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Abstract
Disentangling the effects of selection and drift is a long-standing problem in population
genetics. Simulations show that pervasive selection may bias the inference of demogra-
phy. Ideally, models for the inference of demography and selection should account for
the interaction between these two forces. With simulation-based likelihood-free meth-
ods such as Approximate Bayesian Computation (ABC), demography and selection pa-
rameters can be jointly estimated. We propose to use the ABC-Random Forests frame-
work to jointly infer demographic and selection parameters from temporal population
genomic data (e.g. experimental evolution, monitored populations, ancient DNA). Our
framework allowed the separation of demography (census size, N) from the genetic drift
(effective population size, Ne) and the estimation of genome-wide parameters of selec-
tion. Selection parameters informed us about the adaptive potential of a population (the
scaled mutation rate of beneficial mutations, θb), the realized adaptation (the number
of mutations under strong selection), and population fitness (genetic load). We applied
this approach to a dataset of feral populations of honey bees (Apis mellifera) collected
in California, and we estimated parameters consistent with the biology and the recent
history of this species.
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Introduction
One aimof population genomics is to understand howdemography and natural selection shape the genetic

diversity of populations. A classical approach assumes that demography (migration, population subdivision,
population size changes) leaves a genome-wide signal. In contrast, selection leaves a localized signal close
to where the causal mutation is located. Many methods follow this approach to infer demography or selec-
tion (reviewed by Beichman et al., 2018; Casillas and Barbadilla, 2017). Demographic inference assumes that
most of the genome evolves without the influence of selection and that any deviation from the mutation-drift
equilibrium observed in the data was caused by demographic events (Beichman et al., 2018). Many of the
methods search for locus-specific signals of selection left on nearby neutral mutations (Fay and Wu, 2000;
Kim and Nielsen, 2004; Tajima, 1989) (low genetic diversity and high differentiation) to localize the region af-
fected by selection mutation, assuming a specific demography (constant population size in early methods;
Nielsen, 2005; Pool et al., 2010).

Conducting demographic and selection inference separately may have some shortcomings. First, there
is the assumption that the signal left by demography is little affected by selection because selection is rare.
However, linked selection can affect neutral and weakly selected sites that are far from the mutation targeted
by selection (Neher, 2013; Sella et al., 2009) and selection can be pervasive (Lange and Pool, 2018; Sella et
al., 2009). In addition, some methods for selection scans are not robust to misspecifications of demographic
history. Consequently, an unspecified bottleneck or population increase, for example, can inflate the false
positive rate of genome scans (Jensen, Kim, et al., 2005; Jensen, Thornton, et al., 2007; Schrider, Shanku, et al.,
2016). These findings highlight the necessity of inferential methods that jointly accounts for the multiple evo-
lutionary forces that act on populations (Bank et al., 2014; J Li et al., 2012; Lin et al., 2011).

Somemethods to perform the joint inference of demography and selection have been proposed bymaking
the explicit assumption that a set of neutral polymorphisms can be distinguished from another set of polymor-
phisms putatively under selection (usually synonymous vs. non-synonymous sites). McDonald and Kreitman
(1991) first proposed to compare polymorphism and divergence between synonymous and non-synonymous
sites and soon after Sawyer andHartl (1992) proposed tomodel the evolution both types of siteswith a Poisson
random field. Several developments based on these ideas have been put forward over the years, improving
and refining the models (e.g. Boyko et al., 2008; Messer and Petrov, 2013). Alternatively, other approaches do
not make the assumption about the neutral nature of some specific polymorphisms. In these, the effect of
selection is assumed to be heterogeneous among loci or genomic regions, and they often have the additional
objective to identify the loci or regions under (strong) selection. In the models used by these approaches,
it is often difficult to calculate the likelihood (but see Vitalis et al., 2014). Methods that rely on simulations
provide easier alternatives to using likelihood functions (Csilléry et al., 2010; Schrider and Kern, 2018). One of
the first works that proposed such a strategy addressed the inference of local adaptation (Bazin et al., 2010).
With coalescent simulations of an island model, Bazin et al. (2010) estimated demographic parameters and
inferred the number of loci under selection. In their simulations, the selection was modeled as locus-specific
migration rates in which a selected locus had lower migration rates than neutral loci. However, locus-specific
migration rates or effective population size (as in Fraïsse et al., 2021; Roux et al., 2016) represent crude ap-
proximations of the selection process. Forward-in-time simulation allows more realistic models of selection.
These were used to make inferences on Ne in the presence of selection by Sheehan and Song (2016) (selec-
tive sweeps and balancing selection) and Johri et al. (2020) (background selection). This strategy brought new
insights into the dynamics of selection. Laval et al. (2019) estimated the number of past selective sweeps in
the human genome in the past 100,000 years, their intensity, and their age. These works exemplify the power
of likelihood-free methods to infer the complex interaction between demography and selection. However, all
the methods discussed above rely on independent simulation or modeling of loci or genomic regions which
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prevents the modeling of genome-wide effects of selection as the reduction of effective population size due
to the variance of reproductive success of individuals (Santiago and Caballero, 1995) or the combined effects
of mutations on individual fitness.

Most population genetic studies use samples collected at a one-time point to infer the neutral processes
(mutation, recombination, random genetic drift) and selection throughout the history of populations. Tempo-
ral data allows a better understanding of recent evolutionary processes (e.g. Dehasque et al., 2020; Feder, PS
Pennings, et al., 2021) because they contain information about the allele frequency changes through time. By
tracking the allele frequency changes over time, it is possible to estimate the relative role of selection and drift.
Consequently, temporal data has the potential to give us a better understanding of the interaction between
drift and selection (see for example, Buffalo and Coop, 2019, 2020).

Here, we propose using ABC to jointly estimate demography and positive selection from temporal genomic
data. In our framework, we use individual-based, forward-in-time simulations, which allow themodeling of the
genome-wide, linked selection and additive effects of beneficial mutations. Until recently, such computation-
ally demanding simulations in ABC inference were unrealistic since many simulations are required to achieve
accuracy in ABC (Frazier et al., 2018). However, with the introduction of Random Forests (ABC-RF), it is now
possible to reduce the computational burden as fewer simulations are required to achieve reliable estimates
(Pudlo et al., 2016; Raynal et al., 2019). While many methods focus on the detection of targets of selection,
our work addresses the inference of parameters that characterizes the genome-wide signal of demography
and selection. Our genome-wide estimates were reasonably accurate for a wide range of adaptation rates
and strength of selection. We were able to separate the estimates of Ne (a measure of genetic drift) from
the population census size N . We also estimated the influx of new beneficial mutations as measured by the
population scaled mutation rate of beneficial mutations. The separation between demography and drift and
the inference of genome-wide selection was only possible using latent variables. Latent variables emerged as
properties of each simulation, and consequently, they better captured the emerging interaction between de-
mography and selection than model parameters. We first evaluated the performance of an ABC-RF approach
with forward-in-time simulations. Finally, we applied this framework to the analysis of a real time-series popu-
lation genomics dataset of the feral population of honey bees (Apis mellifera, Cridland et al., 2018). Our results
were consistent with the species’ biology and with events that occurred recently in the history of the analyzed
populations, taking into account the limitations of the current implementation of our approach.

Material and methods
Inference model

We assumed a closed population (nomigration) ofN diploid individuals that evolved under aWright-Fisher
model with selection. The population census size N was constant, and selection only acted on de novo bene-
ficial mutations that were allowed to arise in the population since the first generation (generation one corre-
sponds to the first burn-in generation). Every beneficial mutation had a selection coefficient of s higher than
zero, and all were co-dominant. The values of the selection coefficients s were drawn from a gamma distribu-
tion with mean γ and scale parameter 1. Beneficial mutations entered the population with a rate of µb per
generation independent of the mutation selective strength. Consequently, we defined the scaled mutation
rate of the beneficial mutations per generation θb as the product the population sizeN , the mutation rate of
beneficial mutation µb and the genome sizeG, θb = 4NµbG. This rate determines the amount of new bene-
ficial mutations that arise in the population every generation. It can also be viewed as the waiting time for the
appearance of a new beneficial mutation in the population. Populations with high θb receive new beneficial
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mutations every generation (Karasov et al., 2010), but a population with low θb needs to wait more time for a
new beneficial mutation to arise.

We divided themodel into two periods: 1) the burn-in period, which is necessary to remove from the simula-
tions any footprint of the initial simulation state; the duration of this period was defined as the time necessary
to reach a point were the most recent common ancestors for all genomic regions are more recent than the
start of the simulation (i.e. the burn-in was run until this condition was fulfilled); and 2) the inference period,
where we defined the longitudinal samples of individuals. These two periods were defined by their time spam
and the population census size, beingN0 andN as the population size of the burn-in and the inference period,
respectively. Population size is constant within each simulated period and changes between periods.

First sample of individuals was taken at t1, the immediate next generation after burn-in ended; the second
was taken at t2, after τ generations from t1. Individuals were sampled following the sample plan II of Nei and
Tajima (1981), where individuals were taken before reproduction and permanently removed from the popu-
lation. In this way, their genotypes did not contribute to the next generation.

Each individual’s genome of size G (in base pairs) consisted of a single linkage group with a per base re-
combination rate per generation of r. We modeled the selection effect in this genome by dividing it into
“neutral” and “non-neutral” regions. Non-neutral regions held both neutral and beneficial mutations. This
division can be interpreted as a genomic architecture in which genic regions have a combination of neutral
(synonymous intron mutations) and selected (non-synonymous mutation) sites with intergenic regions (neu-
tral mutations) in between. However, this architecture allowed simulating the heterogeneous selection action
along the genome.

We chose this simplification because it is a general and straightforward way to define independent priors
for the relative number of non-neutral to neutral regions and for the number of beneficial mutations in non-
neutral regions. The probability of beneficial mutation to arise in the simulation (i.e. the mutation rate per
generation, µb) was determined by the product of the proportion of non-neutral regions PR, the proportion
of beneficial mutation in a non-neutral region PB and the mutation rate per generation µ. Figure 1 shows a
schematic representation of the model template (and see Table S1 for a summary of the notation).

Calculation of summary statistics and latent variables
The above model was used to simulate the dynamic of drift and selection in a closed population. In the

two sample periods, individuals from the whole population were sampled and used for the calculation of the
summary statistics for the ABC-RF framework. For each simulation, we calculated summary statistics that: 1)
compared the two samples (e.g. genetic differentiation,FST), and 2) quantified the diversity within-sample (e.g.
expected heterozygosity,HE). For the latter, statistics were obtained for each and all pooled samples. Some
summary statistics were calculated genome-wide. For example, global FST, globalHE and the total number
of polymorphic sites S; others were calculated SNP-by-SNP as theHE; or they were calculated in windows as
S, the nucleotide diversity π, and Tajima’sD. For every simulation, wemeasured themean, variance, kurtosis,
skewness, and 5% and 95% quantiles among all locus-specific or window summary statistics. These statistics
inform about the heterogeneity of genome-wide distribution of locus-specific or window summary statistics.
We set threewindow sizes for thewindow summary statistics: 500, 5,000, and 10,000 bp. Windows overlapped
because each was composed around every SNP, putting the targeted variation in the middle of the window
with other surrounding SNPs in half the window size on each side of the targeted SNP. The site-frequency
spectrum was obtained as a global summary statistics with three different numbers of discrete classes (bin
sizes): 10, 15, and 20 bins (the complete list of summary statistics can be found in Supplementary Methods,
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Figure 1. A schematic representation of themodel used to simulate temporal population genomic data.(A) the populationmodel consisted of 1) the burn-in period, where the number of generations was determinedby the time necessary to contain the MRCA for all genomic regions. 2) the inference period between thetwo time points, where the inference of demography and selection was made. (B) the genomic architecturemodel consisted of 1) a diploid genome of one linkage group divided into neutral and non-neutral regionscomposed of neutral and a combination of neutral and beneficial mutations. Note that, despite the graphicalrepresentation, the model does not condition N to be larger than N0, both expansions and contraction areconsidered in the model.

section S1.1 List of summary statistics).
For every simulation, we combined a vector of summary statistics with the vector of X model parameters

and the vector of five latent variables. Latent variables represent values from the simulation or that emerged
by combining a latent variable and a model parameter. In our inferential framework, for example, the effec-
tive population size Ne is a latent variable calculated within each simulation. The ratio between the effective
population sizeNe and the population census sizeN ,Ne/N , on the other hand, was derived by combining a
latent variable and amodel parameter for each simulation. The other three latent variables were: the number
of beneficial mutations under strong selection P , the average selection coefficient of strongly selected muta-
tions s̄, and the average substitution load L.

The effective population sizeNe measures the increase of inbreeding at each generation. In this definition,
Ne is the size of an ideal population with the same amount of drift as the population under consideration.
Defined in these terms, Ne is the inbreeding effective size (Santiago and Caballero, 1995; Walsh and Lynch,
2018). It was calculated in every generation i of the sampling period as:

Ne,i =
4N

σ2
ki

+ 2

σ2
ki
being the variance among parents of the number of gametes produced that contributed to offspring in

generation i. The Ne for the whole inference period was obtained by calculating the harmonic mean of Ne,i.
The population size ofN was kept constant for the whole period, as shown above, representing a simulation
parameter. From the Ne we obtained the ratio Ne/N (it measures how the census size reflects the actual
effective population size: we expect to have a reduction onNe compared toN when beneficial mutations are
more pervasive).

We also recorded the selection coefficient of all beneficial mutations present in every generation i from t1

to t2 in each simulation. After, we calculated the fraction of beneficial mutations that were strongly selected
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(where s > 1/Ne over all mutations that were segregating in the period). This fraction represented all benefi-
cial mutations present between t1 and t2, regardless if they were lost or fixed at any generation of the period
or if their frequency fluctuated but never reached fixation. We decided on it because any beneficial mutation
can impact the allele frequency trajectories of other mutations (neutral or beneficial). For these mutations,
we also calculated the average across all selection coefficients. We also calculated, in every generation of this
period, the substitution load Li as the difference between the total fitness of the individual with the highest
fitnessWmaxi and the mean total fitness of the population W̄i (it measures the overall diversity of beneficial
mutations present in the inference period),

Li =





0, ifWmaxi = 0

Wmaxi−W̄i

Wmaxi
, otherwise

The average substitution load was obtained by averaging all values of Li.

Implementation
The model was simulated with the software SLiM v3.1 (Haller, Galloway, et al., 2019; Haller and Messer,

2017). To calculate the inbreeding effective size, we needed to activate an optional SLiM 3.1 behavior to track
the pedigrees of each individual in the population. It allowed us to obtain the number of each parent gamete
and the population variance of the number of gametes. For calculating the generation substitution load, we
used a SLiM built-in function that allowed us to obtain the fitness vector of all individuals in the population.
The cached fitness was the sum of all fitness determined by each beneficial mutation.

Each simulation was produced by using different combinations of the model’s parameters: 1) the muta-
tion rate per bp per generation µ, 2) the per-base recombination rate per generation r, 3) the mean γ of a
gamma distribution (with the shape parameter equal to the mean), from which the selection coefficients s
of each beneficial mutation in the simulation were sampled, 4) the number of non-neutral genomic regions
PR, 5) the parameter that determines the probability of beneficial mutation in non-neutral regions PB, 6) the
population census size of the burn-in periodN0, and, finally, 7) the population size of the inferential periodN .

We set SLiM to output genotypic data of samples of individuals as single nucleotide polymorphisms (SNPs),
at t1 and t2, in the VCF file format. Using bcftools (H Li, 2011), custom R function (R Core Team, 2020) and
EggLib (Siol et al., 2022), SLiM outputs were processed and summary statistics calculated. We implemented
a pipeline in an R script that automates the sampling of the prior values, runs each simulation, manipulates
the VCF files, calculates the summary statistics, and organizes the final reference table. This script was also
produced to facilitate the model test with a few simulations and the job submission in an HPC node(s). The
main R and additional scripts are available on Zenodo (Pavinato et al., 2022). In this pipeline, for every simu-
lation, a row of the reference table was produced by combining the model parameters, latent variables, and
summary statistics.

ABC-RF
In this work, we use Random Forests (RF) in the ABC procedure, where the parameter estimation is a ma-

chine learning problem (Pudlo et al., 2016; Raynal et al., 2019). The performance of this approach was eval-
uated through simulations. First, we assumed a target dataset consisting of two samples of 100 individuals
sampled ten generations apart from the same population. A reference table for that target data was produced
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by simulating the whole-genome SNPs of diploid individuals using the model described above and calculat-
ing the previous summary statistics. At each simulation, we sampled 100 individuals at each time point and
recorded their genotypes. Only polymorphic SNPs were retained for each sample. In each simulation, each
individual had a genome size of 100 Mbp divided into 2,000 fragments of 50,000 bps. A number of these
fragments were randomly set as either neutral or non-neutral, based on the probability PR. For all model pa-
rameters, values of each simulation were sampled from a log-uniform distribution with range: 1 to 2,000 for
N0 andN , 10−10 to 10−6 for µ, 5×10−10 to 5×10−7 for r, 10−5 to 1 for PB, and 10−3 to 1 for γ. Furthermore,
uniform distribution with range 0 to 1 for PR (Figure S1 shows the prior distribution for all model parameters
and latent values).

The raw reference table produced by the pipeline was processed to remove missing data. Missing data
were present in several summary statistics of simulations with low genetic diversity that can be produced,
for example, by low mutation rate, small population size, selection, or the combination of these parameters.
Missing data were also present in the entire row of a simulation if the combination of population size, muta-
tion, and especially recombination rate produced simulations that were memory intense, which caused the
simulation to crash. A final reference table containing 55,634 simulations with 405 summary statistics was
used to train the ABC-RFs. Independent RFs were obtained for each parameter and latent variable using R
package abcrf (Pudlo et al., 2016; Raynal et al., 2019). Each RF was obtained by growing 1,000 trees. The RFs
were grown with the default parameters. Average genetic load, L, and P were logit-transformed before the
training. For these latent variables and for s̄, simulations with L = 0, P = 0 or s̄ = 0 were also excluded
from the training set, which reduced it to 36,026 simulations for L, and with 29,264 simulations for P and s̄.
We performed log transformation before training for the other parameters and latent variables and used the
reference table containing all simulations.

The performance of each trained Random Forest was evaluated with out-of-bag (OOB) estimates (Breiman,
2001). The trained model produced these estimates for the data used for training. Regression trees that
compose the actual RF are grown using part of the data selected randomly from the initial set of simulations.
Consequently, for each simulation, a subset of trees was grown without the data from that simulation. The
estimate from that subset of trees is called the OOB estimate, and with it, the trained model is validated with-
out splitting the reference table into the training and testing sets. We calculated the mean squared error
(MSE) and the correlation coefficient (R2) between the true and the OOB estimated values obtained with the
function regAbcrf implemented in the R package abcrf. For neutral simulations of the latent variables L, P ,
and s̄, we evaluated the performance with the MSE and the bias on the parameters estimated in the original
parameter scale.

An additional 1,000 simulations were used to evaluate the method’s robustness to heterogeneous recom-
bination rates along the genome. The simulation model was identical to the previously described simulations,
except that a recombination map was used with varying recombination rates along the genome. We used the
already implemented genomic fragmentation of the genome in “neutral” and “non-neutral” regions, which
split the genome into 2,000 blocks of 50 Kbp, to define the positions at which the recombination rate changed.
Each corresponding fragment had a recombination rate sampled from a log-uniform distribution with a range
between 10log10 r−0.5 and 10log10 r+0.5, with r sampled from the prior distribution as described above. This
range allowed the genome to have recombination rates spanning one order ofmagnitude. We evaluate the RF
performance in these simulations by calculating the mean squared error (MSE) and the correlation coefficient
(R2) between the true parameter values and the RF estimates. For neutral simulations of the latent variables
L, P , and s̄, we evaluated the performance with the MSE and the bias.

Vitor A. C. Pavinato et al. 7

Peer Community Journal, Vol. 2 (2022), article e78 https://doi.org/10.24072/pcjournal.203

https://doi.org/10.24072/pcjournal.203


Alternative estimates ofNe from temporal data
We compared the ABC-RF Ne estimates with estimates obtained with the global FST between temporal

genomic samples (Frachon et al., 2017). This estimator is defined as:

N̂e =
τ(1 − F̂ST)

4F̂ST

where τ accounts for the time-interval, in generations, between the first and the last samples used to estimate
the FST, and F̂ST is the Weir and Cockerham’s FST estimator (Weir and Cockerham, 1984). The Ne from the
FST was calculated for all simulations used to train the random forest. We calculated the mean squared error
(MSE) and the squared correlation coefficient of linear regression (R2) between the observed (true) and the
FST-based Ne estimated values of all simulations. We also evaluated the performance of each estimator by
calculating the MSE for simulations within a specific range of values of θb (local MSE estimates). By comparing
the changes in MSE values of each estimator as a function of θb we could better understand how the amount
of selection affected each estimator.

Analysis of temporal genomic data of feral populations of Apis mellifera
We used our framework to analyze the whole-genome sequencing data of feral populations of honey bees

from California (Cridland et al., 2018). Eight out of fourteen sites in this work were composed of samples
from museum and contemporary collections of freely foraging honey bees: 1) Avalon site in Catalina Island,
Los Angeles County, 2) Arcata and Blue Lake sites in Humboldt county, 3) Placerita Canion Nature Area in Los
Angeles County, 4) Sky Valley and Idyllwild in Riverside County, 5) La Grange, Stanislaus county, 6) Stebbins
Cold Canyon Reserve, Solano county and 7) UC Davis Campus, Yolo county (Table 1). This dataset contains
pairs spanning 104 years (as in the Avalon site, Catalina Island, Los Angeles county) and pairs spanning only
15 years (as in the Placerita Canyon Nature Area, Southern California, and Idyllwild, in Riverside county). For
the temporal samples from Riverside County, we only used the two samples collected in May 1999 in Idyllwild
as the first sample. We combined all samples collected in September 2014 (in Idyllwild and Sky Valley) as the
second sample (Table 1). Publicly available whole genomes fastq files for the contemporary andmuseum sam-
ples are available from the Sequence Read Archive (PRJNA385500) as described by Cridland et al. (2018); we
performed the data analysis from VCF files (the same files used in Cridland et al., 2018) available in Pavinato
et al. (2022).

Individual VCF files of each population were combined with bcftools (H Li, 2011), and a custom R script
was used to convert each dataset to the input format required to run an EggLib custom implementation (in
Pavinato et al., 2022). We first produce simulated data to train the RF to apply our model to this targeted
dataset. A reference table was produced by simulating whole-genome SNPs for diploid individuals of Apis
mellifera, changing three model parameters specifically for this targeted dataset: the sample size for popula-
tion time points t1 and t2, and the size of the haploid genome. For each population, we set the simulation
to sample the same number of sequenced individuals from the pool of simulated individuals (as detailed in
Table 1). For the Avalon population, for example, at t1 and t2 we set the simulation to sample two and five
individuals apart τ = 104 generations (assuming one generation/year). Only polymorphic SNPs were retained
for each sample. We set the haploid genome size to 250 Mbp (similar to the most recent estimates of A. mellif-
era genome size; Elsik et al., 2014). We measured the amount of missing data present in the original VCF files
(Cridland et al., 2018) for each population. We found a negligible amount (< 1%) in most of the populations
(except populations from Avalon and Placerita that had 10% of the total missing genotypes), and we decided
not to simulate missing data for any population analyzed.
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The simulation model to generate the reference tables for the ABC analysis of A. mellifera populations was
similar to the model described above but required some modification to adjust it to the specificities of the
species and samples available. The simulated genome was divided into 5,000 fragments of 50,000 bps. These
fragments were randomly set as neutral or non-neutral according to the parameter PR. We used a Normal
distribution for µwith amean of 3.4×10−9 with a standard deviation of 0.5 to have a prior distribution center
around the estimated mutation rate for Hymenoptera (Liu et al., 2017). The per base recombination rate was
set as Uniform, ranging from 10−8 to 10−4. A single linkage group represented the genome. The population
sizesN0 andN were taken from a Uniform prior distribution ranging from 1 to 10,000 individuals. Other prior
probability distributions of the parameters were set with the same prior as described above. Sample sizes and
times were adjusted to match each population’s population (see table 1). We used the same summary statis-
tics described above. However, we calculated only onewindow size of 10Kbp for summary statistics calculated
in windows and one bin size of 10 bins for the site-frequency spectrum. The raw reference table containing
the vector of parameters, latent variables, and summary statistics produced by the pipeline was processed
to remove missing data. A final reference table containing 162 summary statistics for each population pair
was used to train the ABC-RFs. We visually assessed the model goodness-of-fit by performing a principal
component analysis on the summary statistics of each population training reference table and projecting the
corresponding PC of the target population reference table on the PCA plot. We consider a good model fit
when the target population data point falls within the cloud of population simulated data points.

Like the ABC analyses described above, independent RFs were obtained for each parameter and latent
variable using R package abcrf (Pudlo et al., 2016; Raynal et al., 2019). Each RF was obtained by growing
1,000 trees. The RFs were grown with the default parameters. Average genetic load, L, and P were logit-
transformed before the training. For these latent variables and for s̄, simulations with L = 0, P = 0 or s̄ = 0

were also excluded from the training set. We performed log transformation before training for the other pa-
rameters and latent variables and used the reference table containing all simulations. As before, we evaluate
the RF performance by calculating themean squared error (MSE) and the correlation coefficient (R2) between
the true and the OOB estimated values obtained with the function regAbcrf implemented in the R package
abcrf. For neutral simulations of the latent variables L, P , and s̄, we evaluated the performance with the
MSE and the bias on the parameters estimated in the original parameter scale. See Table 1 for the number of
simulations of each reference table.

Table 1. Populations and number of simulations in the reference table.
Location Date Sample Sizes Simulations
Avalon, Catalina Island, Los Angeles county 1910/2014 2/5 13,953
Blue Lake and Arcata, Humboldt county 1966/2015 6/6 14,216Placerita Canyon Nature Area, Los Angeles county 1999/2014 5/6 14,125
Idyllwild and Sky Valey, Riverside county 1999/2014 2/8 13,930
La Grange, Stanislaus county 1976/2014 2/6 13,956Stebbins Cold Canyon Reserve, Los Angeles county 1996/2014 5/5 14,121
UC Davis Campus, Yolo county 1968/2015 2/6 13,970

Names highlighted in bold letters correspond to the population code we used in this work. For sample sizes, the first value indicates thesize of the first (older) sample and the second value the size of the second (contemporary) sample.
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Results
Joint inference of adaptive and demographic history

The proposed framework allowed us to estimate parameters informative about adaptive and demographic
history in temporal population genomics settings. Independent random forests estimated the population
scaled beneficial mutation rate θb, the population census size N , and the effective population size Ne (Fig-
ure 2). Trained RFs performed well in predicting N and Ne with small MSE and higher R2 (Figure 2 b and c).
But, the trained RF for θb had a lower performance than the trained RFs for demographic parameters, with
high MSE and low R2 (Figure 2a). Still, the estimates were robust for intermediate to higher values of θb. For
the results of other model parameters and latent variables informative about demography and selection (see
Figure S2 and section S2 Supplementary Results). Similar values ofMSE andR2 on true vs. RF estimated values
(Figure S5 a, b, and c) indicated similar performance RF for θb, N , and Ne on simulations with heterogenous
recombination rates (see Figure S4 for an example of how r could vary across the genome). For the results
of other model parameters and latent variables for simulation with heterogenous recombination rate, see
Figure S5 and Table S2, section S2 Supplementary Results.

N

NN

N

N
N

F

!

!

MSE = 0.023

MSE = 0.032MSE = 1.479

MSE = 0.299

R  = 0.6592

a b

c d

R  = 0.9662

R  = 0.9722 R  = 0.7082

Figure 2. Out-of-bag estimates of ABC-RF trained for the joint inference of demography and selection,and N̂e estimates from the temporal FST to compare with the ABC-RF -based N̂e estimates. (a) popu-lation scaled mutation rate of beneficial mutations θb; (b) population census size N ; (c) effective populationsizeNe; and (d)Ne from temporal FST

The automatic selection of informative summary statistics is an important feature of ABC-RF. For each
tree of a random forest, summary statistics were selected given its ability to split the data. How many times
summary statistics were selected in each RF informs us of their importance for predicting a given parameter.
For the prediction of θb values, the RF picked more frequently statistics that reflect the heterogeneity of the
genome, such as the 5% quantile of Tajima’s D calculated in the second sample, with the kurtosis and skew-
ness of FST and Da calculated globally (Figure S6 e). The population size was trained with a combination of
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within and between sample summary statistics: FST andDa, with their respective derived statistics frequently
selected (Figure S7 c). ForNe, summary statistics that inform about the cumulative divergence between sam-
ples as FST andDa, were frequently selected (Figure S7 d).

Comparison with FST method to estimateNe

We compared our ABC-RFNe estimates the temporal FST estimates (Frachon et al., 2017). The FST-based
N̂e was more affected by the amount of selection in larger populations when selection is more efficient. The
FST-based N̂e showed higher overall MSE compared to the ABC-based estimates (Figure 2c and d). ABC-RF
and the temporal FST N̂e performed well and similarly, regardless of the strength of selection, when the ben-
eficial mutations were less frequent (low θb). However, the ABC-based estimator had less local MSE than the
temporal FST-based estimator. When the frequency of selection is high, theNe estimator based on the tem-
poral FST had dramatically higher error (Figure 3).
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Figure 3. Local MSE ofNe estimates as a function of θb. The lines corresponds to the MSE onNe estimatesfromABC-RF and from temporalFST. Dashed lines correspond to local MSE estimated from pseudo-observeddata (POD) with heterogeneous recombination rates along the genome.

Analysis of temporal genomic data of feral populations of Apis mellifera
The projection of each population target data point (in black) into the cloud of the training data points (in

grey) in the PCA plots revealed that each population model could capture some dimension of the observed
genetic diversity (Figures S8-S14). However, some PCs showed the observed data point outside the simulated
data cloud of points, indicating some model inadequacies, possibly because we did not include gene flow or
admixture in our simulations. For the analysis of feral A. mellifera populations, we first grew independent RF
for each parameter in each population. Despite the differences in time intervals between samples, all popu-
lations had a similar performance of the ABC-RF estimator for Ne, as they showed similar values of MSE and
R2 (Figure S15). For N , trained RF for Humboldt, Stebbins and Placerita performed similarly well, with the
lowest MSE and higher R2 (Figure S16). For θb, Riverside had trained RF with the worst performance (Figure
S17). Overall, both MSE and R2 obtained with OOB estimates from simulated data for A. mellifera dataset
were comparable to these parameters obtained with OOB estimates for the simulated data in the evaluation
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of the method.
Trained RFs forN andNe were able to predict these parameters in all populations, as the inference of the

mean posterior value and the posterior distribution differentiated from themean prior value and distribution
(Figure 4 b and c). ForN , posterior distribution were wider than forNe. Trained RF for θb, for all populations
had a similar posterior mean, except for the Avalon population that had a peak at a lower value (Figure 4
a). However, the posterior distributions were wider and followed the prior distribution, making it difficult to
predict the posterior mean and variance in all populations accurately. It is possible to see together with the
posterior mean estimates that the ABC-RF estimates for θb were concentrated in lower values (Table S3) in all
populations. Ne were also lower, andNe andN were similar. For the results of OOB estimates of other model
parameters and latent variables and posterior estimates for these parameters, see section S2 Supplementary
Results.
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Figure 4. Inference of demography and selection for feral A. mellifera populations. (a) the scale mutationrate of selected mutations θb, (b) the population census size N , (c) the effective population size Ne. Dashedand filled lines correspond to the prior and posterior distributions, respectively. See Table S3, SupplementaryResults for mean and 95% credibility intervals.

Discussion
Separating demography from drift, and the inference of θb

With temporal population genomics data, we can see the evolution in “action” as opposed to single time-
point population genomics data (Feder, PS Pennings, et al., 2021). Consequently, temporal data have more
information about the ongoing process, making them interesting for understanding the short-term effects of
the interaction between demography and selection (Buffalo and Coop, 2019; Dehasque et al., 2020; Williams
and P Pennings, 2020). When samples from more than two time points are available, correlations among al-
lele frequency changes allow to separate the effects of drift and selection (e.g., Buffalo and Coop, 2020; Feder,
Kryazhimskiy, et al., 2014). Our results showed that two samples collected at different time points are suffi-
cient for the inference of the genome-wide footprint of adaptive evolution and to separate the demography
(population census sizeN ) from drift (effective population sizeNe).

It is important to stress that Ne, calculated as a latent variable, captures the feedback dynamics between
drift and linked selection. Selection, either positive or negative, causes a deviation ofNe fromN . The impact
of selection on the genome can extend far from the target of selection since individuals that carry beneficial
mutations have more chance to reproduce, and their beneficial mutations are more likely to be in the next-
generation offspring (Walsh and Lynch, 2018). In this complex dynamic, with many loci under selection which
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creates a dynamic that cannot be easily described analytically, latent variables obtained from simulations can
summarize the by-product of drift and selection interactions. With our approach, N̂e quantifies the drift due
to demographic and selection processes, unaffected by the bias of outlier loci.

This genome-wide reduction in Ne is not captured when loci are assumed to evolve independently (as in
Laval et al., 2019; Sheehan and Song, 2016, for example). In contrast, the complexity of linked selection and
the genome-wide effect of selection are taken into account using individual-based simulations with the whole
genome in an ABC approach.

Estimates of genetic load or other genome-wide parameters about selection are obtained when annotated
genomic data is available (Henn et al., 2015), or by conducting experiments on crossing populations (for the ge-
netic load; Plough, 2016). However, we obtained estimates of selection parameters only using polymorphism
data. Differently, Buffalo and Coop (2020)measured the genome-wide signature of selection by estimating the
covariance of allele frequencies at consecutive time points. The allele frequency covariancematrix allowed the
quantification of the genome-wide contribution of selection to the observed allele frequency changes, even
when selection involved many loci of small effect. In this work, we estimated the population scale mutation
rate of beneficial mutations θb, which informs about the diversity of beneficial mutations that existed in the
population between the two time points and the potential speed of adaptation at the genome level (Hermis-
son and PS Pennings, 2017). These estimates reflect the potential number of beneficial mutations between
the two time points regardless of their impact as determined by their selection coefficients.

The variable importance plot of each parameter shows us the global importance of each summary statistic
in the trained Random Forests. ForNe,N , and θb summary statistics calculated from the distribution of locus-
specific summary statistics -skewness, kurtosis, mean, variance, 5% and 95% quantiles were more frequently
used. Summary statistics derived from the distribution of locus-specific calculated from all segregating loci in
the genome inform about the heterogeneity that selection and drift produce genome-wide. For example, a de
novo a beneficial mutation entered the simulation and was selected; it left a signal of lower diversity around
the region it was located. The genome, after selection, contained spots where diversity was high and where
it was low, and this heterogeneity was captured by the distribution of locus-specific HE, more specifically,
the lower tail of the distribution where the diversity values of the statistic were lower. The covariance matrix
of allele frequencies through time (Buffalo and Coop, 2020) can be used as a summary statistic to capture
additional information about the selection and drift when more than two temporal samples are available. In-
cluding this matrix as summary statistics for further development of the method would be interesting.

Comparison with FST method to estimateNe

We compared the Ne obtained with ABC-RF framework to the Ne obtained with FST estimator (Frachon
et al., 2017). Overall, theFST-basedNe estimator performed poorly compared to the ABC-RF-based estimator.
The lower performance was caused byNe values that were underestimated when beneficial mutations were
more frequent (higher θb). Consequently, the Ne estimates from the temporal FST were strongly affected
by selection. Both estimators performed similarly when the selection was infrequent or rare, but the ABC-RF
estimator had lower MSE than the FST one. Positive selection can increase the variance of allele frequency
between samples taken at different time points. When selection is infrequent or rare, drift determinesmost al-
lele frequency changes between samples. Still, when selection is pervasive, selection dominates, which causes
dramatic and rapid changes in allele frequency, increasing the variance between samples. Ne estimator based
on the FST depends on the differences in allele frequencies between samples; consequently, it is naturally
biased by strong and frequent selection. We can assume that the Ne estimator from ABC-RF was insensitive
to the amount of selection since we trained the ABC-RF withNe values from the simulation. In our simulations,

Vitor A. C. Pavinato et al. 13

Peer Community Journal, Vol. 2 (2022), article e78 https://doi.org/10.24072/pcjournal.203

https://doi.org/10.24072/pcjournal.203


Ne was a latent variable that captured the deviation that selection imposed on the number of individuals able
to reproduce (selected for); unaccounted factors did not bias it.

The amount of selection for θb > 1 could be unrealistic in some organisms, but plausible in virus (Feder,
Kryazhimskiy, et al., 2014) and many arthropod species, with largeNe, which have larger population sizes (ex-
cept in eusocial insects that have vertebrate-like population sizes; Romiguier et al., 2014). The selection also
acts on weaker and milder beneficial mutations in larger populations. In those organisms, it might be unrea-
sonable to assume mutation-drift equilibrium given the pervasive role of selection. Consequently, attempts
to estimate demography parameters as Ne without properly accounting for the pervasive role of selection
could be biased.

Analysis of temporal genomic data of feral populations of Apis mellifera
Overall, the performance of the ABC-RF for selection and demography inference was similar across popula-

tions despite the differences in sample size and age. For θb, Avalon and Humboldt populations had posterior
probability distributions similar to the prior, indicating that the analysis provides no additional information
on this parameter. These two populations also present low effective population size estimates, reducing the
selection signal. For the rest of the populations, the posterior probability distribution of θb is tilted toward
the higher values but without a clear peak differentiating the distribution from the prior. Still, lower θb val-
ues could be excluded. It favors the interpretation that selection was acting during the study period without
providing a precise parameter estimate. The presence of selection in these analyses comes mainly from the
heterogeneity of the polymorphism along the genome. Thus, for a thorough interpretation of the results, it is
important to discuss other processes that have not beenmodeled but could affect this signal. The studied bee
populations in California show a mixture of Eastern and Western European ancestry, with some populations
presenting African ancestry in the most modern samples Cridland et al. (2018). Different levels of African ad-
mixture along the genome could create some heterogeneity and affect the inference. However, in Placerita
and Riverside, the populations with higher African ancestry present similar estimates of θb that populations
with little or no African admixture. The Humboldt population changed from predominately Western Euro-
pean to Eastern European ancestry, meaning that there was substantial gene flow into the population. These
results suggest that admixture does not dramatically affect the inference of selection but also highlights the
importance of incorporating admixture in the future development of the approach. Other processes, such as
recombination and mutation rate, might be heterogeneous along the genome. Our analysis of simulations
with heterogeneous recombination rate suggest that the approach is robust to those. However, more com-
plex models also seem necessary to fully capture the observed genetic diversity (see Figures S7-S13, section
S2 Supplementary Results). Including additional factors (admixture, heterogeneity of recombination and mu-
tation rate, and other forms of selection) could be key to obtaining models that fit the data better. Further
developments of this approach should take them into account.

Our ABC-RF approach estimatedNe with the same order of magnitude of otherNe estimates obtained for
hymenopterans (Zayed, 2004). Lower values ofNe might reflect the presence of admixture, either African ad-
mixture or admixture that occurred with domesticated lineages facilitated by changes in beekeeping practices
(Cridland et al., 2018). Northern populations, especially from Humboldt County, shared similarities with bees
from reared colonies (with higher Eastern European ancestry). Southern populations, as shown by Cridland
et al. (2018), showed a higher level of admixture with African lineages. Populations from the southernmost
cities (Riverside County, Placerita, and Avalon, Los Angeles County) showed higher genetic diversity than the
others but did not show the highest values of Ne. On the other hand, the population of Stanislaus County
had the highest value of Ne, possibly because it had lower levels of admixture with domesticated lineages
compared to the population from Riverside, Placerita, Avalon, and Los Angeles counties.
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We observed that Ne and N had similar estimates. We were aware that our simulation model did not
account for key characteristics of eusocial insect reproductive biology: the monopolization of reproduction
by the queen and the division of labor. In honey bees, a queen mates with more than one male (a process
called polyandry), which leads to a biased breeding sex ratio (Estoup et al., 1994). Assuming that only queens
can reproduce in the colony, polyandry increases the variance in the number of parents contributing to the
offspring gene pool, which leads to a decrease in the Ne compared to N (Nomura and Takahashi, 2012). In
our simulations, we only simulated panmictic random mating. Therefore, the difference between estimates
ofNe andN only reflects the selection action. ThereforeN must be interpreted with caution as it is probably
reflecting more the total number of female breeders per generation rather than the size of the population.
Individual-based forward simulators such as SLiM allows setting different mating schemes. It is possible to
simulate the haplodiploidy, the cast system, diocy, and sex ratio found in honey bees. These simulation modi-
fications could allow us to estimateN and other parameters that could better reflect the species’ biology, but
that was not the focus of this work.

One possible explanation for the similarities between Ne and N estimates, thus, relies on cast specializa-
tion and concentration of reproduction to one of few females in the colony. These came to a cost of reduced
Ne, which reduces the efficacy of selection (either positive or negative). Bees are the few insect groups that
show very small Ne potentially linked with the evolution of eusociality (Romiguier et al., 2014). Knowing that
lower Ne reduces the effectiveness of selection, it is plausible to think that lower Ne is restricting the effects
of mutation affecting fitness to stronger beneficial mutations. Since these mutations are less frequent than
weak or mild mutations, their effects onNe were small, which explains whyNe andN had values in the same
range. Low Ne and low θb pointed to a biological system limited where adaptation is limited by the influx of
adaptive mutations (Rousselle et al., 2020).

Our ABC-RF framework also estimated the per-site mutation rate per generation µ (Supplementary Results,
S18). The mean posterior µ for all populations exceeds the mean prior µ. The higher estimated values we ob-
tained might be due to the higher true mutation rate but also reflect recent admixture events between these
populations. Modeling admixture could help us correctly separate the effects of selection and drift since the
introgression of African genes might have biased some estimates of selection parameters.

Perspectives and Limitations
Our model is relatively simple, as it only considered the impact of new beneficial mutations, neglecting

the effect of background selection and standing variation. Background selection can mimic directional selec-
tion because it causes a similar pattern of diversity reduction around the target of selection (Stephan, 2010).
This has been discussed for a long time; however, much less has been discussed about the patterns of back-
ground selection on temporal data and their differences with selective sweeps. Cvijović et al. (2018) showed
that neutral alleles linked to less deleterious backgrounds could quickly rise to high frequencies due to puri-
fying selection, which could mimic the signal of a selective sweep in temporal data. However, Schrider (2020)
suggests that the signal of selective sweeps will be distinct from the effects of background selection if back-
ground selection is not localized to specific regions of the genome. In an attempt to jointly accommodate the
effect of demography and selection on the inference ofNe, Johri et al. (2020)modeled the effect of background
selection and developed an ABC-based approach that jointly estimated the distribution of fitness effects and
Ne. In their simulations, they modeled deleterious mutations and the classical hard sweep with the inclusion
of beneficialmutations. They showed an unbiased estimate ofNe regardless of positive and negative selection
presence. Future developments of our approach should include a more realistic genomic architecture were
negative and positive mutations can co-occur and explore different concentrations of deleterious mutations.
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This will elucidate the importance of background selection in this context, which probably affects our infer-
ences in a way that is difficult to predict with our current results. In addition, further developments should
explore scenarios of de novomutations and selection acting on standing variation, which will allow for a more
general treatment including soft sweeps. The model can also be expanded to more complex demographic
scenarios, including changes in population size and genetic exchange with external sources (migration). In-
cluding such admixtures will be key in the future development of this approach since it is also a source of
heterogeneity in the genome and, thus, might influence the method’s performance.

Conclusion
We show that an ABC-RF -based approach can jointly infer adaptive and demographic history from tem-

poral population genomics data. This approach quantifies the genome-wide footprint of selection expressed
in the scaled mutation rate of beneficial mutations. The ABC-RF Ne is robust to varying degrees of strength
of selection and frequency of beneficial mutations. Our ABC-RF -based approach can be applied to temporal
population genomics datasets to gain insight into natural populations’ adaptive and demographic history.
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