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Abstract
Conservation policy in the giant Galpagos tortoise, an iconic endangered animal, hasbeen assisted by genetic markers for 15 years: a dozen loci have been used to delineatethirteen (sub)species, between which hybridization is prevented. Here, comparative re-analysis of a previously publishedNGSdata set reveals a conflictwith traditionalmarkers.Genetic diversity and population substructure in the giant Galpagos tortoise are foundto be particularly low, questioning the genetic relevance of current conservation prac-tices. Further examination of giant Galapagos tortoise population genomics is criticallyneeded.
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Introduction
Biological conservation implies collaboration between scientists, biodiversity managers andpolicy makers. We can only applaud when scientific progress influences policies and practicesin a way that is beneficial to nature, and ultimately to humans. A recent Comment in Nature(Nichols, 2015) highlights a spectacular conservation initiative geared towards an iconic endan-gered species – the giant Galápagos tortoise.TheGalápagos Islands host a number of fascinating endemic animals, such asDarwin’s finches,Galápagos iguanas and Galápagos penguins and their preservation is clearly a major issue. TheseIslands are a paramount conservation priority. Remarkable efforts have beenmade by theCharlesDarwin Research Station and the Galápagos National Park Service to protect indigenous specieswhile eradicating invasive ones (e.g. Marquez et al., 2013). The Galapagos tortoise, Chelonoidis ni-gra, is probably the most emblematic of all species of the archipelago. These large tortoises havebeen heavily impacted by human activities over the centuries. Since the mid-1960s they havebeen the focus of a specific long-term conservation program, which has been fully successfulin terms of population density recovery (e.g. Aguilera et al., 2015; Gibbs et al., 2014). The pro-gram mainly involved bringing eggs or adults from natural sites to rearing/breeding centers, andreleasing in the field juveniles of sufficient size, thus escaping predation by rats (Cayot, 2008).Since the 2000’s, population genetics research has been instrumental in the managementplan of Galápagos tortoises. Thirteen giant Galápagos tortoise species (Poulakakis, Edwards, etal., 2015) have been described, or confirmed, using genetic data – specifically, mitochondrialDNA and 9-12 microsatellite loci (Caccone, Gentile, Gibbs, et al., 2002; Ciofi et al., 2002). Basedon this information, population densities have been monitored in a way that aims at preserving,or even restoring, the integrity of the distinct gene pools (e.g. Edwards, Garrick, et al., 2014;Garrick, Benavides, Russello, Gibbs, et al., 2012; Milinkovitch, Monteyne, Russello, et al., 2007).Milinkovitch, Monteyne, Russello, et al. (2007), for instance, identified one "hybrid" individualamong the thousands that had been repatriated to the Española island after captive breeding.This was removed from the field. Garrick, Benavides, Russello, Gibbs, et al. (2012) and Edwards,Benavides, et al. (2013) discuss the "conservation value" of individuals based on their genotypes.The most recent implementation of this strategy is an attempt to recreate the genome of thefamous Lonesome George tortoise, the last member of the C. (nigra) abingdoni species, whichdied in 2012. The plan is to cross individuals from another species that carry abingdoni alleles– hence the recent transfer by helicopter and boat of 32 tortoises from their current habitat tothe island of Santa Cruz (Nichols, 2015).Some problems, however, still hamper the task of defining C. nigra taxonomic and conserva-tion units. For instance, mitochondrial DNA andmicrosatellite data do not fully agree (Poulakakis,Russello, et al., 2012). Published levels of mitochondrial coding sequence divergence betweennamed species of giant Galápagos tortoises (<1%, Caccone, Gentile, Burns, et al., 2004) are nothigher than typical amounts of within-species mitochondrial polymorphism in reptiles (Bazin etal., 2006). Importantly, individuals carrying so-called ‘hybrid’ genotypes or unexpectedmitochon-drial haplotypes, given their geographic origin, are common in the field (e.g. Garrick, Benavides,Russello, Gibbs, et al., 2012). Because they are interpreted as being the result of non-naturalcauses (Poulakakis, Glaberman, et al., 2008; Russello, Beheregaray, et al., 2007), such individualshave been removed from published analyses (Garrick, Benavides, Russello, Hyseni, et al., 2014;
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Poulakakis, Edwards, et al., 2015), thus artificially inflating measured levels of genetic differentia-tion between entities. In spite of this bias, estimated FST as low as 0.1 were considered sufficientto delineate species (Poulakakis, Edwards, et al., 2015), in absence of evidence for hybrid depres-sion or local adaptation. Indeed, very little is known regarding the link between genetic variation,morphological variation and fitness in C. nigra. The conspicuous "saddleback" morphotype, forinstance, is observed in several unrelated species that carry various combinations of mtDNAhaplotypes and microsatellite alleles (e.g. Poulakakis, Russello, et al., 2012), and the heritabilityof this trait is so far unknown (Chiari et al., 2009).Whether gene flow, if any, is recent and humanmediated, or ancient and "natural", is critical with respect to conservation policy in C. nigra.
Analysis

Four years ago, we published the blood transcriptome of five giant Galápagos tortoiseswhich,based on mtDNA, were assigned to three distinct species – becki, vandenburghi, and porteri Loireet al. (2013). To our surprise, our analysis of 1000 coding loci did not reveal any evidence ofgenetic structure in this sample, i.e. the homozygosity of the five individuals was not higher thanexpected under the hypothesis that they belonged to a single panmictic population. The totalgenetic variation detected in the sample was also quite low – heterozygosity was around 0.1%,consistent with earlier findings Caccone, Gentile, Burns, et al. (2004).Herewe looked at the situation from a comparative standpoint and plotted the inbreeding co-efficient F as a function of log-transformed synonymous diversity, πS , in a dataset of 53 speciesof animals for which the transcriptome of at least four individuals sampled from different popula-tions was available (Perry et al., 2012; Romiguier, Gayral, et al., 2014, Table S1). The synonymousdiversity πS measures heterozygosity at (presumably neutral) third codon positions; πS is an un-biased estimate of the θ = 4.Ne.m parameter, where Ne is the effective population size and
m is the per-base, per-generation mutation rate. Inbreeding coefficient F measures the depar-ture from Hardy-Weinberg equilibrium by comparing the expected and observed numbers ofheterozygous genotypes, here summed across individuals and loci. F is expected to equal zeroin absence of population structure, and to take positive values when individuals are more ho-mozygous, on average, than expected under the assumption of panmixy. Data on all species inthis dataset were analysed via the same procedure (Ballenghien et al., 2017; Gayral et al., 2013),thus ensuring optimal comparability between data points. Figure 1 indicates that C. nigra har-bours lower genetic polymorphism and population structuring than most vertebrates or otheranimal species, which casts serious doubts on the existence of several differentiated gene poolsin this taxon. Interestingly, the data point closest to C. nigra in this figure is Homo sapiens – aspecies in which very few people would argue the need to define (sub)species.The above analysis is based on small samples – from five to eleven individuals per species –which in most cases precluded definition of sub-populations and calculation of the FST statistics– but note that a significantly positive FST , if any, should imply a significantly positive F , andthat F in this analysis was calculated using the method of Weir and Cockerham (1984), whichaccounts for small sample size. Our analysis might be affected by, e.g., sequencing errors, geno-typing errors, hidden paralogy, cross-contamination or other experimental artefacts (Ballenghienet al., 2017). To control for possible sources of noise and confirm that our approach has the powerto identify strong genetic structure when it exists, we similarly analysed samples made of individ-uals from two congeneric species (Galtier, 2016, Table S1). Distinctively high values of F wereobtained with the two-species samples, compared to the single-species ones (Figure 1, opencircles), casting further doubts on the hypothesis that our C. nigra sample comprises individualsfrom more than one species.It was suggested from mtDNA and microsatellite data that some C. nigra individuals are of"hybrid origin", i.e., F1 from "purebred" parents or backcrosses (e.g. Garrick, Benavides, Russello,Hyseni, et al., 2014; Russello, Poulakakis, et al., 2010). Among the four individuals of our samplefor which microsatellite data are available, two were consistently assigned to the same popu-lation by the three methods used by Russello, Poulakakis, et al. (2010), whereas two obtainedconflicting assignments. Russello, Poulakakis, et al. (2010) analyzed 156 individuals of unknown
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Figure 1 – Each filled circle corresponds to a single species of animals in which the tran-scriptomeof at least four individualswas sequenced (Perry et al., 2012; Romiguier, Gayral,et al., 2014). Harvest antMessor barbarus was excluded due to its highly specific matingsystem (Romiguier, Fournier, et al., 2017). Each open circle corresponds to a pair of con-generic species of animals in which the transcriptome of at least five individuals wassequenced (Galtier, 2016). Genotypes were called using the improved, contamination-aware algorithm of Ballenghien et al. (2017), parameter γ being set to 0.2. X-axis (logscale) reflects the amount of neutral genetic variationwithin the sample. This is measuredby the synonymous-site heterozygosity, πS , for single species, and by the proportion offixed synonymous differences for species pairs. Y-axis reflects the detected amount ofpopulation substructure, measured by the F statistics. The positions in the graph of C.nigra, Homo sapiens (single species) and of the C. nigra/Chelonoidis carbonaria pair are in-dicated by thumbnails.
geographic origin. Re-analysing their Table S1, we found that 109 of these (70%) were assignedto two or three distinct populations by the three methods they used. Our sample, therefore, isnot particularly enriched in individuals of "hybrid origin". Still, to control for a possible impactof hybrids in our analysis, we calculated the maximal F across the ten possible pairs of individ-uals from our sample. If any two individuals from our sample belonged to distinct species, thisstatistics should take a high value. We rather found that the maximal pairwise F equals a low0.12, indicating that the absence of homozygote excess in C. nigra (Figure 1) is not explainedby the presence of a few "hybrids" in our sample, but rather reflects an overall lack of geneticdifferentiation.

Discussion
The sample of Loire et al. (2013) is small in terms of the number of individuals and obviouslyinsufficient to provide a definitive answer regarding population genetic structure in C. nigra. Oursample, however, is large with regard to the number of loci. Distinct loci independently samplethe coalescent process, and therefore provide small but many pieces of information on popu-lation history. The strength of even small-sized samples to reconstruct population processes,
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provided that a large number of loci is available, has been demonstrated in a number of recentpublications (e.g. Abascal et al., 2016; Der Sarkissian et al., 2015). The popular PSMC method(Li and Durbin, 2011), for instance, estimates former fluctuations in effective population sizebased on a single diploid genome. Roux et al. (2016) specifically demonstrated the potential ofthe Romiguier, Gayral, et al. (2014) data set to inform on species boundary and the history ofgene flow between populations.Our results, if confirmed, are highly relevant for the conservation of Galápagos tortoises.They could imply that the current practice whereby only individuals from the same "species" arecrossed is not only pointless – in the absence of truly differentiated gene pools – but also poten-tially harmful to the species due to the risk of inbreeding depression. The risk is particularly highwhen large numbers of closely related individuals are simultaneously released in a closed area(Milinkovitch, Monteyne, Gibbs, et al., 2004). In the same vein, physical removal from the fieldof naturally occurring ‘hybrids’ (Milinkovitch, Monteyne, Russello, et al., 2007) and sterilizationof individuals to avoid undesired crosses (Hunter et al., 2013) might well actively participate inthe decline in the mean fitness of local populations (Frankham et al., 2014).Of note, even the most recent publications on this issue, including the description of a newspecies (Poulakakis, Edwards, et al., 2015) have focused on the same limited set of markers devel-oped some 15 years ago.We suggest that, nowadays in the genomic era, the conservation policyregarding Galápagos tortoises should no longer be based entirely on just a dozen loci, given thedemonstrated potential of genome-wide data to enhance population genetics research in othergroups of threatened animals (e.g. Abascal et al., 2016; Der Sarkissian et al., 2015; Dobrynin etal., 2015; Lamichhaney et al., 2015; Liu et al., 2014;Moore et al., 2014). Knowing the importanceof inbreeding depression as a threat to conservation of endangered species (e.g. Allendorf et al.,2010; Frankham, 2015; Walling et al., 2011) we suggest that forced inbreeding and sterilizationinterventions in Galápagos tortoises be delayed until the genetic architecture of the species isclarified via the analysis of genome-wide data in a sufficiently large sample, thus resolving thediscrepancy between existing datasets.There is some controversy and subjectivity in the definition of relevant conservation unitsand strategies (Edmands, 2007; Funk et al., 2012; Shafer et al., 2015; Taylor et al., 2017). Gi-ant Galapagos tortoises are maximally protected throughout the archipelago. The definition ofconservation units in C. nigra, therefore, is not relevant to the preservation of local populations.Rather, genetic data have been used to make decisions on which individuals should be crossedwith which, and where they should be located. This is only meaningful if the distinct entitiesare sufficiently isolated, genetically and geographically, such that gene flow is naturally low. Thisis why species boundaries matter: current conservation goals in C. nigra are dependent on thevalidity of the existing population model and taxonomy.It is likely that human intervention during the last centuries has not only dramatically af-fected C. nigra population density, but also favoured migration of individuals across islands. Itis also quite likely, based on existing data, that gene flow between islands and/or local extinc-tion/recolonizationwas substantial before human intervention, preventing speciation inC. nigra–otherwise hybrids would not be so common, total genetic diversity/divergence would be higher,population substructure would be stronger and more obviously correlated to morphology. Inother words, C. nigra might well be better described as a perturbed metapopulation than a col-lection of endangered species. If this was true then the goals of resurrecting ancestral "lineages"and preventing crosses between genetic entities would just be nonsense. Only a genome-wideanalysis has the power to discriminate between ancient and recent gene flow, clarify the linkbetween genotype and phenotype, and inform conservation policies. Current management aimsat preserving/restoring particular combinations of alleles at 12 specific loci; relevance to pheno-types, fitness, population history and species barriers in C. nigra is anything but clear.

Data availability
Supplementary Table S1 can be downloaded from https://zenodo.org/record/5571874
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