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Abstract
GC-biased gene conversion (gBGC) is a molecular evolutionary force that favours GCover AT alleles irrespective of their fitness effect. Quantifying the variation in time andacross genomes of its intensity is key to properly interpret patterns of molecular evolu-tion. In particular, the existing literature is unclear regarding the relationship betweengBGC strength and species effective population size, Ne. Here we analysed the nu-cleotide substitution pattern in coding sequences of closely related species of mammals,thus accessing a high resolution map of the intensity of gBGC. Our maximum likelihoodapproach shows that gBGC is pervasive, highly variable among species and genes, andof strength positively correlated with Ne in mammals. We estimate that gBGC explainsup to 60% of the total amount of synonymous ATGC substitutions. We show that thefine-scale analysis of gBGC-induced nucleotide substitutions has the potential to informon various aspects of molecular evolution, such as the distribution of fitness effects ofmutations and the dynamics of recombination hotspots.
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Introduction
GC-biased gene conversion (gBGC) is a recombination-associated transmission bias by whichG and C alleles are favoured over A and T alleles. This evolutionary force was discovered in the2000’s from the analyses of early population genomic data sets (Eyre-Walker, 1999; Galtier, Pi-ganeau, et al., 1999; Spencer et al., 2006;Webster andNG Smith, 2004), and experimentally con-firmed later on (Mancera et al., 2008; Pratto et al., 2014; Williams et al., 2015). gBGC manifestsitself as a GC-bias that affects both non-functional and functional sequences and is correlatedwith the local recombination rate (Galtier and Duret, 2007). gBGC has a strong impact on pat-terns of variation genome wide in mammals (Clément and Arndt, 2011; Duret and Arndt, 2008;Pracana et al., 2020; Romiguier, Ranwez, et al., 2010) andmany other taxa (Clément, Sarah, et al.,2017; Figuet, Ballenghien, Romiguier, et al., 2014; Galtier, Roux, et al., 2018; Lassalle et al., 2015;Long et al., 2018; Mugal, Arndt, et al., 2013; Nabholz et al., 2011; Pessia et al., 2012; Wallberget al., 2015). gBGC can mimic the effect of natural selection and confound its detection by gen-erating patterns of clustered AT→GC substitutions, distorted site frequency spectra and alterednon-synonymous/synonymous ratios (Bolívar et al., 2018; Corcoran et al., 2017; Dreszer et al.,2007; Galtier and Duret, 2007; Lartillot, 2012; Ratnakumar et al., 2010; Rousselle, Laverré, et al.,2019). Importantly, because it favours G and C alleles irrespective of their fitness effect, gBGCtends to counteract natural selection and increase the deleterious mutation load (Berglund et al.,2009; Galtier, Duret, et al., 2009; Lachance and Tishkoff, 2014; Necşulea et al., 2011).The abundant body of literature reviewed above demonstrates a significant effect of gBGC ina large number of genomes. Only a few studies, however, have attempted to quantify its strength- a harder task. gBGC results from a DNA repair bias involving paired chromosomes at meiosis,and operating in the immediate neighborhood of DNA double strand breaks. The genome av-erage transmission bias, b, is therefore expected to be proportional to the recombination rate,gene conversion tract length, and repair bias. The effect of gBGC on genome evolution is also ex-pected to be dependent on the intensity of drift: being a directional force, gBGC is only effectiveif stronger than the stochastic component of allele frequency evolution. The intensity of drift isinversely related to the effective population size Ne , so that the strength of gBGC is usually mea-sured by the B = 4Neb parameter. Glémin et al. (2015) used genome-wide resequencing datato estimate B at the megabase scale throughout the human genome. Fitting various populationgenetic models to polarised GC vs. AT site frequency spectra, Glémin et al. (2015) estimated thegenome averageB to be in theweak selection range, around 0.4, withB reaching a value above 5in 1%-2% of the genome. This variance among genomic regions in gBGC strength is interpretedas reflecting the existence of recombination hotpots in humans (Capra et al., 2013; Duret andArndt, 2008; Spencer et al., 2006).Similar analyses have been performed in a number of non-human taxa. In the fruit flyDrosophilamelanogaster, no evidence for gBGC has been reported, albeit a weak effect on the X chromo-some (Galtier, Bazin, et al., 2006; MC Robinson et al., 2014). In contrast, Wallberg et al. (2015)
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estimated the genome average B to be above 5 in the honey bee Apis mellifera, again with sub-stantial variation between low-recombining and high-recombining regions. Note that Ne is ex-pected to be much smaller in Homo sapiens and the eusocial A. mellifera than in D. melanogaster(Romiguier, Lourenco, et al., 2014). Galtier, Roux, et al. (2018) analysed site frequency spectrumat synonymous positions in the coding sequences of 30 species of animals. They estimated thatthe average B at third codon positions varies between 0 and 2 among species, without any signif-icant relationship with Ne-related life history traits. These comparisons among distantly-relatedanimals revealed substantial variation in the intensity of gBGC among species, but, somewhatparadoxically, no detectable effect of Ne .Another attempt to quantify the strength of gBGC is to get information frombetween-speciesdivergence data, instead ofwithin-species polymorphismdata. Capra et al. (2013) simultaneouslymodelled the effects of purifying selection and gBGC during the human/chimpanzee divergenceand estimated that in apes 0.33% of the genome is undergoing gBGC at rate B = 3. This is lowerthan the estimates provided by Glémin et al. (2015, see above), presumably because Capra et al.(2013) assumed a constant gBGC rate at any location of the genome, whereas recombinationhotspots are known to be highly dynamic in apes (Auton et al., 2012; Lesecque et al., 2014). Us-ing a method that combines polymorphism and divergence data, DeMaio et al. (2013) estimatedthe average B to be of the order of 0.3-0.7 in apes, consistent with Glémin et al. (2015). Lartillot(2013) analysed coding sequence divergence in 33 species of placental mammals and estimatedthe among-gene and among-species variation of B. He found that the average B varied amongspecies from ∼ 0.1 (in apes) to 3-5 (in bats and lagomorphs), with an among-gene standard devi-ation of B as high as twice the mean. Lartillot (2013) detected a significant, negative correlationbetweenB and species bodymass. Bodymass being strongly and negatively correlatedwith pop-ulation density in mammals (Damuth, 2007), this result suggests that Ne might be a determinantof the strength of gBGC in mammals, in agreement with theoretical expectations. Elaborating onthe approach of De Maio et al. (2013), Borges et al. (2019) also reported a positive relationshipbetween the population scaled gBGC coefficient and Ne across species/populations of apes.So on one hand comparative analyses of site-frequency spectra among animals did not revealany effect ofNe on the strength of gBGC, while on the other hand the analysis of the substitutionpattern in mammals is consistent with a Ne effect. Also a bit surprisingly, the estimated range ofvariation of B across mammals (0.1-5, Lartillot, 2013) is wide enough to contain all the estimatesof B reported in any species of animals so far. Lartillot (2013) analysed a subset of currentlyannotated mammalian orthologs (1329 exons in the largest data set), and importantly, relativelyancient divergences, at the family or order level, thus capturing the average effect of gBGCacrossdozens of million years. Here we analyse a large set of genes from closely related species in fourfamilies of mammals, thus accessing a high-resolution map of the effect of gBGC on coding se-quences, both in time and across the genome. We focus on two key features of gBGC-drivenmolecular evolution, namely clustered AT→GC substitutions, and an excess of AT→GC overGC→AT substitutions compared to the mutation process. Estimating B in 40 lineages of mam-mals, we show that gBGC explains a substantial fraction of synonymous and non-synonymousAT→GC substitutions, that Ne is a strong predictor of the intensity of gBGC in mammals, andthat large-Ne and small-Ne taxa differ substantially in how gBGC is distributed among and withingenes.

Results
Overview.

We analysed patterns of AT→GC (i.e., Weak to Strong, or WS), GC→AT (SW) and GC con-servative (SSWW) coding sequence nucleotide substitutions in 40 recently diverged lineages(branches) from four families of mammals (Fig.1), namely Hominidae (humans and apes), Cerco-pithecidae (old world monkeys), Bovidae (cattle, sheep and allies) and Muridae (mice, rats, ger-bils). A total of 1,104,917 third codon position synonymous substitutions and 514,552 first or
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Figure 1 – The four families, 32 species and 40 lineages of mammals (green branches)analysed here. Branch lengths are proportional to the estimated divergence time.

second codon position non-synonymous substitutions were called. The median number of sub-stitutions across branches was 24,960, and the minimum was 3927. The overall ratio of non-synonymous to synonymous substitutions, dN/dS , was 0.233; the family-specific dN/dS ratiowas 0.275, 0.252, 0.228 and 0.213 in Hominidae, Cercopithecidae, Bovidae and Muridae, re-spectively. The dN/dS ratio is a marker of Ne in mammals, with small populations experiencinga higher substitution load, hence a higher dN/dS (Nikolaev et al., 2007; Popadin et al., 2007;Romiguier, Figuet, et al., 2012). These results therefore indicate that the four families of ourdata set rank in the Hominidae < Cercopithecidae < Bovidae < Muridae order as far as Ne isconcerned, consistent with previous analyses (Lartillot, 2013; Romiguier, Ranwez, et al., 2013).
Substitution clustering.

Focusing on synonymous substitutions, we calculated Moran’s I (Moran, 1950), a statisticsthat measures spatial aurocorrelation and was adjusted to target the 400 bp scale. This indextherefore measures the tendency for substitutions (of a specific sort) having appeared in a givenbranch to be located less than 400 bp apart. Fig.2 shows the distribution among branches of theaverage centeredMoran’s I , separately forWS and SW synonymous substitutions. The centeredMoran’s I for SW substitutions was very close to zero in all branches from all four families, in-dicating very little, if any, clustering of substitutions. WS substitutions behaved differently: thecentered Moran’s I was close to zero in Hominidae, perceptibly positive in Cercopithecidae, andreached much higher values in Bovidae and Muridae, demonstrating the existence of clusters ofsynonymous WS substitutions in these two families. This pattern - clustering of WS but not SWsubstitutions - is a signature of gBGC (e.g. Dreszer et al., 2007); its intensity appears to increasewith Ne across the four families analysed here.Simulations were performed in order to assess the amount of clustering needed to explainthe observed values of Moran’s I . Our simulation procedure considers two levels of clustering,one at the 500 bp scale and one at the 40 bp scale, while accounting for the intron-exon struc-ture and the among-genes variance in mutation rate and GC-content (see Methods). In Muridaeand Bovidae, we were able to replicate the observed values of Moran’s I when 15-40% of thesimulated substitutions appeared in clusters. This percentage was 0-10% in Cercopithecidae,and non-existent in Hominidae (Supplementary Fig. S1).
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Figure 2 – Distribution of centered Moran’s I for WS and SW synonymous substitutionsin four families of mammals. Only branches in which at least 100 genes had at least 3inferred substitutions were included.

Estimating B.
For each branch we estimated the population gBGC coefficient B = 4Neb and its variationbased on synonymous WS, SW and SSWW synonymous substitution counts. Various modelswere fitted to the data via the maximum likelihood (ML) method, assuming that the mutationprocess is known (TCA Smith et al., 2018). Model M1 assumes a constant intensity of gBGC,

B, among and within genes. Model M2 considers two categories of genes, each with its owngBGC intensity, assumed to be shared by all sites within a gene. M2 led to a rejection of M1 bya likelihood ratio test (p − val < 0.05) in 36 branches out of 40. The M3z model assumes threecategories of genes, which we below denote "cold" (B = 0), "mild", and "hot". M3z rejected M1in 39 branches out of 40, and M2 in 27 branches. There was, therefore, strong evidence for avariable B across genes in this data set.
Then we fitted models that assume some variation of B both among and within genes. ModelM3h considers three categories of genes that differ in terms of the prevalence, q, of gBGChotspots. gBGC is assumed to operate at intensity Bh within hotspots, and zero outside hotspots.Model M3sh is a simplified version of M3h obtained when q approaches zero. Applying thesetwo models led to a dramatic increase in log-likelihood for most branches (Supplementary TableS1), which is indicative of the existence of substantial within-gene variation in gBGC intensity.Model M3h rejected M3sh by a likelihood ratio test only in one branch out of 40 (Bison bisonterminal branch, Bovidae), consistent with the idea that gBGC hotspots occupy a small fractionof coding sequence length.
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Figure 3 – Distribution of the average estimated B (M3sh model). One outlying datapoint is missing from the figure: the estimated average B was 3.86 in the (Capra hircus,Ovis aries) ancestral branch (Bovidae).

The across-genes average gBGC intensity, B, varied among models, with models allowingfor more variation in B usually yielding a higher B (Supplementary Table S1). Below we reportestimates of B obtained under the M3sh model. These were very similar to estimates obtainedby averaging B across the M1, M2, M3z, M3sh and M3h models, weighting by the AIC of eachmodel (Posada and Buckley, 2004, Supplementary Fig. S2).Fig.3 shows the distribution of B among branches in the four analysed families. The median
B was just below 0.5 in primates, 0.82 in Bovidae and 1.76 in Muridae. We calculated the acrossgenes relative standard deviation (RSD) of B, which is the ratio of the standard deviation bythe average B. The RSD would be expected to be constant across branches if the across-genesdistribution of the intensity of gBGC only differed among branches by a coefficient of propor-tionality. We found that the RSD was generally rather high (median RSD across branches: 1.8),and substantially smaller in Muridae (median: 1.2) than in the other three families (median Bovi-dae: 1.8; median Hominidae: 1.7; median Cercopithecidae: 2.1). This suggests that the intensityof gBGC is more evenly distributed among genes in Muridae than in the other taxa. Of note, thisresult superficially appears to contradict the analysis illustrated by Fig.2, which shows that theclustering of WS substitutions is maximal in Muridae. Importantly, the Moran’s I analysis (Fig.2)addresses the within-gene clustering of substitutions, whereas in the RSD analysis we considerthe among-gene variation in gBGC intensity.We estimated in each branch the number of WS substitutions that would be expected in theabsence of gBGC. This was achieved by forcing B = 0 for all categories of genes under theM3shmodel (see Methods). We found that gBGC results in a substantial excess of WS substitutions,
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which varies from typically 30% in primates to typically 60% in Muridae (Supplementary Fig. S3).No effect of gBGC on SW substitutions is expected under the M3sh model (see Methods).

  

B

Figure 4 – Relationship between the average estimated B and dN/dS (left panel, n = 40branches) or heterozygosity (right panel, n = 18 species) across 40mammalian lineages inlog-transformed scales. B was estimated under the M3sh model. Blue: Hominidae; cyan:Cercopithecidae; green: Bovidae; red: Muridae; black line: regression line for the wholedata set; colored dotted lines: family-specific regression lines

Correlates of B.
We correlated the log-transformed estimated B with log-transformed branch-specific dN/dSratio and found a significantly negative relationship (n = 40; r2 = 0.24; p-val=0.0013). Thecorrelation coefficient of the B vs. dN/dS relationship was also significantly negative when cal-culated within Hominidae (n = 7; r2 = 0.83; p-val=0.0043), within Bovidae (n = 9; r2 = 0.79;p-val=0.0013) andwithinMuridae (n = 7; r2 = 0.57; p-val=0.049). No significant relationshipwasdetected within Cercopithecidae (fig.4, left). Very similar results were obtained when we corre-lated the estimated B with dN/dS calculated based on SSWW substitutions only, i.e., a statisticsessentially independent of gBGC: the squared correlation coefficients were 0.82 (p-val=0.0047),0.68 (p-val=0.0059) and 0.73 (p-val=0.0139) within Hominidae, Bovidae and Muridae, respec-tively, and 0.23 (p-val=0.0017) for the whole data set (all variables log-transformed). A literaturesearch yielded estimates of heterozygosity (i.e., within-species genetic diversity), π, in 18 speciesof our data set. The estimated B was positively correlated with π (r2 = 0.73; p-val=2.1 × 10−5;fig.4, right). The sample size was here too small to investigate the within-family relationships. Bwas also found to be negatively correlated with species longevity (r2 = 0.36, p-val=0.0026) andlog-transformed body mass (r2 = 0.22, p-val=0.017).

Substitution clustering conditional on B.
Fig.2 revealed virtually no clustering of WS substitutions in Hominidae, even though theanalysis of substitution counts demonstrated a significant impact of gBGC on coding sequencesin this family (Fig.3). To test whether the spatial distribution of WS substitutions really differsbetween mammalian families, we analysed substitution clustering conditional on B. For eachbranch, we first fitted toWS, SW and SSWW substitution counts a gBGC model, M5f, assumingfive categories of genes undergoing distinct gBGC intensities, from B = 0 in the coldest category
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to B = 10 in the hottest one. We assigned each gene to one of these gBGC intensity categories,and calculated the average Moran’s I for WS substitutions separately for the five categories(Fig.5). This was also done using the hotspot version of this five-category model, M5shf (Supple-mentary Fig. S4). The size of dots in Fig.5 and Supplementary Fig. S4 reflects the proportionsof the five classes of genes in each family, genes from distinct branches being here merged. Wefound that the averageMoran’s I increased with gBGC intensity, as expected, but varied stronglyamong families in every gBGC category, with Muridae consistently showing the highest averageMoran’s I , and Hominidae the lowest, at all gBGC intensities. This result indicates that the levelof clustering of WS substitutions differs across families to an extant that cannot be explainedjust by differences in average B.
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Discussion
Analysing the substitution pattern in coding sequences across four mammalian families, wechecked two predictions of the gBGC model, namely a clustering of WS substitutions and an ex-cess of WS over SW substitutions compared to the mutation pattern. Both approaches revealeda conspicuous effect of gBGC in mammalian coding sequences.

Ubiquitous gBGC in mammals.
Dreszer et al. (2007) investigated the substitution pattern in the human genome and showedthat clusters or nearby substitutions tend to be enriched in the WS sort. The effect, although
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significant, was not particularly strong: the proportion of WS substitutions in clusters reached0.55, whereas it was 0.44 on average (their figure 1A). Analyzing exon evolution in apes, Berglundet al. (2009) and Galtier, Duret, et al. (2009) identified a few dozens of GC-biased exons, out of
>10,000 analyzed exons. Here we applied a distinct but related approach to mammalian codingsequences, and reveal only a weak, if any, tendency for WS synonymous substitutions to beclustered in Hominidae, consistent with previous research. The trend, however, was obviousin Cercopithecidae, and strong in Bovidae and Muridae (Fig.2). Our simulations suggest that
>15%, and maybe up to 40%, of WS synonymous substitutions appear as clusters in these twofamilies. TheseWS substitution clusters likely reflect a localized effect of gBGC at recombinationhotspots. Herewe show that such clusters, although anecdotical in humans and apes, are amajorcomponent of the substitution pattern in other families of mammals.Our estimate of the B parameter, which measures the average intensity of gBGC acrossgenes, varied between 0.2 and 3.9 among the 40 analysed lineages. In primates, the medianestimated B was ∼ 0.5, i.e., in the range of previously published values: 0.1 in hominoids (Lar-tillot, 2013), 0.38 in humans (Glémin et al., 2015), 0.35-0.7 in apes (De Maio et al., 2013). Ourestimates ofB in Bovidae (∼ 0.5−1) andMuridae (∼ 1−2) are also quite similar to those obtainedby Lartillot (2013) in the Bos taurus (Bovidae),Mus musculus and Rattus rattus (Muridae) lineages.In Bovidae, we found a positive relationship between the estimated B and branch age (in millionyears), defined as the average between the date of the top and bottom nodes of a branch (n = 9branches; r2 = 0.75; p-val=0.003). This is consistent with the hypothesis of a high ancestral Ne inthis taxon, as also suggested by fossil data and dN/dS-based reconstructions (Figuet, Ballenghien,Lartillot, et al., 2017; Figuet, Romiguier, et al., 2014). Our study could not confirm the report byRomiguier, Ranwez, et al. (2010) and Lartillot (2013) of a particularly strong gBGC in bats, tenrecsand lagomorphs due to the unavailability of fully-sequenced, closely related species in sufficientnumbers in these taxa.The estimated genome average B was in the nearly neutral zone in the four families analysedhere. Even so, gBGC was found to be pervasive and strongly impact the substitution process incoding sequences. Fitting a three-category, hotspot model across genes, we estimate that 30 to
60% of the WS synonymous substitutions can be attributed to gBGC in mammals. It should benoted that this estimate, as well as the estimates of B we report in this work, is dependent onthe assumption of a known and constant mutation process. Here we used the WS, SW, SS andWW mutations rates obtained from TCA Smith et al. (2018), who analysed >130,000 de novomutations inferred from mother/father/child trios in humans - a very large data set. Milhollandet al. (2017) compared the germline mutation pattern of H. sapiens andM. musculus and did notdetect any conspicuous difference between the two species in the proportions of SW, WS andSSWWmutations, and neither did Wang et al. (2020) when comparingMacaca mulatta (Cercop-ithecidae) to H. sapiens. So the existing literature does not seem to question our assumption ofconstant relative mutation rates in mammals - but note that no such data is available in Bovidae,to our knowledge. Also note that the clustering analysis (Fig.2) does not make any assumptionregarding the mutation process.It should be noted that our estimate of B in this analysis is based on substitution countsinferred via a parsimony-based approach. This way of counting substitutions is not devoid ofpotential problems. Maximum parsimony substitution inference is known to be biased towardscommon-to-rare changes (Eyre-Walker, 1998). However, the relatively recent divergence timeswe are considering presumably keeps this effect to a minimum. Indeed the longest branch acrossall four trees (Fig. 1), the Rattus norvegicus terminal branch, has a length below 0.08 substitutionsper site, which is the minimal length for which this problemwas detectable in Eyre-Walker, 1998.Using closely related species, on the other hand, runs into another potential bias: when closelyrelated species are analysed, there is a risk that within-species polymorphism contributes a non-negligible fraction of the observed sequence variation, biasing the estimation of quantities suchas the dN/dS ratio (Mugal, Kutschera, et al., 2020). This bias likely affects the estimation of therelative SW and WS substitution rates as well, since the expected SW/WS rate ratio differsbetween polymorphism and divergence when gBGC is at work. More work would be needed toconfirm and quantify the effect of this bias on our analysis.
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A significant effect of the effective population size .
Although a significant effect of gBGC was detected in all four analysed families, its intensityvaried conspicuously among families, Muridae being the most strongly impacted, followed byBovidae, Cercopithecidae, and Hominidae. It is noticeable that gBGC ranks family in the sameorder as Ne , as measured by the family-average dN/dS ratio, this order being consistently recov-ered in nearly all the analyses we performed. This is in line with the expectation that the intensityof gBGC should be higher in large than in small populations. An effect of Ne was also detectedby correlating B with the dN/dS ratio across branches, and with heterozygosity across species(Fig.4). These analyses confirmed the significance of the effect, both among and within families,thus corroborating the relationship uncovered by Lartillot (2013) at a deeper phylogenetic scale.Interestingly, the slope of the log(B) vs. log(dN/dS) relationship differed conspicuously amongfamilies in Fig.4. This result might tell something about the strength of selection on amino-acidchanging mutations in mammalian coding sequences. Welch et al. (2008) showed that, assuminga Gamma distribution of deleterious effects of non-synonymous mutations, the dN/dS ratio isexpected to be proportional to Ne

−β , where β is the shape parameter of the Gamma distribution.So under this assumption, and sinceB is proportional toNe , the slope of the log(B) vs. log(dN/dS)relationship should equal −1/β. This rationale yields estimates of β equal to 0.51 in Hominidae,0.15 in Bovidae, and 0.09 in Muridae. These figures differ considerably from estimates obtainedby site frequency spectrum analyses, i.e., β ∼ 0.15 in Hominidae and∼ 0.2 inMuridae (Castellanoet al., 2019; Galtier and Rousselle, 2020; Huber et al., 2017). More work is needed to understandthe origin and meaning of this discrepancy. At any rate, our results suggest that gBGC analysiscould constitute a new source of information on the variation in Ne among species, and mightenrich the ongoing discussion on this issue (e.g Buffalo, 2021; Galtier and Rousselle, 2020).The among lineages correlation between the estimated B and the dN/dS ratio we reporthere in mammals, which confirms Lartillot (2013)’s results, contrasts with the absence of sucha correlation at the Metazoa scale. Large-Ne fruit flies and marine molluscs, for instance, areless strongly impacted by gBGC than small-Ne bees and amniotes (Galtier, Roux, et al., 2018;MC Robinson et al., 2014; Wallberg et al., 2015). The simplest explanation for this is that b, thetransmission bias, probably differs much between distantly related taxa, due to differences inrecombination rate, repair bias and/or conversion tract length. For instance, the recombinationrate is known to be particularly high in honey bees (Wilfert et al., 2007).Two recent studies experimentally assessed the intensity of gBGC in mice via crosses fol-lowed by sperm (Gautier, 2019) or progeny (Li et al., 2019) whole genome sequencing. Bothestimated that b is lower in mice than in humans - maybe five times lower, although this fig-ure requires confirmation. Gautier (2019) invoked purifying selection against gBGC to explainthis result. Indeed, because of its deleterious effects (Berglund et al., 2009; Galtier, Duret, et al.,2009; Necşulea et al., 2011), gBGC as a process could be counter-selected, and purifying selec-tion being more effective in large than in small population, this verbal model would predict alower b in mice than in human. Adapted to our results, this hypothesis of a negative correlationbetween Ne and b would imply that the range of variation in B should be narrower than therange of variation in Ne among mammalian lineages. We indeed observed a narrower variationin the magnitude of the estimated B (standard deviation of log(B): 0.63) than of heterozygosity(standard deviation of log(π): 0.74; same 18 species used in these two calculations, see Fig.4,right panel). The difference, however, is not particularly pronounced, and does not suggest theexistence of a strong negative relationship between b and Ne in mammals. That said, not only Neinfluences the variation of π: the mutation rate also matters. Among-species differences in pergeneration mutation rate, if any, should be taken into account for a better assessment of the bvs. Ne relationship.
Recombination hotspots dynamics.

The among-gene variation in gBGC intensity, measured by the relative standard deviation of
B, was found to be substantial in all branches, while lower in Muridae than in the other threefamilies - a pattern also reported by Lartillot (2013). gBGC seems to be more evenly distributed
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across the genome in this taxon, consistent with previous reports that GC3 in murid rodents hasbeen increasing and was homogenised since the common ancestor of this family (Clément andArndt, 2011; Mouchiroud et al., 1988; M Robinson et al., 1997; Romiguier, Ranwez, et al., 2010).Muridae appears to be a peculiar group of mammals with this respect (Romiguier, Ranwez, et al.,2010), and one should keep this in mind when interpreting patterns of gBGC-related evolutionin this taxon. Of note, the existing literature does not suggest that the recombination map is lessheterogeneous in mouse or rat than in primates (Brunschwig et al., 2012; Jensen-Seaman et al.,2004; McVean et al., 2004).The within-gene heterogeneity in B, in contrast, was more pronounced in Muridae than inBovidae and, particularly, primates (Fig.2), and this was true even when we controlled for gene-specific B (Fig.5): for any particular intensity of gBGC, WS substitutions tend to be more clus-tered in large-Ne than in small-Ne species. This intriguing result might be interpreted in relationwith the dynamics of recombination hotspots. To result in a cluster of WS substitutions, a re-combination hotspot must be active during a sufficiently long period of time for several WSalleles to reach a high population frequency. We suggest that in primates gBGC does not gen-erate a pattern of highly clustered WS substitutions because heterozygosity is low and recom-bination hotspots are short-lived in this taxon. Indeed, recombination hotspots are known to beparticularly ephemeral in Hominidae, due to a transmission distortion associated with the RedQueen-like evolution of the major hotspot determining gene PRDM9 (Auton et al., 2012; Coopand SR Myers, 2007; S Myers et al., 2010). For instance, Lesecque et al. (2014) showed thatdenisovians and modern humans did not share the same recombination hotpots, while the levelof divergence between these two genomes is of the order of one synonymous substitution pergene on average (Meyer et al., 2012). Our results might suggest that the situation differs in othertaxa of mammals, maybe in a way related to Ne . At any rate, heterozygosity is higher in large-Nespecies, which increases the probability that a given local episode of gBGC results in more thanone WS substitutions, irrespective of recombination hotspot lifespan. A deeper understandingof this result would require to account for the many factors influencing the turnover time ofPRDM9 alleles and recombination hotspots (Latrille et al., 2017), the length of gene conversiontracts, as well as the population mutation rate and fixation probability of WS mutations.
Concluding remarks.

Quantifying gBGC in closely related species of mammals, we report a pervasive effect onthe nucleotide substitution process, a positive relationship with Ne , and a complex pattern ofvariation within and among genes. This work also demonstrates that the analysis of gBGC hasthe potential to illuminate various aspects of molecular evolution, including the distribution offitness effect of mutations and the dynamics of recombination hotspots. The apparent lack of a
Ne effect on gBGC intensity at the Metazoa scale is an unresolved question that requires furtherquantification of the strength of gBGC in non-vertebrate taxa.

Material and Methods
Sequence data.

Mammalian coding sequence alignments were downloaded from the Orthomam v10 data-base (Scornavacca et al., 2019). The four families of mammals represented by at least six speciesinOrthoMamv10were selected, namelyHominidae (six species, 11,859 genes), Cercopithecidae(eleven species, 10,834 genes), Bovidae (seven species, 9527 genes), and Muridae (six species,11,758 genes). In Bovidae, the Bos indicus sequences were not considered since this taxon is asubspecies of Bos taurus. In all four families the phylogenetic histories of the sampled species arewell documented, with the exception of the unresolved relationship between cattle, yak and bi-son (Fabre, Hautier, et al., 2012; Fabre, Rodrigues, et al., 2009; Hassanin et al., 2012; Vanderpoolet al., 2020, Fig1). Nodes were dated based on the TimeTree website (http://www.timetree.org/)using the median date estimates.
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Substitution mapping.
For each of the four data sets, nucleotide substitutionsweremapped to the resolved branchesof the trees using a stringent parsimony approach. For any given branch, an X→Y substitutionwas recorded if and only if all species descending from the considered branch carried state Y,and all other species carried state X. All positions not matching this exact pattern, including po-sitions with missing data or gaps, were disregarded. Branches connected to the root of the treewere excluded, as well as branches whose number of descending species was higher than halfthe total number of sampled species in the family. A total of 40 distinct branches were con-sidered - seven in Hominidae and Muridae, nine in Bovidae, 17 in Cercopithecidae (Fig.1). Foreach branch and each coding sequence, the number and positions of non-synonymous and syn-onymous substitutions were recorded, distinguishing the AT→GC (WS), GC→AT (SW) and GC-conservative (SSWW) sorts. Only synonymous substitutions occurring at third codon positions,and non-synonymous substitutions occurring at first or second codon positions, were counted.For any given branch, substitutions that mapped to consecutive sites were ignored, and genes inwhich the per base pair substitution rate was higher than ten times the across-genesmedian ratewere discarded (implying that the number of analysed genes could slightly differ among lineageswithin a family). The last two steps aimed at diminishing the effect of misaligned regions.

Clustering analysis (synonymous substitutions).
For each branch and each gene of length above 400 bp, we calculatedMoran’s I index (Moran1950) separately for WS and SW synonymous substitutions. We used a weight matrix definedas follows: the weight equalled one for any two substitutions distant of 400 bp or less, andzero for any two substitutions more distant than 400 bp. Window widths of 200 bp and 100bp gave qualitatively similar results. For each branch and each sort of substitutions, Moran’s Iwas averaged across genes, excluding genes with less than three substitutions of the consideredsort. Moran’s I has a negative expectation of −1/(l − 1) under the null hypothesis of no spatialautocorrelation, where l is the number of third codon positions of the considered gene. Here weused the centered version of the statistics, I + 1/(l − 1), the expectation of which is zero in theabsence of substitution clustering.

Clustering: simulations.
We downloaded from the Ensembl database coding sequence annotations in one represen-tative species per family, namely Homo sapiens (Hominidae), Macaca mulatta (Cercopithecidae),Bos taurus (Bovidae) and Mus musculus (Muridae), disregarding coding sequences shorter than400 bp. Then we simulated substitution data in a hypothetical branch by iteratively samplingthe location of third-codon-position substitutions across coding sequences using the followingmethod:(initiation:) randomly sample the location of the first substitution among the third codon posi-tions of all genes;(iteration:)- with probability 1 − pclust , randomly sample the location of the (n + 1)th substitution among thethird codon positions of all genes;- with probability pclust , randomly sample the location of the (n + 1)th substitution in the neigh-borhood of the nth substitution (clustered substitutions).More precisely, conditional on the nth and (n + 1)th substitutions being clustered,- with probability pCO the (n + 1)th substitution was randomly sampled in a window of width lCOcentered on the location of the nth substitution, and- with probability pNCO = 1 − pCO the (n + 1)th substitution was randomly sampled in a windowof width lNCO centered on the location of the nth substitution.This was intended to represent the fact that gene conversion tracts associated to crossing-overand non-crossing-over events are of different lengths (Cole, Baudat, et al., 2014). If the sampledlocation of the (n + 1)th substitution reached beyond the boundaries of the exon carrying the

nth substitution, then the (n + 1)th substitution was ignored. Our procedure also accounted
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for the existence of variation in mutation rate among exons: we assumed that one half of theexons had a mutation rate γ times as high as the other half. We separately simulated WS andSW substitution data, accounting for the distribution of GC-content at third codon positions -hence, the availability of W and S sites - in the four groups. A gene with GC3=90%was 10 timesmore likely to host a SW substitution than a gene with GC3=10% in our simulations.Two parameters of the simulation procedure were varied among conditions, namely the perthird codon position density of substitutions (taking values in {0.0003, 0.001, 0.003, 0.01, 0.03})and the probability pclust for two successive substitutions to be clustered (taking values in {0, 0.1,0.2, 0.3, 0.4}). The other parameters were fixed to constant values estimated from the literature.Parameters lCO and lNCO were set to 500 and 40 bp, respectively (Cole, Baudat, et al., 2014;Jeffreys and May, 2004; Li et al., 2019; Williams et al., 2015). Parameter γ was set to 3, ensuringan among-exon mutation rate relative standard deviation of 0.5, in agreement with figure 4 inTCA Smith et al. (2018). Finally, parameter pCO was set to 0.86, according to the following ra-tionale: the CO/NCO odds ratio for the first substitution to occur in a gene conversion tracts is
(lCOnCO)/(lNCOnNCO), where nCO and nNCO are the number of crossing-over and non crossing-over events, respectively; the CO/NCO odds ratio for the second substitution to occur in thesame gene conversion tract is lCO/lNCO ; so the CO/NCO odds ratio for the occurrence of a pairof clustered substitutions is the product, p, of the two terms above, and pCO = p/(1 + p). Using
nCO/nNCO = 0.1 (Baudat and Massy, 2007; Cole, Kauppi, et al., 2012), lCO = 500 and lNCO = 40we obtain pCO = 0.86.
Maximum likelihood estimation of gBGC strength.

For each branch and each gene, we counted the numbers of inferred WS, SW and SSWWsynonymous substitutions at third codon positions. Then we fitted mutation/gBGC/drift modelsto these observations in the maximum likelihood framework.Consider a coding sequence of length l evolving in a panmictic diploid population of constantsize Ne under neutrality during a period T of time. The expected number of substitutions, n∗,depends on the mutation rate µ and fixation probability f :
(1) n∗ = 2Ne lµfT

Assuming a homogeneous gBGC intensity of b, the fixation probability ofWS, SWand SSWWmutations can be written as:
(2) f1 = 2b

1 − e−4Neb

(3) f2 = 2b
e4Neb − 1

(4) f3 = 1/2Ne

Here and below, subscript 1, 2 and 3 respectively refer to the WS, SW and SSWW sortsof change. Substituting in equation 1 and only considering third codon positions, we get theexpected number of synonymous substitutions of the three sorts:
(5) n∗

1 = lW µWS
B

1 − e−B T

(6) n∗
2 = lSµSW

B
e−B − 1T

(7) n∗
3 = (lW µWW + lSµSS)T

Nicolas Galtier 13

Peer Community Journal, Vol. 1 (2021), article e17 https://doi.org/10.24072/pcjournal.22

https://doi.org/10.24072/pcjournal.22


where B = 4Neb, lW and lS are the number of AT- and GC-ending codons, respectively, inthe considered coding sequence, and µWS , µSW , µSS and µWW are the corresponding mutationrates.Assuming that the number of WS substitutions is Poisson distributed, the probability of ob-serving n WS substitutions given B and T is given by the following function:
(8) ϕ1(n|B, T ) = n∗

1
n

n! e−n∗
1

and similarly for SW and SSWW substitutions:
(9) ϕ2(n|B, T ) = n∗

2
n

n! e−n∗
2

(10) ϕ3(n|B, T ) = n∗
3

n

n! e−n∗
3

We modelled the variation of B among genes using discrete distributions. Assume there are
k categories of genes, with each category including a fraction pk of the genes and characterisedby a population-scaled gBGC intensity Bk , assumed to be constant within genes. For a gene atwhich n1, n2, and n3 substitutions of the three sorts are observed, the likelihood can be writtenas:
(11) L =

∑

k
pkϕ1(n1|Bk , T )ϕ2(n2|Bk , T )ϕ3(n3|Bk , T )

We considered various models that differ in how B varies across genes. Under model M1, aconstant B across genes is assumed. Model M2 defines two categories of genes, each with itsown gBGC intensity. Model M3z (for zero) has three categories of genes, among which one hasa gBGC intensity of zero, the other two being free parameters. Model M5f (for fixed) has fivecategories of genes with fixed gBGC intensities equal to B1 = 0, B2 = 0.333, B3 = 1, B4 = 3.333and B5 = 10, respectively. In all four models the proportions of genes in the various categorieswere free to vary, T was assumed to be shared among genes and the relative mutation rates
µWS , µSW , µSS and µWW were set to empirical estimates obtained from Smith et al. (2018), i.e.,
µWS = 5.21, µSW = 10.90, µSS = 2.07 and µWW = 1.The models above assume a homogeneous rate of gBGC among positions within a gene. Toaccount for the existence of hotspots of gBGC, we modelled the within-gene variation of B byassuming that only a fraction q of the positions undergo gBGC at rate Bh, the other positionsevolving neutrally. Under this assumption, the expected number of WS and SW substitutionsare given by:
(12) n∗

1 = lW µWS [(1 − q) + qBh
1 − e−Bh

]T

(13) n∗
2 = lSµSW [(1 − q) + qBh

eBh − 1]T

while n∗
3 is given by equation 7.Equations 12 and 13 simplify if q is assumed to be much smaller than 1 and Bh much higherthan 1; under these assumptions, we have:

(14) n∗
1 = lW µWS(1 + qBh)T

(15) n∗
2 = lSµSW T
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Parameters q and Bh only appear as a product in equations 14 and 15, saving one degreeof freedom. The simplified equation 15 exhibits the main difference between hotspot and gene-homogeneous models, which concerns SW substitutions. In gene-homogeneous models, theexpected number of SW substitutions is decreased in genes experiencing strong gBGC, whereashotspotmodels predict nearly no influence of gBGCon the SWsubstitution rate if q is sufficientlysmall.The among-gene variation in gBGC strength was here modeled via categories of genes thatdiffered with respect to the prevalence of hotspots, q, while sharing the same intensity of gBGCwithin hotspots, Bh. Specifically, we considered a three-category model in which the "coldest"category had no hotspot, i.e., q1 = 0. The fraction of hotspots in the other two categories, q2 and
q3, and the relative prevalence of the three categories, p1, p2 and p3, as well as T and Bh, werefree to vary. This model was called M3h (for hotspot); its predictions are given by equations 12,13 and 7. A simplified hotspot model, M3sh (for simplified hotspot), was also implemented byinstead using equations 14, 15 and 7. M3sh is a special case of M3h assuming that the fractionof sites affected by gBGC within a gene is small. We also considered a simplified five-categoryhotspot model, M5shf, with fixed values for the qkBh product equal to 0, 0.333, 1, 3.33 and 10,respectively.The overall likelihood was obtained by multiplying the likelihoods of distinct genes. Param-eters were estimated in the maximum likelihood (ML) framework. Likelihood maximization wasachieved via home-made C++ programs using the Bio++ library (Guéguen et al., 2013).The across gene categories average estimated intensity of gBGC was computed as
(16) B =

∑

k
p̂k B̂k

under gene-homogeneous models and
(17) B =

∑

k
p̂k q̂k B̂h

under hotspot models, where the k index is for gene categories and the hat denotes MLestimate. The across genes standard deviation of the intensity of gBGC was calculated similarly.Akaike’s Information Criterion (AIC) was calculated for all models, the number of estimatedparameters being 2, 4, 5, 5, 5, 5 and 6, respectively, for M1, M2, M3z, M5f, M3sh, M5shf andM3h. AIC weights (Posada and Buckley, 2004) were used to calculate an across-model estimateof the B parameter. The parametrisation of the various models is recapitulated in Table 1.For each gene, the expected number of WS substitutions in the absence of gBGC was esti-mated as:
(18) m∗

1 = lW µWST̂
and the excessWS substitutions due to gBGCwere estimated as (n∗

1 −m∗
1)/m∗

1. No depletionof SW substitutions is expected under M3sh (compare equations 15 and 18). Finally, each genewas assigned to one of the gBGC categories by selecting the category k maximising the followingposterior probability:
(19) ϕ1(n1|Bk , T )ϕ2(n2|Bk , T )ϕ3(n3|Bk , T )

All these calculations were achieved separately for the 40 branches of the data set.
Additional variables.

For every branch, the numbers of non-synonymous substitutions of theWS, SW and SSWWsorts at first and second codon positions were computed, summed across genes, and used tocalculate branch-specific dN/dS ratios. A literature survey was conducted in search for genome-wide estimates of within-species diversity, or heterozygosity, π. Such estimates were collected
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model cat.a nb fixedb fixedc nb optimisedd optimisede

allf µWS , µSW , µSS , µWW TM1 1 4 2 BM2 2 4 4 B1,B2,p1M3z 3 5 B1 5 B2,B3,p1,p2M5f 5 9 B1-B5 5 p1-p4M3h 3 5 q1 6 q2,q3,Bh,p1,p2M3sh 3 5 q1Bh 5 q2Bh,q3Bh,p1,p2M5shf 5 9 q1Bh-q5Bh 5 p1-p4

Table 1 – Parametrisation of the models used in this analysis. a : number of categories ofgenes; b: number of fixed parameters; c : list of fixed parameters; d : number of optimizedparameters; e: list of optimized parameters; f : parameters shared by all models
in 18 of the analysed species, as reported in Supplementary Table S2. Data on species longevityand body mass were obtained from the AnAge data base (Magalhães and Costa, 2009) and arealso reported in Supplementary Table S2.

Supplementary Material, Data accessibility
All the data sets, programs and scripts used in this study are available from:
https://osf.io/fx54q

Conflict of interest disclosure
The author declares that he has no financial conflict of interest with the content of this article.Nicolas Galtier is a recommender for PCI Genomics and PCI Evolutionary Biology.

Acknowledgments
The author is grateful to Laurent Duret, Nicolas Lartillot, Sylvain Glémin, Benoît Nabholz andJonathan Romiguier for very useful comments, and to Adam Eyre-Walker for sharing data onde novo mutation in humans. This work was supported by Agence Nationale de la Rechercheproject ANR-19-CE12-0019 (HotRec).

References
Auton A et al. (2012). A fine-scale chimpanzee genetic map from population sequencing. Science336, 193–198. https://doi.org/10.1126/science.1216872.Baudat F, Massy B (2007). Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res 15, 565–577. https://doi.org/10.

1007/s10577-007-1140-3.Berglund J et al. (2009). Hotspots of biased nucleotide substitutions in human genes. PLoS Biol 7,e26. https://doi.org/10.1371/journal.pbio.1000026.Bolívar P et al. (2018). Biased Inference of Selection Due to GC-Biased Gene Conversion and theRate of Protein Evolution in Flycatchers When Accounting for It. Mol Biol Evol 35, 2475–2486.
https://doi.org/10.1093/molbev/msy149.Borges R et al. (2019).QuantifyingGC-BiasedGeneConversion inGreatApeGenomesUsing Polymorphism-Aware Models. Genetics 212, 1321–1336. https : / / doi . org / 10 . 1534 / genetics . 119 .
302074.Brunschwig H et al. (2012). Fine-scale maps of recombination rates and hotspots in the mousegenome. Genetics 191, 757–764. https://doi.org/10.1534/genetics.112.141036.Buffalo V (2021).Quantifying the relationship between genetic diversity and population size suggestsnatural selection cannot explain Lewontin’s Paradox. eLife 10, e67509. https://doi.org/10.
7554/eLife.67509.

16 Nicolas Galtier

Peer Community Journal, Vol. 1 (2021), article e17 https://doi.org/10.24072/pcjournal.22

https://osf.io/fx54q
https://doi.org/10.1126/science.1216872
https://doi.org/10.1007/s10577-007-1140-3
https://doi.org/10.1007/s10577-007-1140-3
https://doi.org/10.1371/journal.pbio.1000026
https://doi.org/10.1093/molbev/msy149
https://doi.org/10.1534/genetics.119.302074
https://doi.org/10.1534/genetics.119.302074
https://doi.org/10.1534/genetics.112.141036
https://doi.org/10.7554/eLife.67509
https://doi.org/10.7554/eLife.67509
https://doi.org/10.24072/pcjournal.22


Capra JA et al. (2013). A model-based analysis of GC-biased gene conversion in the human andchimpanzee genomes. PLoS Genet 9, e1003684. https://doi.org/10.1371/journal.pgen.
1003684.Castellano D et al. (2019). Comparison of the Full Distribution of Fitness Effects of New Amino AcidMutations Across Great Apes. Genetics 213, 953–966. https://doi.org/10.1534/genetics.
119.302494.Clément Y, Arndt PF (2011). Substitution patterns are under different influences in primates androdents. Genome Biol Evol 3, 236–245. https://doi.org/10.1093/gbe/evr011.Clément Y, Sarah G, et al. (2017). Evolutionary forces affecting synonymous variations in plantgenomes. PLoS Genet 13, e1006799. https://doi.org/10.1371/journal.pgen.1006799..Cole F, Baudat F, et al. (2014). Mouse tetrad analysis provides insights into recombination mecha-nisms and hotspot evolutionary dynamics. Nat Genet 46, 1072–1080. https://doi.org/10.
1038/ng.3068.Cole F, Kauppi L, et al. (2012). Homeostatic control of recombination is implemented progressivelyin mouse meiosis. Nat Cell Biol 14, 424–430. https://doi.org/10.1038/ncb2451.Coop G, Myers SR (2007). Live hot, die young: transmission distortion in recombination hotspots.PLoS Genet 3, e35. https://doi.org/10.1371/journal.pgen.0030035.Corcoran P et al. (2017).Determinants of the Efficacy of Natural Selection on Coding and NoncodingVariability in Two Passerine Species. Genome Biol Evol 9, 2987–3007. https://doi.org/doi:
10.1093/gbe/evx213.Damuth J (2007). Amacroevolutionary explanation for energy equivalence in the scaling of body sizeand population density. Am Nat 169, 621–631. https://doi.org/10.1086/513495.DeMaio N et al. (2013). Linking great apes genome evolution across time scales using polymorphism-aware phylogenetic models. Mol Biol Evol 30, 2249–2262. https : / / doi . org / 10 . 1093 /
molbev/mst131.Dreszer TR et al. (2007). Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion. Genome Res 17, 1420–1430. https://doi.org/10.1101/gr.
6395807.Duret L, Arndt PF (2008). The impact of recombination on nucleotide substitutions in the humangenome. PLoS Genet 4, e1000071. https://doi.org/10.1371/journal.pgen.1000071.Eyre-Walker A (1998). Problems with parsimony in sequences of biased base composition. J Mol Evol47, 686–690. https://doi.org/10.1007/pl00006427.Eyre-Walker A (1999). Evidence of selection on silent site base composition in mammals: potentialimplications for the evolution of isochores and junk DNA. Genetics 152, 675–683. https://doi.
org/10.1093/genetics/152.2.675.Fabre PH, Hautier L, et al. (2012). A glimpse on the pattern of rodent diversification: a phylogeneticapproach. BMC Evol Biol 12, 88. https://doi.org/10.1186/1471-2148-12-88.Fabre PH, Rodrigues A, et al. (2009). Patterns of macroevolution among Primates inferred froma supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 53, 808–825. https :
//doi.org/10.1016/j.ympev.2009.08.004.Figuet E, Ballenghien M, Lartillot N, et al. (2017). Reconstruction of body mass evolution in theCetartiodactyla and mammals using phylogenomic data. bioRxiv, peer–reviewed and recom-mended by Peer Community In Evolutionary Biology. https://doi.org/10.1101/139147.URL: https://evolbiol.peercommunityin.org/articles/rec?id=67.Figuet E, Ballenghien M, Romiguier J, et al. (2014). Biased gene conversion and GC-content evolu-tion in the coding sequences of reptiles and vertebrates. Genome Biol Evol 7, 240–250. https:
//doi.org/10.1093/gbe/evu277.Figuet E, Romiguier J, et al. (2014).Mitochondrial DNA as a tool for reconstructing past life-historytraits in mammals. J Evol Biol 27, 899–910. https://doi.org/10.1111/jeb.12361.Galtier N, Bazin E, et al. (2006). GC-biased segregation of noncoding polymorphisms in Drosophila.Genetics 172, 221–228. https://doi.org/10.1534/genetics.105.046524.Galtier N, Duret L (2007). Adaptation or biased gene conversion? Extending the null hypothesis ofmolecular evolution. Trends Genet 23, 273–277. https://doi.org/10.1016/j.tig.2007.
03.011.

Nicolas Galtier 17

Peer Community Journal, Vol. 1 (2021), article e17 https://doi.org/10.24072/pcjournal.22

https://doi.org/10.1371/journal.pgen.1003684
https://doi.org/10.1371/journal.pgen.1003684
https://doi.org/10.1534/genetics.119.302494
https://doi.org/10.1534/genetics.119.302494
https://doi.org/10.1093/gbe/evr011
https://doi.org/10.1371/journal.pgen.1006799.
https://doi.org/10.1038/ng.3068
https://doi.org/10.1038/ng.3068
https://doi.org/10.1038/ncb2451
https://doi.org/10.1371/journal.pgen.0030035
https://doi.org/doi: 10.1093/gbe/evx213
https://doi.org/doi: 10.1093/gbe/evx213
https://doi.org/10.1086/513495
https://doi.org/10.1093/molbev/mst131
https://doi.org/10.1093/molbev/mst131
https://doi.org/10.1101/gr.6395807
https://doi.org/10.1101/gr.6395807
https://doi.org/10.1371/journal.pgen.1000071
https://doi.org/10.1007/pl00006427
https://doi.org/10.1093/genetics/152.2.675
https://doi.org/10.1093/genetics/152.2.675
https://doi.org/10.1186/1471-2148-12-88
https://doi.org/10.1016/j.ympev.2009.08.004
https://doi.org/10.1016/j.ympev.2009.08.004
https://doi.org/10.1101/139147
https://evolbiol.peercommunityin.org/articles/rec?id=67
https://doi.org/10.1093/gbe/evu277
https://doi.org/10.1093/gbe/evu277
https://doi.org/10.1111/jeb.12361
https://doi.org/10.1534/genetics.105.046524
https://doi.org/10.1016/j.tig.2007.03.011
https://doi.org/10.1016/j.tig.2007.03.011
https://doi.org/10.24072/pcjournal.22


Galtier N, Duret L, et al. (2009). GC-biased gene conversion promotes the fixation of deleteriousamino acid changes in primates. Trends Genet 25, 1–5. https://doi.org/10.1016/j.tig.
2008.10.011.Galtier N, Piganeau G, et al. (1999). GC-content evolution in mammalian genomes: the biased geneconversion hypothesis. Genetics 159, 907–911. https://doi.org/10.1093/genetics/159.
2.907.Galtier N, Rousselle M (2020). How Much Does Ne Vary Among Species? Genetics 216, 559–572.
https://doi.org/0.1534/genetics.120.303622.Galtier N, Roux C, et al. (2018). Codon Usage Bias in Animals: Disentangling the Effects of NaturalSelection, Effective Population Size, and GC-Biased Gene Conversion. Mol Biol Evol 35, 1092–1103. https://doi.org/10.1093/molbev/msy015.GautierM (Sept. 2019). La recombinaison commemoteur de l’évolution des génomes : caractérisationde la conversion génique biaisée chez la souris. PhD thesis. Ecole Doctorale E2M2, UniversitéClaude Bernard Lyon 1.Glémin S et al. (2015). Quantification of GC-biased gene conversion in the human genome. GenomeRes 25, 1215–1228. https://doi.org/10.1101/gr.185488.114..Guéguen L et al. (2013). Bio++: efficient extensible libraries and tools for computational molecularevolution.Mol Biol Evol 30, 1745–1750. https://doi.org/10.1093/molbev/mst097.HassaninA et al. (2012). Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiathe-ria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 335, 32–50.
https://doi.org/10.1016/j.crvi.2011.11.002.Huber CD et al. (2017). Determining the factors driving selective effects of new nonsynonymousmutations. Proc Natl Acad Sci U S A 114, 4465–4470. https://doi.org/10.1073/pnas.
1619508114.Jeffreys AJ, May CA (2004). Intense and highly localized gene conversion activity in human meioticcrossover hot spots. Nat Genet 36, 151–156. https://doi.org/10.1038/ng1287.Jensen-Seaman MI et al. (2004). Comparative recombination rates in the rat, mouse, and humangenomes. Genome Res 14, 528–538. https://doi.org/10.1101/gr.1970304.Lachance J, Tishkoff SA (2014). Biased gene conversion skews allele frequencies in human popula-tions, increasing the disease burden of recessive alleles. Am J Hum Genet 95, 408–420. https:
//doi.org/10.1016/j.ajhg.2014.09.008.Lartillot N (2012). Interaction between selection and biased gene conversion in mammalian protein-coding sequence evolution revealed by a phylogenetic covariance analysis.Mol Biol Evol 30, 356–368. https://doi.org/10.1093/molbev/mss231.Lartillot N (2013). Phylogenetic patterns of GC-biased gene conversion in placental mammals andthe evolutionary dynamics of recombination landscapes. Mol Biol Evol 30, 489–502. https://
doi.org/10.1093/molbev/mss239.Lassalle F et al. (2015). GC-Content evolution in bacterial genomes: the biased gene conversion hy-pothesis expands. PLoS Genet 11, e1004941. https://doi.org/10.1371/journal.pgen.
1004941.Latrille T et al. (2017). The Red Queen model of recombination hot-spot evolution: a theoreticalinvestigation. Philos Trans R Soc Lond B Biol Sci 372, 20160463. https://doi.org/10.1098/
rstb.2016.0463.Lesecque Y et al. (2014). The red queen model of recombination hotspots evolution in the light ofarchaic and modern human genomes. PLoS Genet 10, e1004790. https://doi.org/10.1371/
journal.pgen.1004790.Li R et al. (2019). A high-resolution map of non-crossover events reveals impacts of genetic diversityon mammalian meiotic recombination. Nat Commun 10, 3900. https://doi.org/10.1038/
s41467-019-11675-y.Long H et al. (2018). Evolutionary determinants of genome-wide nucleotide composition. Nat EcolEvol 2, 237–240. https://doi.org/10.1038/s41559-017-0425-y.Magalhães JP, Costa JA (2009). A database of vertebrate longevity records and their relation toother life-history traits. J Evol Biol 22, 1770–1774. https://doi.org/10.1111/j.1420-
9101.2009.01783.x.

18 Nicolas Galtier

Peer Community Journal, Vol. 1 (2021), article e17 https://doi.org/10.24072/pcjournal.22

https://doi.org/10.1016/j.tig.2008.10.011
https://doi.org/10.1016/j.tig.2008.10.011
https://doi.org/10.1093/genetics/159.2.907
https://doi.org/10.1093/genetics/159.2.907
https://doi.org/0.1534/genetics.120.303622
https://doi.org/10.1093/molbev/msy015
https://doi.org/10.1101/gr.185488.114.
https://doi.org/10.1093/molbev/mst097
https://doi.org/10.1016/j.crvi.2011.11.002
https://doi.org/10.1073/pnas.1619508114
https://doi.org/10.1073/pnas.1619508114
https://doi.org/10.1038/ng1287
https://doi.org/10.1101/gr.1970304
https://doi.org/10.1016/j.ajhg.2014.09.008
https://doi.org/10.1016/j.ajhg.2014.09.008
https://doi.org/10.1093/molbev/mss231
https://doi.org/10.1093/molbev/mss239
https://doi.org/10.1093/molbev/mss239
https://doi.org/10.1371/journal.pgen.1004941
https://doi.org/10.1371/journal.pgen.1004941
https://doi.org/10.1098/rstb.2016.0463
https://doi.org/10.1098/rstb.2016.0463
https://doi.org/10.1371/journal.pgen.1004790
https://doi.org/10.1371/journal.pgen.1004790
https://doi.org/10.1038/s41467-019-11675-y
https://doi.org/10.1038/s41467-019-11675-y
https://doi.org/10.1038/s41559-017-0425-y
https://doi.org/10.1111/j.1420-9101.2009.01783.x
https://doi.org/10.1111/j.1420-9101.2009.01783.x
https://doi.org/10.24072/pcjournal.22


Mancera E et al. (2008). High-resolution mapping of meiotic crossovers and non-crossovers in yeast.Nature 454, 479–485. https://doi.org/10.1038/nature07135.McVean GA et al. (2004). The fine-scale structure of recombination rate variation in the humangenome. Science 304, 581–584. https://doi.org/10.1126/science.1092500.Meyer M et al. (2012). A high-coverage genome sequence from an archaic Denisovan individual.Science 338, 222–226. https://doi.org/10.1126/science.1224344.Milholland B et al. (2017). Differences between germline and somatic mutation rates in humans andmice. Nat Commun 8, 15183. https://doi.org/10.1038/ncomms15183.Moran PA (1950). Notes on continuous stochastic phenomena. Biometrika 37, 17–23.Mouchiroud D et al. (1988). The compositional distribution of coding sequences and DNAmoleculesin humans and murids. J Mol Evol 27, 311–320. https://doi.org/10.1007/BF02101193.Mugal CF, Arndt PF, et al. (2013). Twisted signatures of GC-biased gene conversion embedded inan evolutionary stable karyotype. Mol Biol Evol 30, 1700–1712. https://doi.org/10.1093/
molbev/mst067.Mugal CF, Kutschera VE, et al. (2020). PolymorphismData Assist Estimation of the Nonsynonymousover Synonymous Fixation Rate Ratio ω for Closely Related Species. Mol Biol Evol 37, 260–279.
https://doi.org/10.1093/molbev/msz203.Myers S et al. (2010).Drive against hotspot motifs in primates implicates the PRDM9 gene in meioticrecombination. Science 327, 876–879. https://doi.org/10.1126/science.1182363.Nabholz B et al. (2011). Dynamic evolution of base composition: causes and consequences in avianphylogenomics.Mol Biol Evol 28, 2197–2210. https://doi.org/10.1093/molbev/msr047.Necşulea A et al. (2011). Meiotic recombination favors the spreading of deleterious mutations inhuman populations. HumMutat 32, 198–206. https://doi.org/10.1002/humu.21407.Nikolaev SI et al. (2007). Life-history traits drive the evolutionary rates of mammalian coding andnoncoding genomic elements. Proc Natl Acad Sci U S A 104, 20443–20448. https://doi.org/
10.1073/pnas.0705658104.Pessia E et al. (2012). Evidence for widespread GC-biased gene conversion in eukaryotes. GenomeBiol Evol 4, 675–682. https://doi.org/10.1093/gbe/evs052.Popadin K et al. (2007). Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. ProcNatl Acad Sci U SA 104, 13390–13395. https:
//doi.org/10.1073/pnas.0701256104.Posada D, Buckley TR (2004). Model selection and model averaging in phylogenetics: advantagesof akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53,793–808. https://doi.org/10.1080/10635150490522304.Pracana R et al. (2020). Runaway GC Evolution in Gerbil Genomes. Mol Biol Evol 37, 2197–2210.
https://doi.org/10.1093/molbev/msaa072.Pratto F et al. (2014).DNA recombination; Recombination initiationmaps of individual human genomes.Science 346, 1256442. https://doi.org/10.1126/science.1256442.Ratnakumar A et al. (2010). Detecting positive selection within genomes: the problem of biased geneconversion. Philos Trans R Soc Lond B Biol Sci 365, 2571–2580. https://doi.org/10.1098/
rstb.2010.0007.Robinson M et al. (1997). Evolution of isochores in rodents. Mol Biol Evol 14, 823–828. https:
//doi.org/10.1093/oxfordjournals.molbev.a025823.Robinson MC et al. (2014). Population genomic analysis reveals no evidence for GC-biased geneconversion in Drosophila melanogaster. Mol Biol Evol 31, 425–433. https://doi.org/10.
1093/molbev/mst220.Romiguier J, Figuet E, et al. (2012). Fast and robust characterization of time-heterogeneous se-quence evolutionary processes using substitution mapping. PLoS One 7, e33852. https://doi.
org/10.1371/journal.pone.0033852.Romiguier J, Lourenco J, et al. (2014). Population genomics of eusocial insects: the costs of a vertebrate-like effective population size. J Evol Biol 27, 593–603. https://doi.org/10.1111/jeb.12331.Romiguier J, Ranwez V, et al. (2010). Contrasting GC-content dynamics across 33 mammaliangenomes: relationship with life-history traits and chromosome sizes.Genome Res 20, 1001–1009.
https://doi.org/10.1101/gr.104372.109.

Nicolas Galtier 19

Peer Community Journal, Vol. 1 (2021), article e17 https://doi.org/10.24072/pcjournal.22

https://doi.org/10.1038/nature07135
https://doi.org/10.1126/science.1092500
https://doi.org/10.1126/science.1224344
https://doi.org/10.1038/ncomms15183
https://doi.org/10.1007/BF02101193
https://doi.org/10.1093/molbev/mst067
https://doi.org/10.1093/molbev/mst067
https://doi.org/10.1093/molbev/msz203
https://doi.org/10.1126/science.1182363
https://doi.org/10.1093/molbev/msr047
https://doi.org/10.1002/humu.21407
https://doi.org/10.1073/pnas.0705658104
https://doi.org/10.1073/pnas.0705658104
https://doi.org/10.1093/gbe/evs052
https://doi.org/10.1073/pnas.0701256104
https://doi.org/10.1073/pnas.0701256104
https://doi.org/10.1080/10635150490522304
https://doi.org/10.1093/molbev/msaa072
https://doi.org/10.1126/science.1256442
https://doi.org/10.1098/rstb.2010.0007
https://doi.org/10.1098/rstb.2010.0007
https://doi.org/10.1093/oxfordjournals.molbev.a025823
https://doi.org/10.1093/oxfordjournals.molbev.a025823
https://doi.org/10.1093/molbev/mst220
https://doi.org/10.1093/molbev/mst220
https://doi.org/10.1371/journal.pone.0033852
https://doi.org/10.1371/journal.pone.0033852
https://doi.org/10.1111/jeb.12331
https://doi.org/10.1101/gr.104372.109
https://doi.org/10.24072/pcjournal.22


Romiguier J, Ranwez V, et al. (2013). Genomic evidence for large, long-lived ancestors to placentalmammals.Mol Biol Evol 30, 5–13. https://doi.org/10.1093/molbev/mss211.Rousselle M, Laverré A, et al. (2019). Influence of Recombination and GC-biased Gene Conversionon the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Mol Biol Evol 36,458–471. https://doi.org/10.1093/molbev/msy243.Rousselle M, Simion P, et al. (2020). Is adaptation limited by mutation? A timescale-dependent ef-fect of genetic diversity on the adaptive substitution rate in animals. PLoS Genet 16, e1008668.
https://doi.org/10.1371/journal.pgen.1008668.Scornavacca C et al. (2019). OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and ExonAlignments with More than One Hundred Mammalian Genomes. Mol Biol Evol 36, 861–862.
https://doi.org/10.1093/molbev/msz015.Smith TCA et al. (2018). Large scale variation in the rate of germ-line de novo mutation, base com-position, divergence and diversity in humans. PLoS Genet 14, e1007254. https://doi.org/10.
1371/journal.pgen.1007254.Spencer CC et al. (2006). The influence of recombination on human genetic diversity. PLoS Genet 2,e148. https://doi.org/10.1371/journal.pgen.0020148.Vanderpool D et al. (2020). Primate phylogenomics uncovers multiple rapid radiations and ancientinterspecific introgression. PLoS Biol 18, e3000954. https://doi.org/10.1371/journal.
pbio.3000954.Wallberg A et al. (2015). Extreme recombination frequencies shape genome variation and evolutionin the honeybee, Apis mellifera. PLoS Genet 11, e1005189. https : / / doi . org / 10 . 1371 /
journal.pgen.1005189.Wang RJ et al. (2020). Paternal age in rhesus macaques is positively associated with germline mu-tation accumulation but not with measures of offspring sociability. Genome Res 30, 826–834.
https://doi.org/10.1101/gr.255174.119.Webster MT, Smith NG (2004). Fixation biases affecting human SNPs. Trends Genet 20, 122–126.
https://doi.org/10.1016/j.tig.2004.01.005.Welch JJ et al. (2008). Divergence and polymorphism under the nearly neutral theory of molecularevolution. J Mol Evol 67, 418–426. https://doi.org/10.1007/s00239-008-9146-9.Wilfert L et al. (2007). Variation in genomic recombination rates among animal taxa and the case ofsocial insects. Heredity (Edinb) 98, 189–197. https://doi.org/10.1038/sj.hdy.6800950.Williams AL et al. (2015). Non-crossover gene conversions show strong GC bias and unexpectedclustering in humans. Elife 4, e04637. https://doi.org/10.7554/eLife.04637.

20 Nicolas Galtier

Peer Community Journal, Vol. 1 (2021), article e17 https://doi.org/10.24072/pcjournal.22

https://doi.org/10.1093/molbev/mss211
https://doi.org/10.1093/molbev/msy243
https://doi.org/10.1371/journal.pgen.1008668
https://doi.org/10.1093/molbev/msz015
https://doi.org/10.1371/journal.pgen.1007254
https://doi.org/10.1371/journal.pgen.1007254
https://doi.org/10.1371/journal.pgen.0020148
https://doi.org/10.1371/journal.pbio.3000954
https://doi.org/10.1371/journal.pbio.3000954
https://doi.org/10.1371/journal.pgen.1005189
https://doi.org/10.1371/journal.pgen.1005189
https://doi.org/10.1101/gr.255174.119
https://doi.org/10.1016/j.tig.2004.01.005
https://doi.org/10.1007/s00239-008-9146-9
https://doi.org/10.1038/sj.hdy.6800950
https://doi.org/10.7554/eLife.04637
https://doi.org/10.24072/pcjournal.22

