
C EN T R E
MER S ENN E

Peer Community Journal is a member of theCentre Mersenne for Open Scientific Publishing
http://www.centre-mersenne.org/

Peer Community Journal
Section: Genomics

RESEARCH ARTICLE
Published2021-11-23

Cite asGavin M. Douglas and MorganG. I. Langille (2021) A primerand discussion on DNA-basedmicrobiome data and relatedbioinformatics analyses, PeerCommunity Journal, 1: e5.
Correspondencemorgan.langille@dal.ca

Peer-reviewPeer reviewed andrecommended byPCI Genomics,
https://doi.org/10.24072/pci.

genomics.100008

This article is licensedunder the Creative CommonsAttribution 4.0 License.

A primer and discussion onDNA-based microbiome data andrelated bioinformatics analyses
Gavin M. Douglas ,1 and Morgan G. I. Langille ,2
Volume 1 (2021), article e5
https://doi.org/10.24072/pcjournal.2

Abstract
The past decade has seen an eruption of interest in profiling microbiomes through DNAsequencing. The resulting investigations have revealed myriad insights and attracted aninflux of researchers to the research area. Many newcomers are in need of primers onthe fundamentals of microbiome sequencing data types and the methods used to ana-lyze them. Accordingly, here we aim to provide a detailed, but accessible, introductionto these topics. We first present the background on marker-gene and shotgun metage-nomics sequencing and then discuss unique characteristics of microbiome data in gen-eral. We highlight several important caveats resulting from these characteristics thatshould be appreciated when analyzing these data. We then introduce the many-facetedconcept of microbial functions and several controversies in this area. One controversy inparticular is regarding whether metagenome prediction methods (i.e., based on marker-gene sequences) are sufficiently accurate to ensure reliable biological inferences. Wenext highlight several underappreciated developments regarding the integration of tax-onomic and functional data types. This is a highly pertinent topic because although thesedata types are inherently connected, they are often analyzed independently and primar-ily only linked anecdotally in the literature. We close by providing our perspective onthis topic in addition to the issue of reproducibility in microbiome research, which areboth crucial data analysis challenges facing microbiome researchers.
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Background
Microbial communities encompass most of the genetic and species-level diversity on Earth.These communities are commonly characterized throughDNA sequencing, which can be used toidentify the presence and relative abundance of microbes in a community. These communities,including both the microbes, their constituent genes, and metabolites, are referred to as micro-biomes. As the suffix "biome" suggests, a microbiome refers to these constituent elements in adefined habitat (Berg et al., 2020). Due to technological improvements and the reduced cost ofsequencing, the number of sequenced microbiomes has substantially grown in recent years. Forinstance, in 2017 the EarthMicrobiome Project published a meta-analysis of 23,828 sequencingsamples from all seven continents (Thompson et al., 2017). These data represented 109 environ-mental groupings and 21 major biomes, such as animal secretions, saline water, and soil. A keygoal of microbial ecology research is to robustly analyze and correctly interpret these and othersuch microbial profiles.But is DNA sequencing the best method for characterizing microbial communities? It is com-monly observed thatmicrobiome researchwould benefit frommore emphasis on culturing,whichenables individual microbes to be isolated and precisely studied in the lab. Traditionally, micro-bial communities were difficult to study by culturing alone because the vast majority of environ-mental microbes, particularly bacteria, could not be grown under standard culturing conditions(Staley and Konopka, 1985). This issue remains unresolved even after gradual improvementsto standard culturing conditions; a recent evaluation of six major environments identified only34.9% of bacteria as culturable under standard conditions (Martiny, 2019). However, modifiedculturing conditions can largely resolve this problem. By systematically applying 66 differentconditions it was demonstrated that 95% of bacterial species in human stool samples could begrown in the lab (Lau et al., 2016). Therefore, it is no longer true for human stool samples, andlikely other environments as well, that the majority of constituent bacteria cannot be cultured.Despite these advances, DNA sequencing has several advantages over culturing. First, it en-ables microbial communities to be characterized in place, which theoretically enables the exactcommunity relative abundances to be profiled. In practice, biases during sample collection andsequencing library preparation can perturb microbial relative abundances (Bukin et al., 2019;Jones et al., 2015; Watson et al., 2019). But nonetheless, DNA sequencing provides a more ac-curate view of the relative abundances of the community members than would be possible fromculturing alone. Second, DNA sequencing is often a less time and labour-intensivemethod for as-sessing overall community diversity, although high-throughput culturing methods are becomingmore common (Watterson et al., 2020). This is important, because high-throughput character-ization of microbial communities is key to understanding microbial diversity, as closely relatedorganisms can drastically differ in metabolic potential (Tettelin et al., 2005; Welch et al., 2002).
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For these reasons, DNA sequencing remains the predominant method for characterizing micro-bial communities, although it is well-complemented by culturing (Lau et al., 2016). This methoddoes have disadvantages however, for instance, it is difficult to distinguish between live, dormant,and dead cells using DNA sequencing (Carini et al., 2016). For researchers specifically interestedin profiling active cells, leveraging alternative techniques such as metatranscriptomics, metapro-teomics, and/or culturing, would be more appropriate.DNA sequencing data is typically analyzed to identify specific associations between indi-vidual features (e.g., individual microbes) and sample groups of interest. Most commonly, re-searchers are interested in identifying associations between sample environments (e.g., locations,disease states, etc.) and the relative abundance of features. A similar goal is often to investigatewhether different measures of diversity in a studied dataset are associated with sample groups.These measures of diversity are divided into alpha and beta diversity (Goodrich et al., 2014).Alpha diversity metrics refer to within-sample measures, such as richness (i.e., the number oftaxa), and the Shannon diversity index (or entropy), which incorporates both the abundance andevenness of taxa within a sample (Jost, 2006). In contrast, beta diversity refers to metrics thatsummarize variation between samples, which is most often performed by metrics that take thepresence and abundance of features into account, such as the Bray-Curtis dissimilarity metric(Goodrich et al., 2014). Other microbiome-specific metrics have also been developed, such asthe weighted UniFrac distance, which also takes the phylogenetic distance between taxa intoaccount (Lozupone and Knight, 2005). There is often more statistical power to detect overalldifferences based on alpha and beta diversity metrics than to detect associations with individ-ual features, but diversity-level insights are also less actionable (Shade, 2017). In addition, manydiversity metrics rely on unrealistic assumptions and there has been a recent push to developmore robust methods (Martin et al., 2020; Willis, 2019).There are many sub-categories of DNA sequencing approaches for characterizing microbialcommunities. One key distinction is between approaches that aim to characterize taxa (i.e.,a group of organisms) and those that characterize genes and pathways, referred to as func-tions, that could be active in the community. These data types are referred to as taxonomicand functional microbiome data, respectively. Biologically this dichotomy is counter-intuitive;clearly genes are encoded in the genomes of taxa. So why does this distinction exist?The reason is partially related to methodological challenges. The most common and cost-effective sequencing approach focuses on sequencing marker-genes. This method provides nodirect information on the genomes of sequencedmicrobes, and instead is used to profile taxa. Ap-proaches that expand on basic marker-gene sequencing, such as epicPCR (Spencer et al., 2016),can provide information on the presence of small numbers of genes linked to marker-genes, butgenerally only limited genomic content can be gleaned from these methods. In contrast, metage-nomics sequencing (MGS) provides information on all DNA present in a sample. MGS data canbe used for analyzing both taxonomic and functional profiles. However, it is difficult to integratethe two data types, largely due to the complexity of microbial communities, the lack of robustdatabases, and the fragmented nature of DNA sequencing. In other words, it is relatively straight-forward to identify genes in MGS data but challenging to determine from which genomes theyoriginated.Herein we introduce the key forms of these data types and highlight important caveats thatshould be considered when they are analyzed. Although many of our examples are taken fromthe human microbiome literature, our key points and suggestions are relevant to research inany microbial environment. We first cover the fundamentals of microbiome data analysis, start-ing with marker-gene sequencing, and then move to recently developed tools that could beleveraged to conduct joint analyses of taxonomic and functional data types. We conclude byhighlighting two important challenges that must be addressed in microbiome data analysis.
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Glossary
alpha diversity: The diversity in a single community (i.e., a particular sample). In the micro-biome literature there are many alpha diversity metrics, such as richness, the Gini Simp-son index, and the Shannon diversity index.
amplicon sequence variant: A singleDNA sequence fromamarker-gene sequencing dataset.These variants are produced through denoising methods, such as DADA2, deblur, andUNOISE3,which remove sequences that contain likely errors, rather than clustering theminto operational taxonomic units. Due to this approach, amplicon sequence variants canin theory correspond to exact biological molecules and enable single-nucleotide differ-entiation between amplified sequences.
beta diversity: The diversity between communities (i.e., inter-sample distances). Similar toalpha diversity, many beta diversity metrics are applied in themicrobiome literature, suchas weighted and unweighted UniFrac distances, Bray-Curtis distance, and Aitchison dis-tance.
contributional diversity: The diversity of taxa that encode and/or perform a specific func-tion. This is most commonly reported in terms of the diversity of prokaryotes with thepotential to encode (or “contribute” ) a specific pathway. Contributional diversity can bereported in terms of either alpha or beta diversity. For alpha diversity comparisons, theGini-Simpson index has been most commonly used.
function: A generic term with different definitions depending on the biology subdiscipline.In the microbiome literature a function is a general term referring to genome elements orbiological processes performed by organisms. In practice, functions most commonly cor-respond to genes and pathways encoded by taxa. Genes are usually grouped into coarsercategories known as gene families for microbiome analyses, which can be defined basedon either sequence or functional similarity.
marker-gene: In the microbiome literature this most commonly refers to a gene that can beprofiled to identify taxonomic lineages. We primarily discuss 16S rRNA gene sequencingas an example of marker-gene sequencing.
metagenome-assembled genomes: Genomes assembled from metagenomics sequencingdata, without the requirement of culturing the organisms. The quality of these genomesis a contentious issue, as there is much higher risk of mis-assembling a genome in a mixedcommunity compared with traditional genomes based on pure cultures.
metagenome prediction: Functional prediction of the genes and/or pathways present ina community based on taxonomic or marker-gene information. We primarily discuss PI-CRUSt2, a tool that we developed, which predicts the genome content for each query16S rRNA gene through a phylogenetic approach.
metagenomics sequencing: (MGS) Untargeted sequencing of all DNA in a sample, whichtypically represents a mixture of organisms. This term is also sometimes used ambigu-ously to refer inclusively to both marker-gene and shotgun metagenomics sequencing,but herein it refers to only the latter. This data type requires more sophisticated pro-cessing and analyses than required for marker-gene investigations, but directly providesinformation on both the taxa and the genes encoded in the community. Ideally these datacan be assembled into robust metagenome-assembled genomes. In practice the depthof sequencing is often insufficient to produce high-quality genomes and often instead
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analyses focus on individual reads.
microbiome: A general term referring to a microbial community (and also the genes en-coded, and metabolites produced) in a defined environment. The termmicrobiota is usedwhen referring specifically to the taxa in a microbiome. In practice authors often use sub-tly different definitions of the termmicrobiome, such as referring to the bacterial portionof the community only, which has driven calls for more precise definitions in the field(Berg et al., 2020).
operational taxonomic unit: A pragmatic term used to denote a group of taxa as similarin some sense, typically for a particular study. In the microbiome field this term refersto clustering marker-gene sequences into operational groups. Several databases containoperational taxonomic unit sequences that can be re-used across studies. For 16S rRNAgene data analyses the traditional cut-off for defining operational taxonomic units is asequence identity of 97%. This is a qualitatively different approach from denoising datato identify amplicon sequence variants.
pathway reconstruction: The processing of inferring whether a pathway is present or notbased on the genes encoded in a set. For example, pathway reconstruction can be per-formed to infer which pathways could be potentially active given the genes encoded ina particular genome. In the microbiome field, this idea is commonly expanded so thatgene family abundances from many taxa are used to infer which pathways could be ac-tive across the entire community.

Phylogenetic marker-gene sequencing
The earliest developed and most common form of microbiome sequencing is marker-genesequencing, also known as amplicon sequencing. Under this approach specific genes are PCR-amplified and then sequenced. These genes can be markers of a particular functionality (e.g.,Hug and Edwards, 2013), but more commonly this approach is employed to taxonomically pro-file a community, which is the purpose that we will discuss. Sequencing the 16S rRNA gene(hereafter referred to as 16S sequencing) is the most common amplicon sequencing approachfor taxonomic profiling (see Box 1). Such 16S datasets are commonly produced to character-ize and compare the relative abundances of prokaryotes across communities. However, despitethe ubiquity of such datasets, they are non-trivial to analyze and interpret. There are numerousmethodological reasons for this difficulty.First, due to sequencing length constraints, only certain 16S rRNA gene variable regions aretypically amplified and sequenced. Each variable region has particular strengths and limitations(Abellan-Schneyder et al., 2021; Chen et al., 2019; Johnson et al., 2019). Along with our col-leagues we have previously compared the biases between the amplified fragments from variableregions four and five and from regions six to eight (written as V4-V5 and V6-V8, respectively) ona mock community from the Human Microbiome Project (Comeau et al., 2017). We found thatsequencing the V4-V5 region resulted in a higher proportion of Firmicutes and Bacteroides and alower proportion of Actinobacteria, comparedwith the known abundances. In contrast, sequenc-ing the V6-V8 region resulted in a higher proportion of Proteobacteria and a lower proportionof Bacteroides. These biases highlight that choice of variable region can depend on which taxaare of interest. This is particularly true for less widely surveyed taxa such as archaea, which tradi-tionally have been difficult to detect with 16S rRNA gene primers designed for bacteria (Bahramet al., 2019). For example, the V4-V5 region was recently shown to be superior to region V6-V8for studying archaea in the North Atlantic Ocean (Willis et al., 2019). In this case the authorswere particularly interested in archaeal diversity, so the V4-V5 region was more appropriate asit could be used to amplify the 16S rRNA gene of more archaea.
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Box 1: Characteristics of robust marker-genes as exemplified by the 16S rRNA gene
There are two key requirements for robust marker-genes. First, they must be encoded by all (or atleast most) taxa of interest. Second, the observed sequence divergence between homologs shouldbe approximately equal to the neutral mutation fixation rate multiplied by double the divergencetime between homologs (Woese, 1987). Note that the divergence time should be doubled becausemutations could accumulate in either lineage since the organisms diverged. Genes displaying thissecond requirement have been referred to as molecular chronometers. This term highlights theclose link between these marker-genes and the concept of the molecular clock (Zuckerkandl andPauling, 1965): given equal mutation rates and equal fixation rates for neutral mutations, the num-ber of neutral substitutions between organisms is directly proportional to the evolutionary diver-gence between them.However, there are many reasons why a gene might be an unreliable molecular chronometer(Janda and Abbott, 2007). One reason is that if a gene varies in function across taxa then contrast-ing selection pressures could result in different non-synonymous substitution rates (Wheeler etal., 2016). For instance, as previously observed (Woese, 1987), the cytochrome complex gene is auseful molecular chronometer in eukaryotes, but suffers from drawbacks. This gene was shown tobe useful for building early phylogenetic trees that represented both long evolutionary distancesacross eukaryotes and short distances between human populations (Fitch and Margoliash, 1967).However, within prokaryotes the cytochrome complex systematically varies in size, which is be-lieved to be due to positive selection (Ambler et al., 1979). Because positive selection is likelydriving divergence between orthologous cytochrome complexes, in at least some cases it wouldbe an invalid molecular chronometer to study in prokaryotes. Similarly, if a gene is sufficientlydivergent between organisms then it can be difficult to accurately align residues. Misalignmentslead to inaccurate estimates of evolutionary divergence, which is particularly true if the gene ac-cumulates insertions and deletions. Such highly divergent regions, particularly in areas under noselective constraint, have been referred to as "evolutionary stopwatches" (Woese, 1987), becausethey are useful only at short evolutionary distances. Therefore, to select a robust marker-gene oneshould adhere in some ways to the Goldilocks principle: some nucleotide conservation is needed,but not too much.The 16 Svedberg (16S) ribosomal RNA (rRNA) gene fits well with this principle. This gene fea-tures highly conserved regions surrounding nine less conserved regions (referred to as variableregions). It is also encoded by all prokaryotes and represents 50 helical RNA regions encoded byapproximately 1,500 base-pairs (Woese et al., 1980). This high number of independent functionaldomains is valuable in a marker-gene (Woese, 1987). This is because if there are non-randomsubstitutions within a single domain, but random substitutions in the majority of other domains,there would likely be little effect on estimates of evolutionary divergence. This gene also encodesa highly conserved function across both prokaryotes and eukaryotes (where it is called the 18SrRNA gene). The 16S rRNAmolecule is part of the 30S small subunit of the ribosome, which helpsinitiate protein synthesis by binding the Shine-Dalgarno sequence in messenger RNA to align theribosome with the encoded start codon. Many changes in the highly conserved regions of the16S rRNA gene affect its binding affinity to the ribosome and messenger RNA. The strong neg-ative selection acting against such substitutions makes these regions valuable for detecting raresubstitutions, anchoring alignments, and for primer design (Wang and Qian, 2014).Since the 16S rRNA gene was identified as a useful molecular chronometer, it has been theprime marker-gene used to develop phylogenetic models of the tree of life. Most famously, analignment of 16S (and 18S) rRNA gene sequences from across life lead to distinguishing archaea,bacteria, and eukaryotes into distinct domains (Woese and Fox, 1977). In these early days, researchfocused on analyzing the rRNA sequences of isolated microbes. This was painstaking work, asillustrated by the prediction in 1987 that future research groups could plausibly sequence on theorder of one hundred 16S rRNAs a year (Woese, 1987).Thirty-four years later, through next-generation sequencing technology, insufficient availabilityof sequenced rRNA genes is no longer a common complaint. Databases such as SILVA containenormous collections of sequenced small subunit fragments; as of August 2020 SILVA contained9,469,124 non-clustered, independent sequences (Quast et al., 2013).
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Typically, however, the taxonomic scope of interest and region biases in a particular environ-ment are not clear and little or no rationale is given for the variable region selection. This is aproblem, because analyses of the same communities with different variable regions can resultin not only systematic biases in the raw data, but also in strikingly different biological interpre-tations. For example, key species that modulate human vaginal health are underrepresented ormissing in V1-V2 sequencing datasets, such as Gardnerella vaginalis, Bifidobacterium bifidum, andChlamydia trachomatis (Graspeuntner et al., 2018). Application of this region for profiling vagi-nal samples, instead of the more appropriate choice of the V3-V4 region, can result in entirelymissing associations between vaginal health and the microbiome. Similarly, a comparison of thetick microbiome based on six sequenced 16S rRNA gene regions found a wide range of the num-ber of prokaryotic families and in the Shannon diversity index for each individual tick (Sperlinget al., 2017). The problem of such biases in variable region selection is beginning to recede aslong-read technologies, such as that developed by Pacific Biosciences of California and OxfordNanopore Technologies Limited, enable full-length 16S sequencing (Callahan et al., 2019; John-son et al., 2019). However, it will remain an important issue for the foreseeable future as long asthe microbiome is largely studied by short-read sequencing.
Regardless of the sequenced region, most reads originating from the same biological mol-ecule will differ due to sequencing errors. Raw reads are either clustered based on sequenceidentity into operational taxonomic units or alternatively errors are corrected to produce ampli-con sequence variants. Operational taxonomic units are typically clustered at 97-99% identity(Goodrich et al., 2014), which often results in merging different species into a single operationaltaxonomic unit (Mysara et al., 2017). This issue has long plagued 16S rRNA gene-based analyses.For instance, Bacillus globisporus and Bacillus psychrophilus are problematic cases because their16S genes share 99.5% sequence identity, but are highly distinct at the genome level (Fox et al.,1992).
In contrast to clustering approaches, error-correcting approaches, referred to as denoisingmethods, theoretically can correct raw reads sufficientlywell to produce exact biologicalmolecules.Several different denoising approaches have recently emerged. DADA2 is themost sophisticatedapproach, which generates a different parametric errormodel for every input sequencing dataset(Callahan, McMurdie, et al., 2016). The raw sequencing reads are then corrected to generate am-plicon sequence variants based on this error model. Deblur (Amir et al., 2017) and UNOISE3(Edgar, 2016) are two other denoising tools that are based on rapidly clustering raw reads andusing predetermined hard cut-offs related to the expected error rates to generate amplicon se-quence variants. We and other colleagues have evaluated the performance of these three toolsand open-reference operational taxonomic unit clustering (which combines both de novo andreference-based clustering) and found that all three denoising methods result in similar overallmicrobial communities (Nearing et al., 2018). In contrast, we found that open-reference oper-ational taxonomic unit clustering resulted in a high rate of spurious identifications comparedto these methods. Nonetheless, there were important differences between the three denoisingmethods, particularly in terms of richness and when profiling rare taxa (Nearing et al., 2018). Amore recent independent validation based on a higher number of test datasets reached similarconclusions (Prodan et al., 2020).
In addition to 16S rRNA gene sequencing data, there are multiple marker-genes appropriatefor profiling eukaryotic diversity. The 18S rRNA gene is the homolog of the 16S rRNA genein eukaryotes and is widely used to profile that domain. However, fungi are more difficult todistinguish based on the 18S rRNA gene, because fungi lack several variable regions for thisgene (Schoch et al., 2012). Instead, the internal transcribed spacer region, although not strictly amarker-gene, is more often amplified to study fungal communities, because it typically has moreresolution to distinguish fungi than the 18S rRNA gene (Liu et al., 2015). This region is withinthe nuclear rRNA cistron of fungi genomes, which contains the 18S, 5.8S, and the 28S rRNAgenes. The internal transcribed spacer regions encompasses the two intergenic regions, whichhave relatively high rates of insertions and deletions, and the 5.8S rRNA gene (Schoch et al.,2012). Only a single intergenic region is typically amplified, referred to as regions one and two,
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which have better discriminatory resolution for the major phyla Basidiomycota and Ascomycota,respectively (Bellemain et al., 2010).Although the marker-genes described above are the most commonly profiled loci, in manycases there aremarker-genesmore appropriate for specific lineages. For example, several halophilicspecies ofHaloarcula encodemultiple 16S copies that can differ bymore than 5% sequence iden-tity within the same genome (Sun et al., 2013). Consequently, different marker-genes are oftenused when building phylogenetic trees representing a single species or genus.The chaperonin-60 (cpn60) gene is one useful alternative prokaryotic marker-gene, whichis particularly useful for distinguishing taxa at resolutions below the genus level (Links et al.,2012). For example, the cpn60 gene has been frequently profiled in vaginal microbiome samples,because variation at this locus can distinguish subgroups of Gardnerella vaginalis that cannotbe distinguished based on the 16S rRNA gene alone (Jayaprakash et al., 2012). Similarly, thegene rpoB, which encodes the DNA-directed RNA polymerase subunit beta, is another valuableprokaryotic marker-gene, which provides comparable or better taxonomic resolution to the 16SrRNA gene (Case et al., 2007). Profiling rpoB can sometimes better identify relevant taxa in acommunity. For instance, it has been used for identifying a known nematode symbiont missedby standard 16S profiling with the V3-V4 region (Ogier et al., 2019).More generally, marker-genes for specialized comparisons are often chosen to match thedefining function of a given lineage. For example, the methyl coenzymeM reductase A gene anda nitrate reductase gene have been previously profiled to explore the diversity of methanogens(Hallam et al., 2003) and nitrogen-fixing microbes (Comeau et al., 2019), respectively.

Metagenomics sequencing
Metagenomics sequencing (MGS) is a qualitatively different method from marker-gene se-quencing, because it involves sequencing all DNA in a community. This is a major advantage andmeans that MGS can profile any DNA-encoding taxa, including DNA viruses and microbial eu-karyotes. This has enabled the discovery of novel lineages, including previously unknown phyla(Spang et al., 2015), through analyzing MGS data. However, this characteristic also makes dataanalysis more challenging. This is particularly because sources of DNA that are not of interest,such as host DNA or contaminants (especially in low biomass samples), can often be substantialproportions of MGS datasets. MGS approaches were first applied to study ocean water commu-nities through a Fosmid cloning approach (Stein et al., 1996). Building upon such early studies,the potential for leveraging MGS was widely publicized by an investigation into the microbialdiversity of the Sargasso Sea (Venter et al., 2004). This study identified 1.2 million previouslyunknown genes and many other microbial features that would be impossible to study with 16SrRNA gene sequencing. These and other related observations sparked an explosion of interest inprofiling microbial communities withMGS approaches. This interest has culminated in the gener-ation of enormous MGS datasets such as the Earth Microbiome Project (Thompson et al., 2017),the Human Microbiome Project (Lloyd-Price et al., 2017b), and the TARA Oceans investigations(Sunagawa et al., 2015).There are two main approaches for analyzing MGS data: read-based workflows and metage-nomics assembly. Each of these approaches has strengths and weaknesses, but in both cases thegenerated profiles imprecisely reflect biological reality. For instance, the number of species iden-tified by different read-based methods can vary by three orders of magnitude (McIntyre et al.,2017). The exact species relative abundances can also drastically differ across tools, as recentlyshown in a comparison of read-based methods applied to simulated datasets (Ye et al., 2019).Different approaches for metagenomics assembly will produce different assembled contigs andmicrobial profiles as well (Olson et al., 2019). Unsurprisingly, given this wide variation, there isalso low concordance between 16S sequencing andMGS data taken from the same samples. Forexample, one comparison found that fewer than 50% of phyla identified in water samples basedon 16S sequencing were also identified in the corresponding MGS profiles (Tessler et al., 2017).This particular result is likely dependent on the taxonomic profiling approach used (see below).
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Nonetheless, this wide variation in results highlights that any interpretation ofMGS profiles, sim-ilar to 16S profiles, should be done cautiously. It is crucial to appreciate that any approach willhave important weaknesses and that the generated profile will only partially represent the actualmicrobial diversity.With those important caveats inmind, an understanding of the different approaches is nonethe-less important to give context to MGS data analysis. Read-based workflows involve little or noassembly of the reads and instead each read (or pair of reads) is treated independently. This is themost common approach for analyzing MGS data, particularly because it can be performed withlow sequencing depth (Hillmann et al., 2018) and in complex communities (Zhou et al., 2015).However, an important disadvantage of this approach is that taxonomic and functional annota-tions are typically generated and treated as entirely independent data types (Figure 1a). It is alsopossible to map reads against a set of known reference genomes, which does link the two datatypes (Figure 1b). Although this is an invaluable approach when applied to genomes assembledfrom the study environment (see below), the results are typically near incomprehensible whenreads are mapped against a database of thousands of genomes at the nucleotide level. In con-trast, when reads are mapped against reference genomes in protein space, using a tool such asKaiju (Menzel et al., 2016), this approach can provide useful taxonomic profiles. Nonetheless, themost common approaches for generating taxonomic profiles are based on either a marker-geneor k-mer method.Marker-gene approaches are based on the insight that specific genes can be used to iden-tify the presence and relative abundance of certain taxa. An extreme example is to use solelythe 16S rRNA gene for taxonomic classification (Hao and Chen, 2012). Several methods havebeen developed specifically for targeted assembly of this and other rRNA genes fromMGS data(Gruber-Vodicka et al., 2020; Miller et al., 2011; Pericard et al., 2018). More commonly, marker-gene approaches base classifications onmany genes. For instance, PhyloSift (Darling et al., 2014)leverages 37 nearly universal prokaryotic marker-genes (Wu et al., 2013) in addition to eukary-otic and viral gene sets to make a combined set of approximately 800 (mainly viral) gene familiesfor classification. Aligned reads are placed into a phylogenetic tree of reference sequences andtaxonomic classification is performed based on summing the likelihood of each taxa based oneach read placement (Darling et al., 2014). MetaPhlAn is a contrasting approach that insteadbases taxonomic predictions on the presence of clade-specific marker-genes, which are genesonly found in that given lineage, and found in all members (Truong et al., 2015). This methodhas rapidly become the most popular marker-gene MGS approach. However, given that this ap-proach is limited by the existence of robust clade-specific genes, it is not surprising that it tendsto have low sensitivity (Miossec et al., 2020; Tessler et al., 2017), meaning that it misses taxathat are actually present.In contrast, k-mer-based approaches are much more sensitive but have slightly lower speci-ficity than marker-gene methods (Miossec et al., 2020). These approaches search for exactmatches of short DNA sequences (k-mers) within reference genomes. An algorithm such aslowest-common ancestor is then performed to determine the likely taxonomic classificationbased on all matching genomes. Two common kmer-based approaches are kraken2 (Wood etal., 2019) and centrifuge (Kim et al., 2016), both of which match k-mers against a compresseddatabase of reference genomes. One disadvantage of such methods is that taxonomic classifica-tions can be highly dependent on the size of the database used (Nasko et al., 2018). In addition,the main challenge of analyzing taxonomic profiles output by these methods is the high numberof rare taxa of different ranks identified, some of which may be false positives. Summarizing theoutput profiles with an additional approach, such as the Bayesian abundance re-estimation toolBracken (Lu et al., 2017) in the case kraken2 data, can help mitigate these problems.Most functional read-based methods are based on a similarity search of reads against a data-base of known gene families. This is primarily done in protein space, because protein similaritymatches are more informative and the database requirements are lower (Koonin and Galperin,2003). The common similarity searching tool BLASTX is prohibitively slow when scanning mil-lions of reads, which has driven the development of faster alternatives like DIAMOND (Buchfinket al., 2015) andMMseqs2 (Steinegger and Söding, 2017). These faster alternatives are leveraged
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by workflows implemented in software such as MEGAN (Huson et al., 2007) and HUMAnN2(Franzosa et al., 2018) to identify gene family matches and output overall metagenome profiles.HUMAnN2 is a unique approach in that it first screens reads that map to reference genomes oftaxa identified as present with MetaPhlAn2. This step enables a small subset of gene families tobe linked directly to particular taxa. However, the vast majority of gene families typically have notaxonomic links and are only part of the community-wide metagenome. There are clear issueswith the general approach implemented by these gene profiling approaches, as has been previ-ously observed: "genes are expressed in cells, not in a homogenized cytoplasmic soup" (McMa-hon, 2015).Linking functional annotations to specific taxa by assembling raw reads is the ideal approachto resolve this problem, but this too comes with caveats. Most importantly, insufficiently highread depth, which depends on the complexity of a sample, can result in too few assembled con-tigs to sensibly analyze. Nonetheless, with sufficiently high read depth metagenome assemblycan be a valuable way to leverage information about microbial communities (Figure 1c). Thereare many metagenome assembly tools available, such as MetaSPAdes (Nurk et al., 2017) andMEGAHIT (Li et al., 2015). The resulting assembled contigs from these approaches are typicallycategorized (or "binned") into groups of contigswith similar characteristics. This binning is primar-ily performed by identifying contigs that are found at similar relative abundances across samplesand/or that contain similar proportions of different k-mers (Ayling et al., 2020). These bins rep-resent metagenome-assembled genomes that must undergo stringent checks to help evaluatethe overall quality (Bowers et al., 2017). The key method for performing quality control on thesegenomes is to scan for known universal single-copy genes, with a tool such as CheckM (Parks etal., 2015). The percentage of universal single-copy genes present provides an estimate of overallgenome completeness. In contrast, the number of universal single-copy genes found in multiplecopies can be used to calculate the redundancy, which is potential evidence for contamination orstrain heterogeneity in the genome. For further details on metagenomics assembly and binningtools, readers can find recent reviews that describe the available bioinformatics tools (Ayling etal., 2020; Breitwieser et al., 2019).One final consideration is that several recent technologies have been developed that can leadto higher quality metagenome-assembled genomes. These include long-read sequencing tech-nology (McCarthy, 2010; Mikheyev and Tin, 2014), Hi-C sequencing (Belton et al., 2012), opticalmapping (Hastie et al., 2013), read clouds (Bishara et al., 2018), and single-cell metagenomics (Xuand Zhao, 2018). We have previously discussed the utility of these specific technologies in thecontext of producing improved metagenome-assembled genomes in more detail (Douglas andLangille, 2019).
Characteristics of microbiome count data

Regardless of the sequencing technology and workflow used for taxonomically profiling amicrobial community, the final product is typically an abundance table. This is true for manysequencing approaches, such as in transcriptome datasets, but there are several important dif-ferences. First, unlike in the case of transcriptome read count tables where there are typically aknown number of genomic loci, novel taxa and functions are frequently identified in microbiomedata. For instance, novel operational taxonomic units, amplicon sequence variants, and contigsare frequently identified in taxonomic analyses. Similarly, 25-85% of proteins in MGS are novelmicrobial genes of unknown function (Prakash and Taylor, 2012). Second, no statistical distribu-tion fits microbiome data in all contexts. For example, many statistical distributions, includingthe negative binomial (Love et al., 2014), beta binomial (Martin et al., 2020), and Poisson (Faustet al., 2012) distributions have been proposed as appropriate fits to microbiome data. However,upon analysis with real data these and other distributions fit with inconsistent accuracy (Calgaroet al., 2020; Weiss et al., 2017). Last, microbiome abundance tables typically have high sparsity,meaning that there is a high proportion of features not found across many samples (Thorsenet al., 2016). These characteristics make microbiome data analysis challenging for all taxonomicanalyses and most functional analyses.
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Figure 1: Key approaches for generating joint taxonomic and functional data from
metagenomics sequencing data. (a) Read-based processing of metagenomics data to
generate functional and taxonomic abundance tables independently. (b) Read mapping to
genome sequences can be used to infer the presence of a taxon based on read coverage. It
can also be used to identify the presence of strains missing specific genes or of the inverse:
a community containing specific genes from a genome while the rest of the genome is
absent. Note that all of these inferences are best made in low complexity communities
where there are few ambiguous read mappings, and where the possible set of genomes
present is relatively well defined. This is particularly applicable when mapping reads against
metagenome-assembled genomes from the same dataset. (c) Metagenomics-based genome
assembly involves assembling reads into contigs and then binning contigs into categories
representing metagenome-assembled genomes. Missing from this diagram is the important
quality control step, which is essential to follow-up metagenomics assembly. Also, this approach
is best for profiling dominant organisms, and produces the best results when sequencing read
depth is high and community complexity is low.

These challenges are exacerbated by the inherent compositionality of sequencing data. Com-positional data refers to data that is constrained to an arbitrary constant sum (Aitchison, 1982),such as the arbitrary number of raw sequencing reads output per sample. This characteristic
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means that the observed abundance of any given feature is dependent on the observed abun-dance of all other features (see Figure 2 for an illustrative example of the implications of thischaracteristic). This implies a necessary consideration regarding microbiome sequencing dataanalysis: it only provides information on the relative abundances, or percentages, of featuresand does not provide insight on feature absolute abundances.This important characteristic was not widely appreciated in the field until relatively recently,when researchers identified fatal issueswith common approaches for analyzingmicrobiome data(Gloor et al., 2016, 2017). Standard differential abundance approaches, such as the t-test andWilcoxon test, when applied to relative abundances, andmicrobiome-specific tools such as LEfSe(Segata et al., 2011) do not account for this compositionality. Common summary metrics formicrobiome data, such as the UniFrac distance, also suffer from this problem (Gloor et al., 2017).This is a major issue, because ignoring this characteristic is known to lead to spurious discoverieswith compositional data (Aitchison, 1982; Fernandes et al., 2014; Jackson, 1997).Fortunately, there is active work in the field to resolve this issue and numerous compositionalapproaches have been developed. For instance, several compositional correlation approachesare now available (Friedman and Alm, 2012; Kurtz et al., 2015; Schwager et al., 2017). One suchapproach is SparCC, which computes inter-taxon correlations while accounting for artifactualcorrelations that occur simply due to the interdependency between features in the same com-positional dataset (Friedman and Alm, 2012). Differential abundance approaches appropriatefor compositional data analysis have also been developed, such as ALDEx2 (Fernandes et al.,2014, 2013) and ANCOM (Mandal et al., 2015). A common theme of these compositional ap-proaches is that the data is transformed based on the ratio of feature relative abundances tosome reference frame (Aitchison, 1982; Morton et al., 2019). This choice of reference framevaries substantially between approaches. For instance, ALDEx2 transforms relative abundancesby the centred log-ratio transformation (Fernandes et al., 2013), which essentially normalizes fea-ture relative abundances by the geometric mean relative abundance per sample. This approachtransforms the original data but maintains the interpretation of individual features. In contrast,it has been suggested that analyses could instead be based on ratios between features (Mortonet al., 2019), which converts the data type into comparisons of features rather than individualfeatures.There are no best-practices regarding approaches that compositionally transform individualfeatures.More generally, differential abundance tests commonly producewidely different sets ofsignificant taxa from each other (Hawinkel et al., 2019; Thorsen et al., 2016; Weiss et al., 2017).This wide variation is largely due to specific characteristics ofmicrobiome count data. A large pro-portion of the variation in results is driven by high false discovery rates. Although many methodsadvertise that only approximately 5% of significant taxa are likely false positives, it has been es-timated that for some methods the actual false discovery rate is substantially higher (Hawinkelet al., 2019). This particular validation observed this trend for several methods, including AN-COM (Mandal et al., 2015) andmetagenomeSeq (Paulson et al., 2013), twomicrobiome-orientedmethods that are otherwise considered conservative (Paulson et al., 2013;Weiss et al., 2017). Inaddition, a recent evaluation of differential abundance tools found that compositional methodsare actually less robust than several non-compositional alternatives (Calgaro et al., 2020).To compound these discrepancies, there are even disagreements regarding how to prepro-cess and filter datasets prior to statistical testing. For instance, microbial features with low preva-lence or that are only found at low read depths are often discarded. Ad-hoc cut-offs for featurefiltering, such as a minimum prevalence of 10%, are often used, but there is little consistencyacross studies. In addition, it has been suggested that filtering out rare features based on readdepth can, at least under certain conditions, reduce statistical power (Schloss, 2020).Given thewide variation in differential abundance tool performance and unclear best-practices,how is a microbiome researcher to proceed? One possible answer is that a change in expecta-tions regarding the interpretability of microbiome data analysis is needed. In particular, analysesusing ratios between the relative abundances of taxa have been shown to be robust, althoughthe increased robustness comes at the cost of interpretability (Morton et al., 2019). However,an important issue is how to determine which taxa should be the numerator and denominator
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of each ratio. One solution is to leverage the bifurcating structure of a clustered tree (Mortonet al., 2017; Pawlowsky-Glahn and Egozcue, 2011) or phylogenetic tree (Silverman et al., 2017)of features. Analyses can be focused on the ratios in relative abundances between features onthe left-hand and right-hand of each node in the tree. Despite the potential of this approach, it israrely used for standard microbiome analyses because it is unclear how to biologically interpretany differences in the values of these ratios across samples.An alternative solution is to leverage additional data to transform relative abundances to ab-solute abundances. This alternative data could be quantitative PCR data, flow cytometry data(Vandeputte et al., 2017) or spiked-in sequences of known abundances (Zemb et al., 2020). Dif-ferent sample preparation protocols prior to DNA sequencing can also help retain informationabout differential absolute amounts of DNA across samples as well (Cruz et al., 2021). These areexciting approaches, but they have not been validated across many datasets and at the momentthere is no consensus regarding which methods perform best.This discussion of microbiome data characteristics has focused on taxonomic features basedon either 16S sequencing or read-based MGS data analysis. However, it is important to empha-size that count tables produced frommetagenome-assembled genomes do not resolve this issue.In fact, attempting to account for these challenging characteristics of microbiome count data andthe links between taxa and function makes the analysis more difficult.
Protein databases and ontologies for microbial genome functional annotation
To this point we have only discussed functional microbiome data in vague terms as referringto microbial gene abundances. When based on DNA sequencing data this information summa-rizes the functional potential, meaning the functions that are present, but not necessarily activein a community. However, rather than individual gene sequences, research is typically focusedon gene families, which are defined based on close sequence identity and/or similar functionalityfrom the gene’s eye view. Alternatively, the focus is sometimes on higher-order functional cate-gories like pathways, which represent functionality of groups of potentially interacting gene fam-ilies in reactions. To complicate matters further, there are several different functional databasesand ontologies for annotatingmicrobial functions. Ontologies are representations of informationgroupings and relationships of arbitrary entities (Thomas et al., 2007). In the context of func-tional annotation, different ontologies represent different ways of functionally grouping genesand also of defining higher-level and more general microbial functions. Depending on which ofthese functional ontologies and sub-categories are analyzed, the characteristics of the data candrastically differ.The Universal Protein Resource (UniProt) Reference Clusters (UniRef) database contains allprotein sequences from the Swiss-Prot (manually curated) and TrEMBL (automated) databasesclustered at either 50%, 90%, or 100% identity (Apweiler et al., 2004). The most recent versionsof these clusters have been generated with the MMseqs2 algorithm (Steinegger and Söding,2018). As of June 30th, 2020, the 100% identity clusters (called UniRef100), corresponded to235,561,514 unique protein sequences, which provides a detailed summary of almost all knownprotein sequences. Despite being clustered at lower identity thresholds, UniRef50 and UniRef90nonetheless contain enormous numbers of protein clusters: 41,883,832 and 115,885,342, re-spectively.TheUniRef database contrasts with another common functional ontology, the Kyoto Encyclo-pedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2016; Ogata et al., 1999). KEGGis based on 23,530 individual gene families (as of September 10th, 2020), which are called KEGGorthologs. The advantage of KEGG orthologs is that the majority have well-described molecu-lar functions that can be linked to higher-order KEGG pathways and modules. Accordingly, anyanalysis of KEGG data will likely result in less sparse count tables than the corresponding UniRef-based database, simply because KEGG orthologs are shared across more taxa than UniRef clus-ters.To illustrate this point, we and our colleagues have previously compared the taxonomic cov-erage of each function within these two functional ontologies and each sub-category (Inkpen
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Figure 2: Microbiome sequencing data provides information only on relative abun-
dances. This is because the data are compositional, meaning that it is constrained to sum
to some arbitrary number, rather than corresponding to actual absolute abundances (e.g.,
cell counts or colony forming units). This illustrated example highlights how a difference
in relative abundance in a given taxon, taxon z, between two samples does not provide
information on whether there is a difference in terms of the absolute abundance of this taxon
(except for certain circumstances noted in the main-text). From bottom left to right three
possible configurations of absolute abundance are shown. The left panel shows the case where
the total abundance of taxa is the same in each sample and so taxon z is indeed at higher
absolute abundance in sample b. However, it is also possible that the absolute abundance
of this taxon could be lower (bottom centre) or the same (bottom right) depending on the
total absolute abundance in each sample.

et al., 2017). We found that all UniRef functions, including those in UniRef50 clusters, are onaverage found in a single domain and encoded by fewer than four species. In contrast, we foundthat KEGG orthologs were encoded in 1.3 domains and 184.3 species on average. Similarly, thehigh-level KEGGmodules and pathways were predicted to be potentially active in a mean of 1.7and 2.5 domains and 671 and 1267.6 species, respectively (Inkpen et al., 2017). Based on thesestatistics, clearly a shift in the abundance of a UniRef cluster should not be treated the same asa KEGG function: the former corresponds to the activity of a small number of species while thelatter could correspond to a large assemblage. This example highlights that the choice of howfunction is defined in a given analysis can have profound effects on the biological interpretation.In addition to UniRef and KEGG, several other functional ontologies have been leveraged formicrobiome analyses. Key examples of additional function types include: Clusters of Ortholo-gous Genes (COGs) (Makarova et al., 2015; Tatusov et al., 2000), Enzyme Commission numbers,Protein families (Pfam) (Finn et al., 2014; Punta et al., 2012), and TIGRFAMs (Haft et al., 2003).These categories represent a range of approaches for defining gene families and functional cat-egories.
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The COG strategy for functional annotation was originally intended to phylogenetically clas-sify proteins into groups of orthologs (Tatusov et al., 2000). This one-to-one approach of match-ing individual orthologs has now been expanded to allow for more complex relationships be-tween genes, such as paralogs and horizontally transferred homologs (Galperin et al., 2019;Makarova et al., 2015). As of 2015, there were 4,631 independent COGs (Galperin et al., 2015).The COG framework is similar to that of the eggNOG database (Jensen et al., 2008), which isa more high-throughput, automated approach. However, the key advantage of the COG data-base is that orthologous genes are clustered into 26 interpretable functional categories, whichare expanded from categories originally defined to functionally bin Escherichia coli genes (Riley,1993).
The Enzyme Commission number framework, which was developed in 1992 by the "Inter-national Union of Biochemistry and Molecular Biology", is a contrasting approach for functionalannotation. Instead of focusing on orthologous genes, Enzyme Commission numbers specify par-ticular enzyme-catalyzed reactions. An interesting characteristic of this database is that these re-actions can be performed by non-homologous isofunctional enzymes (Omelchenko et al., 2010).As of August 12th, 2020, there were 6,520 Enzyme Commission numbers, which correspond toone of four levels of granularity. For example, the accession 3.5.1.2 corresponds to glutaminases,while the higher-level categories correspond to hydrolases (3.-.-.-), that act on carbon-nitrogenbonds other than peptide bonds (3.5.-.-), and that are in linear amides (3.5.1.-). One major ad-vantage of Enzyme Commission numbers is that because they specify exact enzymatic reactionsthey are straight-forward to link into pathway ontologies based on reactions, such as MetaCycpathways (Caspi et al., 2013).
The Pfam database categorizes protein families, which are protein regions that share se-quence homology (Punta et al., 2012). Individual proteins with multiple domains can thus be-long to multiple Pfam families. Each Pfam family is represented by a hidden Markov model,which models the likely amino acids at each residue and the likely adjacent amino acids based oncurated alignments of representative protein sequences. This approach identified homologousprotein regions, which are often hypothesized to have a shared evolutionary history, but notnecessarily. As of May 2020, there were 18,259 Pfam families.
Lastly, TIGRFAMs are manually curated protein families, which are also identified based onhidden Markov models, but also additional pertinent information (Haft et al., 2003). As of Sep-tember 16th, 2014, there were 4,488 TIGRFAMs. The distinguishing feature for this database isthat different information supplements each hidden Markov model. For instance, certain TIGR-FAM are annotated based on species metabolic context and neighbouring genes, while othersare based on validated functions from the scientific literature. This database has been less com-monly analyzed in recent years and is best known as the annotation system for early large-scalemetagenomics projects (Venter et al., 2004). Alternative approaches, such as the FIGfam pro-tein database are now more commonly used than TIGRFAMs. FIGfams are based on a similarapproach, but instead of being manually curated they are aggregated into isofunctional groupsbased on shared roles in specific subsystems (Meyer et al., 2009).
A recurrent question thus far has been that given a range of comparable, or contrasting,bioinformatics options, how is one to proceed? Fortunately, in the case of selecting functionalontologies, the choice is much clearer than other bioinformatics areas. Each functional databasetypically excels for different purposes. For instance, UniRef is useful for identifying uncharac-terized genes that may be of interest in an environment, but quickly becomes challenging tointerpret and analyze in diverse communities.
In contrast, KEGG is useful for looking for shifts in well-described functions at a high level,whichmeans this database ismore robust to granular functional diversity. Due to also beingmorerobust to granular functional diversity and because they are more interpretable, pathway-levelfunctions are often of particular interest. For instance, obesity is associated with an enrichmentof phosphotransferase systems involved in carbohydrate processing in human and mouse gutmicrobiomes (Turnbaugh et al., 2008, 2009). This straight-forward explanation quickly commu-nicates the pertinent biological details, which might be lost by focusing on less granular levels.
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However, it is worth noting that pathways identified based on DNA sequencing are merelytheoretical reconstruction based on the identified individual gene families. Although there areseveral pathway reconstruction approaches, they all require some mapping from gene familiesor reactions to pathways. This mapping can be structured, meaning that optional and requiredcontributors can be specified, or non-structured, meaning that all genes and/or reactions aretreated equally.
The naïve approach for pathway reconstruction is to assume that a pathway is present if anygene or reaction involved is present in the community. This was the predominant approach usedfor pathway inference in early functional analyses (Meyer et al., 2008; Moriya et al., 2007) andin several pathway inference tools such as PICRUSt (Langille et al., 2013). Pathway abundanceunder this framework is calculated by summing the abundance of each contributing gene family.This approach errs towards avoiding missing the presence of a pathway, which is a concern inmetagenomes as key genes may be missing due to mis-annotations. However, this approachcomes at the cost of spurious annotations. Based on the naïve mapping approach the humangenome was previously annotated as including the KEGG pathway equivalent of the reductivecarboxylate cycle (Ye and Doak, 2011). This pathway is restricted to autotrophic microbes andis similar to reversing the Krebs cycle. Consequently, several gene families are shared in bothprocesses. Under the naïve mapping approach, the presence of genes involved in the Krebscycle are also evidence for the predicted presence of this atypical microbial pathway in humans.Similarly, vitamin C biosynthesis would also be predicted in humans based on the naïve approach(Ye and Doak, 2011). However, the GLO gene, which encodes the protein involved in the key laststep of vitamin C biosynthesis in mammals, is pseudogenized in humans (Drouin et al., 2011),which makes vitamin C biosynthesis impossible.
The Minimal set of Pathways (MinPath) approach is an approach developed to address thisissue (Ye and Doak, 2011). This tool identifies the smallest set of pathways, based on maximumparsimony, that are required to explain the presence of a set of proteins. In this way, the approachis more conservative than naïve mapping and also accounts for incomplete protein sets. Thismethod has been applied in numerous contexts, including for the "Human Microbiome ProjectUnified Metabolic Analysis Network 2" (HUMAnN2) (Abubucker et al., 2012; Franzosa et al.,2018) MGS gene family profiling and pathway reconstruction framework. This popular frame-work reconstructs pathways based on MinPath and infers pathway abundance based on differ-ent approaches, depending if the pathway mapping is structured. For unstructured mappings,the arithmetic mean of the upper half of individual gene family abundances is taken to be thepathway abundance (Abubucker et al., 2012). For structured mappings, the harmonic mean ofthe key (i.e., required) genes families is computed for pathway abundance (Franzosa et al., 2018).Both these approaches are motivated by the need to be robust to variable abundance in alter-native gene families.
Although this approach for MGS pathway reconstruction is commonly performed, it is im-portant to emphasize that it has not been universally accepted and there remains disagreementabout best-practices. For example, "Evidence-based Metagenomic Pathway Assignment usinggeNeAbundanceDAta" (EMPANADA) is amethod that addresses the same issue asMinPath andHUMAnN2 in a different way (Manor and Borenstein, 2017a). Pathway reconstructions from thistool are based on the distinction between genes that are shared with multiple pathways fromthose that are unique to a single pathway. Pathway support weightings are first given by the aver-age abundance of gene families unique to each given pathway. The abundance of all shared genefamilies is then partitioned between all pathways according to their relative support values. Path-way abundances are then taken as the sum of the unique gene family relative abundances andthe partitioned relative abundances of the shared gene families (Manor and Borenstein, 2017a).
The exact reconstructed pathways and their respective abundances differ depending onwhether naïve mapping, MinPath/HUMAnN2, or EMPANADA are used. Validating pathway re-constructions is challenging without a gold-standard comparison, particularly in metagenomes.Even in isolated genomes, as demonstrated by the above examples of the human pathway re-constructions, pathway reconstruction is non-trivial. However, the advantage in these cases is
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Box 2: Comparing taxonomic and functional stability across communities
An introduction to microbiome functional data would be incomplete without addressing its os-tensible high stability. Functional pathways are commonly at similar relative abundances across thesame sample-types whereas taxonomic features, such as phyla, can substantially vary (Burke et al.,2011; HMP-consortium, 2013; Louca et al., 2016; Turnbaugh et al., 2009). This functional consis-tency is often taken to be evidence of environmental selection for particular microbial functions(Louca and Doebeli, 2017; Turnbaugh et al., 2009). However, the validity of comparing variationbetween these two data types is rarely discussed. We and our colleagues investigated this ques-tion from a philosophical perspective and concluded that any meaningful comparison of the rela-tive variation between taxonomic and functional profiles is likely impossible (Inkpen et al., 2017).This difficulty is largely because it is unclear which levels of granularity would be meaningful tocompare between each data type. For instance, the gene and pathway perspectives of functionrepresent two extremes of functional granularity. Many different functional ontologies exist aswell for defining functional groups, as discussed in the main-text. Because taxa and functionaldata types are qualitatively different from each other, the choice of how to compare the two isbased on somewhat arbitrary decisions on how to categorize them.This can be illustrated by comparing taxa and functions in the same communities based ondifferent groupings of each data type. As described in the main-text, the sparsity and number ofpossible functional categories differs drastically across ontologies and sub-categories. We demon-strated how observations of functional and taxonomic stability are entirely dependent on howfunction and taxa are defined (Inkpen et al., 2017). We did this by comparing human stool sampleprofiles at each possible taxonomic rank and also each functional level for both the KEGG andUniRef functional ontologies. As expected, phyla were less stable across the samples than KEGGpathways, but more stable than UniRef50 protein clusters. However, this area remains an area ofactive debate. Others have also argued that taxonomic variability never unambiguously reflectsfunctional variation, which they believe is strong evidence for functional conservation (Louca, Polz,et al., 2018). Nonetheless, this example demonstrates once again a common theme throughout thiswork: "function" has many meanings.

Box 3: DNA hybridization and early 16S rRNA gene studies established high genomicvariability
Classic DNA hybridization experiments highlighted the high genomic variability between dif-ferent bacteria (Brenner, 1973; Mandel, 1966). These experiments were based on mixing single-stranded DNA from two organisms and recording the melting temperature required to separatethe strands. Higher melting temperatures are required to break apart DNA that shares more com-plementary bases connected by hydrogen bonds. Accordingly, this approach provides a rough es-timate of the genetic distance between different strains or species.An early comparison of these genetic distances with 16S dissimilarity across 34 bacteria com-puted a linear correlation of 0.728 (Devereux et al., 1990). However, the relationship betweenthese two metrics is not linear: many bacteria with highly similar 16S genes have hybridizationrates much lower than 70% (Stackebrandt and Goebel, 1994), which is the traditional cut-off fordelineating species. This trend has been corroborated across diverse prokaryotes (Hauben et al.,1997, 1999; Kang et al., 2007). In addition, a meta-analysis of 16S gene sequencing and DNA hy-bridization data from 45 bacterial genera further clarified these observations (Keswani and Whit-man, 2001). This analysis established that 78% of the variability in hybridization rates could beaccounted for by 16S similarity, based on a non-linear model. However, they also identified thata minority of hybridization rates were extremely poorly predicted by 16S similarity (Keswani andWhitman, 2001).
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that experimental validation of pathway reconstructions is possible (Francke et al., 2005; Ober-hardt et al., 2008). Such validations would be possible if predictions are based on individualmembers of a microbiome (e.g., metagenome-assembled genomes), but it is less clear what ex-periments could validate pathways predicted for an overall community. In MGS data pathwaysare typically inferred as though all gene families were free to interact with each other. In otherwords, they are inferred as though there was universal cross-feeding. All three approaches de-scribed above are intended to be used for such community-wide gene family profiles. However,as mentioned above, this assumption is invalid because clearly not all proteins and metabolitesin the microbiome can freely interact (McMahon, 2015). The implications of this assumption be-ing invalid remain unclear, but nonetheless it is an important caveat when interpreting pathwayreconstruction data based on community-wide MGS data.
Marker-gene-based metagenome prediction methods

Ideally, analyses of microbial functions are based onMGS data. However, predicted functionsbased on 16S rRNA gene sequencing data are often analysed instead. Metagenome prediction,predicting complete genomes for each individual amplicon sequence variant or taxon weightedby their relative abundance, when based on 16S data is much cheaper than performing MGS.There are additional advantages of predicted metagenomes over actual MGS data. Namely,MGS is often prohibitively expensive for samples where host DNA overwhelms microbial DNA.The high read depths required to yield sufficient microbial read depths is infeasible in many cases(Gevers et al., 2014). Similarly, low-biomass samples are difficult to accurately quantifywithMGS,but they can be profiled with PCR-based 16S sequencing. For example, applying MGS to profilehuman tumours is currently infeasible, but it is straight-forward to apply 16S sequencing (Nejmanet al., 2020). In both cases, for host DNA contaminated and low-biomass samples, metagenomeprediction based on 16S profiles is a useful alternative to MGS.However, metagenome prediction suffers from important drawbacks. The key problematicassumption is that the marker-gene used for predictions, typically the 16S, is strongly associ-ated with genome content. This broad assumption is correct: genera such as Lactobacillus andDesulfobacter can be easily distinguished based on the 16S and they are enriched for extremelydifferent functions. Namely, Lactobacillus can often perform lactic acid fermentation (Duar et al.,2017) whereas Desulfobacter can typically oxidize acetate to CO2 (Galushko and Kuever, 2019).Such comparisons of characteristic functions between distantly related taxa are uncontroversial.The difficulty arises when approaches attempt to predict entire genome contents for an entirecommunity, including for closely related taxa.Early work identified substantial genomic variation between closely related taxa, includingthosewith highly similar 16S sequences (see Box 3). These observations agreewell with genomiccomparisons of strains, which can drastically differ in genome content. For example, across 17E. coli genomes there are 13,000 genes that are variably distributed and only 2,200 core genes(Rasko et al., 2008). This enormous range of genomic variation is not reflected at the 16S level,where E. coli strains are typically >99% identical (Suardana, 2014). These genomic differencescan translate to enormous variation at higher taxonomic levels aswell. For instance, a comparisonof the genomes from 11 Yersinia species found a range of genome sizes from 3.7 - 4.8 megabases(Chen et al., 2010). A closer comparison of three pathogenic species of Yersinia determined thatthey shared 2,558 protein clusters while 2,603 were variably distributed. These species-leveldifferences are also not proportionally reflected by divergence in Yersinia species 16S genes,which are typically >97% identical (Ibrahim et al., 1993). These examples highlight that 16Ssimilarity can be a poor predictor of genomic similarity. This issue is compounded when thereare divergent 16S copies within the same genome, although typically these are>99.5% identical(Větrovský and Baldrian, 2013).Variation in gene content within a taxonomic lineage is a recurrent observation across micro-bial communities. Variably present genes are often linked to putative niche-specific adaptations(Wilson et al., 2005), such as genes affecting antibiotic resistance (Kallonen et al., 2017), car-bohydrate catabolism (Arboleya et al., 2018), and wound healing (Kalan et al., 2019). Based on
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these and other observations, the understanding of bacterial genomic content has shifted fromthat of a static genome to a pan-genome, consisting of core and variable genes (Tettelin et al.,2005). Variably present genes are transmitted between genomes through horizontal gene trans-fer, which typically occurs between closely related organisms (Popa and Dagan, 2011). However,horizontal gene transfer can also occur between distantly related organisms, such as betweendifferent bacterial phyla (Beiko et al., 2005; Kloesges et al., 2011; Martiny et al., 2013).The high variability between bacterial genomes and extensive horizontal gene transfer high-lights the major challenges facing metagenome prediction. Despite these challenges, interest inperforming metagenome predictions has continued, supported by several observations. First, al-though there are important outliers, 16S sequence identity does logarithmically correlate wellwith the average nucleotide identity between genomes, with an R2 of 0.79 (Konstantinidis andTiedje, 2005). Second, 16S sequence similarity does provide some information on the ecologicalsimilarity of bacteria (Chaffron et al., 2010). This was demonstrated by the fact that co-occurringenvironmental bacteria are more likely to have similar 16S sequences. In addition, overall differ-ences in inferred KEGG pathway potential are strongly associatedwith 16S divergence (Chaffronet al., 2010). Last, within a given environment, such as the human gut, 16S divergencewas shownto be particularly predictive of divergence in average gene content (Zaneveld et al., 2010).Originally, metagenome prediction workflows were based onmatching 16S sequences to ref-erence genomes. By taking the best matching genome or averaging across genomes with similarsequences, a predicted genome annotation can be acquired for all 16S sequences (Figure 3). Toinfer the metagenome profile one must simply multiply the predicted genome annotations foreach 16S sequence by the abundance of each 16S sequence in the metagenome. In additionto predicting microbial functions linked to Crohn’s disease (Morgan et al., 2012), this approachhas also been used to profile diet-related microbial functions across mammals (Muegge et al.,2011) and the functions of invasive bacteria within corals (Barott et al., 2012). Although bioin-formatics tools for metagenome prediction are now typically used for performing this task, this16S-matching approach is still used for custom analyses (Bradley and Pollard, 2020; Verster andBorenstein, 2018).

Figure 3: Genome prediction based on marker-gene sequences. This is another method
of producing joint taxa and function profiles, which in this case are explicitly linked, similar
to assembling genomes. This is also the first step in most metagenome prediction workflows.
However, all such genome prediction methods are highly biased towards the specific reference
genomes used for prediction. In addition, they can only predict genome content to the level at
which the chosen marker-gene differs between closely related taxa. This is a major limitation
as many strains of bacteria with highly divergent genome content have identical marker-gene
sequences.
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The first metagenome prediction tool to expand beyond this approach, and specifically in-tended for 16S sequencing data, was "Phylogenetic Investigation of Communities by Reconstruc-tion of Unobserved States" (PICRUSt1) (Langille et al., 2013). This tool is based on leveragingclassical ancestral-state reconstruction methods, which have been widely used in phylogenetics(Zaneveld and Thurber, 2014). The crucial extension of this framework is to extend trait predic-tions from internal, or ancestral, nodes in a phylogenetic tree to tips with unknown trait values.This approach has been termed hidden-state prediction (Zaneveld and Thurber, 2014). We re-cently published a major update to PICRUSt, called PICRUSt2 (Douglas et al., 2020). The keyimprovement in PICRUSt2 is that predictions can be made for novel 16S sequences with thistool and custom databases can be more easily used for analyses.PICRUSt1 introduced the step of normalizing relative abundances by the predicted numberof 16S copies within each genome, which is intended to control biases in 16S sequencing due tocopy number (Farrelly et al., 1995). Importantly, although 16S copy number correction has be-come a common step for metagenome prediction (Angly et al., 2014), accurately predicting 16Scopy number is particularly challenging. An independent validation of several 16S copy numberprediction methods, including PICRUSt1, identified poor agreement of predicted copy numbersagainst existing reference genomes (Louca, Doebeli, and Parfrey, 2018). In some cases, less than10% of the variance in actual 16S copy number was explained by these predictions. In addition,these predictions were often only slightly correlated between prediction methods.Since PICRUSt1 was published a number of similar metagenome prediction tools have beendeveloped. All of these approaches aim to capture the shared phylogenetic signal in the distribu-tion of functions across taxa. These tools include: PanFP (Jun et al., 2015), Piphillin (Iwai et al.,2016; Narayan et al., 2020), PAPRICA (Bowman and Ducklow, 2015), and Tax4Fun2 (Wemheueret al., 2020).Thesemetagenomeprediction tools have primarily been validated by comparing howwell thepredicted gene family abundances they output correlate with the abundances of gene familiesidentified in MGS data from the same samples. This approach generally identifies high correla-tions between the two profiles. For example, predicted KEGG orthologs output by PICRUSt1based on Human Microbiome Project samples were highly correlated with the matching MGS-identified data (Spearman’s ρ = 0.82) (Langille et al., 2013). Importantly, a high Spearman cor-relation is actually expected by chance in these comparisons simply because many genes arecommon in most environments while others are usually absent or rare. Upon comparing to thisexpectation the predictions are still significantly better than expected by chance, but only slightly(Douglas et al., 2020). Nonetheless, based on this approach, we found that PICRUSt2 performedmarginally better than other tools (Douglas et al., 2020). However, it is noteworthy that Piphillin,which represents a much simpler approach based on a nearest-neighbour approach, performedonly slightly worse overall and better in some contexts.An alternative approach for evaluating these methods is based on the concordance of differ-ential abundance results between actual and predicted metagenomics profiles. When we con-ducted this analysis while validating PICRUSt2, we found that differential abundances tests onmetagenome prediction tools agreed only moderately well with matching tests based on actualMGS data (Douglas et al., 2020). This is a crucial point to appreciatewhen analyzingmetagenomeprediction data; even though the overall predicted profiles might correlate with MGS profiles,the results from differential abundance testing might nonetheless be quite different. We also ob-served high variation across datasets in concordance between MGS and 16S-based predictions.In other words, differential abundance testing on predicted profiles resulted in fair agreementwith MGS data on some datasets while disagreeing almost entirely on others. In addition, re-searchers performing independent work in this area have identified conflicting signals of howwell individual metagenome prediction tools perform (Narayan et al., 2020; Sun et al., 2020).These observations might again reflect the high variation across datasets in how well predictionprofiles agree with MGS results.
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Current state of the integration of taxonomic and functional data types
The above discussion has described the many faces of microbiome data types. Taxonomicand functional microbiome data are typically generated independently, but in some cases canbe directly linked (e.g., in metagenome-assembled genomes). Regardless of the exact processingworkflow for these data types, we have yet to address one question: how are they integrated?For independent taxonomic and functional data types this is largely done anecdotally. Forexample, this is commonly done in regards to the nine genera that are the primary producers ofshort-chain fatty acids in the human gut (Moya and Ferrer, 2016). Short-chain fatty acid levelshave long had an ambiguous link with Crohn’s disease (Treem et al., 1994), although they aretypically negatively associated with disease activity (Venegas et al., 2019). Due to this associa-tion, there has been long-standing interest in identifying microbial taxa that are associated withaltered short-chain fatty acid levels. Accordingly, Crohn’s disease microbiome studies commonlyhypothesize that shifts in the relative abundance of any known short-chain fatty acid-producingtaxa likely cause altered short-chain fatty acid levels. For example, Faecalibacterium prausnitzii isa well-known commensal short-chain fatty acid-producer in the human gut and is consistentlyfound at lower levels in Crohn’s disease patient microbiomes (Wright et al., 2015). Althoughpotential links between lower levels of this species, in addition to other taxa such as Roseburia(Laserna-Mendieta et al., 2018), and short-chain fatty acid levels are often discussed, this is rarelyformally investigated.More often, anecdotal links between function and taxa are based on observed associationsbetween significant features. Several such cases have previously been noted as representativeexamples (Manor and Borenstein, 2017b). For instance, Propionibacterium acnes has been iden-tified as strongly correlated with NADH dehydrogenase levels in the skin microbiome (Oh et al.,2014). Consequently, this species was implicated as the likely cause for changes in NADH dehy-drogenase levels. Similarly, Bacteroides thetaiotaomicron relative abundance has been identifiedas positively correlated with microbial genes involved with the degradation of complex sugarsand starch in the infant gut (Bäckhed et al., 2015). Based on this observation, this species washypothesized to be the key contributor to increased levels of these degradation genes. Suchinsights are valuable, but as previously discussed (Manor and Borenstein, 2017b), these anecdo-tal links alone are not convincing evidence that particular taxa are the primary contributors tofunctional shifts.Linked taxonomic and functional data alone is not sufficient to resolve this issue. There aresubstantial challenges facing the integration of these data types besides simply generating acombined format. For example, two massive datasets have recently been published as part ofthe next iteration of the Human Microbiome Project. Both datasets include numerous sequenc-ing and profiling technologies, including 16S and MGS, from the stool and various body-sites ofinflammatory bowel disease (Lloyd-Price et al., 2019) and individuals with pre-diabetes (Zhouet al., 2019). However, in each case there was little integration of microbiome functional andtaxonomic data types. Instead, these features were largely tested independently, despite theavailability of links between the data types, and associations between top features were dis-cussed (Lloyd-Price et al., 2019; Zhou et al., 2019).In contrast to these examples, there have been calls for improved integration of these micro-biome data types, which is rooted in a systems-level biology outlook (Greenblum et al., 2013)."Functional Shifts’ Taxonomic Contributors" (FishTaco) is one bioinformatics method developedfor this purpose, which quantifies taxonomic contributions to functional shifts (Manor andBoren-stein, 2017b). One major application of this approach is to distinguish two explanations for whya function might be at high relative abundance (Figure 4). First, a function might be higher inrelative abundance simply because it hitchhiked on the genome of a taxon that bloomed forother reasons. In contrast, an alternative explanation might be that many taxa performing thesame function gained a growth advantage and thus grew in relative abundance. FishTaco canalso identify functions that have grown in relative abundance simply because microbes that donot encode it are at lower levels.
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Figure 4: Two explanations for why a gene family might be at higher relative abundance
that would be impossible to distinguish without joint taxonomic and functional data.
Microbes encoding the gene of interest (Gene X ) are indicated in red. This diagram contrasts
how a gene family might be blooming due to a single taxon (left) versus a diverse set of
taxa (right). The importance of distinguishing these scenarios is underappreciated: in the
second case it is more likely the gene family itself that confers a growth or survival advantage
in the environment. Note however that these are not the only two reasons why the relative
abundance of a gene family might be at high levels in an environment.

FishTaco works by first identifying significant shifts in functional abundances with a stan-dard differential abundance test, typically aWilcoxon test. Subsequently, a permutation analysisis undertaken, which consists of randomly shifting the relative abundance of a subset of taxa,while maintaining the rest. A large collection of such permutations is performed, which includepermutations of single and multiple taxa in different replicates. Based on this approach an es-timate of the relative contribution of each taxon to a functional shift can be calculated (Manorand Borenstein, 2017b). These relative contributions are then presented as stacked bar chartsbreaking down the direction and magnitude of each functional contribution. These visualiza-tions help distinguish when a functional shift is due to the enrichment or depletion of taxa andalso which sample grouping the shift occurred within. This approach was motivated by Shapleyvalues, which were introduced in game-theory to summarize the contribution of each player ina multiplayer game (Shapley, 1953). Specifically, FishTaco leverages a modified version of thisapproach that enables the contribution of individual features to be estimated in large datasetswithout exhaustively testing every possible permutation (Keinan et al., 2004).FishTaco represents an important advancement in integration and improved interpretabilityof taxonomic and functional microbiome data. However, it nonetheless suffers from major lim-itations. First, although the taxonomic breakdown of contributors to a function is valuable, theFishTaco approach requires significant functions to be identified based on the relative abundanceof individual gene families and pathways. This is done by systematically testing all functionsacross the entire metagenome, which is problematic when performed with a non-compositionalapproach like a Wilcoxon test. This approach also treats gene families under the bag-of-genesmodel, which is inappropriate, as discussed above. An improvedmethodwould conduct a compo-sitionally sound analysis and integrate taxonomic information when identifying significant func-tions.An alternative method is phylogenize, which does address each of these issues (Bradley andPollard, 2020; Bradley et al., 2018). This approach tests for significant associations between thepresence of a taxon within a given sample grouping and the probability that a taxon encodes agiven gene family. This is performed through phylogenetic linear regression, which accounts forthe genetic similarity of co-occurring taxa that might trivially be due to a shared evolutionaryhistory. A separate phylogenetic linear model is fitted for each gene family. The key distinctionof this approach from a normal linear model is that instead of the residuals being independentand normally distributed, they covary so that phylogenetically similar microbes have higher co-variance (Bradley et al., 2018). This overall approach was partially motivated by an attempt toaddress a similar problem by comparing the species and gene trees of gut and non-gut microbes(Lozupone et al., 2008). Based on simulated random data (i.e., data with no real functional shifts)the phylogenize authors demonstrated that performing standard linear models without control-ling for phylogenetic structure results in false positive rates ranging from 20% - 68%. In contrast,
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controlling for phylogenetic structure with phylogenize resulted in a uniform P-value distributionand an appropriate false positive rate of 5%. One interesting feature is that phylogenize does notdirectly analyze relative abundances. Instead, the tool converts taxa relative abundance into oneof three formats: (1) binary presence/absence across all samples, (2) overall prevalence withineach sample grouping, (3) or the specificity within each sample grouping (Bradley et al., 2018).Although phylogenize is undeniably an invaluable contribution to microbiome data analysis, italso has several limitations. First, information on taxa abundance is discarded entirely in favourof presence/absence data. From one perspective this is an advantage; eliminating taxa relativeabundances enables phylogenize to circumvent compositionality issues. However, relative abun-dance data is often more important to investigate, because key taxonomic shifts might not bedetected by presence/absence alone. In addition, phylogenize reports significant gene families foreach phylum in a dataset. This is performed to reduce the memory usage and to enable phylum-specific rates of evolution for each function (Bradley et al., 2018). This focus on the phylum levelmakes the results difficult to interpret for two reasons. First, it is insufficiently broad, because itlimits the potential to identify functions distributed across multiple phyla that might be linkedwith a condition of interest. From another perspective, this focus on the phylum level is alsonot specific enough; although phylum-function associations are valuable they do not provideinformation on the relative contributions of lower-level taxa, such as species, to the association.Accordingly, there is room for improvement in both the statistical analysis and interpretation ofthe phylogenize approach.Despite the availability of approaches for integrating functional and taxonomic data, theyhave yet to become a mainstay of microbiome analyses. However, it is becoming common tovisualize stacked bar-charts of taxonomic contributors to functions of interest (see Figure 5 forexamples), which can be created with tools such as BURRITO (McNally et al., 2018). This is typ-ically performed on predicted metagenome output by PICRUSt or alternatively on HUMAnN2output, although this could be performedwith any linked taxa-function data. As discussed above,the HUMAnN2 pipeline includes a step for identifying particular strains in MGS dataset, whichallows gene families to be linked to those strains (Franzosa et al., 2018). In some cases thisapproach enables complete links between taxa and function to be identified. For instance, F.prausnitziiwas shown to be the obvious principal contributor to glutaryl-CoA biosynthesis in theHumanMicrobiome Project gut MGS samples (Franzosa et al., 2018). However, more commonlythere are numerous taxonomic contributors to a single given function, and it is difficult to inter-pret which taxa are the key contributors by looking at visualizations alone. Nonetheless, evenin the presence of many taxonomic contributors, the HUMAnN2 authors demonstrated thatthese visualizations can provide information about the diversity of taxa contributing to a func-tion, termed the contributional diversity (Franzosa et al., 2018). This is most often quantifiedwith the Gini-Simpson index, which is the complement of Simpson’s evenness (Jost, 2006).Contributional diversity has been shown to be a useful approach for delineating housekeep-ing pathways encoded by many taxa, intermediate pathways, and those rarely encoded, whichcan correspond to opportunists or keystone species (Figure 5). For instance, F. prausnitzii haspreviously been linked with several human microbiome pathways identified through MGS thathave intermediate contributional diversities (Abu-Ali et al., 2018). When present, this speciestended to contribute the majority of all pathways it encoded.This approach has also been valuable for profiling shifts in the contributions tomicrobial path-ways over time, such as in the infant gut profiled with MGS (Vatanen et al., 2018). In this case,several microbial pathways, such as siderophore biosynthesis, were found to display decreas-ing contributional diversity with age. This is an interesting observation because siderophoresare costly to produce but are highly beneficial in the human gut. In particular, siderophores canconfer a strong benefit to multiple community members, including those that do not producesiderophores, by providing access to iron. Siderophores have previously been presented as mi-crobial functions whose distribution is consistent with the BlackQueenHypothesis (Morris et al.,2012). This hypothesis states that adaptive gene loss may occur for functions that are costly toproduce, provided that the function is provided by other community members. This hypothesiswas discussed in the context of the infant microbiome as an explanation for why siderophore
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contributional diversity decreases over time (Vatanen et al., 2018): perhaps gene loss confers anadaptive benefit by avoiding the production of a costly metabolite. Although this is an interestinghypothesis, a less controversial interpretation of this result is simply that siderophores becameless stably encoded over time in the profiled samples.Related to this point, two additional metrics have also been developed to summarize the sta-bility of taxonomic contributions to microbial functions (Eng and Borenstein, 2018). More specif-ically, these metrics are intended to summarize functional robustness across samples, which isthe stability in the relative abundance for a given function in response to taxonomic perturba-tion. This is performed by generating a taxa-response curve that describes the average change infunctional relative abundances in response to taxonomic perturbations of different magnitudes.Two metrics are then computed based upon these curves: attenuation and buffering. Attenua-tion captures how rapidly a function shifts with increasing taxonomic perturbation magnitudes.In contrast, buffering represents how well functional shifts are suppressed at smaller taxonomicperturbation magnitudes.Applying these metrics to PICRUSt-predicted metagenomes from 16S sequencing of humanbody sites, validated by a subset of MGS samples, yielded several novel perspectives. First, at-tenuation and bufferingwere conserved across body sites for microbial house-keeping pathwaysbut varied for several others. For instance, robustness in the biosynthesis of unsaturated fattyacids varied substantially across body sites. In addition, human gut samples were found to havehigher values of both attenuation and buffering than compared to vaginal samples. These trendswere shown to be driven by more than simply lower richness in vaginal samples by subsamplingto comparable diversity levels across each body-site (Eng and Borenstein, 2018). These observa-tions are consistent with the controversial hypothesis that microbial communities may be undervarying selection strengths for functional robustness, depending on the environment (Ley et al.,2006; Naeem et al., 1998).The development of these metrics for summarizing functional contributions represent animportant goal of microbiome research, which is to leverage sequencing data to yield novel bi-ological insights. In contrast, another major goal is to answer a more practical question: howuseful is microbiome data for classification and prediction tasks?There is great interest in applying machine learning approaches to microbiome sequencingdata (Knights et al., 2011).Most commonly this is performedwith either Support VectorMachineor Random Forest (Breiman, 2001) models. Applications of these and other machine learningapproaches to microbiome data are primarily aimed at distinguishing samples from different en-vironments or disease states (Zhou and Gallins, 2019). Taxonomic features are the focus of mostsuch microbiome-based machine learning approaches, which is true for both 16S (Duvallet et al.,2017) and MGS (Pasolli et al., 2016) data. However, on a growing number of occasions machinelearning is focused on functional data types. For example, a recent MGSmeta-analysis identifiedinformative functional biomarkers across several human diseases by applying machine learningapproaches to functional data types (Armour et al., 2019). Regardless of the data type, mod-els trained on microbiome data typically have low generalizability across independent cohorts(Douglas et al., 2018; Sze and Schloss, 2016), although there are exceptions.One major exception is microbiome-based modelling of colorectal cancer, which in one in-vestigation was shown to be generalizable across five independent datasets (Wirbel et al., 2019).This landmark study also systematically compared the utility of functional and taxonomic datatypes in these models and found them to be comparable overall. This finding is consistent with apast comparison of the classification performance of 16S-based taxa and predictedmetagenomedata (Ning and Beiko, 2015). In the case of predicted metagenomes, which are based on 16Sprofiles, it is perhaps less surprising that they yield comparable classification performance. How-ever, withMGS data in particular it might be possible to detect robust, informative functions thatmight be undetectable with taxonomy alone due to taxonomic variability (Doolittle and Booth,2017).Despite this great interest in applying machine learning to different microbiome data types,there has been little focus on integrating across them. The aforementioned comparison of 16S-based taxa and predicted functions is one exception where a hybrid classification model of both
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data types was created (Ning and Beiko, 2015). In this case, there was a small increase in classi-fication performance for distinguishing nine human oral sub-locations. The original operationaltaxonomic unit and KEGG ortholog-based models yielded accuracies of 76.2% and 76.1%, re-spectively, while the hybrid model resulted in an accuracy of 77.7% (Ning and Beiko, 2015). Thisresult indicates that predicted functions may provide some additional information in combina-tion with taxonomic data, but the consistency and biological significance of this small effectremains unclear. Further investigation into the integration of these data types within a machinelearning context is needed to ensure that the highest-quality models possible are constructed.
Outlook

Herein we have described the unique characteristics of microbiome DNA data types andmany of the approaches that have been proposed for their analysis. Throughout we have em-phasized two ideas. First, increased integration of taxonomic and functional microbiome datatypes is needed. And second, there is often high variation in the results between microbiomedata analysis pipelines.Regarding the first point, we believe that several of the tools described above, such as Fish-Taco and phylogenize, largely solve the issue of how to jointly investigate taxa and functions.Increased usage and development of these and other related tools would greatly help with theinterpretability of microbiome data.One area where further development is particularly needed is in the context of classifica-tion models, where little work has been conducted to systematically link taxa and functionsappropriately. One exception was a classification approach based on gene families that identi-fied predictive genes and then subsequently identified metagenome-assembled genomes withina given dataset enriched for these genes (Rahman et al., 2018). However, this approach still re-lied on follow-up analyses rather than integrating the data types. Instead, an improved approachcould be based on explicitly leveraging the hierarchical nature of microbiome data types. This isbecause functional and taxonomic data types independently form clear hierarchical structures(e.g., Pathway - Gene and Phylum - Class - Order). The connection between taxa and gene fami-lies and pathways is more complex, but nonetheless, links between groups of strains or ampliconsequence variants and microbial functions can be defined. A modified machine learning frame-work that explicitly accounted for these relationships could result in more interpretable outputs.Regardless of the specific tool, microbiome researchers should move towards more integra-tion of taxonomic and functional data. It is odd to distinguish between functional and taxonomicdatatypes in the first place: they are inextricably linked after all. The term "metagenome" itself isin some ways unfortunate as it implies that the genetic information for all organisms in a commu-nity can be simultaneously analyzed in a coherent way, without partitioning genes into genomes.This may be valid for high-level pathways but for generating hypotheses regarding specific genefamilies it is too often misleading. This perspective is becoming more common, as the availabilityof metagenome-assembled genomes increases (Frioux et al., 2020).The other common thread throughout this manuscript has been that technical variation inmicrobiome data analyses means that making robust biological inferences, especially regardingspecific microbial features, is challenging. Indeed, the lack of standardization in microbiome dataanalysis has previously been strongly criticized. An assessment of numerous papers attemptingto define standard pipelines concluded that there was disturbingly little consensus (Pollock et al.,2018). This is true for many steps related to the processing, sequencing, and analysis of micro-biome data (McLaren et al., 2019; Sinha et al., 2017). For instance, there have been contradictoryresults regarding the efficacy of different extraction protocols (Greathouse et al., 2019; Salonenet al., 2010). In particular, underrepresentation of Gram-positives has been observed (Mauko-nen et al., 2012), which may be partially resolved by using bead-beating extraction protocols(Guo and Zhang, 2013). Common extraction protocols also often result in high rates of DNAfragmentation, which makes the extracted DNA less appropriate for long-read sequencing tech-nologies. Updated extraction protocols based on robust enzymatic lysis have been developed toaddress this problem (Maghini et al., 2020). There is also substantial technical variation related to
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Figure 5: Contrasting extremes of taxa contributing to a function across samples. A
simple example of relative abundances for a given microbial function (e.g., a pathway) across
five samples, which is at similar levels across all samples. It is common to analyze microbial
functions without integrating taxonomic information. However, including this taxonomic
information can help distinguish many different biological scenarios. Panels b-e represent four
extreme scenarios that could account for the relative abundances shown in panel a. These
examples also highlight the value of using stacked bar charts and are closely based on the
examples presented by Franzosa et al., 2018. The examples: (b) stable contribution of the
function by the same diverse taxa; (c) contribution of the taxa by different taxa; (d) stable
contribution primarily by a single taxon; and (e) contribution primarily by a single taxon,
which can differ across samples.

bioinformatics choices, which represent the final steps of a microbiome project. For example, asdiscussed above, the bioinformatics choices made when performing differential abundance test-ing on microbiome data can have severe impacts on any interpretations (Hawinkel et al., 2019;Thorsen et al., 2016).We have encountered similar issues with our work, most strikingly when investigating pedi-atric Crohn’s disease patients’ microbiome profiles (Douglas et al., 2018). An important charac-teristic of these data was that 98% of the sequenced reads mapped to the human genome. Thischaracteristic made taxonomic profiling of these data especially prone to false positives. In par-ticular, an initial draft of our manuscript was based on profiles that included large proportions ofviral-identified DNA andmatches to certain eukaryotic parasites.Wewere initially excited aboutthese observations, because the abundances of these non-prokaryotic taxa were discriminativefor classifying patient disease state and treatment response. However, the exact taxa identi-fied were peculiar: they were predominately represented by a range of plant-associated virusesand the eukaryotic genus Plasmodium, which is best known as including the causative agent for
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malaria, Plasmodium falciparum. Upon closer investigation it became clear that this signal wasdriven entirely by a difference in how reads were mapped to lineage-specific marker-genes withMetaPhlAn2. Altering the parameter choice from local to global mapping entirely removed thesetaxa. This relatively small difference in parameter choice appeared to only affect our data and notmore typical microbiome datasets, which we believe was due to the high proportion of humanDNA in our data. Although this error was moderately embarrassing, it was more importantly anexample of how easily a single parameter setting can result in starkly different biological inter-pretations. In this case the difference was driven by an option used for a single bioinformaticstool.
Such inconsistencies inmicrobiome analyses have previously been identified and been shownto make meaningful comparisons across studies challenging. For instance, associations betweenobesity and the human microbiome are commonly discussed as support for the utility of consid-ering microbial links with human disease, despite inconsistencies across studies (Castaner et al.,2018; Muscogiuri et al., 2019). These inconsistencies are typically explained due to confoundingvariables that may differ between patient cohorts. Although this is a valid explanation, it is likelythat technical variation, including in terms of bioinformatics analyses, also drives these inconsis-tencies. For instance, a meta-analysis of ten obesity human microbiome datasets identified onlyextremely weak signals when re-analyzing all datasets with a standardized approach (Sze andSchloss, 2016). This finding greatly contrasts with how these studies were originally presentedand again highlights how variation in bioinformatics can affect how to biologically interpret mi-crobiome data.
Similarly lower alpha diversity in stool microbiomes has been frequently linked with diseasestates (Mosca et al., 2016). These observations are intuitively reasonable as reduced alpha diver-sity could enable pathogens to bloom (Vincent et al., 2013) or represent differences in resourceavailability (Turnbaugh et al., 2009). However a re-analysis of data from 28 studies representingten diseases was unable to identify evidence for links between alpha diversity and disease states(Duvallet et al., 2017). The exceptions were diarrheal diseases and inflammatory bowel diseases.
Such inconsistencies across analyses on the same data are gradually coming to the forefrontof themicrobiome field (Allaband et al., 2019). Indeed, a recent plea for improved standardizationhas been made to enable better comparisons across studies (Hill, 2020). This is a commendablegoal, but given the diversity of opinions regarding best-practices (Callahan, Sankaran, et al., 2016;Knight et al., 2018; Schloss, 2020), it is difficult to coherently recommend a single workflow foranalyses at themoment. Accordingly, further work and benchmarking of different bioinformaticsis needed to convincingly argue for best practices in microbiome data analysis.
Until a clear consensus is reached it is the responsibility of microbiome researchers to makethe caveats and challenges facing this area clear to readers and newcomers to the field. Thisis crucial given the widespread interest in studying microbiomes through DNA sequencing; thenumber of microbiome sequencing-related publications continues to rapidly grow. This is in tan-dem with funding for these projects, which has steadily increased in the USA from at least 2007to 2016 (NIH, 2019). According to the US National Health Institute, there was US$766 mil-lion dollars invested in microbiome research in 2019, which was the 63rd most highly fundedhealth-related research category out of 291. Although comparing across research categories ofvarying granularity is difficult, it is noteworthy that microbiome research wasmore highly fundedthan both breast cancer and Alzheimer’s disease research. Importantly, an increased interest inmicrobiome research is warranted: recent technological developments are enabling improvedinvestigations into microbial biology. However, as the monetary investment and research hoursdedicated to microbiome research grows, it is crucial that scientists ensure the best use of theseresources.Open discussions on themany contentious aspects ofmicrobiomedata analysiswouldhelp with this issue. Indeed, such clarifications by leaders in the microbiome field are starting be-come more common (Allaband et al., 2019). However, although these contributions are valuable,they do not adequately address the problem. In particular, instead of mentioning these issues inpassing, inconsistencies between bioinformatics workflows should be emphasized more clearlyfor the benefit of the uninitiated.
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Another practical improvement would be to normalize, and potentially require, explicit sum-maries of the effects of technical variation on any biological interpretations reported in micro-biome studies. This is impossible to capture entirely, but it could be done by comparing how keyresults change depending on a subset of representative bioinformatics choices. For instance, re-searchers could compare how insights change depending on the combinations of denoising toolsand differential abundance methods that they have applied when analyzing 16S data. Althoughthese changes would result in increased workloads when conducting analyses and when com-municating results, they would help ensure that any major biological findings are at least robustto a representative set of bioinformatics choices.Regardless of which approach is taken to address these issues, the most important point isthat action is needed on this front. The variation between bioinformatics methods is undeniableand unfortunately reflects a reproducibility crisis facing microbiome data analysis.
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