzberg 2012) was used to map the reads against the house mouse 
reference genome (http://www.ensembl.org/, version GRCm38.p2), with the –very-sensitive-local option 
to get a stringent alignment and a fragment size limit of 600 ( -X parameter) to increase the number of 
concordant mapping count and reduce the discordant mapping count. The Samtools suite v1.3.1 (Li et al. 
2009) was used to sort, index and filter for read duplicates the resulting BAM files. An overview of 
sequencing and mapping statistics can be found in Table S2. BAM files were combined into mpileup files 
and sync files (using samtools mpileup and mpileup2sync.pl script from Popoolation2 package (Kofler et al. 
2011)) and first filtered based on base quality (min-qual 20). We filtered out sync files for indels using 
Popoolation2, and developed a custom Python script to further filter bi-allelic SNP variants based on 
minimum coverage (= 10X), maximum coverage (= 100X, to avoid repeated/duplicated regions of the 
genome), and minimum count of minor allele (= 3). Minimum and maximum coverage filters were applied 
per population, and a minimum allele count filter was applied across all populations. From this set of 
filtered SNPs, we estimated mean population genetic diversity Π (NPSTAT package v1, Ferretti et al. 2013) 
and pairwise-population FST (Pool-Seq estimator implemented in the poolfstat R package, Hivert et al. 2018; 
Gautier et al. 2022) to describe the populations under study (Figure 1a).  

Identification of SNPs and genes associated with behavioural divergence and under divergent selection  

Population contrasts and BayPass procedure 
We used the program BAYPASS v2.2 (Gautier 2015) to identify Single-Nucleotide-Polymorphisms (SNPs) 

significantly and repeatedly divergent between Choosy and Non-Choosy populations, i.e. associated with 
the observed behavioural divergence between these populations. BAYPASS implements a method 
accounting for the neutral correlation of allele frequencies across populations to detect loci under selection 
or associated with covariables. We used BAYPASS to estimate the scaled covariance matrices (Ω) of the 
population allele frequencies for autosomal and X-linked SNPs (Figure 1b). This matrix captures information 
about the shared demographic history of the sampled populations which is expected to differ between 
autosomes and the X chromosome (Clemente et al. 2018). Using our repeated experimental design (two 
biological replicates per behavioural group), we relied on the recently implemented C2 statistic of BAYPASS 

(Olazcuaga et al. 2021) to contrast SNP allele frequencies corrected for the global effect of the shared 
population history captured by the matrix Ω on their covariance (i.e. standardized allele frequencies) 
between the two groups of populations specified by the behavioural trait. This approach allows correcting 
for population structure to identify SNP associated with binary co-variables characterizing the populations 
under study which here consisted of two distinct comparisons (Figure 1c). First, the Focal Test consisted in 
estimating the contrast statistic between the two groups of populations with contrasted mating 
behaviours: Choosy1+Choosy2 versus Non-Choosy1+Non-Choosy2 populations. This test aimed at 
identifying SNPs showing significant association with the behavioural contrast between Choosy and Non-
Choosy populations. To further remove outlier loci from the Focal Test that would not show a consistent 
divergence between both Choosy and both Non-Choosy populations, we carried out a Control Test. This 
control test estimates the contrast statistic between two other combinations of the same populations, this 
time not grouped by their behavioural profile (one Choosy and one Non-Choosy population per group) 
(Figure 1c). We used the inference of genetic relationships among populations based on the Ω matrix 
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estimated by BAYPASS (see Figure 1b) to maximize the distance between the control groups (i.e. comparing 
Choosy1+Non-Choosy2 versus Choosy2+Non-Choosy1) to perform the most stringent control contrast. 
SNPs and genes found to be significantly divergent in the Focal Test but also found to be significantly 
divergent in the Control Test (potentially reflecting population-specific divergence in the Focal Test) were 
removed from the final list of candidate loci. 

Custom scripts were used to format filtered sync files into BAYPASS input files (Smadja et al. 2022b). We 
run BAYPASS separately for the autosomes and the X chromosome and specified the pool haploid sample 
sizes to activate the Pool-Seq mode of BAYPASS. For the autosomes, the pool haploid sizes were simply 
based on sample sizes (n_aut_Borum-Choosy1 = 66; n_aut_Låsby-Choosy2 = 54; n_aut_Hobro-NonChoosy1 = 58; n_aut_Randers-

NonChoosy2 = 58). For the X chromosome, we adapted the haploid pool size information to the effective sex 
ratio of each pool (Table S1; n_chrX_Borum-Choosy1 = 48; n_chrX_Låsby-Choosy2= 41; n_chrX_Hobro-NonChoosy1 = 45; 
n_chrX_Randers-NonChoosy2 = 43). We used the BAYPASS core model with default options for the MCMC algorithm 
to obtain estimates of the scaled covariance matrix (Ω) and the C2 contrast statistic. Following the BAYPASS 
manual instructions, the autosomal dataset was divided into sub-datasets of 110,905 SNPs (by taking one 
SNP every 250 SNPs along each chromosome) and three independent runs (using option -seed) were 
performed to assess the reproducibility of the MCMC estimates. We found a fairly high correlation across 
the different independent runs for the different estimators (Pearson’s r > 0.95 for the C2 estimator) and 
thus only presented results from the first run. Similarly, a near-perfect correlation of the posterior means 
of the estimated Ω matrix elements was observed across independent runs as well as within each run 
across SNP subsamples, with the corresponding FMD distances (Gautier 2015) being always <0.4. We thus 
only reported BAYPASS results that were obtained from a single randomly chosen sub-dataset analysed in 
the first run.  

Identification of outlier SNPs 
For both the Focal and Control Tests, we computed SNP-based p-values from the C2 values, the C2 

statistic following a Chi-squared distribution with one degree of freedom under the null hypothesis of no 
association (Olazcuaga et al. 2021). We identified outlier SNPs in the Focal Test (Choosy versus Non-
Choosy) after correcting for multiple testing (FDR < 0.05). Only outlier SNPs that were not significantly 
differentiated in the Control Test (p-values > 0.05 without correction for multiple testing) were retained 
for further analyses.  

Identification of outlier genes 
Gene annotations were obtained from ENSEMBL v90 (Mus_musculus.GRCm38.90.geneset). Using SNP-

based C2 estimates and the BEDTOOLS suite v2.16.1 (Quinlan and Hall 2010) (bedtools map), we computed 
for each annotated gene in the house mouse genome two gene-based differentiation statistics: C2_max and 
C2_mean, corresponding to the highest SNP-based C2 value of a gene and the average C2 value of a gene, 
respectively. These two gene-based statistics correspond to two groups of gene-based methods: C2_max has 
the advantage of detecting genes with a single main causal variant while reducing the total number of tests, 
while C2_mean appropriately captures the combined effect of multiple small-effect SNP variants within a gene 
(Wang et al. 2017). Since we had no a priori knowledge of the genetic architecture of our phenotype of 
interest (mate preference), nor on which one of the test statistics was optimal for our analysis, we used 
those two different statistics and reported as outlier genes those showing significant C2_max or C2_mean 
statistics. The significance of each gene-based differentiation statistic was assessed using custom 
permutation procedures (Smadja et al. 2022b). C2_max estimates are influenced by the nucleotide diversity 
of each gene: the larger the number of SNPs it contains, the more likely are extreme C2_max values. Thus, 
our permutation procedure consisted in sampling SNP-based C2 values among gene sequences (including 
introns) in the genome equal to the number of SNPs in the focal gene. We then recorded the maximum C2 

value of the sample and generated a random distribution specific to the tested gene by repeating the 
resampling 10,000 times. C2_mean estimates are further influenced by gene length, a proxy for the degree 
of linkage disequilibrium among SNPs occurring in a given gene. To control for polymorphism and gene 
length in this permutation procedure, we thus sampled, for each gene, genomic fragments which satisfied 
two conditions: i) the same number of SNPs and ii) a length in base pairs not deviating from more than 10% 
of the observed one. For each fragment that satisfied these conditions (and thus mimicked the genomic 
properties of the gene), we calculated C2_mean. Repeating this process 10,000 for each gene allowed us to 
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estimate an empirical p-value for the observed gene-based C2_mean statistic. Significant genes (for C2_max or 
C2_mean ) in each population comparison (Focal, Control) were therefore those with p-values < 0.05 or 0.01 
(see below).  

Only outlier genes that were significantly differentiated in the Focal comparison (p-values < 0.05) and 
not significantly differentiated in the Control comparison (p-values > 0.05) were retained. We defined as 
the final and complete list of outlier genes the union of C2_max and C2_mean outlier genes so that C2_max 
specific and C2_mean specific outlier genes are taken into account. All downstream analyses were performed 
on this set of outlier genes (with two stringency categories: p-values < 0.05 or p-values < 0.01). However, 
we also defined a restricted list of outlier genes (hereafter called ‘top outlier genes’), identified as highly 
differentiated based on the combined information from the two C2_max and C2_mean contrast statistics. To 
implement this classification, we first assigned each outlier gene to a significance category for each gene-
based statistic (1: most significant; 5: least significant), assigned weights to these categories and calculated 
an overall differentiation score as the sum of the weights obtained from C2_max and C2_mean information. 
Genes were classified as ‘top outlier genes’ when showing a minimum overall differentiation score of 10.  

Functional and genomic characteristics of candidate genomic regions 

Functional analyses of candidate genomic regions 
The final set of outlier SNPs inferred from the combination of the Focal and Control BayPass Tests was 

analysed using the ENSEMBL Variant Effect Predictor (VEP) (McLaren et al. 2016) to annotate outlier SNPs in 
coding and non-coding genomic regions as well as to determine their impact on the protein sequence or 
gene regulation. We used the program DAVID v6.8 (Huang et al. 2009) to carry out functional annotation 
analyses on both outlier SNP and gene sets. Enriched annotation terms were identified using a significance 
threshold of 0.01 (EASE score) after Benjamini & Hochberg’s correction. To reduce the functional 
redundancy among annotation terms, we also carried out Functional Annotation Clustering analyses 
provided by DAVID, which report functional groups with similar annotation terms (significant enrichment 
score (i.e. the geometric mean of all the enrichment p-values (EASE scores) for each annotation term 
associated with the gene members in the group) > 1.3). Over-representation of some candidate gene 
families such as Olfactory Receptor (Olfr) and Vomerosanal Receptor (Vmn) genes among outlier gene sets 
was tested using hypergeometric tests (phyper R function).  

Genomic features associated with outlier gene regions 
We used the NPSTAT package v1 (Ferretti et al. 2013) to estimate nucleotide diversity Π (Tajima 1983), 

measured as the average pairwise nucleotide diversity for a given position across all reads and summing it 
over all positions, and Watterson's theta θ (Watterson 1975) statistics in 5 kb and 50 kb non-overlapping 
windows across all 20 chromosomes for each of the four studied populations. Using the BEDTOOLS (bedtools 
flank and map) and custom scripts, we computed nucleotide diversity Π for all annotated gene regions 
(gene sequence +/- 5 kb) and tested for differences between outlier and non-outlier gene regions using 
Kruskall-Wallis tests. POOL-HMM v1.4.3 program (Boitard et al. 2013) was used to detect selective sweep 
windows across the genome in each of the two Choosy populations, using estimates of Watterson’s θ 
provided by NPSTAT.  

We tested for non-random co-localization of candidate outlier genes identified in this study with (i) 
coldspots of recombination reported by Morgan et al. 2017 and (ii) candidate hybrid sterility genomic 
regions between M. m. musculus and M. m. domesticus identified by Turner and Harr 2014. Candidate 
hybrid sterility regions correspond to the 53 GWAS genomic regions significantly associated with relative 
weight testis variation (named RTW regions) and/or testis expression variation (named PC regions) (Turner 
and Harr 2014). We added to this list of candidate genes the gene PRDM9 (chr17:15543079-15564354) 
known as a major hybrid sterility gene in the house mouse. We counted the number of outlier genes 
overlapping these two genomic region sets (coldspots of recombination and candidate sterility regions) 
and used permutations to assess whether outlier genes overlap significantly more than by chance with 
these genomic elements (outlier genes resampled 10,000 times among all annotated genes). To perform 
these permutation tests, we used the bioconductor RegioneR (Gel et al. 2015) package in R version 3.6.2 
(R Core Team 2019). We also performed a Kruskall-Wallis test to investigate whether recombination rates 
differ significantly between outlier and non-outlier gene regions.  
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Genomic distribution of outlier SNPs and genes 
Outlier SNPs: we first estimated the autocorrelation between linked loci in the level of genetic 

differentiation (BAYPASS SNP-based contrast statistics C2) using a first-order autoregressive model (Hahn 
2006). For each chromosome, 10 kb, 50 kb and 100 kb non-overlapping windows were analysed for 
autocorrelation and partial autocorrelation in C2 (using the acf and pacf R functions respectively). We then 
applied the local score approach (Fariello et al. 2017), which accounts for linkage disequilibrium using 
autocorrelation information, to identify outlier genomic segments cumulating signals from single SNP 
markers and characterize their distribution along the genome. We looked at the distribution of −log10(p-
value) to determine the tuning parameter ξ, which must be comprised between mean(-log10(p-value)) 
(here equal to 0.425) and max(-log10(p-value)) (here equal to 10.365). We chose a value of ξ = 1 to run the 
excursions of the Lindley process so that we could expect cumulating a larger number of intermediate 
signals and the identification of wider outlier regions, putting more emphasis on recent soft or incomplete 
sweeps. Although this method does not provide absolute information about the number and the size of 
candidate genomic regions since they depend on the tuning parameter ξ, it is useful to identify regions 
with outstanding genetic differentiation between populations and the genomic range at which cumulating 
effects at multiple differentiated SNPs spread.  

Outlier genes: we first assessed whether outlier genes were distributed heterogeneously in the genome 
(permutation procedure testing whether the observed number of outlier genes per 500 kb was larger or 
smaller than expected by chance). We then performed a cluster analysis (developed by (Haque et al. 2016)) 
to identify the number, location and size of outlier gene clusters in the genome. For the clustering 
approach, the window size used was 500 kb (basal autocorrelation being non-significant at distance > 100 
kb) and this 500-kb window was shifted 50 kb at a time in an overlapped fashion. For each sliding window, 
the number of outlier genes was counted. The sliding window was used from the start of the chromosome 
until the end for each chromosome separately. Once the number of outlier genes had been calculated for 
each window a z -test was used to calculate the z -score for each window from which the p-value was 
calculated. Any window with a p-value < 0.05 was taken as statistically significant in the over-
representation of outlier genes. Windows falling within 50,000 bases (consecutive windows) of each other 
were merged to create final clusters. We graphically represented the distribution of significant local score 
segments, outlier genes and outlier gene clusters along the genome using the Gtrellis v1.4.2 package (Gu 
et al. 2016).  
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