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Abstract
Crowd-sourced biodiversity databases provide easy access to data and images for eco-
logical education and research. One concernwith using publicly sourced databases; how-
ever, is the quality of their images, taxonomic descriptions, and geographical metadata.
The method presented in this paper attempts to address this concern using a suite
of pipelines to evaluate taxonomic consistency, how well geo-tagging fits known dis-
tributions, and the image quality of crowd-sourced data acquired from iNaturalist, a
crowd-sourced biodiversity database. Additionally, it provides researchers that use these
datasets to report a quantifiable assessment of the taxonomic consistency. The pipeline
allows users to analyze multiple images from iNaturalist and their associated metadata;
to determine the level of taxonomic identification (family, genera, species) for each oc-
currence; whether the taxonomy label for an imagematches accepted nesting of families,
genera, and species; andwhether geo-tagsmatch the distribution of the taxon described
using occurrence data from the Global Biodiversity Infrastructure Facility (GBIF) as a ref-
erence. Additionally, image quality is assessed using BRISQUE, an algorithm that allows
for image quality evaluation without a reference photo. Entries from the order Araneae
(spiders) are used as a case study. Overall, the results suggest that iNaturalist can provide
large metadata and image sets for research. Given the inevitability of some low-quality
observations, this pipeline provides a valuable resource for researchers and educators
to evaluate the quality of iNaturalist and other crowd-sourced data.
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Introduction 

In the past ten years, biodiversity, conservation, and taxonomical research have increasingly utilized 
community science initiatives, including virtual platforms of user-uploaded biodiversity observations (Cull, 
2021; Mesaglio & Callaghan, 2021; Ryan et al., 2018). These large, crowd-sourced biodiversity databases 
contribute to scientific advancement, with posted observations providing evidence of unknown species, 
surveillance of field sites, and newly documented animal behaviors (Wilson et al., 2020). For animal groups 
that are difficult to locate in the wild or whose collection would prove too time-consuming and costly, 
crowd-sourced observations could provide information on species ranges or invasions. For example, the 
first occurrence of Pseudeuophrymings (Araneae: Salticidae: Euophryini), outside its native range was 
documented by non-experts on biodiversity databases (Kaldari, 2019). Since observations from crowd-
sourced data are usually accompanied by geographic information, erratic comparison of these 
observations against known ranges can help highlight observations made well outside the known range. 
Streamlining the use of free and crowd-sourced biodiversity databases could make the detection of new 
species faster and more efficient (Michonneau & Paulay, 2014; “What Is GBIF?” 2021). iNaturalist, one such 
crowd-sourced biodiversity database, provides a large platform for gathering global biodiversity data. 
Founded in 2008 by Nate Agrin, Jessica Kline, and Ken-ichi Ueda as part of a graduate school project for the 
University of California, Berkeley School of Informatics Master's project (Agrin et al., 2014), iNaturalist has 
grown in popularity, and now contains more than 68 million observations. Using iNaturalist and its 
accompanying mobile app, users can post images of organisms and provide a geo-tagged location for that 
observation. Once a user posts an image, an image-based machine learning algorithm suggests a taxonomic 
identification. Users can then vote in agreement with that identification or suggest an alternative 
identification until one proposed taxonomy receives enough votes for general acceptance. The program 
labels observations with agreed-upon taxonomic identification and higher quality images as “Research 
grade” (Agrin et al., 2014). Like iNaturalist, the Global Biodiversity Information Facility (GBIF) is an open-
access infrastructure that provides observational data of species using a range of published sources 
(Michonneau & Paulay, 2014; “What Is GBIF?,” 2021). The observation records from GBIF come from 
participating institutions and publications. The curated data are available publicly, but unlike iNaturalist, 
contributions are limited to only approved organizations, making the data, in theory, more robust, but also 
more limited (“What Is GBIF?” 2021).  

Image and metadata quality remains a concern when using crowd-sourced data (Cull, 2021; Moudrý & 
Devillers, 2020). Though sites implement some quality control, the volume of entries prevents more 
detailed scrutiny of the data. If the data are of high enough quality, iNaturalist could be used as a digital 
alternative to physical collections for rigorous morphological comparisons (Mugford et al., 2021). These 
tasks would require consistently labeled images, no duplicate entries, correct geo-tags, and image quality 
high enough to permit accurate identification and comparison (Hochmairid et al., 2020). Currently, 
researchers and educators must evaluate entry quality manually. Given the millions of observations 
recorded for any given taxonomic group, this process is time and resource intensive and represents the 
biggest barrier to using crowd-sourced data. This study seeks to address this barrier by providing a pipeline 
to quantify and assess the quality of data currently available on iNaturalist using the order Araneae as a 
case study (Figure 1). Much like a physical pipeline, pipelines allow for the output of the computing process 
to automatically feed into the next process, allowing information to flow in one direction.  

Fully assessing datasets acquired from iNaturalist (and similar databases) can illuminate areas that may 
still need to improve and how the research community may create a more accurate and robust database.  
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Figure 1. Workflow for pipeline suite. Data is acquired from iNaturalist and GBIF. The first pipeline 
compares the taxonomic consistency of the iNaturalist data. The second assesses the quality of the images 

using pyBRISQUE, and the third compares the geo-tagging from the iNaturalist observations to those obtained 
by GBIF. Bold dashed lines represent transitions between pipelines in the suite of pipelines. Data frames and 

assigned variables will be passed between pipelines. All outputs are saved to the working directory as .csv files.  

Material and methods 

Data acquisition. 
I applied the pipeline to observations from iNaturalist for the order Araneae as a case study. Spiders 

constitute a valuable, yet understudied order of invertebrates (Nyffeler et al., 1994; Schwerdt et al., 2018). 
Difficulties associated with locating, observing, and collecting spider specimens partly account for the 
deficit of data on species ranges and diversity, and the lack of information on habitat and behavior (Cardoso 
et al., 2011). Community science initiatives (projects that partner researchers with community volunteers) 
help researchers expand arachnid research while also providing public outreach and education (Cull, 2021).  

While this pipeline was originally meant to be used with iNaturalist, its potential use with other 
databases necessitates acquiring images and their accompanying metadata before using the pipeline, as 
each database varies on how users access data. For the Araneae case study, I searched for and downloaded 
observations for each family under the order Araneae on iNaturalist on July 21, 2021 (Matheson, 2014). I 
then searched for and downloaded observations classified only to the order level. The search for each 
family and the order Araneae were performed separately due to the limit that iNaturalist places on the 
amount of observation metadata that can be downloaded per query. The limit is 200,000 observations. 
Even by separating taxon into families, iNaturalist queries cannot return results with over 200,000 
observations. For queries that exceed the 200,000-observation limit, modifications were made to one of 
the following criteria: Verifiable, Threatened, Introduced, Native, and Popular. Criteria in these selections 
can be selected as either “Any,” “Yes,” or “No.” By selecting “Yes” in one criterion, downloading the results, 
and then running the same query again but changing the criterion selection to “No,” the limit was no longer 
exceeded. Other selections are detailed in Figure 2. I obtained GBIF occurrence coordinates and image 
URLs using the Search Occurrences function for the order Araneae (“GBIF.org”). 
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Figure 2. Option selections for downloading query results using the downloading function in iNaturalist. 
Part A) is the selection for Section 1. B) shows the selections for Section 3. No changes are made to the default 

settings in Section 2. 
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The pipeline uses an input file in a .csv format (a sample input file can be downloaded at 
https://doi.org/10.5281/zenodo.7352707 in the Sample Data file). The input file for iNaturalist 
observations and GBIF occurrences must include columns for observation ID, time of observation, date of 
observation, time zone, latitude, longitude, the images’ current grade label, the image URLs, taxonomic 
guess provided by the machine learning algorithm, and taxonomic labels at the family, genus, and species 
level. The input file is read into Rstudio for analysis. The resulting data frame for iNaturalist observations 
is queried for duplicate observations. Observations are considered duplicate entries if two observations 
have the same time of observation and location (Hochmairid et al., 2020).  

iNaturalist does not currently provide a method that allows users to bulk download images. Instead, 
the image URLs are extracted from the input file into a separate URL list. Images are downloaded using the 
list of URLs with an original bash script included in the pipeline (RStudio, 2020).  

Taxonomic consistency. 
To evaluate the consistency of the taxonomic data from iNaturalist, a taxonomic reference file is 

needed. Several databases exist that can provide necessary taxonomic information on specific groups of 
animals, such as The Global Lepidoptera Names Index (Beccaloni et al., 2003), and The Mammal Diversity 
Database (Zenodo, 2022), and The Reptile Database (Uetz & Hallermann, 2021). This case study used an 
updated species list from the World Spider Catalogue (WSC) downloaded on July 30th, 2021, as a 
taxonomic reference. WSC collects arachnology literature and publications and maintains updated 
taxonomic lists (Natural History Museum Bern, 2019).  

The input file for taxonomic reference should include columns for the highest classification being used 
in the pipeline, with consequent columns for all lower classifications (Supplemental 2). Taxonomic 
identification for the highest order of classification and all subsequent lower classifications are compared 
to the taxonomic reference file, respectively. 

 

Figure 3. Taxonomic consistency workflow. Each observation could earn a maximum of three-points. 
Points were award as follows: iNaturalist observations were checked for family-level identification. Each level 

of taxonomic label (i.e. Family, Genus, and Species) was scored based on three criteria: 1) the label was 
present, 2) the label was an accepted name for that level of classification, 3) it agreed with all higher and lower 

taxonomic classifications.  If these conditions were met, the observation was awarded an additional point. 
Lastly, observations were checked for species-level identification. To calculate the percent-correct the total 

number of observations positive for a level of identification was multiplied by three and then divided into the 
sum of all the scores for observations with each level of taxonomic identification.  
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The percentage of observations that include taxonomic labels at each level of classification and the 
consistency of the assigned taxonomic names for each observation is then analyzed. If the identification 
given for an observation matches the recognized taxonomic names at the appropriate level and was 
consistent with accepted higher-order names as they appear on the taxonomic reference file, then it is 
recorded as correct. Correct labels are given one point per name. If the name on the observation is either 
entered incorrectly, entered at the incorrect taxonomic level (such as the genus taxonomy being recorded 
as the species), or does not align with the accepted higher order labels (i.e., the genus does not belong to 
the family assigned to the observation) it is recorded as incorrect (Figure 3). Incorrect or missing labels are 
given a score of zero. The awarded points are then divided by the number of taxonomic levels, to produce 
an overall score (Figure 3). 

Geo-tagging. 
To assess geo-tagging data of observations, coordinates from iNaturalist and GBIF are filtered through 

the Clean Coordinates R-package, which removes coordinates with common errors found in biological and 
paleontological datasets (Zizka et al., 2019) These errors include locations at museum and zoo facilities, 
zero set coordinates, and coordinates that fall outside of any coordinate values, such as a latitude larger 
than 90°(Zizka et al., 2019).  

Lists of the genera and species for observations from GBIF and iNaturalist are compiled and cross-
referenced so only families, genera, and species that appear on both remain. A subset of coordinate data 
for both GBIF and iNaturalist are created, first by genera and then by species. Comparisons are made at 
the family, genus, and species levels. A Raster file is generated using GBIF occurrences in the R-program 
Raster and the raster polygon is divided into a grid GBIF and iNaturalist coordinates are converted to spatial 
points and placed on the grid. A confusion matrix is produced using the confmat function in the RStudio 
package GMDH2 (Dag et al., 2021). A confusion matrix is a type of contingency table that can be used as a 
performance test for classifications (Fawcett, 2006). on the results of each cell using the following 
parameters from Austen et al. (2018) (Figure 4): 

• True Positive: GBIF observation is present and iNaturalist 
• True Negative: No observations present 
• False Positive: iNaturalist observation present but not GBIF 
• False Negative: GBIF observation present but not iNaturalist 

Accuracy and precision scores from the confusion matrix are reported for each taxonomic level.  

 

Figure 4. Geo-tagging Workflow. Plotting Coordinates: GBIF occurrence records was cleaned using the R-
package, Clean Coordinates. Comparisons of occurrence records (including latitudes and longitudes) for 

iNaturalist observations were made using the family-level of identification, the genus-level of identification, 
and the species-level of identification. For each taxon rank, occurrence data was obtained from the Global 
Biodiversity Information Facility (GBIF) for the order Araneae and subsetted in Rstudio by taxon rank. The 

subsetted occurrence records were used to create polygon maps, that were then converted to raster maps. 
GBIF and iNaturalist occurrence records were added to the cells of the raster map. A confusion matrix was 

used to calculate the accuracy and precision of the iNaturalist occurrence records.  
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Image quality. 
Image quality is assessed using the python version of the MatLab program BRISQUE, pybrisque 

(Gumbira, 2018). The BRISQUE algorithm scores the distortion in an image without the use of a reference 
image, to create a final quality score based on a comparison between the image and a default set of natural 
images (which are images captured directly from a camera without any post-processing) with similar 
distortions (Mittal et al., 2012). Images are evaluated and assigned a score that usually falls between 0 
(higher quality) to 100 (lower quality) (Figure 5).  Not all observations from iNaturalist included images with 
copyright permissions that allow them to be downloaded and some observations included multiple images, 
each with an individual score. Images are grouped by the highest shared taxonomic order and an average 
score is reported. This process is repeated for images with identification at lower taxonomic levels and a 
mean average score is calculated.  

In addition to an overall average score, the image scores for the Araneae dataset are given at the family, 
genus, and species levels. To determine if a relationship existed between the level of taxonomic 
identification and the BRISQUE image score, I examined the normality of the data using Q-Q plots, residual 
plots, and a Shapiro-Wilks test. As the data were non-normally distributed, I used a Kruskal-Wallace test to 
compare the scores from the GBIF images, images with at most a family identification, genus identification, 
and species identification. All means are presented with a ±1 standard error of the mean. 

 

 

Figure 5. BRISQUE Image Quality. BRISQUE evaluates images without the need for a reference photo. The 
higher the score the lower the quality of the image. A comparison between images with a low BRISQUE score 
(A and B) and high BRISQUE scores (C and D). A was given a BRISQUE score of 2.932 and B was given a score of 

3.042, while C was given a BRISQUE score of 67.155 and D was given a BRISQUE score of 60.657.  A side-by-
side comparison of these images demonstrates how visual assessment of image quality can be inaccurate and 

subject to individual preference and vision. Providing a BRISQUE score helps to quantify the quality of an 
image used. [A: Dunbar, 2014), B: (Miseroy, 2017), C: (Cuarenta, 2017), D: (veravilla, 2017).] 

Results 

Data acquisition. 
For the order Araneae, I found 158,129 downloadable observations on iNaturalist. I found 78,310 

unique observations for the order Araneae on iNaturalist. Of the 129 families in the order Araneae 
recognized by the WSC, 122 had observations (Natural History Museum Bern, 2019). I found no 
observations for Archoleptonetidae (though, as of August 2021 one observation has been added), 
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Barychelidae, Huttoniidae, Mecicobothriidae, Myrmecicultoridae, Synaphridae, and Tetrablemmidae. 
Users of iNaturalist identified 49.91% of observations to at least the family level and so could be found 
searching by a specific family. Agelenidae (“Grass spiders”) had the most observations, with 41,716. A  
mean number of observations per family was 259.56 ±19.86. Archoleptonetidae and Penestomidae both 
had only one observation.  

Taxonomic consistency. 
I found 156,842 of the downloadable observations with a family-level identification, of which 79.15% 

were consistent with the taxonomic families listed on WSC. 99.86% of the 58,241 observations identified 
to the genus level and 99.74% of the 27,500 observations identified to the species level were consistent 
with established taxonomic names.  

Observations may have more than one image associated with them, each with separate metadata. The 
metadata associated with each image is referred to as that image’s “record.” I removed 2,170 of 425,950 
records after cleaning the coordinates. iNaturalist observations with a family-level identification were 
49.95% accurate and 99.90% precise. In terms of the geo-tagged coordinates, “accuracy” refers to how 
often the coordinates from iNaturalist are present or absent in agreement with the coordinates from GBIF 
and are calculated using the following equation: 

(1)  Accuracy=  ((True Positive+True Negative))/(Total Observations) 
 

‘Precision” refers to the rate at which iNaturalist and GBIF coordinates are both present in cells on the 
grid, to the total number of grid scales in which iNaturalist coordinates are present: 

 
(2)  Percision=  (True Positive)/((True Positive+False Positive)) 
 

I found comparable results at the genus and species levels, with the genus level resulting in an accuracy 
of 49.97% and precision of 99.85%, and the species level resulting in an accuracy of 63.10% and precision 
of 99.87%. 

Image quality. 
pyBRISQUE evaluated 118,834 images. The median image quality score was 29.00 (n = 115,093, range 

= 70.32637). Images of Orsolobidae received the highest average BRISQUE score (n = 7, median= 36.95, 
range= 1.87), with a higher score indicating lower quality images. The family with the highest score and > 
10 observations was Phyxelididae (n = 22, median = 36.94). Atracidae had the lowest (n = 176, median = 
21.44, range = 26.92) and was also the family with the lowest score and > 10 observations.  

Discussion 

Here, I present a method for assessing the metadata and image quality for data acquired from 
iNaturalist, a crowd-sourced biodiversity database. Using the order Araneae, both the metadata and 
images associated with observations in iNaturalist demonstrate that this platform provides a diverse 
dataset for spiders (Order Araneae). This data assessment method was able to determine that, with few 
exceptions, nearly every family in the order had some level of representation on iNaturalist. Automizing a 
check of taxonomic labels against accepted taxonomic names permits the quick removal of occurrences 
with inconsistent labels. Additionally, it provides researchers that use these data to report a quantifiable 
assessment of the taxonomic consistency in a dataset. 

Similarly, comparing geo-tagging data from iNaturalist observations to GBIF occurrences allows for a 
quantifiable evaluation of that data via the confusion matrix results. Another benefit to using this pipeline 
to compare geo-tagging data is the insight into the accuracy of the observations’ taxonomic labels it can 
provide. Observations that fall outside the raster generated by the occurrence data from GBIF can be seen 
as outside the area where that organism has previously been shown to live. This could also aid in 
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determining if the iNaturalist taxonomic labels are accurate. Conversely, this method of evaluating geo-
tagging could help identify if a species was observed within a new range. While an occurrence could fall 
outside of the GBIF raster for reasons unrelated to range expansion, once the raster polygon is created 
using the GBIF occurrences, iNaturalist observations outside of the raster are easily separated from the 
dataset and further investigated.  

One major concern with using publicly sourced biodiversity photos is that without knowing the quality 
of the images, reproducibility is difficult. iNaturalist categorizes images as either “research grade,” “needs 
ID,” or “NA.” iNaturalist’s current method for assigning an observation as “research grade” or not “research 
grade” requires that an observation reach a two-thirds consensus from users to confirm identification 
(Agrin et al., 2014). Images currently marked “needs ID” could receive the consensus on their taxonomic 
idea and be relabeled as “research grade.” I found relatively consistent image quality across families and 
between research grade and non-research grade observations (“needs ID” and “NA”).  While this system 
of categorization does provide some information on the quality of an image, presenting a mean score for 
image sets on databases may help clarify the results researchers obtain using iNaturalist (or another 
database) images, especially in the cases of machine learning programs. The method presented for image 
assessment could also be used to set a threshold score, allowing only images that meet a specific quality 
standard to be included in a set of images.  

Additionally, this study highlights the importance of using quantifiable image quality assessment tools 
like BRISQUE, especially for methods that use images for morphological evaluation of computer learning 
software for identification. While not conducted here, it would be beneficial to perform a BRISQUE 
assessment on any image used for research and to report the score or average score of images, especially 
when sourced from public collections. Image quality could impact evaluations of coloring and 
morphological structures. From a visual assessment of an image, the quality of that image may not be 
obvious. Additionally, visual assessment of an image may be subject to personal bias or visual acuity (Wang 
et al., 2004). Providing a quantitative score, such as a BRISQUE does, permits a uniform understanding of 
the images being used. In the future, it would be beneficial to compare the BRISQUE scores of images 
obtained from iNaturalist to those on image databases that only host published images, such as GBIF.  

One drawback to using crowd-sourced observations, however, is how usage patterns could affect the 
metadata and number of high-quality images available for a specific group of animals. For example, 
differences in the number of observations per family of Araneae might result from geographic areas with 
a higher or lower user number of iNaturalist users, variation in numbers of people with access to camera 
phones or reflect actual relative abundances.  

Increasing the number of observations at the family level or lower is the best way to increase the 
number of images and volume of metadata available to researchers from iNaturalist, since a lack of 
identification, lack of consensus for that identification, or no lower order identification represents the most 
common deficits for most observations. To help increase the diversity and quality of the observations, 
researchers should employ methods to contribute to iNaturalist, such as educational initiatives that engage 
students with the platform and encourage them to contribute images or by making a habit of offering 
taxonomic identifications to images that require taxonomic identification.  

For researchers to become more engaged with iNaturalist, however, some changes may be necessary. 
For example, limits on how many observations could be downloaded at one time make broad studies, such 
as the one using Araneae, more time-consuming than necessary. iNaturalist has recently launched an 
Amazon Web Services (AWS) platform, but this platform does not include the image files from the 
database, which limits the type of analyses researchers can conduct. In addition to a more economical 
method to bulk download images, incorporating an image assessment algorithm like BRISQUE into the 
metadata would increase the utility of iNaturalist to researchers. Providing a BRISQUE score would allow 
users to filter downloads for a specific image quality without having to run the algorithm on large image 
datasets. Finally, while not an issue for iNaturalist observations, problems exist in downloading images 
from GBIF in bulk and keeping the image file names associated with the taxon. Another database may 
experience similar problems.  

Several databases are available for researchers to access occurrence data and images(Shirey et al., 
2019; Heberling et al., 2020; Moudrý & Devillers, 2020; Cull, 2021). iNaturalist provides a user-friendly, 
crowd-sourced database of images with the potential for broad research applications (Hochmairid et al., 
2020; Nugent, 2020; Mesaglio & Callaghan, 2021). It should be noted that any research that uses images 
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or metadata from iNaturalist should include methods that screen the data for duplicates, incorrectly geo-
tagged observations, and image quality.  

The usefulness of this pipeline may be limited for systems with few observations on iNaturalist or GBIF 
(who must have at least three occurrences to generate a raster polygon). Systems that lack a taxonomic 
database could also present a challenge since this would require the user to generate the taxonomic 
reference file from scratch. An alternative to creating a de novo taxonomic reference is sourcing taxonomic 
names from an established database such as the Integrated Taxonomic Information System (“Integrated 
Taxonomic Information System”). GBIF also provides a taxonomic database. More specialized taxonomy 
databases could also serve as a source of taxonomic comparison. The Mammal Diversity Database is 
maintained by the American Society of Mammologists and provides an updated list of known mammal 
taxonomic names and species. Similar initiatives exist for amphibians, ants (AntWeb), birds (Avibase, IOC 
World Bird List), fungi, and reptiles. General and specialized databases could be cross-referenced or used 
independently to generate the reference needed to assess taxonomic consistency.  

Taken together, this study demonstrates that iNaturalist can provide large metadata and image 
datasets for research. This pipeline can be used to assess the taxonomic consistency, relationship to known 
distributions, and image quality of large datasets of crowd-sourced data. This is a reliable method to quickly 
analyze the data quality for specific taxa. With appropriate quality controls in place, the wealth of 
knowledge supplied through crowd-sourced biodiversity databases can more reliably be used for scientific 
discovery. 
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