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Abstract

When divergent populations interbreed, the outcome will be affected by the genomic
and phenotypic differences that they have accumulated. In this way, the mode of evo-
lutionary divergence between populations may have predictable consequences for the
fitness of their hybrids, and so for the progress of speciation. To investigate these con-
nections, we present a new analysis of hybridization under Fisher's geometric model,
making few assumptions about the allelic effects that differentiate the hybridizing pop-
ulations. Results show that the strength and form of postzygotic reproductive isolation
(RI) depend on just two properties of the evolutionary changes, which we call the "to-
tal amount” and "net effect” of change, and whose difference quantifies the similarity
of the changes at different loci, or their tendency to act in the same phenotypic direc-
tion. It follows from our results that identical patterns of Rl can arise in different ways,
since different evolutionary histories can lead to the same total amount and net effect
of change. Nevertheless, we show how these estimable quantities do contain some in-
formation about the history of divergence, and that — thanks to Haldane's Sieve — the
dominance and additive effects contain complementary information.
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1. Introduction

Genomic and phenotypic differentiation between populations are a major cause of repro-
ductive isolation (RI), preventing hybrids from forming, or reducing their fitness when they do
form. However, differentiation can also be a source of adaptive variation, if hybrids contain new
fit combinations of traits or alleles, or act as conduits passing existing combinations from one
population to another (Arnold and Hodges, 1995; Bernardes et al., 2017; Bierne et al., 2013;
Coughlan and Matute, 2020; Coyne and Orr, 2004; Edmands, 1999, 2002; Schluter and Conte,
2009).

Which of these outcomes actually takes place must depend on the types of phenotypic and
genomic differences that have accumulated before the hybrids form. A fundamental challenge
in evolutionary biology is to understand the connections between the mode of evolutionary
divergence, the type of differences that accrue, and the outcomes of subsequent hybridization.
This can be framed in two ways: what can we learn about the (unobserved) history of parental
divergence by observing their hybrids? (Fraser, 2020; Lande, 1981; Schneemann, De Sanctis, et
al., 2020; Welch, 2004); and conversely, which divergence scenarios will predictably lead to RI?
(Coyne and Orr, 2004). What, for example, are the respective roles of large- versus small-effect
mutations in causing RI, and what are the roles of natural selection versus genetic drift (Clo et al.,
2021; Coyne and Orr, 2004; Jezkova et al., 2013; Lynch, 1991; Moran et al., 2021; Satokangas
et al., 2020)? All of these questions are essential for understanding the opposing processes of
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speciation and adaptive introgression (Abbott et al., 2013), and predicting the outcomes of novel
hybridizations, including those that are human-mediated (Chan et al., 2019; Genovart, 2008).

One tool to address these questions is Fisher's geometric model. This is a mathematical model
of selection acting on quantitative traits (Fisher, 1930, Ch. 2), and has been used to understand
both phenotypic data, e.g., QTL for traits involved in adaptive divergence (Orr, 1998), and fitness
data. In the latter case, the phenotypic model need not be treated literally, but is a simple way
of generating a fitness landscape (Martin, 2014; Martin and Lenormand, 2006). Both uses of the
model have been applied to hybrids (Barton, 2001; Chevin et al., 2014; Fraisse, Gunnarsson, et al.,
2016; Lande, 1981; Mani and Clarke, 1990; Schneemann, De Sanctis, et al., 2020; Schneemann,
Munzur, et al., 2022; Simon et al., 2018; Thompson et al., 2021; Yamaguchi and Otto, 2020).

Most importantly here, the model allows us to consider the effects in hybrids of evolutionary
changes of different sizes, and which were driven by different evolutionary processes (Chevin et
al., 2014; Hartl and Taubes, 1996; Orr, 1998; Schneemann, De Sanctis, et al., 2020; Simon et al.,
2018). However, previous analytical results for diploids (Schneemann, De Sanctis, et al., 2020)
depended on strong assumptions about the genetic differentiation, such as no variation within
the parental lines, normality and universal pleiotropy among the fixed effects, and statistical
independence among traits. Furthermore, the earlier results describe the overall strength of Rl in
terms of a single fitted parameter, whose relationship to the process of evolutionary divergence
remained obscure.

In this paper, we extend previous work on Fisher’s geometric model in two ways. First, by
combining and generalizing previous work by several authors (Chevin et al., 2014; Lande, 1981;
Schneemann, De Sanctis, et al., 2020; Schneemann, Munzur, et al., 2022; Simon et al., 2018),
we give results for the expected fithess of hybrids between diploid populations, applying to all
classes of hybrid, and allowing for variation within the hybridizing populations, and alleles with
arbitrary additive and dominance effects. Second, we show how some key quantities that appear
in the results relate transparently to the history of divergence between the parental populations.

2. Results
2.1. The phenotypic model and fitness landscape.

Under Fisher's geometric model, the fitness of any individual depends solely on its values
of n quantitative traits. The trait values for an individual can be collected in an n-dimensional
vector z = (z, ..., z,); and its fitness, w, depends on the Euclidean distance of this phenotype
from an optimum o = (o1, ..., 0,), whose value is determined by the current environment. We
will assume the simplest form of the model, where the log fitness declines with the square of
the distance:

n
(1) Inw (z,0) = —[lz—o|* = = > (zi — 0;)?
j=1

This model can be derived either exactly, or approximately, from a wide class of more compli-
cated fitness functions (Martin, 2014; Schneemann, De Sanctis, et al., 2020), and in these latter
cases, only a few, if any of the n traits, need to be identified with real quantitative traits that
might be measured in the field. Results can also be applied if fitness declines more rapidly with
distance from the optimum. For example, if Inw = — ||z — o||* (Fraisse, Gunnarsson, et al., 2016;
Fraisse and Welch, 2019; Simon et al., 2018) then results below could be applied directly to the
scaled log fitness (—Inw)%/* = ||z — o||>.

2.2. Characterizing parental divergence, and describing hybrids.

We will consider hybrids between two diploid parental populations, denoted P1 and P2. We
will assume that individuals in these populations vary at D biallelic loci, and that the allele fre-
guencies might vary between populations, which includes the case when an allele is fixed in one
population and absent in the other. If we (arbitrarily) choose one allele at each locus to be the
focal allele, then the frequency of the focal allele at locus i = 1, ..., D is denoted as gp1,; (gp2.i)
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in population P1 (P2). We now make the key simplifying assumptions that (1) there are no sta-
tistical associations between alleles within the parental populations, so that both P1 and P2 are
at Hardy-Weinberg and linkage equilibrium at all D loci, and (2) there is no phenotypic epistasis
between the allelic effects.

With these assumptions, the differences in the trait means between P1 and P2 can be writ-
ten as the sum of contributions from each of the D loci. As such, for any trait j = 1, ..., n, the
difference in trait means can be written

D

(2) Zpoj — Zp1j =2 Ajj
i—1

where the factor 2 follows from diploidy. A simple consequence of eq. 2 is that the phenotypic
differentiation between the parental populations can be described as a chain of effects in n-
dimensional phenotypic space. Figure 1A shows an illustrative example with n = 2 traits, affected
by changes at D = 5 loci. Here, the black arrows represent the 2A;;, connecting the trait means
of P1 and P2, or the centroids of the clouds of points that would represent the two parental
populations. Each 2A;; describes the diploid effect on trait j of changing the allele frequency at
locus i from gp;.; to gp2 ;.

We can also relate the Aj; to the parental allele frequencies and the size of the phenotypic
effect, as represented by the Fisherian average effect of a substitution (e.g. Lynch and Walsh,
1998, Ch. 4). In particular, we show in the Methods that

(3) Ajj = @i (gpr2,i — qp1,i)

where a;; is the average effect of a substitution at locus i on trait j (e.g. Lynch and Walsh, 1998,
eq. 4.10b), averaged across the two parental populations.

When there is phenotypic dominance (Lynch and Walsh, 1998, Ch. 4, Schneemann, Mun-
zur, et al., 2022) we also need to account for the dominance deviations associated with allele
frequency changes. We can do this by considering the mean phenotype in the initial F1 cross
between P1 and P2, in which all loci in all individuals carry one P1-derived allele and one P2-
derived allele. We show in the Methods that the difference in trait means between the F1, and
the two parental populations can be written as

D

(4) Zr1j— 2p1j = D A+ Ay
i—1
D

(5) Zpoj — ZF1j = ZAU —Aj
=1

where

(6) Ay =6 (gp2,i — qp1,i)’

and 5,-J- is the dominance deviation of a substitution at locus / on trait j averaged across the two
parental populations. The differences between the parental and F1 trait means can also be repre-
sented as chains of effects, and this is illustrated by the red and blue arrows in Figure 1A. More-
over, we can separate out the additive and dominance effects by considering the differences
between the F1 and the midparental mean phenotypes, defined as z., j = (Zp1; + Zr1,)/2.
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(7) Zmpj — ZP1j = ZP2j — Zmpj = 3 (ZP2j — ZP1j) = D Aj

D
(8) Zr1j = Zmpj = D Ajj

The two resulting chains are illustrated in Figure 1B.

The arguments above for the F1 cross generalize to an arbitrary hybrid (say, an F2 or a back-
cross). Hybrid genomes can be characterized in a number of different ways. In the main text,
we will consider results for crosses, assuming free recombination among the D loci, and that no
linkage disequilibrium has accumulated due to selection on early generation hybrids (see Lynch
and Walsh, 1998 Ch. 9, and Schneemann, De Sanctis, et al., 2020 for some generalizations). In
this case, hybrid genomes can be described solely in terms of their hybrid index, h (defined as
the probability that a randomly chosen allele in the hybrid derives from parental line P2), and
their inter-class heterozygosity, p;» (defined as the probability that a randomly chosen locus car-
ries one allele of P1 origin and one allele of P2 origin). Results in the main text treat h and p;»
as probabilities determined by the crossing scheme, and which apply to all loci independent of
their allelic effects. In Appendix A we report equivalent results for sequenced genomes with
known patterns of ancestry, such that h and p;» are known proportions. In either case, our aim
is to calculate the expected fitness of a hybrid, conditional on h and p;5. When we take expecta-
tions, they will be over the particular loci that are in any given ancestry state. We then determine
how this result depends on properties of the additive and dominance effects. These will be col-
lected in D x n - dimensional matrices, denoted A = (A;) and A = (Aj), and treated as fixed
observations, rather than random variables.

2.3. Expected log fitness of a hybrid.

Given the model described above, the expected log fitness of an arbitrary cross can be de-
termined from the expected means and variances of its n traits.

E(lnwy) = ZE(ZHJ )i )

(9) = - Z E*(z4j — 0j) — >_ Var(zu,)
=

j=1
In the Methods, we show that each of the two terms in eq. 9 can be written as the sum of

six terms, weighted by the same six combinations of h and p;5. All 12 of these terms are shown
in Table 1, where we introduce the notation

(10) Vp1 ZVar Zp1J Vp2 ZVar ZPQJ \/|:1 = ZVar (ZFl,j)
Jj=1

to denote the sum of the phenotypic variances over the n traits in a given population. We
also introduce two new functions of D x n - dimensional matrices

(11) m(x,y) = 2”: (Z
D

D
)
j=1 \i=1 i=1
n
X,

(12) M(x,y) =Y xiyi
j=1i=

whose meanings we discuss below. The expected log fitness of any hybrid with a given value of
h and p15 (eq. 9) is equal to the sum of the twelve terms in the second and third columns of Table

D
1
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(A) (B)

Zpy
0
Zg J
o~ / o~
S —
—> 2A;
---- ZZAi
—> At —> A
2Pl o zAi+Ai s zA,
—> A-N —> N
e YA, DY
trait 1 trait 1

Figure 1 - The key quantities that determine hybrid mean log fitness under Fisher’s
geometric model. The fitness of any given phenotype is determined by its distance from
some optimum phenotype, as determined by the current environment. This optimum
and fitness landscape is illustrated, for n = 2 traits, by the cross and contour lines. (A):
The diploid parental populations, P1 and P2, are each characterized by mean phenotypic
values, zp; and zp,, and the difference between these points are due to allele frequen-
cies changes at D = 5 loci, each affecting one or more of the traits. The diploid changes
associated with each locus are represented by the black arrows, whose components are
denoted 2A;; for the diploid change to the j* trait due to the i*" locus. The model al-
lows for phenotypic dominance, so that the differences between the trait means of the
parents, and the initial F1 cross, also involve dominance effects, denoted as Aj; for the
change to the j* trait due to the i*" locus. (B): the additive (black) and dominance (purple)
effects can also decomposed into chains of differences linking the P1 or F1 trait means
to the mid-parental trait mean (zn, = %(ipl + Zpy)). The mean log fitness of an arbitrary
hybrid is affected by the total amount of evolutionary change (the sum of squared lengths
of the arrows in a chain), and by the net effect of the evolutionary change (the squared
lengths of the dotted lines). See text for full details.

1, as weighted by their coefficients in the first column. Examining these terms, it follows that the
expected log fitness depends on both properties of the parental populations (see top two rows
of Table 1), and properties of the initial F1 cross (see third row of Table 1), plus properties of the
additive and dominance effects, as captured by the functions m(-, -) and M(-, -) (see the bottom
three rows of Table 1).

Now, let us note that, given the quadratic fitness function of eq. 1, the mean fitness of individ-
uals in parental population P1 is given by In wp; = In w (Zp1, 0) — Vp;. As such, we can combine
the terms in each row of Table 1, to yield:
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Table 1 - Components of expected log hybrid fitness

Coefficient — 37 E? (z4 — o)) —> 7 Var (zu,)
1—h |nW(ip1,0) —Vp1
h In W(ipg,o) —Vp2
pi2 Inw(zg1,0) — %(Inw(ipl,o)—i-ln w (Zp2, 0)) —VF1+%(VP1+ Vp2)
4h(1 — h) — p12 m(A,A) —M(A,A)
p12(1 — p12) m(A, A) —M(A, A)
2p0o(1—2h) m(A,A) _M(A, A)

E(|nWH):m
(3 9) (s o)

+ P12 (W - W>

+ (4h(1 — h) — p12) (m (A, A) — M (A, A))

+ p12(1 = pr2) (m(A,A)— M(A, A))
(13) +4p12 (3= h) (m(A,B)— M(A,A))

Here the overbars denote the expected fitness of randomly chosen individuals, either from
a single population (subscripts P1, P2 or F1) or from the two parental populations at random

(subscript P, such that In wp = (In wp1 + In sz) /2).

Note that the first three terms of Equation 13 all depend on the current position of the en-
vironmental optimum, and so they capture the extrinsic or environment-dependent component
of hybrid fitness. These terms depend solely on the mean log fitnesses of parental and F1 popu-
lations. By contrast, the second three terms depend only on the A and A - i.e. on the genomic
differences accrued by the parental populations, but not on the current position of the environ-
mental optimum. As such, these three terms capture the intrinsic, or environment-independent
component of hybrid fitness. Note that fixed differences and shared polymorphisms contribute
in identical ways, as long as the A and A are correctly defined (egs. 3 and 6).

We note that the partition of the term shown in eq. 13 is not unique, because it includes
the within-population trait variances within the extrinsic terms (Table 1). However, eq. 13 does
correspond closely to the partition of Hill, 1982, showing that all of the terms, including the
quantities M(-,-) — m(-, -) are estimable as composite effects by standard quantitative genetic
methods (Lande, 1981; Lynch, 1991; Lynch and Walsh, 1998, Ch. 9; Clo et al., 2021; Rundle and
Whitlock, 2001; Schneemann, De Sanctis, et al., 2020). Moreover, even the separate contribu-
tions of the trait means and variances, i.e. the separate functions M(-, -) and m(-, -), are estimable
under some conditions. This is clearest if the dominance effects are negligible (see Schneemann,
Munzur, et al., 2022 for a discussion). In that case, all terms containing the A vanish, and the F1
trait means and variances are equal to the midparental values. As a result, Table 1 simplifies to
Table 2, implying that M(A, A) and m(A, A) can be separately estimated.

Table 2 - Components of expected log hybrid fitness with additive phenotypes

Coefficient — 37 E?(zy —0) —>_[_; Var(zn)

1—h In W(ipl, 0) —Vp1
h In W(Zpg, 0) —Vp2
p2 O M(A,A)
4h(1—h) m(A, A) —M(A,A)
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Even when dominance effects are non-negligible, some of the individual function values can
be estimated, if fitness measurements are made in environments to which the parental popu-
lations are well adapted (Rundle and Whitlock, 2001). For example, if the mean phenotype of
P1 is optimal (zp; = o), then from Table 1 and egs. 1, 3 and 11, the log fitness of the mean P2
phenotype is In w(zp,,0) = Inw(zpy, Zp1) = — ||zp2 — 2P1H2 = —4m(A, A). A set of equivalent
results for population mean log fitness is shown in Table 3.

Table 3 - Population mean log fitnesses in different environmental conditions

Env. conditions In wp; In wpy In wep
Zp1 =0 —Vp1 —4m(A, A) — Vpo —m(A + A A+ A) - VR
ipg =0 —4m(A, A) — Vp1 —sz —m(A — A, A — A) — VFl
iFl =0 7m(A+A,A+A)* Vp1 7m(A7A,A7A)7 Vp2 7V|:1

If we also note the following identities:
mA+AA+A)=m(AA)+m(A A)+2m (A, A)
(14) mA—-—AA-—A)=m(A A)+m(A A)-2m(A, Q)

then it follows that the quantities m(A, A) and m(A, A) can be estimated from reciprocal trans-
plant experiments in habitats to which the parental populations are well adapted (i.e. habitats
where zp; = 0 and zp, = 0). Moreover, the remaining function, m(A, A) can be estimated either
with genetically homogeneous parental lines (i.e., if Vp; = Vpo = V&1 = 0), or with data from a
third environment in which the F1 shows bounded hybrid advantage such that zg; =~ o.

2.4. Interpreting the functions m(-, -) and M(-, -).

In the previous section, we saw that genomic differences between populations influence the
mean log fitness of their hybrids solely via the functions m(-,-) and M(-,-), as applied to the
additive and dominance effects (A and A). We also saw that the value of these functions can,
in principle, be estimated from hybrid fitness data. In this section we show that these functions
have a simple interpretation, which can be related to the divergence history of the populations.

It follows from eqgs. 11 and 12, that m(-,-) and M(,-) can be interpreted on a trait-by-trait
basis, as the sum over the means and variances of the changes on each trait. However, it can
also be helpful to consider the overall size of changes in multi-dimensional trait space, i.e. the
arrows depicted in Figure 1.

To see this, let us begin by noting that the function m(-, -) captures the net effect of evolution-
ary change. For example, for the additive effects, from egs. 7 and 11 we find:

2

1,
(15) m(A,A) = = lzp2 — Zp1?

D
A
i

so that m(A, A) will be large if the evolutionary divergence between P1 and P2 led to their evolv-
ing very different phenotypes. By contrast, m(A, A) will be small if, due to compensatory changes
at different loci, the evolutionary divergence led to little net change in phenotype. Analogous
arguments apply to the dominance effects, where, from eqgs. 8 and 11, the function m(A, A)
describes the distance between the F1 and midparental phenotypes.

2

(16) m(A, A) = = ||Zmp — ZF1|?

D
>a
i

Finally, for the interaction term, we use eq. 14 from which it follows that

(17) m(A, A)=Im(A+AA+A)—Im(A-AA-AD)

(18) =1|ZF1 — zp|° — TlZe — Zpo?
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The interaction term can therefore be negative or positive, and it tells us whether the net
effect of the evolutionary change has led to the F1 more closely resembling one or other of the
parental populations.

If the function m(-, -) describes the net effect of evolutionary change, the function M(,-),
describes the total amount of evolutionary change. For example, from eq. 12 we have:

D
(19) M(AA) =3 (Al

D T 1oV (A
(20) =<ZIIA,-||> X P
=1

where ||A;|| is the length of an individual black arrow in Figure 1B, and CV/(-) is the coefficient
of variation among the complete set of D lengths, i.e. their standard deviation divided by their
mean. It follows that M(A, A) will be large if there was a large amount of evolutionary change,
i.e. if there were changes at many loci, and the changes were individually large. This applies
regardless of whether or not the changes at each locus were compensatory, such that there was
no net change in phenotype. Equation 20 also clarifies the roles of large- versus small-effect
changes. It implies that for a given amount of phenotypic change (i.e. a given value of the first
factor in eq. 20, or a given length of the chain of black arrows in Fig. 1B), M(A, A) will be larger
if the changes were fewer (lower D) and more variable in size (higher CV (||A;]])).

All of the arguments above also apply to M(A, A), which concerns the chain of dominance
effects; while for the interaction term, we use results analogous to eq. 14 to show that

M(A,A)=IMA+AA+A)— tMA-AA-A)
D D
2) = E 2 IIA AP = T IA - AP

So eq. 21 will be positive if the red arrows in Figure 1A tend to be longer than the blue arrows,
and vice versa. This is equivalent to asking whether the alleles that are more common in P2 tend
to be phenotypically dominant. M(A, A) will be positive if P2 alleles tend to be phenotypically
dominant, and negative if they tend to be phenotypically recessive.

The comments above shed light on the functions m(-, -) and M(-, -) individually, but eq. 13
depends on the difference between them, and this difference has its own natural interpretation.
To see this, let us use eqgs. 15 and 19, to show that:

D D D
m(A, A) — M (ZA Ai+> > A Ak)—ZA,--A,-

i=1 k=1,k#i

D D
(22) => > A

i=1 k=1,k#i
(23) =(D-1) M(A,A) - Z Z [1A; = Al®
i=1 k=i+1
D D
(24) =2 > lIAllllAkll cos(6a;,4,)
i=1 k=1,k#i

So this quantity can be interpreted in two ways. Equation 23 uses the relationship between
the dot product and the squared Euclidean distance to show that m(A, A)—M(A, A) is a measure
of the similarity of the evolutionary changes at different loci (Schneemann, De Sanctis, et al.,
2020); it take its largest value when changes are identical at all loci (i.e. when ||A; — Ax|| = 0 for
all i and k), but the quantity becomes smaller and negative as the effects become more different.
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Similarly, eq. 24 is a generalized cosine law, and uses 64, 4, to denote the angle between the
ith and the kth vectors of change (see top right of Figure 1B for an illustration). This implies
that cos(¢) = 1 when the additive effects at two loci point in the same phenotypic direction
(such that & = 0); similarly, cos(§) = 0 when the vectors are orthogonal (e.g., altering the values
of different traits); and finally, cos(f) = —1 for effects that act in opposite directions. It follows
that the difference m(-, -) — M(-, -) quantifies the tendency for evolutionary changes at different
loci to act in the same phenotypic direction. It is therefore a measure of the directionality (or
conversely meandering) in the chains of evolutionary changes.

Again, the same argument applies to the chain of dominance effects (m(A, A) — M(A, A)).
Finally, for the additive-by-dominance interaction, by analogy with eq. 24, we can write

D D
(25) m(A,A) = M(A,A)=>" > [|Aj]l||Ak][cos(0a; a,)
i=1 k=1,ki

So that the interaction term measures the tendency for additive and dominance effects at
different loci to point in the same phenotypic direction.

2.5. How does directional selection affect the total amount and net effect of evolutionary
change?.

In the previous section we showed that the functions m(-,-), M(-,-) and the difference be-
tween them, m(-,-) — M(-,-), each have a natural interpretation. In the next two sections, we
show how these quantities vary with the history of divergence between the parental lines (sum-
marizing the results in Table 4).

We will begin with divergence under directional selection. To supplement verbal arguments,
we use illustrative simulations of adaptive divergence under Fisher's geometric model. Full simu-
lation details are given in the Methods, but in brief, we used individual-based simulations, start-
ing with a pair of identical and genetically uniform parental populations, which then evolved in
allopatry to different conditions of environmental change, i.e. different positions of the pheno-
typic optimum (Chevin et al., 2014; Schneemann, De Sanctis, et al., 2020; Yamaguchi and Otto,
2020). While multiple variants could segregate during the simulations, the A and A values were
calculated only for fixed differences between the populations. This means that we could avoid
complications from linkage disequilibrium, which we did not treat analytically, but also implies
that the analytical results apply to cases that we did not simulate.

The first set of simulations, summarized in Figure 2, involved six different divergence scenar-
ios, illustrated by the cartoons in the left-hand panels. In scenarios I-lll, both populations adapted
to distant optima at a distance ||zanc — 0|| = \/1/2 from their shared ancestral phenotype (such
that their initial fitness was exp(—1/2) ~ 60% of its maximum value). The sole difference between
scenarios I-1ll is the relative positions of the optima experienced by each population. In scenario
I, the two optima moved in identical ways, so that this scenario corresponds to mutation-order
speciation (Mani and Clarke, 1990). In scenarios lI-1ll, the two optima differed, so that these sce-
narios correspond to divergent selection and local adaptation (Schluter, 2000); in scenario Il, the
optima differed on different traits, while in scenario Ill, the optima differed on the same trait, but
in opposite phenotypic directions. Finally, scenarios IV-VI corresponded to scenarios I-lll, but
with both bouts of adaptive substitution taking place in population P2, while P1 retained their
common ancestral phenotype. This meant that P2 adapted to two successive changes in envi-
ronmental conditions (i.e. two changes in the position of its optimum). After the initial bout of
adaptation in P2, its optimum either jumped back to its initial position (scenario 1V), or changed
on a different trait (scenario V), or jumped again in the same phenotypic direction (scenario VI).
Panels A-l of Figure 2 summarizes the results of 100 replicate simulations under each of these
six scenarios, after D = 50 substitutions had occurred.

2.5.1. Additive effects. Results for the simulated additive effects are shown in Figure 2A-C. Fig-
ure 2A shows that the total amount of evolutionary change, M(A, A), was identical under all six
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Figure 2 - The history of directional selection affects the total amount and net effect of
evolutionary change. lllustrative individual-based simulations of divergence between al-
lopatric populations, driven by directional selection. Simulations used six distinct scenar-
ios of divergence, illustrated via their net additive and dominance effects in the cartoons
in the left-hand panels. In these panels the lighter (darker) arrows illustrate the evolution-
ary changes fixed in the P1 (P2) lineage. The larger arrows show the additive effects (all
defined in the direction from P1 to P2), and the smaller arrows the dominance effects.
The ancestral phenotype is shown by an empty black circle. Scenarios are I: both popula-
tions adapt to the same distant optimum; Il: each population adapts to shifted optimum
on a different phenotypic trait; lll: each population adapts to a shifted optimum on the
same trait, but in opposite phenotypic directions; IV: P2 alone adapts to an optimum
that shifts in one phenotypic direction, and then shifts back to its initial position; V: P2
alone adapts to an optimum that changes on one trait, and then on another; VI: P2 alone
adapts to an optimum that shifts twice in the same phenotypic direction. (A)-(1): Boxes
represent results for 100 replicate simulations (median, quantiles and full range), each
including n = 20 traits, and halted after D = 50 fixations. The quantities shown match
those in Tables 1 and 3. The quantities vary predictably between the six scenarios, and in
different ways for the additive and dominance effects (see text). Simulation parameters
were N = 1000, n = 20, and U = Smy: = 0.01.

scenarios. This is because all scenarios involved two bouts of adaptive substitution under equiv-
alent conditions; as such, they led to the same total amount of change, regardless of how the
changes were distributed among the traits and the diverging populations.

Figure 2B shows the net effect of the evolutionary change, m(A, A). This quantity is propor-
tional to the squared distance between the parental mean phenotypes (eq. 15). So when pop-
ulations are well adapted to their optima, m(A, A) will be proportional to the squared distance
between these optima. This explains the observed results of m(A, A) ~ 0 for scenarios | and 1V,
m(A, A) = 2||zanc — 0||?/4 = 0.25 for scenarios Il and V, and m(A, A) ~ ||2(zanc — 0)||?/4 = 0.5
for scenarios Ill and VI.
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Figure 2C combines results from Fig. 2A-B, to quantify the directionality in the chain of ad-
ditive effects that differentiate P1 and P2. From eq. 24, this value will be positive if the effects
mostly point in the same direction, such that cos(#) ~ 1 holds for most pairs of changes. This
occurs under scenarios Il and VI, where most of the additive effects point from the P1 pheno-
type to the P2 phenotype. Results are also positive, but around half as large, in scenarios Il and
V, since cos(#) ~ 1 for half of the pairs of changes and cos(6) ~ 0 for the other half. By contrast,
when natural selection tends to return the chain of additive effects to its starting point, as in
scenarios | and IV, then cos(0) < 0 will hold on average, leading to a negative value.

All of the quantitative results above will, of course, vary over time (as more divergence ac-
crues), and with the various parameters of the model. For example, previous work has shown that
populations often approach their optima more efficiently if the number of traits under selection,
n, is small, because mutations tend to have fewer deleterious pleiotropic effects (e.g. Chevin et
al., 2014; Matuszewski et al., 2014; Orr, 1998; Welch and Waxman, 2003). This is confirmed in
Figure 3A, which shows results for scenarios lI-1ll as a function of the divergence, D. When we re-
duced the number of traits from n = 20 to n = 2 populations approached their optima much more
rapidly. Figure 3B shows how the relative sizes of M(A, A) and m(A, A) change with the diver-
gence. In the initial stages of divergence, as the distant optima are approached (see Fig. 3A), the
additive effects point in a consistent direction, and so the ratio decreases. More quantitatively, it
follows from eq. 20 that if the changes at each locus act in the same direction, then the first term
of eq. 20 will equal m(A, A). If these changes are also similarly sized (such that CV (||A;]|) = 0),
then M(A, A)/m(A, A) ~ 1/D should hold. This prediction - indicated by the grey line in Figure
3B - does hold approximately for scenario Ill when n = 2 (solid red line in Figure 3B), while
the optimum remains distant. The decline is slower than 1/D (implying a less direct approach to
the optimum), when populations fixed deleterious pleiotropic effects (n = 20; dashed red line),
or when the position of the ancestral phenotype led to effects acting in different phenotypic
directions (scenario Il; green lines). The decline also slows as the optimum is approached, and
populations begin to fix alleles of smaller effect (thereby increasing CV (||A;]]); Orr, 1998). In all
cases, the ratio M(A, A)/m(A, A) starts to increase after the optimum is reached, when evolu-
tionary changes continue to accrue, but without much net phenotypic change (Schiffman and
Ralph, 2021).

2.5.2. Dominance and interaction terms. Results for the simulated dominance effects under the
six divergence scenarios are shown in Figure 2D-F. For the total amount of evolutionary change
(M(A, A); Fig. 2D), results are indistinguishable, just as they were for the additive effects (Fig.
2A). By contrast, results for net effect (m(A, A); Fig. 2E) are qualitatively different, and so - in
consequence - are results in Fig. 2F.

The key fact here is Haldane's Sieve - the tendency for directional selection to preferen-
tially fix alleles that are dominant in the direction of past selection (Crnokrak and Roff, 1995;
Frankham, 1990; Haldane, 1924, 1927; Schneemann, Munzur, et al., 2022), especially when
adaptation takes place from new mutations, rather than standing variation (Orr and Betancourt,
2001). This means that dominance effects reflect the history of past selection in a different way
to the additive effects.

The result is that for scenarios | and VI, all of the dominance effects point in a consistent di-
rection (from the ancestral state to the new optimum); leading to large net changes in phenotype
(i.e. to large m(A, A); Fig. 2E) and to large positive values of m(A, A) — M(A, A) (Fig. 2F). By
contrast, for scenarios lll and IV, the dominance effects point in opposite directions (half towards
one new optimum, and half towards the other), leading to a small values of m(A, A) (Fig. 2D)
and weakly negative values of the difference m(A, A) — M(A, A) (Fig. 2F).

Finally, results for the additive-by-dominance interactions are shown in Figure 2G-I. Unlike
terms involving additive or dominance effects alone, the interaction terms tell us whether the
two populations have evolved in different ways (egs. 18, 21 and 25). As such, it is unsurprising
that all of these terms are close to zero for scenarios I-lll, where both populations underwent
similar amounts and patterns of evolution. By contrast, for scenarios IV-VI, P2 alone adapted
to a distant optima, and did so via dominant substitutions. It follows that, for these scenarios,
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Figure 3 - The net effect and total amount of evolution change predictably during direc-
tional selection. Panels show (A): the net effect of evolutionary change in the additive
effects, m(A, A).and (B): the ratio of the total amount to the net effect, M(A, A)/m(A, A),
both plotted as functions of D, the number of substitutions that have accumulated. Re-
sults are compared for different numbers of phenotypic traits, namely n = 2 (solid lines)
and n = 20 (dashed lines), and for two scenarios detailed in Figure 2. All curves repre-
sent means over 100 replicate simulations, with shaded areas representing one standard
deviation. The grey curve in (B) shows the prediction of M(A, A)/m(A, A) =~ 1/D, which
holds when the additive effects at each locus are identical (eg. 20). Other simulation pa-
rameters matched Figure 2 (N = 1000 and U = 5, = 0.01).

the P2 alleles tended to be phenotypically dominant, leading to M(A, A) > 0; eq. 21; Fig. 2G).
If the parental populations differ phenotypically (scenarios V-VI), then the F1 will more closely
resemble the population carrying the dominant alleles (m(A, A) > 0; eq. 18; Fig. 2H). The result,
shown in Figure 2I, is that the additive and dominance effects at different loci tend to point in
opposite directions for scenario IV (for which m(A, A) — M(A, A) is weakly negative), but in the
same phenotypic direction for scenarios V-VI (for which m(A, A) — M(A, A) is positive).

2.6. How does stabilizing selection affect the total amount and net effect of evolutionary change?.

Now let us turn to evolution under stabilizing selection. The arguments in this section are
illustrated by simulation results shown in Figure 4. In these simulations, the optima for both
populations remained stationary and identical, matching their common ancestral phenotype. As
such, any evolutionary change was due to the drift-driven fixation of mildly deleterious muta-
tions, combined with compensatory changes.

2.6.1. Additive effects. The first key point about stabilizing selection is that the net phenotypic
change, m(A, A), will reach a stochastic equilibrium, reflecting the deviations of the populations
from the optimum due to mutation and drift. Barton (2017) showed that, with independent loci
but otherwise very general assumptions, the expected log fitness under stabilizing selection on n
traitsis ~ —n/(4N,) (see also Chevin et al., 2014; Hartl and Taubes, 1996; Lande, 1976; Lourenco
et al., 2011; Poon and Otto, 2000; Roze and Blanckaert, 2014; Tenaillon et al., 2007; Zhang and
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Hill, 2003). Now, if the two populations are maladapted in random phenotypic directions (such
that their displacements from the optimum are orthogonal on average; Schneemann, Munzur,
et al., 2022), then it follows from egs. 1 and 15, that

E(m(A,A)) = —3 (E(Inwp1) + E (In wpy))
(26) ~ n/(8N)

where N, is the harmonic mean of the two effective population sizes. This result is confirmed by
simulations reported in Appendix B as shown in Supplementary Figure B.1.

While the net effect of change is determined largely by n and N,, the total amount of change
will depend on the size of mutations that fix (as determined by the distribution of scaled selective
effects: N.s). Evolutionary changes will continue to accrue even after m(A, A) has equilibrated
(Schiffman and Ralph, 2021), so that M(A, A) will increase over time at a constant rate. The result
is illustrated by the solid blue lines in Figure 4A-D, which show that m(A, A) — M(A, A) declines
steadily under stabilizing selection.

2.6.2. Dominance and interaction terms. The evolution of dominance effects under stabilizing
selection is more complex, and sensitive to the underlying model of mutation. For this reason,
some of the discussion is relegated to Appendix B, while here we report the clearest patterns.

Figure 4A-B show results with the mutation model used in Figure 2, in which each new muta-
tion was equally likely to be phenotypically recessive or phenotypically dominant. In this case, we
found that m(A, A) ~ M(A, A) at all levels of divergence (dashed red lines), because m(A, A)
and M(A, A) both increased with D, but at identical rates. The reason is that, unlike the addi-
tive effects, the dominance effects are not expressed together in the parental genotypes during
the divergence process, and so unlike the additive effects, the dominance effects show little ten-
dency to be coadapted to their optimum, but are free to wander in phenotypic space (Schnee-
mann, De Sanctis, et al., 2020; Schneemann, Munzur, et al., 2022).

Figure 4C-D shows comparable results when we adopted the mutational model of Schnee-
mann, Munzur, et al. (2022), in which larger effect mutations were more likely to be phenotypi-
cally recessive (Billiard et al., 2021; see Appendix B for full details). Now, as shown by the dashed
red lines, m(A, A) — M(A, A) decreases over time. This is because both M(A, A) and m(A, A)
increase with D, but at different rates. This implies that the dominance effects, too, have a ten-
dency to be coadapted to the optimum. The explanation is clear if we consider the extreme case
of complete phenotypic recessivity. In that case, the additive and dominance effects of muta-
tions would be equal and opposite (such that the heterozygous effects were zero). As such, the
apparent “coadaptation” of the dominance effects would follow trivially from the coadaptation
of the additive effects (see Appendix B for more details). The dominance curves in Figure 4C-D
show this effect in less extreme form, so that m(A, A) — M(A, A) decreases with D, but slightly
less rapidly than m(A, A) — M(A, A).

Consider finally the interaction terms, shown by the dotted purple lines in Figure 4. As shown
in Figure 4A and C, the interaction terms are always close to zero when both populations un-
dergo similar patterns of evolution (in this case due to their identical population sizes). More
surprisingly, as shown in Figure 4B, with the standard model of mutation, results remain qualita-
tively unchanged when P2 remained in its ancestral state, while all of the evolution took place
in P1. The explanation is that, with this mutation model, the evolving population showed no
tendency to fix phenotypically recessive mutations - and recalling that, under this model, muta-
tions can be recessive for fitness, even if they are additive, or even dominant, for the phenotype
(Manna et al., 2011). By contrast, when mutations tended to be phenotypically recessive (Figure
4C-D) then M(A, A) becomes non-zero, and the interaction term becomes a reliable guide to
whether the recessive mutations were fixed more-or-less equally in both populations (such that
m(A, A) =~ M(A, A) =~ 0; Figure 4C), or mostly in P1 (m(A, A) — M(A, A) < 0; Figure 4D) or
in P2 (m(A, A) — M(A, A) > 0; not shown). Note that this signal would remain even after a
transient reduction in N, as long as a substantial number of phenotypically recessive mutations
were fixed during the bottleneck.
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Figure 4 - The net effect and total amount of evolution change predictably under stabi-
lizing selection. Each plot compares the amount of directionality in the additive effects
(m(A, A)—M(A, A); solid blue lines), dominance effects (m(A, A)— M(A, A); dashed red
lines), and the interaction term (m(A, A) — M(A, A); dotted purple lines), plotted against
the level of genetic divergence (D) under stabilizing selection to a stationary optimum. A-
B: results with the standard model of mutation (as in Figure 2), with all mutations equally
likely to be phenotypically recessive or dominant. C-D: results with biased mutation, in
which mutations of larger phenotypic effect were more likely to be recessive (see Ap-
pendix B). A and C: Both populations had identical population sizes of N = 100, so that
they accrued substitutions at a similar rate; B and D: We assumed that P2 remained in
the optimal ancestral state, while P1 (with N = 100) underwent all of the evolutionary
change. Lines and shaded areas represent the mean and one standard deviation across
200 replicate simulations. Other simulation parameters matched Figure 2 (n = 20 and
U = 5y = 0.01).

3. Discussion

This work has explored how the mode of divergence between parental populations impacts
the fitness of their hybrids. We have focused on expected hybrid fitness, and not the variance or
higher moments, and on results that apply to controlled crosses, where the measures of genome
composition (h and p1») are probabilities determined by the crossing scheme. However, as we
show in Appendix A, the results can also be applied to data of other kinds, e.g. when h and p1»
are estimates of ancestry from individual genome sequences. To generate simple, testable pre-
dictions, we have used a simple model of selection on quantitative traits introduced by Fisher
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(1930), but have extended and generalized previous work on this model, both by allowing for ar-
bitrary additive and dominance effects at each locus, and by accounting for segregating variation
within the parental populations.

Results show how the expected fitness of hybrids depends on only a handful of summary
statistics, which describe the evolutionary changes that differentiate the populations, and which
are described by the functions m(-,-) and M(-,-) (egs. 11-12). If the population genetic param-
eters, or the history of environmental change, influence the outcomes of hybridization (Chevin
et al., 2014; Schneemann, De Sanctis, et al., 2020; Yamaguchi and Otto, 2020), then they do
so via these quantities. The statistics, moreover, are estimable by quantitative genetic methods
(Clo et al., 2021; Hill, 1982; Lynch, 1991; Rundle and Whitlock, 2001; Schneemann, De Sanctis,
et al., 2020), and have a natural interpretation. In particular, m(-, -) represents the “net effect
of evolutionary change”, M(-,-) represents the “total amount of evolutionary change”, and the
difference m(-,-) — M(-, -) (which appears directly in eq. 13) represents the similarity of changes
at different loci (eqgs. 24-25; Chevin et al. (2014), Fraisse and Welch (2019), and Martin, Elena,
et al. (2007)). Applied to additive effects, m(A, A) — M(A, A), closely resembles an Qst-Fst
comparison (Whitlock, 2008).

It follows immediately from the results above that very different histories of evolutionary
divergence can yield identical patterns of hybrid fitness, as long as they lead to the same values
of m(-,-) — M(-,-). Nevertheless, we have shown that some information about the divergence
history is present in hybrid fitness data (Figure 2). These results are summarized in Table 4, which
contains the predicted signs of the key quantities that appear in the three final terms in eq. 13.

As is clear from Table 4, the simplest results concern directional selection. In particular, m(A, A)—
M(A, A) will tend to be positive only when the divergence between the parental lines was driven
by positive selection towards distinct environmental optima. The size of the term will depend
on further details of the adaptive divergence (Figure 3). It is maximized, for example, when all
allelic changes produced identical effects (eq. 23), and decreases in size if the adaptive change
is achieved via a circuitous route (e.g. because of deleterious pleiotropy, overshoots of the op-
timum, fluctuating environmental conditions, or maladapted ancestral states); and - for a given
amount of phenotypic change - the term decreases if the number of loci is smaller, and their
effects more variable in size (eq. 20; see also Chevin et al., 2014). Additional and complemen-
tary information about the divergence history is present in the dominance and interaction terms
(m(A, A) — M(A, A) and m(A, A) — M(A, A)). Due to Haldane’s Sieve (Haldane, 1924), domi-
nance effects will often point in the direction of past selection. For example, if one population
adapted to new conditions via dominant mutations, while the other remained in their shared
ancestral habitat, then we would expected both m(A, A) — M(A, A) and m(A, A) — M(A, A)
to be positive, as well as m(A, A) — M(A, A). It follows, therefore, that the analysis of hybrid
fitness might tell us not only about the presence of past directional selection (e.g. Fraser, 2020),
but also about the direction of that selection, and the lineage in which the adaptation occurred
(see Figure 2; Table 4).

If m(A, A)—M(A, A) is negative, then inferences about the evolutionary divergence are more
challenging, since negative values can arise in a number of different ways (see Figures 2 and 4
and Table 4). Nevertheless, even in this case, the dominance and interaction terms might yield
useful information. Consider, for example, a pair of populations with similar current phenotypes
and fitness, but which nonetheless produce unfit hybrids, due to m(A, A) — M(A,A) < 0. In
this case, an estimate of m(A, A) — M(A, A) ~ 0 would not be very informative, as it can arise
under stabilizing selection, fluctuating selection, or even directional selection if Haldane's Sieve is
weak (Orr and Betancourt, 2001). However, a strongly positive estimate of m(A, A) — M(A, A)
would be consistent with the populations having diverged via different genomic responses to
identical directional selection (Figure 2 scenario |). By contrast, if this dominance term were
negative, and the interaction term was also non-zero, then this would be consistent with one of
the populations having undergone prolonged periods of low N,, and fixing deleterious recessive
mutations (Figure 4D). The sign of the interaction term, m(A, A) — M(A, A), would then tell
us which of the two populations had experienced the low N.. Note that, from eq. 13 the result
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would be alleles from one parental line being selected against, despite the lines having equal
fitness (Barton, 1992).

A major caveat of all of the results presented here is the extreme simplicity of the phenotypic
model (with its lack, for example, of phenotypic epistasis, and directional plasticity; Stamp and
Hadfield, 2020). However, this model can be defended as an approximation of more complex
and realistic models (Martin, 2014), or simply as a way of generating a fitness landscape with
few parameters (Simon et al., 2018). In this case, as shown in Appendix A, we can follow Chevin
et al. (2014), and reframe our results in terms of fitness effects, rather than phenotypic changes.
Of course, even as a fitness landscape, the quadratic model of eq. 1 remains very simple, and
precludes strong fitness epistasis and multi-locus fitness interactions (Barton, 2001; Fraisse and
Welch, 2019; Martin, Elena, et al., 2007) - both of which are often observed in cross data (Coyne
and Orr, 2004; Fraisse, Elderfield, et al., 2014; Fraisse, Gunnarsson, et al., 2016). Yet even in the
presence of such effects, results might still apply to transformed fitness measurements (Fraisse,
Gunnarsson, et al., 2016; Schneemann, De Sanctis, et al., 2020; Simon et al., 2018).

A second major caveat is our neglect of linkage disequilibrium (Lande, 1981; Schneemann,
De Sanctis, et al., 2020), which is essential to studying the full dynamics of introgression. Never-
theless, even the current results have suggestive implications for the stability of local adaptation,
and the evolution of genetic architectures (Dekens et al., 2022; Yeaman, 2022). For example, the
dominance of alleles may be a major determinant of the effective rates of migration between
demes, and the possibility of allele swamping (Barton, 1992). Directional dominance, resulting
from local adaptation, may therefore act as a source of asymmetric gene flow between derived
and ancestral populations. Similarly, a body of previous work suggests that the architecture of
adaptation will be affected by the presence or absence of gene flow (as reviewed in Yeaman,
2022). In particular, adaptation in the face of gene flow should create architectures that are
more “concentrated’, i.e., involving fewer, larger effects, and tighter linkage. Combined with re-
sults here (eq. 20), this implies that ongoing gene flow during local adaptation might sometimes
increase the strength of resulting intrinsic RI.

4. Methods

4.1. Derivation of main result.

We assume that individuals from our two diploid parental populations, P1 and P2, vary at D
biallelic loci. We can arbitrarily choose one allele at each locus to be the focal allele, denoted B,
such that the other allele can be denoted b. Since loci are assumed to be independent, let us first
specify the genetic model for a single locus, following the standard conventions of quantitative
genetics (e.g. Lynch and Walsh, 1998, Ch. 4). Accordingly, we define the contribution of the bb
genotype to the trait j as 0, so that the point (0, 0, ..., 0) in n-dimensional trait space corresponds
to the individual with only bb genotypes at each of the D loci. The contribution of the Bb geno-
type on locus i to the trait j is defined as a;; + dj;, and the contribution of the BB genotype on
locus i to trait j is 2a;;. This is summarized in Table 5.

4.1.1. Properties of the three focal populations. Here we will specify properties of three key popu-
lations, namely the two parental populations, P1 and P2, and the initial F1 cross. Crucially, these
populations correspond to the three possible ancestry states of any given locus in the hybrid,
i.e. either both alleles are derived from P1, or both from P2, or there is mixed ancestry with one
allele derived from each population. Table 6 gives a list of fundamental parameters in our model
in each of these three populations.

Peer Community Journal, Vol. 3 (2023), article e6 https://doi.org/10.24072/pcjournal.226


https://doi.org/10.24072/pcjournal.226

Bianca De Sanctis et al.

Table 4 - Inference of divergence scenario from the signs of terms in eq.

13
Scenario Figure Additive Dominance Interaction
Neutrality, or erratically wandering optimum Fig. B.1 0 0 0
Divergent selection, acting only in P1 - + +1 =1
Divergent selection, acting only in P2 Fig. 2-V&VI + +1 +1
Divergent selection where both populations evolve in Fig. 2-ll + +1 0
similar phenotypic directions
Divergent selection where both populations evolve in dis-  Fig. 2-1lI + o0/-1 0
similar phenotypic directions
Stabilizing selection; most evolution in P1 Fig. 4B&D, and B.2-B.3 = 0/-2 0/-2
Stabilizing selection; most evolution in P2 - - 0/=2 0/+2
Stabilizing selection; evolution in both populations Fig. 4A&C, and B.1-B.3 = 0 0]
Cyclically moving optima Fig. 2-IV = o0/t 0
Independent genetic responses to identical directional se-  Fig. 2-I = +1 0

lection in both populations

Note: Additive: m(A,A) — M(A, A), Dominance: m(A, A) — M(A, A), Interaction:

m(A, A) — M(A, A);

1. Only if Haldane'’s Sieve acts.; 2. Weak without mutational bias towards phenotypically

recessive mutations.

Table 5 - The genotypic values for locus i/ and trait j

Locus / genotype Contribution to trait

bb 0
Bb ajj + d,'j
BB 28,'1'
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Table 6 begins by defining the marginal frequency of the focal (B) allele at locus i as gp1;
and gp» ; in populations P1 and P2 respectively. The marginal frequency of the B allele in the F1
population is the mean of the marginal frequencies in P1 and P2, denoted g;. By assumption, the
two parental populations are at Hardy-Weinberg equilibrium, but the F1 population will have an
excess of heterozygotes, which can be parameterized by a negative coefficient of inbreeding, f;.
The frequencies of the three possible genotypes at the locus, bb, Bb and BB, then follow from
standard results (e.g., Lynch and Walsh, 1998, egs. 4.21). The F1 genotype frequencies can also
be written in terms of the parental allele frequencies (for example, the F1 bb frequency is the
product of the marginal frequencies of the b allele in P1 and P2), which allows us to solve for
the inbreeding coefficient, as shown in the Table. The next lines of the Table follow standard
quantitative genetics (e.g. Cockerham, 1954; Fisher, 1930; Lynch and Walsh, 1998, Ch. 4) and
define the average effects and dominance deviations of an allelic substitution at the locus in
each of the populations (see, e.g., egs. 4.10b and 4.22 in Lynch and Walsh, 1998).

These are all of the results needed to derive eqgs. 3-6. Let us begin with the contribution to
the mean of trait j from locus i in populations P1 and P2. This is given by the sum of the three
genotype frequencies in the population, weighted by their trait contributions, as given in Table
5.

(27) Zp1,j = 2a5Gpy; + (a7 + dy) - 2qp1,i(1 — gp1)
(28) Zpo,jj = 2ajjqpy,; + (2 + di) - 2ap2,i(1 — gp2,i)

in populations P1 and P2 respectively. Equation 3 then follows immediately as

(29)  Aj = 3(2Zr2j — 2p1ij) = 523 (ap2,i — gp1.i) + 3dij (2gp2,i(1 — gpa,i) — 2qp1,i(1 — gp1.i))
= ajj (gp2,i — qp1,i) + dij (qp2,i — gp1,i) (1 — gp1,i — qpP2,i)
= (gp2,i — qp1,i)

where the mean average effect is defined as

(30) @jj = 3(ap1ij + apaj) = aj; + di(1 — gp1,i — gp2,)

Similarly, to derive eq. 6, we use the genotype frequencies for the F1 as shown in Table 6, to
yield the contribution of locus i to the mean of trait j in the F1

(31) Zr1,ij = 2ajiqp1,iqp2,i + (aij + dij)(gp1,i(1 — gp2,i) + gp2,i(1 — gpy1,i))

and so it follows that

(32) Ay =215 — 3(Ze2 + Zr1j) = 2aj; (%(CIPz,i + gp1,i) — 3(qp2,i + CIPl,i))
+ djj (qu,i(l — qp1,i) + qp1i(1 — gpa,i) — 5 (2ap2,i(1 — qp2,i) + 2gp1,i(1 — CIPl,i)))
= djj (gp2,i — gp1i)°
=85 (qp2,i — qp1,i)’

which is equation 6, and where the mean dominance deviation is simply

(33) SU = % ((5p1y;j + (5p2','j) = dj;

Having defined the mean trait values of each population, let us now consider their variances.
The contribution of locus i to the variance in trait j in population P1 is
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(34) Var (zp1,5) = E(2p1,;) — 21,
= (2a5)* q31; + (3 + dy)* - 2gp1,i(1 — qp1.;)
— (2aqp1; + (3 + dj) - 2qp1,i(1 — gp1,i))?
= a%l 7ap1i(1 = ap1i) + (2gp1,i(1 — gp1,i)5j)°
g ;(P1) + 05 ;(P1)

where we have partitioned the result into an additive variance and a dominance variance
term, as listed in Table 6, and following eqgs. 4.12 of Lynch and Walsh (1998). Similarly for P2,

(35) Var (ZP2,ij) = a|2>2 ap2,i(1— ap2,i) + (2gp2,i(1 — qp2,i)d;)?
=0 U(P2) + 05 U(P2)

and for the F1

(36) Var(zr1,j) = (280)2qP1 iqpai + (a5 + dij)(gp1i(1 — gp2.i) + gp2,i(1 — qp1.i))
= Oq, U(Fl) + gs, U(Fl)

which all agree with results in Cockerham (1954). So far, we have given the contributions of a
single locus to a single trait. The general results, found in Table 1, simply require summing over
alllocii =1,..., D and all traits j = 1, ..., n. That is, we can write the sums of trait variances for
P1, P2 and F1 as

n D n D

(37) Ver =) Y Var(zprj) =Y Y ( 05,i(P1) + a5, U(Pl))
j=1li=1 j=1i=1
n D n D

(38) Veo =) ) Var(zpy ) = Z( o2 i(P2) + 03 U(P2)>
j=1i=1 j=1i=1
n D n D

(39) Ver =303 Var(zey) = 3N ( o2 ;(F1) + o2 U(Fl))
j=1li=1 j=li=1

4.1.2. Extension to an arbitrary hybrid. Now, to derive the results found in Table 1 and eq. 13,
let us consider an arbitrary hybrid. Let us begin by parameterizing the hybrid’s genome using
the probabilities p1, p>» and p1», which are the probabilities that a randomly chosen locus in the
hybrid is in each of the three possible ancestry states. That is, p; is the probability that a randomly
chosen locus in the hybrid inherits both alleles from the P1 population, p, that it inherits both
alleles from the P2 population, and p;5 that it inherits one allele from each population (as with
all loci in the F1). It therefore follows that

(40) pr+p2+pr2=1
We also define the hybrid index

(41) h=p>+ ipi

as the probability that a randomly chosen single allele in the hybrid has P2 ancestry.
Using results in Table 6, it then follows that the probabilities of the BB and Bb genotypes at
a locus / in the hybrid are
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(42) Peg,i = p1p1; + P2Gpy,; + P12GP1,iGP2,i
= (1= h)gpy,; + hapy; — 3p12(qp2i — Gp1i)°

(43)  Psb,i = p12gp1,i(1 — gp1i) + P22qp2,i(1 — gp2,i) + p12 (gp1,i(1 — gp2,i) + qp2,i(1 — gp1,i))
=2(1— h)gp1,i/(1 — gp1,7) + 2hapa,i(1 — gp2,i) + pr2(gp2,i — qp1,i)?

so the overall marginal probability of the B allele is

(44) Pg,i = Pgg,i + 2 Pgb,i
= (1 — h)gp1,i + hgpa,;

We can now derive Equation 13. First, the contribution to the mean trait value for the hybrid
at locus / and trait j is

(45) Zn.jj = E(zn.ij) = p1Zp1,ij + P22Zp2,ij + P12ZF1,j
=Zzpy,;j + 2hA,‘j + p12A,-j

which can be seen by substituting in equations 29 and 32. Summed over the D loci, we have

D

D D
(46) E(ZH,j) = ZE(ZHJ'J') = 2p1, +2thij+P12ZAij
i=1 i=1 i=1

Let us now compute E(zy; — oj)z, which appears in the first term of eq. 9. It will first be
useful to define the intermediate variable

(47)

Kj = (1 h) (Zerj — 0))° + h(Zpaj — 9)° + pr2 ((?Fl,j -9)’ -3 ((?m,j —0))* + (Zp2 — 01)2))
2

D D D
= (?Pl,j — Oj)2 + 4h(fp1’j — Oj) Z Aij + 2p12 (?Pl,j — Oj) ( AU) + 4h (Z A,‘j)
i=1 i=1 i=1

(e -(E0) £ E2)

such that

(48)

n

— Z K;i = (1 — h)Inw (2Zp1,0) + hinw (Zp2, 0) + p12o(In w (ZF1, 0) — 3 (Inw (Zp1, 0) + In w (Zp2, 0)))

which corresponds to the sum of the top three rows for the squared mean term in Table 1.
Then we find by Equation 46,
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2

i=1 i=1

D D

=(2p1y — )" +4h(2p1, — o)) Y Aj +2p12 (Zpr; — 0))* D Ay
i=1 i=1

D D
(49) E? (ZHJ' — Oj) = <ZP1J —0j + 2hz A,’j + p12 Z A,’j)

D 2 D 2 D

+ 4h? (ZA,-J-> + pia <ZA,-,-> + 4hp1a <ZA,J> (ZA)
i=1 i=1 i=1 i=1

D 2 2

(50) = Kj — (4h(1 — h) — p12) (Z AU> — p12(1 — p12) (Z AU>
i=1
i—1

Summing over traits and using the deﬁnltlon of the function m(-, -) in eq. 11, we can see that

—iE2 (ZH’J' - Oj) = (1 - h)ln W(ipl,o) + hln W(ipg,o)

+ pra(in w (Ze1, 0) — % (Inw (2p1,0) + Inw (22, 0)))
+ (4h(1 — h) - P12)m(A, A) + p12(1 — p12)m(A, A) + 2,012(1 — 2h)m(A, A)

as given in the second column of Table 1.
The calculation for the variance follows in the same way, but is much more involved alge-
braically. The result, as shown in the third column of Table 1, is

n n D
(51) > Var(zy;) => > (2a;)*Pss,i + (aj + dij)*Pavi — (23;;Pes,i + (aj + djj) Pas,i)
=1 j=1i=1

1
= (1= h)Vp1 + hVpa + p12(VE1 + §(VP1 + Vp2))

+ (4h(1 = h) — p12)M(A, A) + p12(1 — pra)M(A, B) + 2p1a(1 — 2h)M(A, A)

where Vp1, Vp, and Vg are defined as in egs. 34-36, and the function M(-, ) is defined by eq.
12. The first equality follows from the definition of variance and the independence of loci. The
second follows by substituting variables as per their definitions above. Because the full proof
is rather lengthy, although straightforward, we provide a proof in the form of a Mathematica
notebook instead of writing it out here, available at https:/doi.org/10.5281/zenodo.7520470
(De Sanctis et al., 2023).

4.2. Simulations.

The illustrative simulations shown in Figures 2-4, calculated new quantities from runs re-
ported previously by Schneemann, Munzur, et al. (2022) (and which were themselves based
on the simulation methods reported in Schneemann, De Sanctis, et al., 2020). Simulations were
individual-based, and used pairs of allopatric (i.e. independently simulated) populations. The pop-
ulations followed the Wright-Fisher assumptions, and contained N simultaneous hermaphrodites,
with discrete non-overlapping generations. Every generation, parents were selected with a prob-
ability proportional to their fitness (as calculated from eq. 1) with n traits under selection. Ga-
metes were generated from the parental genomes with free recombination among all sites, and
mutation. For mutation, a Poisson-distributed number, with mean 2NU, of mutations were ran-
domly assigned to unique sites, and we set U = 0.01. The n homozygous effects for each new
mutation were drawn from a multivariate normal distribution with zero mean and no covariances,
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and a common variance set such that the mean deleterious effects of a mutation in an optimal
background was 5,,,,: = 0.01. The heterozygous effect of each mutation on each trait was set at
its homozygous effect multiplied by a beta-distributed random number, with bounds at 0 and 1
(corresponding to complete recessivity or complete dominance), a mean p = 1/2 (implying addi-
tivity on average), and a variance of v = 1/24 (Schneemann, Munzur, et al., 2022). After a total of
D substitutions had fixed across both populations, the two parental genotypes were chosen as
the genotypes containing only the fixed effects in each population. For Figures 2-3 one or both
populations adapted to a optimum at a distance /1/2 from its ancestral phenotype. In scenarios
I-11l, both populations in this way, while for scenarios IV-VI, we re-analysed the same simulations,
but we treated all substitutions as if they had occurred in P2 while P1 remained in their common
ancestral state. This was done by the contrivance of combining the first 25 substitutions accrued
in two simulated populations, ensuring, therefore, that the total amount of evolutionary change
was identical across all six scenarios. Scripts are in https:/doi.org/10.5281/zenodo.7520470 (De
Sanctis et al., 2023).

Appendix A. Results with homogeneous parental populations

In this Appendix, we show (1) how our results apply to data where the ancestry proportions of
the hybrid genome are known, and (2) how results can be expressed in terms of selective effects,
rather than phenotypic changes. In both cases, for reasons explained below, we will rely on the
additional assumption that parental populations are genetically homogeneous. In particular, we
will assume that the focal B allele is fixed in P2 but absent in P1, such thatall gp, ; = (1—gp1;) = 1.
It therefore follows from eqgs. 29 and 32 that the between-population differences at each locus
(egs. 7-8) correspond directly to the genotypic effects at that locus (Table 5) i.e.

(52) A,J = a,-j, and A,J = d,J if ap2,i = (1 — qu’,') =1

It will also be useful to rearrange the results shown in Table 1 so that they are expressed in
terms of the three probabilities p;, p» and p1» rather than the two probabilities h and p1» (see
eqs. 40-41). Accordingly, using egs. 11-12 and 40-41, and substituting in eq. 52 to account for
the genetic homogeneity of the parental lines, we have the result shown in Table 7.

Table 7 - Components of log hybrid fitness with homogeneous parental populations

Coefficient —> 7, E*(zy —0) —>[_; Var(zn)

p1 Inw(zpy,0) 0

p2  Inw(zpy,0) 0

P12 In W(ZFl, 0) 0
pipiz m(a+d,a+d) —M(a+d,a+d)
p2p1i2 m(a—d,a—d) —M(a—d,a—d)
pip2 m(2a,?2a) —M(2a, 2a)

Note that with homogenous populations, p1, p> and p;» are now the probabilities of the three
genotypes, bb, BB and Bb, as well as the ancestry states. Moreover, the arguments of the func-
tions M(-,-) and m(-, -) now correspond to the phenotypic effects of inserting single alleles in
either heterozygous or homozygous state into a fixed background.

A.1. Results with known ancestry proportions.

In the main text, we treated the quantities h and p1, (or equivalently, p;, p> and p;5) as prob-
abilities determined by the crossing scheme. However, for some data, the ancestries of hybrids
can be estimated directly from genome sequences. Moreover, if the parental populations are ge-
netically homogeneous (as assumed in Table 7), then the ancestry proportions for divergent sites
can be known with certainty. In this section, we show that our results also hold approximately
for such data.
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If p1, p» and p12 are known proportions, instead of probabilities, loci in the hybrid become non-
independent, but in a simple way so that results can be derived with basic combinatorics. For
example, given some D, p1»> and p», we can choose any Dp;; out of D sites to be heterozygous,
and any Dp, out of the remaining D(1 — pi2) sites to be homozygous for the allele from the
second parental population, so there will be a total of

( D ) (D(l - p12)> B D!
Dp12 Dpo> ~ (Dp1)!(Dp2)V(Dp12)!

possible hybrids, and by assumption, each has equal probability. In theory, one could write out
the complete discrete probability distribution function for the hybrid fitness over all possible
hybrids in a given situation. One can also compute arbitrary moments using the same indicator
function approach as detailed below (see also Chevin et al., 2014).

To calculate expected hybrid fitness, let J; be the subset of the D loci in the hybrid that are
homozygous for the P1 allele, J, be the subset of the loci that are homozygous for the P2 allele,
and J;, the subset of loci that are heterozygous. The sizes of these sets are then:

[h|/D=p1
(53) 2| /D = p2
|J12| /D = p12 = (1 — p1 — p2)
Since all divergent loci must be in one of these three states, any two of these sets can com-

pletely characterize the hybrid. We can therefore write the j-th trait value of an arbitrary hybrid
as:

(54) zuj=2zp1j+ Y 23+ Y (a5 + dj)
ich i€z

Let us now drop the subscript j for brevity, and calculate the expected squared deviation of
the trait value from its optimum:

2
E((ZH'J' — OJ')2) = E((ZH — 0)2) =33 (Zpl —0+2 Z aj + Z (ak + dk))

i€t k€2

2 2 2
:E<(2p1—0)2+4(23,-) +(Z a,-) —1—(2 d,-)
i€ i€k i€ ho

+2(zp1 — 0) (2 Z a; + Z (ak + dk))

i€t keJiz

(55) +2Za;2dk+4Za;Z(ak+dk)>

i€ ke i€t ke

In these expressions, the expectations are not over the additive and dominance effects, but
over the particular set of loci that are homozygous and heterozygous in the hybrid. That is, they
are over the sets J,, and J;». To obtain expectations over these sets, we define indicator func-
tions.

IJ(i)_{lifiej

0 otherwise

Using x and y as placeholder variables, we can then use these functions as follows:
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IGJ i=1 =1
= XD:X P(i e J) El ZD:
= . i = D i
i=1 i=1
J|
= DSX

where |J| is the size of the set. We have introduced the notation

D
SXJ = in'j
i=1

Let us also introduce

D
Si =D XijYij
i=1

For both, we will again leave out the subscript j for brevity.
For the square and cross-terms in eq. 55, we use the same approach.

E(Zx,Zyk>:E<§D:1§D: xiyily (i) )

ied ked
D D
:inyip(iEJ)+Z Z X;ykP(iEJﬂkGJ)
i=1 i=1 k=1,k#i
J J D D
"z,,+"" D DD I
i=1 k=1,k£i
_ |J|Sxy (4] —1) 3
=D T pp-1) O
_ M=) e El}
= D=1y Sy~ S5+ 5SSy
and similarly
D D
E ZX,'Zyk :Z Z x,-ykP(iGJﬂkEK)
icd keK i=1 k=1,k#i
JIK| &
WL Sy
), 1 k=1 ki
_ MK N
- D(D—l) (SXSy SX}/)

Now we can combine these results, with egs. 53 and 55. After some algebra, we obtain
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E((z1 — 0)%) = (zp1 — 0)* + 2(zp1 — 0)((2p2 + P12) S + P1254)
+ 4ppS2 + p12S2 + p12S3 + 2p12S2S4

D
+(4p2(1 = p2) + pr2(l = pr2) — 4p2p12) 5 (Saa - 5§)

D
+ P12(1 - P12) D_1 (5dd — 53)

(56) +(2P12(1 = pr2) = 4p2p12) 57 (Sad — Sa54)

Some rearranging, and summation over traits, yields

(57)

E(Inwy) = p1Inwpy + p2In wpa + p12 In weg
D
— 51 (P2 (m(2a) — M(2a)) — p12p1 (m(a+d) — M(a +d)) — pr2p2 (m(a —d) — M(a —d)))

The sole difference between eq. 58 and the results summarized in Table 7 is that the functions
m(-,-) and M(-,-) are now weighted by a new factor D/(D — 1) - which stems from the non-
independence among loci when true ancestry proportions are known. Note too that D/(D—1) ~
1 when the number of divergent sites is large. It follows, therefore, that the results in the main
text apply approximately to data with known ancestry proportions.

A.2. Results in terms of selective effects.

We will now follow Chevin et al. (2014) and show how results can be expressed in terms of
the fitness effects of alleles, rather than their phenotypic effects. This implies that the quantities
M(-,-) and m(-, -), which describe the total amount and net effect of evolutionary change, may
have a simple interpretation, even when the phenotypic model cannot be interpreted literally
(e.g. Martin, 2014). We use results in Table 7 rather than the more general Table 1, because
selection coefficients apply to the heterozygous and homozygous effects of alleles in a given
background, rather than to the average and dominance effects of substitutions in a population.
Note also that the results below apply only with the quadratic fitness function of eq. 1, and not
with other fitness functions with higher curvatures that would allow for complex epistasis (i.e.
fitness interactions between three or more loci).

To express the results in Table 7 in terms of fitness effects, let us first consider the net effect
of evolutionary change - a quantity which corresponds to the fitness effects of whole genotypes.
For example, m(2a, 2a) is simply the fitness of one parental genotype, measured in environmental
conditions where the alternative parental genotype is optimal:

(58) m(2a,2a) = — In wpy, if Inwp; =0
(59) = —1In wp1, if In Wp2 =0

Similarly, m(a+d +d) and m(a — d, a — d) are the fitnesses of the F1 genotype measured in
conditions where one or other of the parental genotypes is optimal.

(60) m(a+d,a+d)=—Inwg, if Inwpy =0

(61) m(a—d,a—d)=—Inwg, if Inwpy =0

The total amount of evolutionary change depends on the fitness effects of the individual
divergent alleles, introgressed one at a time into an optimal background. To see this, let s; denote
the deleterious fitness effect of inserting a single homozygous substitution / into an otherwise
optimal background. This selection coefficient is defined in the standard way, as s = (W’ — w)/w
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where w’ (w) is the fitness of the mutant (wild-type). For small selection coefficients, we also
have s; ~ —In(1 — s;). If the wild-type genotype is phenotypically optimal, it follows that

n

(62) s~ —In(l—s)=> (2a)

Jj=1

and so, if 5 denotes the mean selection coefficient across all D substitutions, the total amount
of evolutionary change is

D
(63) M(2a,2a) = =Y In(1 —s;) ~ Ds

Equivalent results hold for M(a + d,a + d) for the heterozygous selection coefficients. It
follows therefore that the total amount of evolutionary change will be large if the parental lines
have fixed many mutations with (potentially) large fitness effects.

We will now show that the difference between the total amount and net effect of change is a
measure of fitness epistasis. Let us first note that, with the quadratic model of eq. 1, all epistatic
interactions are pairwise (Martin, Elena, et al., 2007). If we define s;, as the fitness effect of
inserting a given pair of substitutions into an optimal background, then the pairwise epistatic
effect is the log fitness of the double mutant, minus the log fitnesses of the two single mutants:

Eik = In(l — S,'k) — In(l — S,') - In(l — Sk)

(64) =-8 Z ajjag;.
=1

(e.g. Martin, Elena, et al., 2007). It then follows from eq. 22 that the key quantity for hybrids is

Mo
Mo

m(2a,2a) — M(2a,2a) = 4

k
(65) =-ID(D - 1)

which agrees with results from Chevin et al. (2014). Equation 64 shows that the sign of the
fitness epistasis relates to the tendency of mutations to point in the same direction (Chevin et al.,
2014; Fraisse and Welch, 2019; Martin, Elena, et al., 2007). Deleterious mutations with positive
epistasis will tend to be compensatory (pointing in opposite phenotypic directions), and those
with negative epistasis will tend to be synergistic (pointing in the same phenotypic direction);
epistasis will be maximally negative when all substitutions have identical individual effects, in
which case e = —2s. Note also that m(2a, 2a) — M(2a, 2a) will vanish when there is no epistasis
on average (¢ = 0), as would be the case if the populations accumulated randomly-orientated
mutations (Fraisse and Welch, 2019; Martin, Elena, et al., 2007; Simon et al., 2018). Evolutionary
differences that show positive epistasis will tend to increase Rl among hybrids.

Appendix B. Further simulations under stabilizing selection

In this Appendix, we report the results of additional simulations, to explore how the key
quantities that determine hybrid fitness (Table 1) behave under stabilizing selection.
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B.1. The effects of population genetic parameters under stabilizing selection with the additive
model.

Let us first consider the effects of varying the population genetic parameters, which have also
been explored in several previous studies (Barton, 2017; Chevin et al., 2014; Hartl and Taubes,
1996; Lourenco et al., 2011; Poon and Otto, 2000; Roze and Blanckaert, 2014; Tenaillon et al.,
2007; Welch and Waxman, 2003; Zhang and Hill, 2003), but here, we explicitly report the total
amount (M(A, A)) and net effect (m(A, A)) of evolutionary change.

To do this, we re-analysed simulation results from Schneemann, De Sanctis, et al. (2020) each
comprised of 500 substitutions accrued under stabilizing selection, with a stationary optimum.
Overall, 128 conditions were simulated, using a fully crossed set of parameters. Here, dominance
coefficients were drawn from a uniform distribution bounded at 0 and 1, such that mutations
were on average phenotypically additive. The parameters varied were (i) the population size (N =
1000, or N = 10), (ii) the mean selection coefficient of a new mutation in an optimal background
(Smut=0.01 or 5,,,:=0.0001), (iii) the genomic mutation rates (U € {0.01,0.001, 0.0001, 0.00001}),
(iv) the number of traits under selection (n = 2 or n = 20), (v) the rate of recombination (either
a single chromosome with map length one Morgan, and Haldane’s mapping function, such that
the mean crossover fraction was ¢ ~ 0.216; or free recombination among all loci, such that
¢ = 0.5), and (vi) the shape of the distribution of mutational effects (either “top down”, where
the magnitudes of new mutations were drawn from an exponential distribution, with a random
orientation in n-dimensional space; or “bottom up”, where the mutational effect on each trait was
drawn independently from a normal distribution; Poon and Otto, 2000). Of these six parameters,
four had appreciable effects on the results, and these are indicated visually in Figure B.1.

The results in Figure B.1 show a few clear patterns. First, and unsurprisingly, populations
fixed larger changes (larger M(A, A)) when the population size was smaller, and mutations were
large (smaller N, larger 5mt). Results for m(A, A) generally support eq. 26, whose value for the
four values of n/N are shown by the vertical dashed lines (Barton, 2017). The sole exceptions
are results with N3.,,; = 0.001 (empty blue points in Fig. B.1). In this case, selection was so
ineffective that the populations had failed to reach their equilibrium level of maladaptation after
D = 500 substitutions. In consequence, results fell on the line m(A, A) ~ M(A, A), implying
that the evolutionary changes were wandering erratically in phenotypic space, as under strict
neutrality. In all other cases, the action of stabilizing selection was apparent from the fact that
m(A,A) < M(A,A).

We note finally that with higher mutation rates the dependencies on N and n can change
(Roze and Blanckaert, 2014). This is due to accumulation of linkage disequilibria, not treated in
the current work.

B.2. Dominance effects under stabilizing selection.

This section explores stabilizing selection when mutations may be phenotypically dominant
or recessive, with a particular focus on the evolution of the dominance effects. In all cases, this
will involve modifying the model of mutational dominance reported in the Methods, to enhance
the influence of dominance effects.

Let us begin with the simulations reported in Figure 4C&D, which are also reported in greater
detail in Figure B.2 (see De Sanctis et al., 2023). These simulations used a mutational model of
Schneemann, Munzur, et al. (2022). Under this model, as with the standard simulations, the het-
erozygous effect of a new mutation on a given trait was set to its homozygous effect multiplied
by a beta-distributed random number with mean x and variance v. But in this case, both 1 and
v were set to vary with the size of the mutation, such that

=1 1
: 1+ exp (—2%)
(66) v=_0u—-1)>3-(2u-1)
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Properties of fixed differences under stabilizing selection
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Figure B.1 - The value for the total amount and net effect of evolutionary change un-
der stabilizing selection depend on model parameters in predictable ways. Simulation
results are shown pairs of populations, diverging under stabilizing selection. Simulations
used an additive phenotypic model, and were halted after D = 500 substitutions have
fixed. Each panel contains results from 64 population pairs, using a fully crossed set
of population-genetic parameters. Varied were the population size (N: red versus blue
points), the mean selection coefficient of a new mutation in an optimal background (5,,::
filled versus unfilled points); and the number of phenotypic traits (n: circular versus trian-
gular points). Mutation and recombination rates also varied, but neither had a qualitative
effect in the parameter regimes simulated, and so are not indicated visually. (A) shows
results when the mutational effects on each trait were i.i.d. normal. (B) shows results
when the magnitudes of new mutations were drawn from an exponential distribution,
with random orientations in n-dimensional space; In both panels, vertical lines show the
expected value of m(A, A) at stochastic equilibrium (namely n/(8N); eq. 26). This equi-
librium was not reached, however, when selection was very ineffective (N5p,: = 1073:
empty blue points), and in this case evolutionary changes wandered erratically in pheno-
typic space (such that M(A, A) =~ m(A, A)).

where o, is the standard deviation in the additive effects of new mutations. The result is that
small-effect mutations were additive on average (with i ~ 1/2), whereas larger effect mutations
became increasingly recessive (Billiard et al., 2021; Manna et al., 2011). Figure B.2G (red curve)
shows clearly that, with this mutation model, populations evolving under stabilizing selection
have a strong tendency to fix phenotypically recessive mutations (eq. 21). Now if P1 had fixed
wholly recessive mutations (with no phenotypic effect in heterozygous form) then it would follow
that a;; = dj; for all loci and traits (see Table 5). If we then consider genetically homogeneous
parental populations (as in Appendix A), it would follow trivially that m(A, A) = m(A, A) =
m(A, A)and that M(A, A) = M(A, A) = M(A, A).In this way, the tendency for highly recessive
mutations to fix, explains the similarities of the red lines shown in Fig. B.2C, F and | (which are
plotted together in Figure 4D).

Note, however, that the fixations were not wholly recessive, and so the red lines are similar,
but not identical. In particular, a stochastic equilibrium is reached by the red curves in both
Figure B.2B (eq. 26) and Fig. B.2H (where the recessive fixations in P1 imply that the F1 will
closely resemble P2: eq. 18). However, from Figure B.3E it is clear that the lack of coadaptation
between the dominance effects means that their net effect, m(A, A), still wanders in phenotypic
space, and increases steadily with divergence.
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Figure B.2 - The net effect and total amount of evolutionary change predictably under
stabilizing selection, when mutations tend to be phenotypically recessive. The simula-
tions reported correspond to be shown in Figure 4C-D, and the curves in panels C, Fand |
replicate those in Figure 4C (blue curves), and Figure 4D (red curves). All simulations used
the dominance model of Schneemann, Munzur, et al. (2022), in which larger effect muta-
tions were more likely to be phenotypically recessive (eq. 66). All curves show the means
across 100 replicate simulations, and shaded areas (often barely visible) show the stan-
dard deviation. Other simulation parameters were N = 100, n = 20 and U = 5,,,: = 0.01.

While the results in Figures 4C-D and B.2 assumed that mutations will tend to be pheno-
typically recessive, it is not clear that this will hold in nature. This is partly because the traits in
Fisher's model need not correspond to real-world quantitative traits (Martin, 2014), and partly
because, under the fitness function of eq. 1, mutations can be recessive for fitness, even if they
are additive or weakly dominant for the phenotype (e.g. Manna et al., 2011).

As such, we repeated our simulations of stabilizing selection, with no special tendency for
mutations to be recessive, but also increasing the variance in the dominance effects. To do this,
we simply set © = 1/2 and v = 1/12 so that the heterozygous effect of a new mutant was
its homozygous effect, multiplied by a uniformly-distributed random number. As with the main
text simulations, we first assumed that each mutation had a unique dominance multiplier on each
trait - so that we used n uniform random numbers per mutation. However, we also compared
this “per-trait dominance” model, to a “per-mutation dominance” model, in which the effects on
each trait shared a dominance multiplier - so that we used only a single uniform random number
per mutation. The effect of both of these changes to the mutational model was to make it more
likely that mutations with extreme levels of dominance would fix, but with no tendency for new
mutations to be phenotypically recessive. The results of these simulations are shown Figure B.3,
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with the “per-trait dominance” results as thinner lines, and the “per-mutation dominance” results
as thicker lines.

Consider first, results for the interaction terms (Figure B.3G-I). Figure B.3G shows that a ten-
dency to fix phenotypically recessive mutations (an increasing M(A, A)) can occur via a selective
sieve without mutational bias, but only for some models of mutation - in this case, only for the
“per-mutation” model (thicker red line), in which each mutation has the same level of dominance
on all n traits. However, the corresponding negative trend in m(A, A) — M(A, A) (Figure B.3l) is
now very weak - both compared to its standard deviation between runs (so that the term will be
positive for a substantial proportion of runs) - and compared to negative trend in the additive
term (Fig. B.3C).

Consider finally results for the dominance effects (Figure B.3D-F). Remarkably, the trend in
Figure B.3F is opposite of that shown in Figure B.2F, with a weak tend for dominance effects
to point in same phenotypic direction. This applies in all cases, including when the sole evolving
population tended to fix phenotypically recessive alleles. Note, however, that this tendency is
again weak - both compared to its standard deviation and the negative trend in the additive term
(Fig. B.3C). The upshot is, at least in the models we simulated, dominance terms will be difficult
to interpret in the absence of a mutational bias towards phenotypic recessivity.
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Figure B.3 - Dominance effects can show weak directionality under stabilizing selec-
tion, even without a tendency for mutations to be phenotypically recessive. Simulation
results under stabilizing selection, with a stationary optimum. Compared to the main text
simulations, the variance in the dominance effects of mutations was increased (by draw-
ing dominance multipliers for each mutation from a uniform distribution with = 1/2
and v = 1/12), and we also compared our standard model (“per-trait dominance") to a
model in which each mutation was equally dominant or recessive on all n traits (“per-
mutation dominance"). Lines and shaded areas represent the mean and one standard
deviation across 200 replicate simulations. Other simulation parameters were N = 10,

n=20and U = 5,,: = 0.01
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