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Abstract
We propose in this paper a method to assess the effects of a contaminant on a micro-
ecosystem, integrating the population dynamics and the interactions between species.
For that, we developed a dynamic model to describe the functioning of a microcosm ex-
posed to a contaminant and to discriminate direct and indirect effects. Then, we get back
from modelling to experimentation in order to identify which of the collected data have
really been necessary and sufficient to estimate model parameters in order to propose
a more efficient experimental design for further investigations. We illustrated our ap-
proach using a 2-L laboratory microcosm involving three species (the duckweed Lemna
minor, the microalgae Pseudokirchneriella subcapitata and the daphnids Daphnia magna)
exposed to cadmium contamination. We modelled the dynamics of the three species
and their interactions using a mechanistic model based on coupled ordinary differen-
tial equations. The main processes occurring in this three-species microcosm were thus
formalized, including growth and settling of algae, growth of duckweeds, interspecific
competition between algae and duckweeds, growth, survival and grazing of daphnids, as
well as cadmium effects. We estimated model parameters by Bayesian inference, using
simultaneously all the data issued frommultiple laboratory experiments specifically con-
ducted for this study. Cadmium concentrations ranged between 0 and 50 µg.L-1 . For all
parameters of our model, we obtained biologically realistic values and reasonable uncer-
tainties. The cascade of cadmium effects, both direct and indirect, was identified. Critical
effect concentrations were provided for the life history traits of each species. An exam-
ple of experimental design adapted to this kind a microcosm was also proposed. This
approach appears promising when studying contaminant effects on ecosystem function-
ing.
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Introduction
The toxic effects of contaminants aremost often studied at the individual level, since it is easier to study life

history traits of an isolated organism, studying for example its survival, development or capacity to reproduce.
Moreover, monospecific bioassays are easy to implement and perform, and observation data at the individual
level are straightforward to analyse, since they depict the direct effects of contaminants. Nevertheless effects
can also be measured at other levels of biological organisation using various experimental devices that are
chosen related to the level of interest, by adapting several characteristics such as size, duration, number of
species, abiotic compartment, etc (Calow, 1993). Multispecies devices, likemicrocosms andmesocosms, allow
to study organisation levels from populations to ecosystem, by integrating population dynamics and interac-
tions between species (Forbes et al., 1997; Kimball and Levin, 1985; Ramade, 2002). However, extrapolating
toxic effects from one biological level to the next based on observation data remains a challenge. In partic-
ular, going from individual to population levels, or from population to community levels, implies taking into
account intra- and inter-specific interactions, which are of major importance in the functioning of ecosystems,
while it is necessary to integrate these interactions for a better assessment of the ecotoxicological risk (Cairns,
1984; De Laender et al., 2008; Preston, 2002).

Modelling tools have proven their utility to analyse ecotoxicological data, by highlighting the underlying
mechanisms leading to observations at each level of biological organisation. But modelling appears particu-
larly helpful when extrapolation of contaminant effects from biological levels reveals necessary. For instance,
physiologically based toxico-kinetic survival models allow to extrapolate the fate of a contaminant at sub-
individual level to its effects on individual survival (Ashauer et al., 2016), or individual based models (IBM)
including contaminant permit to extrapolate effects on the population level from effects on the individuals
(Hansul et al., 2021; Mintram et al., 2018), or food web models permit to transfer effects of contaminants
across the whole community (Baudrot et al., 2018).

Ecotoxicology relies on experimental data, while being concerned by the Replacement, Refinement and
Reduction of Animals in Research (3Rs) program (Kilkenny et al., 2009) and by difficulties linked to collection
of field data. Taking the most of experimental data and reducing the amount of experiments to perform in
general is a key issue the ecotoxicology field faces. Formal optimisation of experimental design can be applied
to standard tests (namely monospecific bioassays): they have been questioned in terms of test duration and
measured endpoints (Charles et al., 2016) or regarding the tested concentration range (Forfait-Dubuc et al.,
2012). Yet, more complex experimental designs, like microcosms or mesocosms may resist to formal optimi-
sation particularly because of species interactions leading to indirect effects. Some attempts have beenmade
in simple cases to deal with standard dose-responses curves (Chèvre and Brazzale, 2008; Holland-Letz and
Kopp-Schneider, 2015; Keddig et al., 2015; Khinkis et al., 2003; Sitter and Torsney, 1995; Wang et al., 2006)
but to our knowledge, nothing similar exist for multi-species models. Nevertheless, whenmodelling has been
integrated to the experimental framework, it can easily be used to evaluate a posteriori the relevance of the
data, as a pragmatic and case-by-case method to analyse the information provided by data and possibly im-
prove the experimental design for studies with microcosm experiments with similar species and compounds.

The aim of our paper is to illustrate (1) how to use modelling to describe the functioning of a three-species
microcosm exposed to a contaminant and to discriminate direct effects (related to effects on specific, mod-
elled processes) and indirect effects (related to effects resulting from the cascade of processes); (2) how to de-
velop critical effect concentrations for key population regulating processes (such asEC50 in stress functions);
and (3) how model outcomes can inform experimental design in order to identify which of the collected data
have really been necessary and sufficient to estimate model parameters in order to propose a more efficient
experimental design for further investigations.
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Different steps have been set up to achieve our objectives, as summarised in 1. We performed experiments to
collect data on themicrocosm species populations at different cadmium concentrations. In parallel, we formu-
lated a model of the microcosm functioning under a chemical stressor based on coupled ordinary differential
equations (ODE) and effect functions. First, using all data we estimated model parameters, in particular those
related to effect functions (1, black boxes). Using datawhere species occur in isolation andwhere they occur as
a community of species permitted to identify direct and indirect effects of cadmium on the population dynam-
ics of the different species. We then globally analysed the perturbations of our small community (objective 1).
We also extractedEC50 for the different processes (growth, survival, and strength of interspecies interaction)
(1, orange boxes). In order to assess the relevance of certain data, we removed those data from the complete
dataset to build partial datasets. Then, we estimated function parameters with the partial datasets. The newly
estimated effect functions were then compared to the reference ones obtained with the complete dataset (1,
green boxes). This allowed us to evaluate the added values of only considering partial datasets instead of the
complete original one (objective 2).
Figure 1. Workflow followed in the present study: (1) in black, development of the model of the microcosmfunctioning under cadmium pressure, data collection, and estimation of model parameters with the wholedataset, then extraction of stress functions, namely "reference stress functions"; (2) in orange, comparisonof population dynamics with and without cadmium to analyse the global perturbation of the community,extraction of EC50 for the different processes; (3) in green, build of partial datasets by removing some partsof the complete dataset, estimation of parameters using those partial datasets, comparison of the newlyestimated stress functions to the reference ones to assess how much information was provided by theremoved data.

Experiments and observed data
Experimental design Microcosms were identically prepared for all experiments according to (Lamonica, B
Clément, et al., 2016) (without sediment). Algae, duckweeds and daphnids were cultivated at the laboratory
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according to internal protocols (BJP Clément et al., 2014). According to the experiment, beakers were inocu-
lated with one, two or three species at the start of the experiment (day 0). When algae were present, 4.107
cells of P. subcapitata were introduced into beakers. When daphnids were present, 10 daphnids (Daphnia
magna neonates aged 24 ± 12 h) were introduced into beakers. When duckweeds were present, 8 fronds of
duckweeds were introduced into beakers. The algal density in the water column was measured every two to
three days with a particle counter (Lamonica, B Clément, et al., 2016). The algal density at the bottom of the
beakers was measured once during the experiment (Lamonica, Herbach, et al., 2016). Daphnids neonates
were removed from the microcosm every two days, meaning that reproduction was considered as an inde-
pendent process in the microcosm functioning (Lamonica, B Clément, et al., 2016). The number of daphnids
in each beaker was counted (after neonate removal if necessary) and their size measured (from the centre of
the eye to the caudal base of spine) twice or thrice per week. The duckweed fronds were counted every two
to three days. The experiments lasted between 13 and 21 days. The experiments are summarised in SI Table
S1 (Lamonica, Charles, et al., 2022) and data can be found at (Lamonica, Charles, et al., 2022).
Experiments without cadmium Experiment 1 involved algae and daphnids as detailed in (Lamonica, B
Clément, et al., 2016) (referred in that paper as "Experiment without sediment" in section 2.3.2.). Experiment
2 involved algae alone as detailed in (Lamonica, Herbach, et al., 2016) (referred in that paper as "Experiment
1" in section 2.2.1.). Experiment 3 involved algae and duckweeds as detailed in (Lamonica, Herbach, et al.,
2016) (referred in that paper as "Experiment 3" in section 2.2.2.).
Experiments with cadmium Experiment 4 involved algae and duckweeds, with two conditions in species
composition: duckweeds alone, and algae and duckweeds together. We tested five different cadmium con-
centrations (0, 11.1, 20.2, 35.5 and 51.1 µg/L) in triplicate for each condition. Three additional control beakers
were inoculated with algae alone. The duration of this experiment was 14 days. From this experiment, we
obtained different types of data under contaminant exposure: "monospecific data, duckweeds", "two species
data, duckweeds" and "two species data, algae".

Experiment 5 involved the three species, with three conditions in species composition: duckweeds alone,
algae and duckweeds, and algae, duckweeds and daphnids. We tested five different cadmium concentra-
tions in triplicate for each condition (0, 2.25, 4.50, 6.88 and 9.09 µg/L). The duration of this experiment was
21 days. From this experiment, we obtained the following data under contaminant exposure: "monospecific
data, duckweeds"; "two species data, duckweeds" and "two species data, algae"; "complete microcosm data,
duckweeds", "complete microcosm data, algae" and "complete microcosm data, daphnids".

Experiment 6 involved algae alone. We tested five different cadmium concentrations (0, 26.2, 36.4, 40.8
and 43.6 µg/L) in triplicate. The duration of this experiment was 14 days. From this experiment, we obtained
"monospecific data, algae".

As mentioned in (Lamonica, Herbach, et al., 2016), we used measured cadmium concentrations in the
medium instead of nominal ones. For that purpose, we measured dissolved cadmium concentrations as
described by Clement et al. (BJP Clément et al., 2014) at days 2, 7, 14 (and day 21 for Experiment 5) in each
beaker. We then calculated the arithmetic mean of all the measurements. In total, for Experiments 4, 5 and
6, we thus obtained 13 concentrations (0, 2.25, 4.50, 6.88, 9.09, 11.1, 20.2, 35.5, 51.1, 26.2, 36.4, 40.8 and 43.6
µg/L) denoted by Cj , j ∈ [0, 12] hereafter. The concentration in the controls of Experiments 4, 5 and 6 (that
is with no contaminant) is denoted by C0, corresponding to index j = 0. This is also the case in Experiments
1 to 3, that were conducted without contaminant.
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Dynamic modelling
The description of the model follows the Overview, Design concepts and Details (ODD) protocol originally

used for describing individual and agent-based models Grimm et al., 2010 but adapted here for a dynamic
model based onOrdinary Differential Equations (ODE). TheODDprotocol consists of seven elements. The first
three elements provide an overview; the fourth element explains general concepts underlying the model’s
design and the remaining three elements provide further details. Model code can be found at (Lamonica,
Charles, et al., 2022).

Purpose
The model developed in this paper describes the dynamics of duckweeds, algae and daphnids under the

microcosm conditions described in "Experiments and observed data" section. In particular, it aims at i) com-
paring the species dynamics both in isolation and together in order to highlight the interactions between the
three species; and ii) describing the effects of cadmium on the different processes involved in the microcosm
functioning. We first present the model of the three species’ dynamics without contaminant, then we show
how we integrated cadmium effects in the model.

Entities, state variables and scales
Wemodel both duckweed and algal population dynamics but we only model two daphnid life history traits

(growth and survival) that are involved in the interaction between algae and daphnids. Themodel involves five
state variables. The two first ones refer to the numbers of algal cells per beaker in the two compartments of the
microcosm at time t and cadmium concentrationCj : the suspended algae in the water column (Compartment
1), denoted by N1(t, Cj), and the settled algae at the bottom of the beaker (Compartment 2), denoted by
N2(t, Cj). The third state variable is the number of duckweed fronds per beaker at time t and cadmium
concentration Cj , denoted by Nd(t, Cj). The two other state variables refer to the daphnids: the number of
alive daphnids in the microcosm through survival rate at time t and cadmium concentration Cj , denoted by
S(t, Cj) and the daphnid size at time t and cadmium concentration Cj , denoted by L(t, Cj). The model is
run on 21 days, corresponding to the duration of the longest experiment.

Process overview and scheduling
Nine processes are modelled with a continuous time scale, using ODE. Two processes are related to intrin-

sic algal dynamics: settling of suspended algae and growth of both suspended and settled algae. One process
is related to intrinsic duckweed dynamics: duckweed growth. One process concerns the algae-duckweed in-
teraction with an interspecific competition. Two processes are related to daphnid life history traits: survival
and growth. Two processes are related to algae-daphnid interaction: ingestion of algae by daphnids and loca-
tion of daphnid for grazing. The last process is related to the effects of cadmium on the different parameters.
An overall graphical representation of the implemented model is given in Figure S1 (Lamonica, Charles, et al.,
2022)

Design concepts
Basic principles

The assumptions we make are based on the experimental design described in "Experiments and observed
data" section. We assume that algae are uniformly distributed in the water column and at the bottom of the
beaker at each time step and that the settling speed of suspended algae is constant throughout the water
column. Therefore, the water volume occupied by the suspended algae is supposed to decrease at the same
speed as algal settling. We assume that algae and duckweeds are competing only for nutrients in themedium.
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We also assume that settled algae are too distant from duckweeds to interact with them, so that the interspe-
cific competition only involves suspended algae. Interspecific competition has no effect on algae, as shown in
Lamonica, Herbach, et al., 2016. We assume that cadmium affects the growth rates of all species, as well as
competition intensity parameters and daphnid survival. Cadmium is supposed not to affect either the carrying
capacities of algae and duckweeds or the algal settling rate.
Emergence

Algal and duckweed dynamics emerge both from their intrinsic dynamics (growth and settling for algae,
growth for duckweeds) and from the interspecific competition between the two species. Algal dynamics also
depends on daphnids through the quantity of algal cells that are consumed by daphnids. With cadmium, both
dynamics emerge from the impact of cadmium on their respective growth and on the interaction.
Sensing

In order to determine the number of daphnids grazing in each compartment over time, we assume that
daphnids, as pelagic species, preferentially feed in the water column Siehoff et al., 2009. We also assume that
daphnids move to the sediment when the ratio of algal density in the water column over the bottom of the
beaker is below a given threshold Siehoff et al., 2009.
Interactions

Intraspecific competition between algal cells and between duckweed colonies are taken into account in
their respective logistic growth models. Algae and duckweeds interact through an interspecific competition
process, described with a Lotka-Volterra type I interaction model. Algae and daphnids interact through a
trophic relationship, namely grazing.
Stochasticity

We use stochasticity to describe variability on state variables, which sum up both uncertainties and variabil-
ity sources within the processes. We suppose a normal distribution on the decimal logarithm of the number of
algal cells per beaker in each compartment (in the water column and at the bottom of the beaker) Roger and
Reynaud, 1978 and on the decimal logarithm of the number of duckweed fronds. For the number of daphnid
survivors we consider a conditional binomial distribution Forfait-Dubuc et al., 2012 and a normal distribution
for the daphnid size.

Initialisation
As algae are inoculated in the water column only, the initial values for the number of algal cells per beaker

in the water column and at the bottom of the beaker are 4 × 107 and 0, respectively. The initial number of
duckweed fronds is 8. The initial number of daphnids is 10, the initial survival rate is fixed to 1 (as all introduced
daphnids are alive) and the initial daphnid size is drawn from a normal distribution (see hereafter section 4.1).
Asmentioned in section 2., we usemeasured cadmium concentrations 0, 2.25, 4.50, 6.88, 9.09, 11.1, 20.2, 35.5,
51.1, 26.2, 36.4, 40.8 and 43.6 µg/L.

Input data
The model does not use input data to represent time-varying environmental processes. Laboratory condi-

tions are controlled and supposed to be constant over time.
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Submodels
All information on parameters and variables involved in the model are gathered together in SI Table S2 (La-

monica, Charles, et al., 2022). Details about parameter estimation are given in "Statistical inference" section.
The deterministic part of algal dynamics in both compartments and of duckweed dynamics over time t (in

days) is described with three coupled ODE. The deterministic part of daphnid survival and size are described
with two other ODE that are presented in their integrated form.
Algae processes

We model the algae dynamics using logistic functions to describe algae growth in the water column and
at the bottom of the beaker. We used an exponential decay of algal cells in the water column to describe
sedimentation process.
Duckweed process

We model the duckweed growth using a logistic function.
Daphnid processes
Survival Survival rate at time t and cadmium concentration Cj , S(t, Cj), is described by an exponential
decay with an instantaneous mortality rate, m0 (day-1), which is assumed to be time-independent Forfait-
Dubuc et al., 2012:

S(t, Cj) = exp(−(m0 + ks ×max(0, Cj −NEC))× t) (1)
where kS (µg-1.L.day-1) represents the cadium effect intensity andNEC (No Effect Concentration) (µg.L-1)

is the concentration from which the contaminant has an effect on survival. When concentration Cj is below
the NEC , max(0, Cj − NEC) is equal to 0, thus there is no effect on survival rate which only depends on
natural mortalitym0 and time t. However, when concentrationCj is superior to the NEC,max(0, Cj −NEC)

is equal to the surplus of concentration and mortality due to cadmium is added to the natural mortality.
We consider a conditional binomial stochastic model forDs(t, Cj), the number of alive daphnids at time t

and cadmium concentration Cj in the system Forfait-Dubuc et al., 2012:
Ds(t, Cj) ∼ B

(
S(t, Cj)

S(t− 1, Cj)
, Ds(t− 1, Cj)

)
(2)

where B stands for the binomial law. For each concentration Cj , the number of alive daphnids at time t

depends on the number of alive daphnids at time t − 1 and on the survival probability between t − 1 and t,
represented by S(t)

S(t−1) .
We make here the implicit assumption that contaminant toxicokinetics is fast (which means that internal

concentration in the organism is supposed to be equal to external concentration in the water Cj ) since cad-
mium have been shown to have a rapid toxicokinetic, especially a high capacity of bioaccumulation, at least
in freshwater organisms (Gestin et al., 2021; Ratier and Charles, 2022).
Growth Daphnid growth is described using a Von Bertalanffy growth model Von Bertalanffy, 1938. In addi-
tion, the daphnid size is supposed to follow a normal distribution with mean L(t, Cj) and standard deviation
σL.
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Interaction processes
Interspecific competition process We model the interspecific competition process between algae and
duckweed using a unilateral Lotka-Volterra type I model, with an effect on duckweed dynamics only.
Ingestion process The ingestion rate of a daphnid, i.e. the number of cells per beaker each daphnid con-
sumes per day (denoted as g1(t, Cj) in thewater columnand g2(t, Cj) at the bottomof the beaker) ismodelled
with a Holling type II function of algal density in each compartment (N1(t,Cj)

V1(0)
and N2(t,Cj)

V2
), for a given daphnid

size L(t, Cj):

g1(t, Cj) =
δ2 × L(t, Cj)

γ × N1(t,Cj)
V1(0)

δ3 +
N1(t,Cj)
V1(0)

(3)
and

g2(t, Cj) =
δ2 × L(t, Cj)

γ × N2(t,Cj)
V2

δ3 +
N2(t,Cj)

V2

(4)
with δ2 (cell.daphnd-1.day-1.mm-γ ) the maximum ingestion rate, δ3 (cell.mL-1) the algal density for which the
ingestion rate is equal to half the maximum ingestion rate and γ (dimensionless) a regression coefficient.
Grazing location The number of daphnids grazing in the water column at time t and cadmium concen-
tration Cj , D1(t, Cj), is modelled with respect to the ratio R(t, Cj) of algal density in compartment 1 over
compartment 2 and the number of alive daphnids per beakerDs(t, Cj):

D1(t, Cj) =
D1(t, Cj)R(t, Cj)

δR(t, Cj)
(5)

Cadmium effects
We suppose that the survival process is affected by cadmium according to Eq.(5).
We suppose that only growth rates and parameters of competition intensity are affected by cadmium, as

already assumed in Lamonica, Herbach, et al., 2016. We choose a three-parameter log-logistic function to
describe the effect of cadmium at concentration Cj on each affected parameter p:

p(Cj) =
p0

1 +
(

Cj

Ep

)bp
(6)

where p0 is the value of parameter p in the control, Ep is the cadmium concentration at which p(Cj) =
p0

2 ,which is equivalent to an EC50, and bp is the curvature coefficient of the log-logistic function.
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Complete model
Finally, the deterministic part of themodel describing the functioning of the whole microcosm is expressed

as follows:




dN1(t,Cj)
dt =

ra0

1+
( Cj

Era

)bra
×N1(t, Cj)×

(
1− N1(t,Cj)

K1(0) exp(−s×t)

)
− s×N1(t, Cj)

−Ds(t,Cj)R(t,Cj)
δ+R(t,Cj)

× g1(t, Cj)
dN2(t,Cj)

dt =
ra0

1+
( Cj

Era

)bra
×N2(t, Cj)×

(
1− N2(t,Cj)

K2

)
+ s×N1(t, Cj)

−(Ds(t, Cj)− Ds(t,Cj)R(t,Cj)
δ+R(t,Cj)

)× g2(t, Cj)
dNd(t,Cj)

dt =
rd0

1+

(
Cj
Erd

)brd
×Nd(t, Cj)×

(
1− Nd(t,Cj)

Kd

)
− β0

1+

(
Cj
Eβ

)bβ
×Nd(t, Cj)×N1(t, Cj)

L(t, Cj) = L∞ − (L∞ − L0)× exp(− k0

1+
( Cj

Ek

)bk
× t)

S(t, Cj) = exp(−(m0 + ks ×max(0, Cj −NEC))× t)

(7)

The samemodel can be appliedwhendaphnids are absent, by settingDs(t, Cj) = 0 and thusD1(t, Cj) = 0.
In this case, the two last equations must also be removed. The same model can be applied when duckweeds
are absent, by settingNd(t, Cj) = 0 and removing the third equation. The same model can be applied when
algae are absent, by setting N1(t, Cj) = 0 and removing the first two equations. When the water column is
stirred (i.e. when algae are supposed not to settle and duckweeds and daphnids are absent), the settling rate
s is assumed to be zero and the second and two last equations must be removed.

At each time step, the decimal logarithm of the number of algal cells per beaker in the water column follows
a normal distribution of meanN1(t, Cj) and standard deviation σN1

. The decimal logarithm of the number of
algal cells per beaker on the sediment follows a normal distribution ofmeanN2(t, Cj) and standard deviation
σN2

. The decimal logarithm of the number of duckweed fronds per beaker follows a normal distribution of
meanNd(t, Cj) and standard deviation σNd

.
Table 1. Parameters of interest.

SymbolDefinition Unit Prior distribution*
or value

Sources** 2.5, 50, 97.5 %
posterior quantiles

ra0 Intrinsic algal growth rate in
the control

day-1 U (0,2) [1] 0.78 0.83 0.87
Era The concentration at which

ra0 is reduced by 50 %
µg.L-1 log10(Era) ∼ N

(1.78,0.1)
[2] 1.54 1.56 1.58

bra Curvature coefficient - log10(bra) ∼ N
(0.24,0.1)

[2] 0.37 0.43 0.49
β0 Competition intensity of al-

gae on duckweeds in the
control

# of
cells per
beaker-1.day-1

log10(β0) ∼ U (-11,-9) [2] -9.53 -9.46 -9.40

Eβ The concentration at which
β0 is reduced by 50 %

µg.L-1 log10(Eβ) ∼ U (-1,4) Vague -0.99 -0.77 -0.15
bβ Curvature coefficient - log10(bβ) ∼ U (-3,3) Vague -1.11 -0.82 -0.62
m0 Daphnid mortality rate in

the control
daphnid.day-1 log10(m0) ∼ U (-4,0) Vague -1.89 -1.71 -1.56

kS Slope of survival stress
function

µg-1.L.day-1 log10(kS) ∼ U (-4,4) Vague -1.80 -1.54 -1.30
NEC No Effect Concentration on

daphnid survival
µg.L-1 log10(NEC) ∼ U (-

2,1)
Vague 0.47 0.65 0.76

k0 Daphnid growth rate in the
control

day-1 N (0.11,0.030) [3] 0.138 0.146 0.154
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SymbolDefinition Unit Prior distribution*
or value

Sources** 2.5, 50, 97.5 %
posterior quantiles

Ek The concentration at which
k0 is reduced by 50 %

µg.L-1 log10(Ek) ∼ U (-1,4) 1.26 1.68 3.31
bk Curvature coefficient - log10(bk) ∼ U (-3,3) -0.68 -0.25 0.015
rd0 Intrinsic duckweed growth

rate in the control
day-1 U (0,2) [2] 0.23 0.24 0.25

Erd The concentration at which
rd0 is reduced by 50 %

µg.L-1 log10(Erd) ∼ N
(2.44,0.2)

[2] 1.96 2.30 2.67
brd Curvature coefficient - log10(brd) ∼ U (-3,3) Vague -1.05 -0.91 -0.77

*Prior distribution: N stands for the normal law, U stands for the uniform law. **Sources: [1] (Lamonica,
B Clément, et al., 2016), [2] (Lamonica, Herbach, et al., 2016), [3] (Billoir, Delignette-muller, et al., 2008).

Statistical inference
In order to check if our model satisfactorily described the microcosm functioning, we used Bayesian infer-

ence to fit the model simultaneously to all our experimental data from the six above mentioned experiments.
Estimates obtained for all the parameters are called "reference estimates" hereafter.
Parameter prior distributions

We defined prior distributions summarising all information on each parameter available in advance (SI
Table S2 (Lamonica, Charles, et al., 2022)). Some of the prior distributions described the decimal logarithm
of the parameter because of an expected large range of possible values (for instance, brd , kS , and β0) or
extreme orders of magnitude (e.g., large or small). Other prior distributions were defined based on previous
experiments that were conducted using the same experimental device (Billoir, Delhaye, B Clément, et al.,
2011; Billoir, Delhaye, Forfait, et al., 2012; Delhaye, 2011; Lamonica, B Clément, et al., 2016) (ra0

), or based
on additional experiments specifically conducted in the laboratory (Era , bra , rd0 , β0). At last, the remaining
distributions were based on literature values (Billoir, Delignette-muller, et al., 2008; Biron et al., 2012; DeMott,
1982; Egloff and Palmer, 1971) (k0), except for parameters on which we had very vague information (Eβ , bβ ,
brd ), so that their prior distributions were chosen as flat.
Computation

Monte Carlo Markov Chain (MCMC) computations were performed using the JAGS software via the rjags R
package (Plummer, 2009; Team, 2013), after the model was discretised using the Euler method with a time
step equal to 0.1 as stated in (Lamonica, B Clément, et al., 2016). Three chains were run. A total of 20000
iterations was performed as a burn-in phase and inference was based on 100000 additional iterations for
each of the three chains. To check the convergence of the estimation process, we used the Gelman and Rubin
convergence diagnostic (Gelman and Rubin, 1992) with a cut-off of 1.01. R code can be found at (Lamonica,
Charles, et al., 2022).
Posterior Predictive Check

To check posterior predictions of the model, we simulated new date at all experienced time steps and
tested concentrations taking into account parameter uncertainties and stochasticity of the model (Lamonica,
B Clément, et al., 2016). 95% of the observed data are expected to be contained in the 95% credibility band of
the predicted data, got from 2.5% and 97.5% percentiles of the predictions. R code can be found at (Lamonica,
Charles, et al., 2022).
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Table 2. Experimental design and partial datasets.
Cadmium concentrations Monospecific data Two species data Complete microcosm data
C0

Algae Algae, duckweeds Algae, duckweeds, daphnidsDuckweeds Algae, daphnids
C1−4

Algae Algae, duckweeds Algae, duckweeds, daphnidsDuckweeds
C5−8

Algae Algae, duckweedsDuckweeds
C9−12 Algae

The black dashed, gray dashed, black and gray rectangles refer to the data that have been removed from theentire dataset to build partial dataset A, B, C and D, respectively.

Look-back on the experimental design
We aim at determining which types of data could be sufficient to accurately (in terms of mode of the pos-

terior distribution) and precisely (in terms of dispersion of the posterior distribution) estimate parameters of
stress functions for the different species (1). Our reference was the posterior distributions obtained when es-
timating parameters from the whole dataset, considering them as the "best possible estimates in the present
case study in view of the model and all available data". To evaluate the information provided by certain data,
we built partial datasets by removing these data from the whole dataset. Then, we re-estimated the model
parameters using these partial datasets and compared the newly obtained estimates with the reference ones.

Four partial datasets (numbered A to D) were used to estimate the stress function parameters. They are
summarized in 2. We evaluated only information provided by data collected under contaminated conditions,
removing them successively to build the partial datasets. Regarding data without contaminant, including the
controls in Experiments 4 to 6, they were kept in all partial datasets.

Dataset A included all data except the "monospecific data" with contaminant. This corresponds to exclude
data collected from beakers containing only one species. Thus, data from Experiment 6 and data "duckweeds
alone" from Experiments 4 and 5 were not included in dataset A. Dataset B included all data except the "two
species data" with contaminant. This corresponds to exclude data collected from beakers with both duck-
weeds and algae. Thus, duckweed and algae data collected from beakers containing both duckweeds and
algae from Experiments 4 and 5 were not included in dataset B. In dataset C, we only included the "complete
microcosm data", which corresponds to include only data collected from Experiment 5 with the three species.
Dataset D was used to evaluate the information provided by data collected at concentrations lower than Eraand Erd (EC50 values) for algae and duckweeds, respectively. Thus, dataset D included all data except those
related to duckweeds and algae exposed to the lowest cadmium concentrations ("monospecific data" and
"two species data") collected from Experiment 5. All in all, we tested the minimum necessary dataset in terms
of species combinations (one, two, or three species) from datasets A, B and C, and of concentration range via
dataset D.

Results
Model fit and parameter estimates

Our MCMC algorithm always consistently converged according to Gelman and Rubin diagnostics for each
simulation. The corresponding 2.5%, 50% and 97.5% quantiles of the posteriors for parameters of interest
are summarised in 1. To keep results clear enough, we only display fitting results from data of Experiment
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5 (measured cadmium concentrations of 0, 2.25, 4.50, 6.88 and 9.09 µg/L) as medians of the credibility band
for predicted data on algae dynamics (2) and daphnid survival (3). On a general point of view, data were sat-
isfactorily described by the model, with between 91% and 98% of observed data encompassed in the 95%
credibility band of the predictions for the different species.

Marginal posterior distributions of the estimated parameters are shown in SI (Figure S4 (Lamonica, Charles,
et al., 2022)). We obtained narrow posterior distributions for almost all parameters, in particular parameters
of interest, with the exception of parameters related to algae-daphnids interaction (grazing). The narrowness
of posterior distributions indicates that sufficient information was available in the data to get posterior dis-
tributions of model parameters that are more precise than their priors. Such a gain of knowledge makes us
confident in our fitting process.

Algae dynamics and daphnid survival
In the presence of duckweeds only (2(a), control), the number of algal cells per beaker in the water column

increased during the first seven days when growth is higher than settling, and then decreased as growth
declined while settling was continuing. In the presence of daphnids plus duckweeds, the global algal dynamics
in the control was similar to the onewithout daphnids; however the number of algal cells per beakerwas lower,
due to daphnid grazing (2(b), control). There was additionally no effect of cadmium on the algal dynamics
when duckweeds were present (2(a)). However, with daphnids, differences between tested concentrations
appeared from the sixth day of experiment: the higher the cadmium concentration, the higher the number
of algal cells (2(b)). This may be due to the decrease in daphnid number (3), daphnid survival being highly
affected by cadmium, particularly at the two highest tested concentrations C3 and C4.
Figure 2. Model fitting for state variables related to algae dynamics: (a) with duckweeds; (b) with duckweedsand daphnids. Symbols refer to the different tested cadmium concentrations of Experiment 5. Plain linesstand for the fitted model with each parameter equal to its median value at each concentration Cj . The lightgrey area corresponds to the 95% credible band of the predicted data in the control.
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Look-back on the experimental design
To take into account the potential effect of correlations between parameters, we compared 95% credibil-

ity intervals of the stress functions predicted from the joint posterior distributions obtained for each partial
dataset (A to D) to the one obtained from the whole dataset (4). The 95% credibility intervals of the predicted
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Figure 3. Fit plot for the number of alive daphnids per beaker. Symbols refer to the different testedcadmium concentrations of Experiment 5. Plain lines stand for the fitted model with each parameter equalto its median value at each concentration Cj . The light grey area corresponds to the 95% credible band ofthe predicted data in the control.
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stress functions on daphnid growth rate and survival for each partial dataset appear superimposed to the 95%
credibility intervals of the predicted stress functions for all the data. This result was expected since daphnid’s
survival and size data were included in all datasets, the whole and partial ones.

When "monospecific" data were removed (dataset A), the predicted stress functions were different from
the reference ones with larger 95% credibility bands, particularly for competition parameter β. When "two
species" data were removed (dataset B) the predicted stress functions for both algal and duckweed growth
rates (ra and rd) were very close to the reference ones. On the contrary, the predicted stress function for
competition parameter β was overestimated, and showed more uncertainty. When "monospecific" and "two
species" data were removed (dataset C), we obtained very large 95% credibility intervals for predicted stress
functions for both growth rates and the competition parameter. At last, dataset D (without data related to
duckweeds and algae exposed to the lowest concentrations C1 to C4) led to very similar predicted stress
functions for both algal and duckweed growth rates (ra and rd) compared to the reference ones, while for
competition parameter β the predicted stress function was overestimated with a greater uncertainty.
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Figure 4. Comparison of stress functions obtainedwith complete and partial datasets. Plain black lines delimitthe 95% credible bands for the stress functions obtainedwith the partial dataset, while red dotted lines delimitthe 95% credible bands for the stress functions obtained with the complete dataset.
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Discussion
Cadmium effect
On parameters and processes

For parameters related to cadmium effect on algae and duckweeds, we obtained similar estimates to the
ones obtained in a previous study involving only these two species (Lamonica, Herbach, et al., 2016). However,
posterior distributions were narrower in the present study for some of the parameters, e.g. Era , bra , Eβ and
bβ , mainly thanks to additional data we considered for fitting.

Parameters of the stress function on daphnid survival showed narrow posterior distributions. Parameter
NEC was estimated at 4.47 [2.95, 5.75] µg/L while other authors estimated either higher NEC values (8.6
µg/L (Nebeker et al., 1986)) or lower ones (0.720 [0.0427, 1.78] (Forfait-Dubuc et al., 2012)) frommonospecific
studies. Our NEC estimate was high compared to the one obtained with data from the same microcosm,
but including five species and sediment, namely 1.8 [1.2, 2.3] µg/L (Billoir, Delhaye, Forfait, et al., 2012). Nev-
ertheless, theNEC estimated by Billoir et al. was only based on survival data, and thus did not include data
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related to the dynamics of the other species. In particular, the algae dynamics link to the number of surviving
daphnids was ignored. We thus also estimated the NEC only using survival data to compare 95% credible
interval to the one of (Billoir, Delhaye, Forfait, et al., 2012). We obtained a NEC value of 3.47 [0.030, 5.50]

µg/L. This credible interval is quite large because the number of alive daphnids per beaker was highly vari-
able, but it contains the credible interval obtained by (Billoir, Delhaye, Forfait, et al., 2012). The number of
alive daphnids per beaker revealed difficult to describe because of the high inter-replicate variability between
the tested cadmium concentrations.

In the literature, the effects of cadmium on daphnid growth may vary a lot from one study to another:
EC10 = 7.3 µg/L for 17 days in(Knops et al., 2001) (monospecific bioassay conditions), NEC = 0.15 µg/L in
(Billoir, Delhaye, Forfait, et al., 2012) (five-species microcosm conditions) or EC50 = 2.7 µg/L for 21 days in
(BJP Clément et al., 2014) (five-speciesmicrocosm conditions). In the present study, such effects are expressed
through both parameters bk and Ek (i.e., EC50). We obtained a very high but imprecise estimate for Ek (47.9
[18.2, 2042] µg/L) indicating that daphnids were less sensitive in our experiment than in the one conducted by
(BJP Clément et al., 2014). However, the low values of curvature coefficient bk (0.56 [0.21, 1.04] µg/L) indicated
that daphnid growth rate was already affected at the lowest concentrations, as also mentioned by (Billoir,
Delhaye, Forfait, et al., 2012).
On the functioning of the microcosm

The microcosm functioning with cadmium or not is summarised in 5. Cadmium effects on daphnid pro-
cesses corresponded to a negative direct effect on survival, in particular at concentrations C3 and C4 3, as
well as to a lighter negative direct effect on growth (SI, Figure S3 (Lamonica, Charles, et al., 2022)). These direct
effects of cadmium on daphnid processes impact both algae and duckweeds. Indeed they induced a decrease
in daphnid grazing that led to an increase in algal density with increasing cadmium concentrations. Such a
result was supported by the absence of a cadmium effect on algal growth at concentrations below 10 µg/L,
that was a positive indirect effect of cadmium on algae below 10 µg/L. In addition, there was a negative di-
rect effect of cadmium on the competition intensity. This latter did not compensate the negative direct effect
of cadmium on growth of duckweeds, especially since algal density became higher, leading to a decrease in
duckweed density.

Deciphering the cascade of cadmium effects on the three species is finally possible thanks to ourmodelling
approach coupled with experiments. Unravelling the chemical direct and indirect effects as well as the inter-
actions between species is necessary to correctly interpret the global effect of a chemical substance on the
functioning of a species community. Nevertheless, it is much more challenging when the number of species
is increasing (Lamonica, Herbach, et al., 2016). Hence, the model fits of the present study were overall sat-
isfactory although some predicted data were overestimated compared to observed ones. In particular, the
number of algal cells per beaker in the presence of both duckweeds and daphnids were overestimated by
our model, as well as the number of duckweed fronds per beaker with algae and daphnids (SI, Figure S2 (b)
(Lamonica, Charles, et al., 2022)).

Look-back on the experimental design
In ecotoxicology, optimising the experimental designs is not a recent concern (Albert et al., 2012; Andersen

et al., 2000; Forfait-Dubuc et al., 2012; Wright and Bailer, 2006), but today mainly relates to the increasing use
of concentration-response or effect models (Chèvre and Brazzale, 2008; Forfait-Dubuc et al., 2012; Holland-
Letz and Kopp-Schneider, 2015; Keddig et al., 2015; Khinkis et al., 2003; Sitter and Torsney, 1995; Wang et
al., 2006). As formal optimisation first applied to monospecific bioassays, it mainly focused on the tested
concentrations (range and number of concentrations) and on the number of tested individuals (per tested
concentration and in total) (Forfait-Dubuc et al., 2012). Formal optimisation is less suitable for microcosm
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Figure 5. Global perturbation of the microcosm functioning without cadmium (above) and with cadmium(10 µg/L, below). Green boxes represent species population, black arrows represent species processes, blackarrows represent interactions between species, red ligthnings represent cadmium effect on the different pro-cesses. Thickness of boxes lines is proportional to population size and thickness of arrows is proportional toprocess intensity.

experiments because microcosms are more complex devices. Moreover, microcosms are not standardised
experimental tools since they are usually set up on a case-by-case basis, according to the specific objectives
of the study (Cairns Jr and Cherry, 1997; Crossland and La Point, 1992). Thanks to our modelling approach, we
were able to question the relevance of using certain data to estimate the chosen parameters. Hence, using
dataset B provided stress functions similar to the reference ones based on all available data, even though
there were changes in individual parameters, which needs to be taken into account when aiming at estimat-
ing EC50 in particular. We also showed that stress function on the interspecific competition parameter (β)
from partial dataset D differed from the reference one, while the stress functions on the processes related to
growth (for both algae and duckweeds) remained unchanged. Such results suggest that two-species data are
not fully necessary, while a larger range of tested concentrations would be strongly recommended to estimate
parameters related to effects on interactions between species.

Datasets A and B were chosen in order to test if monospecific, respectively two-species, microcosms were
necessary to estimate parameters, and dataset C was chosen to test if the complete microscosm alone was
sufficient to estimate parameters. Similarly, dataset D was chosen to test if reducing the number of tested
concentrations would affect the quality of parameter estimates. Omitting the different species combinations,
as well as reducing the number of tested concentrations, would save a lot of time and experimental effort,
especially since adding one concentration to the design implies adding the number of replicates times the
number of species combination (and not only the number of replicates). Also, cutting off some of the species
combinations or some of the tested concentrations would permit to increase the number of replicates per
treatment. More replicates may help capture the variability of the system, allowing to better take uncertain-
ties into account. In addition, when using animal species, the overall objective is to reduce the number of
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organisms involved in experiments.
Even if it remains difficult to know a priori which types of data would be absolutely necessary to best esti-

mate stress function parameters, the pragmatic look-back we performed using modelling may guide further
experiments with microcosms, for instance for other contaminants effects, dynamics under modified abi-
otic conditions, or even other species interactions. In particular, our study suggests that experiments can be
specifically selected to gain knowledge on a three-speciesmicrocosm. In the end, we couldmake the following
recommendations for further ecotoxicological studies with a microcosm device: a first experiment with the
completemicrocosm only (i.e., with the three species) and a tested concentration range limited by the sensitiv-
ity of the most sensitive species; then a second experiment with monospecific microcosms only and a tested
concentration range limited by the sensitivities of the two less sensitive species. If needed, additional exper-
iments without contaminant may involve different combinations of species depending on their connections
to each others. More generally, we would suggest that collecting data of monospecific and complete micro-
cosms with contaminant might be sufficient to assess the contaminant effects, as long as in-depth knowledge
of the functioning without contaminant is available. Nevertheless, there are limits to how transferable those
recommendations are. When using another microcosm with different species or additional species, interac-
tions between species still need to be properly investigated without contaminant first. Some of the species
combinations with contaminant may not be discarded according to the direction or type of the interactions
between those species. When using different contaminant, especially contaminants with different mode of
action, discarding the lowest concentrations might be an issue. For instance, endocrine disrupting contami-
nants may show a strong non-linear effect, including effects at low concentrations; in that case scenario low
concentrations should obviously be maintained in the experimental design.

Conclusion and perspectives
We provided EC50 values for the different processes affected by cadmium. Thanks to the understanding

of the underlying processes that occurred in the microcosm functioning, we also managed to identify the cas-
cade of cadmiumeffects induced by the interactions between species. In addition, we got back frommodelling
to experiments in order to determine which of the collected data were necessary and sufficient to precisely
estimate model parameters, leading us to suggest a more efficient experimental design. Finally, we (1) high-
lighted the importance of interactions by identifying the effect cascade occurring within a small ecosystem
under chemical pressure; and (2) showed that alternative use of experimental data can help conceiving exper-
imental designs for a microcosm study.

Our method also permitted to assess which data to include when estimating parameters of interest in a
dynamic ecosystem model from a laboratory based microcosm ecotoxicity study. Such an approach could
be enhanced to better foresee further experiments with microcosms based a similar model. Beyond this, if
parameters are simultaneously estimated a whole dataset, this makes possible to compare these reference
estimates with those obtained with partial datasets. This gives knowledge on the data dependency in the
modelling results. Last but not least, such a retrospective and descriptive sensitivity analysis puts light in the
fact that data quality and design are more beneficial for modelling purpose than quantity. Ideally, as the use
of models and big data in ecology increases (Van Den Brink et al., 2016), modellers and experimenters could
collaboratively and profitably elaborate model-guided experiments.
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