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Abstract
Species ranges are set by limitations in factors including climate tolerances, habitat use,and dispersal abilities. Understanding the factors governing species range dynamics re-mains a challenge that is ever more important in our rapidly changing world. Speciesranges can shift if environmental changes affect available habitat, or if the niche or habi-tat connectivity of a species changes. We tested how changes in habitat availability,niche, or habitat connectivity could contribute to divergent range dynamics in a sister-species pair. The great-tailed grackle (Quiscalus mexicanus) has expanded its range north-ward from Texas to Nebraska in the past 40 years, while its closest relative, the boat-tailed grackle (Quiscalusmajor), has remained tied to the coasts of the Atlantic Ocean andthe Gulf of Mexico as well as the interior of Florida. We created species distribution andconnectivity models trained on citizen science data from 1970-1979 and 2010-2019 todetermine how the availability of habitat, the types of habitat occupied, and range-wideconnectivity have changed for both species. We found that the two species occupy dis-tinct habitats and that the great-tailed grackle has shifted to occupy a larger breadthof urban, arid environments farther from natural water sources. Meanwhile, the boat-tailed grackle has remained limited to warm, wet, coastal environments. We found noevidence that changes in habitat connectivity affected the ranges of either species. Over-all, our results suggest that the great-tailed grackle has shifted its realized niche as partof its rapid range expansion, while the range dynamics of the boat-tailed grackle may beshaped more by climate change. The expansion in habitats occupied by the great-tailedgrackle is consistent with observations that species with high behavioral flexibility canrapidly expand their geographic range by using human-altered habitat. This investigationidentifies how opposite responses to anthropogenic change could drive divergent rangedynamics, elucidating the factors that have and will continue to shape species ranges.
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Introduction
Species ranges determine the patterns of biodiversity across the world, shaping the environ-ments different species encounter and the other species they can interact with (Gaston, 1996,2003; Holt, 2003). We are still determining how abiotic and biotic factors limit species ranges(Buckley et al., 2018; Paquette and Hargreaves, 2021; Sirén and Morelli, 2020) and to what de-gree a species is able to expand to new habitats (Holt, 2003; Ralston et al., 2016). Within thelimits that determine species ranges, many animal species today are experiencing massive de-clines due to loss of habitat (IUCN, 2022). These declines have been linked to limitations in theability of many species to change their realized niche, the range of habitats that these speciesoccupy, despite movement to new geographic areas or environmental change (Holt and Gaines,1992; Liu, Wolter, et al., 2020; Wiens et al., 2010). The realized niche of a species is the result ofenvironmental limitations due to physiology and behavior, geographic limitations due to disper-sal, and ecological limitations due to interspecific interactions. Together, these three limitationsdetermine species ranges (Soberón and Nakamura, 2009). However, some species can changetheir realized niche through occupying novel environmental conditions, a process referred to asa niche shift (Broennimann, Treier, et al., 2007; Guisan et al., 2014; Hill et al., 2017; Sherpa et al.,2019), potentially allowing them to expand their ranges while other species cannot (Holt, 2003;Holt and Gaines, 1992; Wiens et al., 2010). The factors that allow some species to shift theirniche have remained difficult to identify (Wiens et al., 2010).A species expanding into new areas is assumed to have overcome some of the trade-offsor limitations that shape a species’ realized niche. Niche shifts can occur via physiological orbehavioral changes, as well as interactions between these factors (Wiens et al., 2010). Physio-logical changes reflect evolutionary changes in the phenotypes of individuals, such as changesin body size or metabolic processes, through which individuals of a species can occupy differ-ent niches (Buckley et al., 2018). Such physiological changes often occur over longer time spans(Swanson and Garland, 2009), suggesting that fast expansions into new niches are presumablyfacilitated by already existing plasticity in physiological tolerances. One potential cause of nicheshifts over shorter time spans is behavioral flexibility, the ability to change behavior when cir-cumstances change [see Mikhalevich et al., 2017 for theoretical background on our flexibilitydefinition (Chow et al., 2016; Griffin and Guez, 2014; e.g., Lefebvre et al., 1997; Sol, Duncan,et al., 2005; Sol and Lefebvre, 2000; Sol, Székely, et al., 2007; Sol, Timmermans, et al., 2002).This idea predicts that flexibility, exploration, and innovation facilitate the expansion of individ-uals into completely new areas and that the role of these characteristics diminishes after somenumber of generations (Wright, Eberhard, et al., 2010). Experimental studies have shown thatlatent abilities are primarily expressed in a time of need (Auersperg et al., 2012; Bird and Emery,2009; Laumer et al., 2018; Manrique and Call, 2011; e.g., Taylor et al., 2007). Therefore, we donot expect the founding individuals who initially dispersed out of their original range to haveunique behavioral characteristics that are passed on to their offspring. Instead, the actual act
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of continuing a range expansion likely relies on flexibility, exploration, innovation, and persis-tence, and thus these behaviors should be expressed more on the edge of the expansion rangewhere there have not been many generations to accumulate relevant knowledge about the en-vironment (Magory Cohen et al., 2020; Nicolaus et al., 2022; Sol, Stirling, et al., 2005; Wright,Eberhard, et al., 2010). There is also evidence that some species can behaviorally shift their nichein response to anthropogenic climate change or that they can expand their range by using humanaltered environments (Wolff et al., 2020; Wong and Candolin, 2015). Human-modified environ-ments are increasing (Goldewijk, 2001; e.g., Liu, Wolter, et al., 2020; Wu, Jenerette, et al., 2011),and species associated with these habitats show differences in their behavior (Chejanovski et al.,2017; e.g., Ciani, 1986; Federspiel et al., 2017).However, range dynamics are also influenced by factors beyond changes in the realized niche:environmental change leading to a recent increase in the amount of available habitat represent-ing the current niche can facilitate a geographic range expansion (Hanski andGilpin, 1991;Wiens,1997), and change in habitat connectivity can alter species range limits (Holt, 2003; Platts et al.,2019). A species may not need to be behaviorally flexible to move into new areas if it can con-tinue to use the same habitats within its expanded range. For example, a species may expand itsrange because changes in climate have caused more geographic areas to fall within its niche orif previously isolated habitat patches become connected. Thus, it is important to identify howchanges in the availability of habitats, the usage of different habitats, and habitat connectivitycontribute to range shifts to understand whether niche shifts are truly happening and to identifypotential causes of range shifts.Here we investigated the drivers of different range dynamics in two closely related gracklespecies, the great-tailed grackle (Quiscalus mexicanus) and boat-tailed grackle (Quiscalus major).These species offer an opportunity for simultaneous investigation of the roles of behavior andincreased habitat availability in a rapidly increasing geographic range expansion. The great-tailedgrackle has rapidly expanded its range northward over the course of the 20th century (Post etal., 1996; Wehtje, 2003), moving its northern range edge from Southern Texas to Nebraska (Fig1B). In contrast, the boat-tailed grackle range has remained largely the same, with only minorchanges to the northern edge of its range (Wehtje, 2003), despite both species having similarforaging habits and successfully using human-altered environments (Johnson and Peer, 2020;Post et al., 1996; Selander and Giller, 1961). The great-tailed grackle is highly behaviorally flexi-ble (Logan, 2016a,b), similar to other species that successfully use human-altered environments(Wong and Candolin, 2015), but the behavioral flexibility of the boat-tailed grackle has not yetbeen assessed. Detailed reports on the breeding ecology of these two species indicate that rangeexpansion in the boat-tailed grackle but not the great-tailed grackle may be constrained by theavailability of suitable nesting sites (Selander and Giller, 1961; Wehtje, 2003). Boat-tailed grack-les may be limited by the need for coastal marshes or isolated groves near water for nesting sites(Post et al., 1996), while great-tailed grackles can nest in agricultural lands, marshes, and urbanareas with vegetation and surface water (Johnson and Peer, 2020). Great-tailed grackles inhabita wide variety of habitats (but not forests) at a variety of elevations (0-2134m), while remainingnear water bodies. Boat-tailed grackles exist mainly in coastal areas (Selander and Giller, 1961).There is also evidence that great-tailed grackles have preferred different habitats over time andacross their range. Ornithologists have recorded great-tailed grackles breeding primarily in natu-ral and human-made wetlands, while those within the recently expanded range readily breed inurban parks (Wehtje, 2003). However, this apparent difference in niche has yet to be rigorouslyquantified.The range expansion in the great-tailed grackle and range stability in the boat-tailed gracklecould be due to differences in realized niche change between these two closely related species.We characterized the historic (1970-1979) and current (2010-2019) realized niches of the great-tailed grackle and the boat-tailed grackle using species distribution models (SDMs) to test threehypotheses on the causes of range expansion in the great-tailed grackle and range stability inthe boat-tailed grackle (Fig 1A). Hypothesis 1: change in habitat availability: The great-tailedgrackle and the boat-tailed grackle use different habitats, and the suitable habitat of the great-tailed grackle, but not that of the boat-tailed grackle, has increased northward over the past few
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Figure 1 – Comparison between the predicted patterns depending on the forces that facilitatedrange expansion and habitat suitability predicted by the species distribution models (SDMs) for thegreat-tailed grackle (GTGR) and boat-tailed grackle (BTGR). (A) The pairs of plots display the predic-tions for the historic and current models if increased suitable habitat (Hypothesis 1), expanded real-ized niche (Hypothesis 2), increased habitat connectivity (Hypothesis 3), or other inherent speciestrait(s) (Hypothesis 4) drove range expansion. (B) The suitable habitat predictions for the historicand current models based on environmental data from 1979 and 2019. We used the maximum-sensitivity-specificity thresholds for each model (great-tailed grackle current: 0.4440, boat-tailedgrackle current: 0.4780, great-tailed grackle historic: 0.4635, boat-tailed grackle historic: 0.3935)to assign habitat as suitable. The different colors in the great-tailed grackle map indicate that someenvironmental conditions within its 2019 expanded range were not found in its 1979 range. Thearrows connect the species ranges to the most supported predicted range dynamics.

decades. We define habitat suitability in this paper as the predicted habitat suitability for occu-pancy by the focal species, habitat that is within the limits of tolerability of the climate and envi-ronmental factors as determined by the areas occupied by individuals of the species at a giventime. Support for this hypothesis would indicate that the availability of habitat due to environ-mental change, not inherent species differences, explainswhy the great-tailed grackle has rapidlyexpanded its range while the boat-tailed grackle has not.Hypothesis 2: change in realized niche:Over the past few decades, the great-tailed grackle has expanded its realized niche, whereas theboat-tailed grackle continues to use the same limited habitat types. In other words, a niche shift,possibly due to changes in behavioral traits, facilitated the geographic range expansion of thegreat-tailed grackle. Hypothesis 3: changes in habitat connectivity: Species distribution modelsgenerally do not account for additional factors such as dispersal limitations due to landscapeheterogeneity when estimating suitable habitat. Therefore, we conducted a separate analysisto examine possible changes in connected habitat due to environmental change. Support forthis hypothesis would indicate that environmental change has facilitated the range expansionof the great-tailed grackle. Hypothesis 4: inherent species trait(s): Other species traits, such as
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demographic dynamics or dispersal physiology, limited the historic species range, resulting inno apparent environmental difference between the newly occupied and historically occupiedranges. Given this hypothesis, there are no changes in habitat availability, but both species havesuitable but unoccupied habitat available to them. Only the great-tailed grackle is able to oc-cupy additional habitat due to changes in the other traits or conditions that previously limitedthe species range, with the ongoing expansion reflecting the time-lag to reach new areas. Thisoutcome would be consistent with the hypothesis that the original behavior of the great-tailedgrackle, determined by inherent species traits, was already well adapted to facilitate a rangeexpansion while the behavior of the boat-tailed grackle restricts it to its current range.

Figure 2 – Overview of modeling approach and steps. The white boxes list the data used to gener-ate the species distributionmodels (SDMs) and environments used for predicting habitat suitability.The overlap between shaded boxes indicates that a habitat suitability prediction was created usingthe overlapping species distribution model and environmental predictors. The arrows indicate thehabitat suitability predictions used to create the connectivity models (see Methods for a detaileddescription of data sources and steps).
Weused ecological nichemodeling to examine temporal habitat changes over these past fourdecades using observation data for both grackle species from existing citizen science databases.We determined the change in habitat availability using predictions produced by both our currentand historic models for each species based on environmental data from 1979 and 2019 (Fig 2,Analysis 1). We also tested the ability of our current and historic models to predict species pres-ence and absence using data from the opposite time period to validate the predicted changesin suitable habitat (Regos, Imbeau, et al., 2018; Torres et al., 2015; Yates et al., 2018) (Analysis1). Together, the components of Analysis 1 address Hypothesis 1 that environmental changecould have led to the range dynamics seen in both species. Then, we compared how the impor-tance and effect of environmental predictors (Analysis 2) and occupied environments changedbetween our current and historic models (Analysis 3). Analyses 2 and 3 both address Hypothesis2, that changes in the types of habitat occupied could have led to the observed range dynam-ics. Finally, we used a circuit theory-based connectivity model to test for changes in habitat
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connectivity between 1979 and 2019 (Analysis 4), which addresses Hypothesis 3, that changesin habitat connectivity caused by environmental change could have led to the observed rangedynamics. Finally, the overall power of our analyses to predict the range dynamics of the great-tailed grackle addresses Hypothesis 4. If inherent species traits are a main component of theobserved range dynamics, our species distribution and connectivity models should not be ableto fully differentiate the realized niche and geographic areas occupied by the great-tailed grackleover time, as thesemodels do not account for those traits. A range increase even though changesin the environment, realized niche of the great-tailed grackle, and landscape connectivity havenot increased the geographic areas of suitable and accessible habitat over time would indicatethat great-tailed grackles already had the inherent ability to occupy the newly inhabited areas. Incombination, our analyses allowed us to investigatewhether the range of the great-tailed grackle,but not the boat-tailed grackle, might have increased due to an increase in habitat availability,expansion of the realized niche of the great-tailed grackle, or changes in habitat connectivity.
Methods

This article is the first of three articles that will be produced from a preregistration (http:
//corinalogan.com/Preregistrations/gxpopbehaviorhabitat.html) that passed pre-studypeer review at Peer Community in Ecology in 2020. The hypotheses, predictions, andmethods inthis manuscript come from the preregistration, and we detail all changes to the methods below.Preregistered Analysis PlanResponse Variable: Presence/absence of great-tailed grackles and boat-tailed gracklesExplanatory Variables

1. Land cover (e.g., forest, urban, arable land, pastureland, wetlands, marine coastal, grass-land, mangrove) - we chose these land cover types because they represent the habitattypes in which both species exist, as well as habitat types (e.g., forest) they are not ex-pected to exist in (Selander and Giller, 1961). If the suitable and unsuitable habitat ofthe great-tailed grackle agrees with these expectations, it is possible that large forestedareas are barriers for the range expansion of one or both species. We planned to down-load global land cover type data from MODIS (16 terrestrial habitat types) and/or theIUCN habitat classification (47 terrestrial habitat types). The IUCN has assigned habitatclassifications for the great-tailed grackle and the boat-tailed grackle; however, theseclassifications appear to be out of date, and we updated them for the purposes of thisproject.
• Further details:We limited our study extent to the contiguous United States, whichshould not affect our investigation of distribution changes because the entire rangeof the boat-tailed grackle and the northern expanding edge of the great-tailed gracklerange are both within the contiguous United States. We verified this assumption bycomparing species distribution models using 2010-2019 observations and MODISland cover data with and without the limited spatial extent. Restricting the trainingdata to the contiguous United States caused no drop in the AUC when predictinghabitat suitability within the US relative to the unrestricted model.
• Deviations from the preregistered plan:We used the National Land Cover Database(NLCD) (Homer et al., 2015) and historical land cover modeling data from Sohl etal., 2016 instead of MODIS for our land cover dataset because the former datasetshave a greater temporal range. MODIS data exists for a continuous period of 2001-present, and could only be extended to 1993 using compatible data from the GlobalLand Cover Characterization (GLCC) land cover dataset. UsingMODIS data would re-quire limiting the temporal range of our study to 1993-present, yet themost rapid pe-riod of the great-tailed grackle expansion occurred from 1967-1977 (Wehtje, 2003).We initially proposed to use data from 1968-1970 for our historical model, and datafrom 2018 for our present-day model. Instead, we used land cover projections fromSohl et al., 2016 for our historical land cover data (1970-1979) and the NLCD (2011,2013, 2016; and 2019) for our modern land cover data, which allowed us to model
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species distributions closer to our proposed temporal range. Both datasets use amodified version of the Anderson Land Classification System (Anderson and Hardy,1971), share the same geographic extent, and are high resolution (250m and 30m,respectively). The land cover classification system includes classes for forests, urbanareas, pasture and crop lands, wetlands, and grasslands.2. Elevation - Selander andGiller, 1961 notes the elevation range for the great-tailed grackle(0-2134m), but not the boat-tailed grackle, therefore establishing that the current eleva-tion ranges for both species may allow us to determine whether and which mountainranges present range expansion challenges. We obtained elevation data from the GlobalMulti-resolution Terrain ElevationData 2010 (GMTED2010; Danielson andGesch, 2011)available through USGS.3. Climate (e.g., daily/annual temperature range) - the great-tailed grackle was originallyfrom the tropics (Wehtje, 2003), which generally have a narrow daily and annual climaterange, and now exists in temperate regions, which have much larger climate ranges. Ac-cordingly, the daily/annual temperature range could allow us to determine the role ofpotential climatic limits in explaining ranges and range changes for both species. If thereare limits, climate conditions could inform the difference between the range expansionrates of the two species. We considered the 19 bioclimatic variables from WorldClim.
• Further details:Weconvertedmonthly climate data for each time period fromWorld-Clim (Fick and Hijmans, 2017) into the set of 19 climate variables included in theBioClim dataset using the biovars function from the dismo package in R (Hijmans,Phillips, et al., 2022). We tested the 19 BioClim variables across the ranges of bothspecies for collinearity using the vifcor function from the usdm package in R (Naimiet al., 2014) with a correlation threshold of 0.7. For highly correlated variables, weexcluded the variable with the greater variable inflation factor. Our final dataset in-cluded 7 climate variables: mean diurnal temperature range, maximum temperatureof the warmest month, mean temperature of the wettest quarter, precipitation ofthe wettest month, precipitation of the driest month, and precipitation of the cold-est quarter.4. Presence/absence of water in the cell for each point - both species are considered tobe highly associated with water (e.g., Selander and Giller, 1961, therefore we identifiedhow far from water each species can exist to determine whether it is a limiting factorin the range expansion of one or both species. We had planned to use data from USGSNational Hydrography.
• Further details: We separated the coastlines and bodies of freshwater due to theassociations the boat-tailed grackle has with salt water (Post et al., 1996) and thegreat-tailed grackle has with freshwater (Selander and Giller, 1961).
• Deviations from the preregistered plan:We used the river, lake, and coastline shape-files from the Natural Earth database (http://www.naturalearthdata.com/) as thebasis for water bodies instead of the USGS National Hydrography database. TheUSGS National Hydrography database does not differentiate between minor andmajor bodies of water, resulting in near-complete coverage of the contiguous USmap with bodies of water. The Natural Earth database incorporates data on riversand lakes from the North American Environmental Atlas at a 1:10 million scale. Thelower resolution data allowed for the computation of distances between the morethan 1 million sample points and all water bodies. Natural Earth shapefiles have alsobeen used in other SDMs to calculate distances to water bodies (Mi et al., 2017).5. Connectivity: We planned to use connectivity as the distance between points on thenorthern edge of the range to the nearest uninhabited suitable habitat patch to the northin 1970 compared with the same patches in ~2018. We identified the northern edgeof the distribution based on reports on eBird.org from 1968-1970, which resulted inrecordings of great-tailed grackles in 48 patches and recordings of boat-tailed gracklesin 30 patches. For these patches, we calculated the connectivity (the least cost path) tothe nearest uninhabited suitable habitat patch in 1970 and again in ~2018. Given that
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great-tailed grackles are not found in forests or beyond certain elevations (Selander andGiller, 1961), large forests and high elevation geographic features could block or slowthe expansion of one or both species into these areas and their surroundings. For eachpoint, we planned to calculate the least cost path between it and the nearest locationwith grackle presence using the leastcostpath R package (Lewis, 2022). This approachwould allow us to determine the costs involved in a grackle’s decision to fly around orover a mountain range/forest. Wewould define the forest and mountain ranges from theland cover and/or elevation maps.
• Deviations from the preregistered plan: We did not include connectivity as an ex-planatory variable within our SDMs because we used a method for calculating con-nectivity that was dependent on the output of our SDMs. We quantified changes inconnectivity using Circuitscape version 4.0.5 (Anantharaman et al., 2020), a methodthat uses electrical circuit theory, treating a landscape as an electrical circuit withdifferent landscape features offering different levels of resistance. We created ourresistance surfaces using the results of our SDMs, which is a common practice whenexperimental data on species movement through a landscape is not available (Beieret al., 2011; Justen et al., 2021; Miranda et al., 2021). See the Analysis 4 sectionbelow for more details on our connectivity models.

Species Distribution Models
One model, including all explanatory variables, was run for the great-tailed grackle and a sep-arate model was run for the boat-tailed grackle. We planned to use the programMaxEnt (Phillipsand Dudík, 2008) to create the species distribution models. MaxEnt is a maximum entropy basedsoftware that compares environments between species presence and a set of background pointsto estimate habitat suitability (Phillips and Dudík, 2008). For the explanatory variables, MaxEntproduces a continuous prediction of habitat suitability for each grid cell (0 is least suitable and1 is most suitable). We planned to use MaxEnt followed by jackknifing procedures to evaluatethe relative contribution/importance of different environmental variables to the probability ofspecies occurrence. We planned to optimize the model by trying different regularization coeffi-cient values, which controls how much additional terms are penalized (Maxent’s way of protect-ing against overfitting), and choosing the value that maximizes model fit. Most MaxEnt papersuse cross-validation and the area under the curve (AUC) to evaluate model performance, and weplanned to do the same.
For all models we fit, we selected one presence and one absence from a 2.5 km hexagonalgrid per week to geographically subsample the data and reduce imbalance in observation effort.We then separated the subsampled checklists into a set to train our model (80% of checklists)and a set for model validation (20% of checklists). We used a balanced random forest approach,in which absence points are selected at an equal frequency as presence points, thus addressingthe imbalance in the ratio of presence and absence points (Strimas-Mackey, Hochachka, et al.,2020). Random forests are machine learning algorithms that generate a large number of classifi-cation trees based on different subsets of the given data (Evans et al., 2011). Once all trees aregenerated, the average result is taken and used as the final classification method, which deter-mines which environmental factors differentiate species presences from species absences. Weaccounted for stochasticity in the geographic subsampling, dataset separation, and balanced ran-dom forest processes by repeating model creation 10 times independently for each time periodand species. We used the ranger package in R to create each model (Wright and Ziegler, 2017).
We predicted habitat suitability across the contiguous United States using environmentaldata from 1979 and 2019. We produced three types of predictions (contemporary predictions,forecasts, and backcasts) depending on whether the time period of the SDM matched the timeperiod of the environmental data (Fig 2). When the time periods matched, we produced contem-porary predictions (e.g., predictions using the historic great-tailed grackle model with the 1979environmental data). The predictions we made using the historic models and the 2019 environ-mental data were forecast predictions, and the predictions wemade using the current model and
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the 1979 environmental data were backcast predictions. To standardize the predicted suitabili-ties, we set all effort covariates to the same values within the models of each species. We setthe day of the year to April 1st, the observation time to maximize the encounter rate for eachspecies (5 AM for the boat-tailed grackle and 6 AM for the great-tailed grackle, based on mostcommon observation times), observation duration to one hour, distance traveled to one km, andthe number of observers to one. We present the average habitat suitability predicted by the 10replicates of each model.
• Deviations from the preregistered plan: We used a random forest model to estimatehabitat suitability in place of Maxent due to the advantages offered by using presence-absence data instead of presence-background data. Presence-background data can onlydetermine the habitat suitability of points relative to the background environment (Guillera-Arroita, Lahoz-Monfort, and Elith, 2014), thus the results of presence-background mod-els such as Maxent cannot be compared between different environments due to thedifference in backgrounds. This limitation of presence-background models makes them apoor fit for comparing range shifts over long periods of time (Sofaer et al., 2018). In con-trast, presence-absence data allows relative likelihood to be proportional to the probabil-ity of occurrence so long as the sampling process is included within themodel through ef-fort covariates (Guillera-Arroita, Lahoz-Monfort, Elith, et al., 2015). Random forest mod-els incorporate absence points and are similarly robust to limited sample sizes and againstoverfitting as are Maxent models (Elith and Graham, 2009; Evans et al., 2011; Mi et al.,2017; Norberg et al., 2019). Random forest models have also been used to fit speciesdistribution models based on citizen science data (Robinson et al., 2020), including in thebest practices for eBird data (Strimas-Mackey, Hochachka, et al., 2020). Johnston et al.,2021 directly compared Maxent and random forest models using eBird data and foundthat the random forest model that included effort covariates performed the best in termsof the AUC and Cohen’s Kappa. Cohen’s Kappa is a chance-corrected measurement ofagreement between groups made by a classification system and a set of samples classi-fied into real values (Titus and Mosher, 1984). We fit species distribution models basedon the 2010-2019 data for the great-tailed grackle and the boat-tailed grackle using bothrandom forest and Maxent and found that the random forest model outperformed theMaxent model based on AUC and kappa for both species. The data preparation meth-ods have remained the same, and the models still output a continuous habitat suitabilitymetric between 0 and 1 for each grid cell.

Analysis instructions
1. Download and preprocess eBird data. Conduct spatial filtering to account for samplingbias2. Clean the species occurrence data: remove any uncertain records or geographic outliers3. Import climactic variables fromWorldClim and landscape data from MODIS and crop toregion of interest4. Match environmental data to grackle occurrence records5. Fitmodelswithmaxent to get predicted distributions and estimate importance/contributionof each environmental variable
We referred to Strimas-Mackey, Hochachka, et al., 2020 when extracting data on gracklepresence in a region from eBird.org. We planned to gather environmental data from databases,including a database that maps global urban change from 1985-2015 to a high (30 m) resolution(Liu,Wolter, et al., 2020).We used a variety of R packages, including auk (Strimas-Mackey,Miller,et al., 2022), dismo (Hijmans, Phillips, et al., 2022), raster (Hijmans, Etten, et al., 2023), maptools(Bivand, Lewin-Koh, et al., 2022), tidyverse (Wickham et al., 2019), rgdal (Bivand, Keitt, et al.,2023), rJava (Urbanek, 2021), and elevatr (Hollister et al., 2022).We used the R package auk (Strimas-Mackey, Miller, et al., 2022) to download and processoccurrence records for both the great-tailed grackle and the boat-tailed grackle from the cit-izen science project eBird (Sullivan et al., 2014), matching our preregistered analysis plan. Weincluded only complete checklists to allow us to infer non-detections (Johnston et al., 2021). We
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filtered the selected checklists to only include those less than 5 hours long, less than 5 km inlength, and with fewer than 10 observers, in accordance with recommendations from (Strimas-Mackey, Hochachka, et al., 2020). We also excluded presence points outside the current knownrange for either species (Johnson and Peer, 2020; Post et al., 1996). We kept all checklists within600 km of the remaining presence points to restrict our datasets to areas near the species rangeswhile including a wide area of environmental conditions. We also included information on theyear of observation, day of the year, time of observation, distance traveled, observation duration,and number of observers as effort covariates for use in our SDMs. In total, we included 8,163historic and 8,606,111 current great-tailed grackle checklists (with 502 and 519,082 great-tailedgrackle observations, respectively) and 6,940 historic and 7,211,101 current boat-tailed gracklechecklists (with 467 and 304,028 boat-tailed grackle observations, respectively). All species ob-servation locations can be found in Supplementary Figure S1.
• Deviations from preregistered plan: For our historic models, we used checklists from1970-1979, and for the currentmodels we used checklists from 2010-2019 (EBD_relJan-2021, 2021) instead of 1960 and 2018, respectively. The temporal ranges for our datasetwere selected for both sufficient sample size and overlap with the period of maximumgreat-tailed grackle range expansion (Wehtje, 2003). To determine the minimum numberof samples needed to make our present and historical models comparable, we createdspecies distribution models using subsamples of the 2010-2019 eBird dataset with dif-ferent numbers of positive observations. We found that retaining ≥ 300 observationsallowed our models to have a ∆AUC of less than 0.1. Using this limit, we set the tem-poral range for our historical model to 1970-1979 because this range had > 300 obser-vations of both species and captures the most rapid period of great-tailed grackle rangeexpansion. We also limited our spatial extent to the contiguous United States to ensureconsistent coverage of historic and current environmental data.

Analysis 1: habitat availability:Has the available habitat for both species increased over time?We fit species distribution models for both species in 1970 and in 2018 and determined for eachvariable, the range in which grackles were present (we define this area as the habitat suitabilityfor each species). We then planned to take these variables and identify which locations in theAmericas fall within the grackle-suitable ranges in 1970 and in 2018. We would then be able tocompare the maps (1970 and 2018) to determine whether the amount of suitable habitat hasincreased or decreased. If we would be able to find data for these variables before 1970 acrossthe Americas, we would additionally run models using the oldest available data to estimate therange of suitable habitat earlier in the great-tailed grackle range expansion period.
• Final analysis: We used the discrimination ability of our SDMs as metrics for how accu-rately our models predict grackle-suitable habitat and whether one model could be usedto predict suitable habitat in both the historic and current time periods for each species.We tested discrimination ability using the 20% of data excluded from the training setof each model. We measured Cohen’s Kappa and AUC for each model. We also usedthese metrics to quantify model transferability, the ability of a model to perform accu-rately using datasets independent of the training dataset. Model transferability has beenused to measure the consistency of habitat associations over time (Regos, Imbeau, et al.,2018; Torres et al., 2015; Wu, Li, et al., 2016). Low transferability would indicate that thebackcast or forecast suitability predictions do not accurately represent the species rangeand that the relationship between occurrence probability and environmental predictorshas changed. We used the 20% excluded from the opposite time period (1970-1979 forthe current backcast and 2010-2019 for the historic forecast) model to test the trans-ferability of our models over time. We also compared the geographic extents of suitablehabitat based on the historic and current models for both species to determine whetherthe models agree on the range dynamics for their species (Fig 2). We used the sensitivity-specificity-sum-maximum threshold (Liu, Berry, et al., 2005) to classify suitable habitat.We applied the suitability threshold to the contemporary prediction maps and the back-cast/forecast prediction maps to generate predicted suitable habitat ranges in 1979 and
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2019. We then mapped changes in habitat suitability classifications to determine therange dynamics predicted by each model.
• Deviations from the preregistered plan: We predicted habitat suitability in 1979 and2019 instead of 1970 and 2018 to line up with the most recent years within our historicand current datasets.

Analysis 2: habitat associations: Does the range of variables that characterize suitable habi-tat for the great-tailed grackle differ from that of the boat-tailed grackle? We fit species dis-tribution models for both species in 2018 to identify the variables that characterize suitablehabitat. We planned to examine the raw distributions of these variables from known grackleoccurrence points or extract information on how the predicted probability of grackle presencechanges across the ranges for each habitat variable. The habitat variables for each species wouldbe visualized in a figure that shows the ranges of each variable and how much the ranges of thevariables overlap between the two species or not.
• Final analysis: To determine changes in habitat associations over time, we quantifiedthe importance of each environmental predictor using the Gini index and calculatedthe partial dependence of each model to the environmental predictors. The Gini indexquantifies the classification information gained when a predictor was included in our ran-dom forests, with more informative predictors receiving greater values (Strimas-Mackey,Hochachka, et al., 2020). We calculated partial dependence by averaging the predictedhabitat suitability across 1000 randomly selected checklists in which one predictor wasset to 1 of 25 evenly spaced values across its observed range.We repeated the partial de-pendence calculation across all 25 values to create a partial dependence curve for everypredictor. To compare partial dependence across predictors, we subtracted all partial de-pendence values by theminimum habitat suitability for each curve to obtain the marginaleffect of each predictor.
• Deviations from the preregistered plan: We did not compare the distribution of envi-ronmental values at observation points. Instead, we used predictor importance and thepartial dependence of habitat suitability on each predictor because they are more in-formative metrics of habitat breadth. Predictor importance and the partial dependenceof habitat suitability on each predictor take into account differences in sampling effortacross geographic areas and predictor covariation. Comparing the distribution of envi-ronmental values at observation points would not have accounted for these confoundingeffects and would not take full advantage of the information available through our SDMs.

Analysis 3: habitat occupancy: Have the habitats occupied by both species changed overtime? We planned to count the number of different land cover categories each species is or waspresent in during 1970 and 2018. To determinewhether land cover influences their distributions,we would calculate how much area in the Americas is in each land cover category, which wouldthen indicate how much habitat is suitable (based solely on land cover) for each species.
• Final analysis:We compared the proportion of observations located on each land coverclass in addition to the number of different land cover classes that each species wasobserved on. Changes in the number of land cover classes either species was observedon would indicate that the species occupies novel habitat.

We also performed a niche overlap test using the ecospat.niche.similarity.test function withinthe R package ecospat (Broennimann, Cola, et al., 2023). This function compares the environ-mental space occupied by the observed points for a species across two different time periodsto determine if the differences in the environments that the species are found in across theseranges differ significantly compared to a null space generated by simulations that randomly re-assign observations to either time range. We generated the environmental space using a prin-cipal component analysis of the environmental predictors found at species occurrence pointswithin both the historic and current time periods. We used the two principal components thatexplained the largest proportion of variation to create the environmental space because theecospat.niche.similarity.test function is limited to two dimensions. We binned the first two prin-cipal components to create a 100x100 grid of environmental predictor values, and we used
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100 simulations to create our null expectations. Our two ranges were the historic and currentdatasets, and we ran the niche overlap test independently for each species. We quantified theniche overlap using Warren’s I (Broennimann, Fitzpatrick, et al., 2012; Warren et al., 2008), acommonly used metric of niche overlap that is calculated using the difference in the occupancyrate of grid cells within the environmental space (frequency of occurrences within each grid cellnormalized by the frequency of observations). Lower values of Warren’s I indicate greater differ-ences in the environmental space occupied by the species than expected by chance if the habitatusage for the species is the same across both time ranges. We used Warren’s I instead of themore common Schoerner’s D statistic, which Warren’s I is modified from, due to disagreementsbetween these statistics in cases where the ranges compared are drastically different in size(Rödder and Engler, 2011). The historic and current range sizes for the great-tailed grackle differgreatly and could result in the Schoerner’s D statistic underestimating niche overlap within thesimulations that form the null expectation we compare the observed overlap to. We used directobservations of each species, also known as ordinances, for our niche overlap test instead ofthe predicted suitability values from our SDMs because ordinance-based tests more accuratelyquantify niche overlap (Guisan et al., 2014). The niche overlap test excludes areas of niche spacethat were not sampled within one of the two ranges to avoid non-analogous comparisons.
• Deviations from the preregistered plan:We compared species observations from 1970-1979 and 2010-2019 instead of only using observations from 1970 and 2018 to use allavailable data. We also performed a niche overlap test to compare the observed differ-ences in the environments of the historic and current ranges for each species to a nullexpectation. Significant differences between the observed habitat occupancy changesand the null expectation indicate that our focal species are occupying different habitatsover time.

Analysis 4: habitat connectivity: Has habitat connectivity for both species increased overtime? If the connectivity distances are smaller in 2018, this would indicate that habitat connec-tivity has increased over time. We planned to calculate the least cost path from the northernedge to the nearest suitable habitat patch. To compare the distances between 1970 and 2018,and between the two species, we would run two models where both have the distance as theresponse variable and a random effect of location to match the location points over time. Theexplanatory variable for model 1 would be the year (1970, 2018), and for model 2 the species(great-tailed grackle, boat-tailed grackle). If we were be able to find data for these variables be-fore 1970 across the Americas, we would additionally run models using the oldest available datato estimate the range of connected habitat earlier in their range expansion.
• Final analysis: We used Circuitscape version 4.0.5 (Anantharaman et al., 2020) to de-termine whether changes in access to habitat due to connectivity caused by environ-mental change could explain range shifts in the boat-tailed grackle or the great-tailedgrackle. Circuitscape uses electrical circuit theory, treating a landscape as an electricalcircuit with different landscape features offering different levels of resistance. We cre-ated our resistance surfaces using the results of our current SDMs, which is a commonpractice when experimental data on species movement through a landscape is not avail-able (Beier et al., 2011; Justen et al., 2021; Miranda et al., 2021). Because we used thecurrent SDMs to create our resistance surfaces, our models tested whether environmen-tal change has connected or isolated areas of suitable habitat given the current realizedniche of the species. We converted habitat suitability to resistance using a negative ex-ponential function because this function performs well for avian species (Trainor et al.,2013). Our final resistance surface had values ranging from 1 to 100, with 1 as the mini-mum resistance value. To calculate connectivity across the entire species range, we useda method that does not require a priori selection of habitat patches. This method usesrandomly selected points, called nodes, as the locations where current enters and exitsthe resistance surface (Koen et al., 2014). Connectivity is measured as the current thattravels through each cell when moving between these nodes. Current is elevated nearthe node locations, so we created a buffer surrounding the ranges for each species and
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selected random points from the perimeter of this buffer for our nodes in Circuitscape(Koen et al., 2014). The elevated connectivity values adjacent to the nodes thus existedoutside of the species range, allowing the connectivity values within the species rangeto remain constant regardless of the location of the randomly selected nodes. The bufferremoved the correlation between node location and connectivity valueswithin the check-list ranges, resulting in connectivity values that were only dependent on the resistancemap. We used a buffer that was 600 km removed from the edge of the checklist rangesand used 18 randomly selected nodes. We then simulated current between each nodeusing the pairwise function in Circuitscape and used the summed accumulated currentas our metric of connectivity. We defined regions within the 75th percentile of the accu-mulated current values as high connectivity areas because the rank of suitability values,rather than themagnitude of suitability values, are themost transferable feature of SDMs(Guillera-Arroita, Lahoz-Monfort, Elith, et al., 2015). We chose the 75th percentile as ourthreshold based on (Bonnin et al., 2020).
• Deviations from the preregistered plan:Wedid not calculate the least cost path betweenhabitat patches because we did not have experimental data on species movement nordid we have a priori suitable habitat patches for either species. We used Circuitscape4.0.5 instead to quantify the accumulated current as a measure of ease of movementthrough the landscape.

Results
Hypothesis 1: Habitat Availability

We compared how habitat availability has changed for the boat-tailed grackle and the great-tailed grackle by predicting habitat suitability across each species range using environmentaldata from 1979 and 2019 (Analysis 1). We validated these predictions using presence-absencedata set aside from the current and historic datasets. If habitat availability was an importantfactor in determining the range dynamics of either species, then the current models should besufficient to predict the expected range dynamics, the current and historic models should agreeon the locations of suitable habitat, and the current models should be transferable to the historicdataset. Alternatively, if changes in habitat associations or connectivity were important for thespecies range dynamics, the current and historic models should disagree and be mutually non-transferrable.
Habitat availability for the boat-tailed grackle has remained the same across most of its rangeaccording to both the current and historic models, and the current model is highly transferable.The boat-tailed grackle remained restricted to the coasts of the Gulf of Mexico and AtlanticOcean, but habitat suitability increased within the interior of Florida and on the northern edgeof the species range, increasing the total suitable area from 180,406 km2 to 199,912 km2 in thehistoric model, and from 111,218 km2 to 163,243 km2 in the current model (Fig 3A; see FigS2 for suitability values). The models disagreed on the northern extent of suitable habitat, withthe historic model reaching the southern tip of Delaware, while the current model predictedthat suitable habitat reached farther north to Long Island. The current model recreated existingspecies range definitions, including a known break in the species range on the western edge ofthe Florida panhandle (Post et al., 1996). The current model was also highly transferable, withlittle difference between the prediction accuracy using the current or historic datasets (∆Kappa =0,∆AUC = -0.026, Fig 3B), while the historic model had lower transferability (∆Kappa = -0.226,

∆AUC = -0.049). The accuracy of the current model indicates that environmental change issufficient to predict changes in habitat suitability, and the low transferability of the historicmodelcould be due to greater geographic bias caused by the smaller sample size (Fig S1). Our modelsagree with observations that the boat-tailed grackle range has remained largely stable except foran expansion along the northeastern coast of the US and suggest that habitat availability couldplay a role in the range dynamics of the boat-tailed grackle.
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Figure 3 – Predicted suitability maps and discrimination ability of SDMs. (A) Maps display areaswhere predicted suitability is greater than the maximum-sensitivity-specificity thresholds for eachmodel (great-tailed grackle (GTGR) current: 0.4440, boat-tailed grackle (BTGR) current: 0.4780,great-tailed grackle (GTGR) historic: 0.4635, boat-tailed grackle (BTGR) historic: 0.3935). Darkershaded regions are predictions made using the historic environment (historic and current back-cast) and lighter regions are predictions made using the current environment (historic forecastand current). The northern edge of the boat-tailed grackle range is expanded in a map insert forclarity. Overall, the areas of lighter color indicate changes in habitat availability from 1979-2019,as predicted by each model. (B) The ability of each model to predict the presence or absence ofboat-tailed grackles (blues) or great-tailed grackles (reds) using Cohen’s kappa (agreement betweenpresence or absence classification for model and true presence or absence) and AUC (area underthe sensitivity-specificity curve). The models were tested using either test data excluded from thetraining data set (historic and current predictions) or test data from the opposing temporal period(backcast and forecast predictions). Error bars signify one standard deviation in the values across10 replicates. The high values of the boat-tailed grackle historic, current backcast, and current, andthe great-tailed grackle historic and current models indicate that these models are accurate, whilethe lower values of the boat-tailed grackle historic forecast and the great-tailed grackle historicforecast and current backcast models indicate that the boat-tailed grackle historic and the great-tailed grackle historic and current models have poor transferability.
Habitat availability for the great-tailed grackle has expanded, but the current and historicalmodels disagree on the extent and location of this expansion and are mutually non-transferable.
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The historic model restricted the great-tailed grackle range to 198,175 km2 in southern Texas,matching previous reports of the species range in the 1970s (Wehtje, 2003), and predictedminorreductions in range to 181,281 km2 (Fig 3A, Fig S2). The currentmodel instead predicted suitablehabitat existed in both time periods across the known great-tailed grackle range expansion (We-htje, 2003) in the central and southwestern US, with further expansions within central Califor-nia, Colorado, Kansas, and southeastern Texas. Suitable habitat expanded from 322,750 km2 in1979 to 547,694 km2 in 2019, however this expansion included areas that were suitable withinthe historic model. Neither model had high transferability (current: ∆Kappa = -0.184, ∆AUC= -0.061; (historic: ∆Kappa = -0.203, ∆AUC = -0.177, Fig 3B). The disagreement between ourmodels indicates that environmental change alone cannot explain the range expansion of thegreat-tailed grackle. Each model accurately predicted the species range within its own time pe-riod, but failed to predict the known changes in that range. Together, our models predict thatthe great-tailed grackle range has more than doubled in the past 40 years, but the habitat as-sociations found in one time period are incapable of predicting the changes in occupied habitatover time. These changing habitat associations could indicate that the great-tailed grackle is oc-cupying novel habitat, either because the species can tolerate a wider variety of habitats or hasovercome barriers such as dispersal barriers or temporal lag, the time required for populationsof a species to establish in previously unoccupied suitable habitat (Essl et al., 2015).
Hypothesis 2: Habitat Associations

We compared the changes in habitat associations of boat-tailed grackles and great-tailedgrackles by measuring the importance of each environmental predictor to the current and his-toricmodels for each species and quantifying themarginal effect that changing the value of thesepredictors had on habitat suitability. Differences in which predictors are most important or howpredictors influence habitat suitability describe differences in the realized niches predicted byour models (Analysis 2). We also quantified how frequently each species was observed on dif-ferent land cover classes between the current and historic datasets to test for changes in thebreadth of land cover classes used by either species. Finally, we performed a niche similarity testto determine if the environments occupied by each species in the historic and current time peri-ods are more different from each other than would be expected by chance (Analysis 3). Changesin the environments either species was observed on would indicate that the species has novelhabitat associations in the current time period relative to the historic time period.The most important predictors for the current boat-tailed grackle model were mean temper-ature of the wettest quarter (accounting for 14.2% of the total average GINI index), elevation(11.8%), precipitation of the wettest month (9.1%), and deciduous forest land cover (8.4%; Fig4). Habitat suitability increased as the mean temperature of the wettest quarter and precipita-tion of the wettest month increased and was highest when both elevation and deciduous forestland cover were close to zero (Fig 5; see Fig S3 for the full set of partial dependence plots). Ourmodel predicts that the ideal habitats for boat-tailed grackles are warm, low elevation habitatswith high precipitation and low forest cover.The historic model for the boat-tailed grackle disagreed on the importance and effect ofonly a few predictors, supporting consistent habitat usage in the species. Both the historic andcurrent models placed high importance on the mean temperature in the wettest quarter (12.4%;Fig 4), precipitation of the wettest month (12.4%), and deciduous forest cover (7.9%). However,the historic model prioritized the mean temperature of the driest quarter (9.7%, 5.8% in thecurrent model) and not elevation (4.8%). Among these predictors, only the mean temperatureof the driest quarter had a different effect in the historic model than in the current model (Fig5). Habitat suitability increased as the mean temperature of the driest quarter increased in bothmodels, but the current model predicted that suitability would decrease beyond the observedtemperature range of the historic model. Differences between the historic and current modelsdo not support a change in habitat associations of boat-tailed grackles over time.Boat-tailed grackleswere found in every land cover class except deciduous forests and ice/snowin both the historic and current time periods. Boat-tailed grackles were found more often in ur-ban areas in the current time period, and less often in the land cover class that was the second
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Figure 4 – Importance of environmental predictors for the boat-tailed grackle (BTGR) and the great-tailed grackle (GTGR) historic and current species distribution models (SDMs). Relative predictorimportance measures how informative the predictors were for classifying presence or absencepoints within each model (% total GINI index). The predictor colors indicate whether a predictorwas a measure of climate (yellow), observer effort (red), distance to water (blue), land cover classi-fication (green), or elevation (gray).

most common in the historic time period: woody wetlands (Fig S4). Boat-tailed grackles werealso found less often in croplands, which corresponds with a decrease in croplands across thechecklist range. We found no evidence of change in habitat occupancy based on land coverclasses for boat-tailed grackles, agreeing with the results of our SDMs. The niche similarity testfor the boat-tailed grackle did not find a significant difference in the environmental space occu-pied by the boat-tailed grackle over time (Warren’s I = 0.647; p-value = 0.446, Fig S5B), whichfurther supports the hypothesis that the boat-tailed grackle did not change the environments itoccupies between the historic and current time periods.The most important predictors for the current great-tailed grackle model were maximumtemperature of the warmest month (15.5%; Fig 4), mean temperature of the wettest quarter(15.3%), mean temperature in the driest quarter (7.2%), and distance to coasts (6.8%). Habitatsuitability increased as the maximum temperature of the warmest month, mean temperature ofthe wettest quarter, and mean temperature of the driest quarter increased, while suitability wasnegatively related to the distance to coasts (Fig 5, Fig S3). Our model predicts that the idealhabitats for great-tailed grackles are warm areas not too far from coasts.The historic model for the great-tailed grackle disagreed on the importance and effect ofseveral predictors, supporting a change in habitat associations. The historic model agreed withthe current model on the high importance of the maximum temperature of the warmest month(9.8%, Fig 4) and mean temperature of the wettest quarter (17.0%). However, the historic modelprioritized the precipitation in the driest month (9.9% vs. 5.9% in the current model) and thedistance to fresh water (7.9% vs. 2.7% in the current model), and not the distance to coasts(4.5%) nor the mean temperature in the driest quarter (4.3%). Habitat suitability increased asprecipitation in the driest month increased, while the currentmodel predicted the opposite trend(Fig 5). Habitat suitability was also greatest near fresh water, while the current model predictedlittle effect of the distance to fresh water. The two models also disagree on which land cover
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Figure 5 – Partial dependence curves for the 12 most important environmental predictors acrossall boat-tailed grackle (BTGR) and great-tailed grackle (GTGR) models. The curves represent howchanging each environmental predictor changes the encounter rate for the modeled species. Thehistoric models are represented by the darker dashed lines and the current models are representedby the lighter solid lines. Shaded regions indicate one standard deviation. The differences betweenthe historic and current models for each species present how realized niches of each species aspredicted by our models have changed.

class was most important for great-tailed grackles. Urban cover was most important for thecurrent model (4.8% vs. 3.6% in the historic model), while grassland cover (4.7% vs. 1.5% in thecurrent model) was most important for the historic model. While habitat suitability increasedas urban cover increased for both models, the current model reached its maximum suitabilityby 25% urban cover, while the historic model did not reach similar suitability until almost 100%urban cover. The faster rate of suitability increase in the current model indicates that great-tailedgrackles were found across a wide variety of urban habitats, from moderate to highly urbanizedareas, while the historic model indicates that great-tailed grackles were preferentially found inhighly urbanized habitat. Our models predict that the great-tailed grackle is currently found inmore arid habitat with greater variability in urban cover than 40 years ago.Great-tailed grackles were found in every land cover class except deciduous forests, mixedforests, and ice/snow in the historic sample, and every land cover class except deciduous forestsand ice/snow in the current sample. Thereweremore great-tailed grackle observations in the cur-rent sample on urban areas, croplands, and grasslands and less observations in water, shrublands,pastures, and evergreen forests (Fig S4). While the most common land cover classes great-tailedgrackles were found on had shifted, there was no evidence that great-tailed grackles expandedthe breadth of land cover classes they could occupy. These results are consistent with our SDMs,which only found differences in the range of urban habitats that great-tailed grackles occupied.The niche similarity test for the great-tailed grackle found a significant difference in the envi-ronmental space occupied by the great-tailed grackle over time (Warren’s I = 0.641; p-value =0.001, Fig S6B). The observed value for Warren’s I was lower than the simulated values, further
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supporting the hypothesis that the great-tailed grackle changed the environments it occupiesbetween the historic and current time periods.
Hypothesis 3: Connectivity

To determine whether changes in connectivity between habitat patches caused by environ-mental change could explain the rapid expansion of the great-tailed grackle but not the boat-tailed grackle, we estimated the change in accumulated current across the range of each speciesbetween 1979 and 2019 (Analysis 4). Accumulated current summarizes the amount of move-ment through a cell, thus cells with higher current values are more suitable for movement andincrease connectivity. We binned current values into high or low connectivity using the 75thpercentile (Bonnin et al., 2020). Most cells within the 75th percentile of current values based onthe 1979 resistance surface remained within the 75th percentile for both species. Decreases inthe distances between patches of cells with high current between the two time periods wouldindicate that habitat connectivity has increased.Connectivity decreased for the boat-tailed grackle along the interior portion of its range (far-ther from the coasts) in the southern Atlantic states and the southern coast of Texas (Fig S7).However, connectivity increased along the Florida panhandle, the northern coast of North Car-olina, and the areas surrounding New York City (New York State, New Jersey, and Connecticut).There were no isolated patches of high connectivity for the boat-tailed grackle, and changes inconnectivity did not connect or isolate any habitat patches. Our model does not predict majorconnectivity changes occurring across the range of the boat-tailed grackle.Connectivity decreased for the great-tailed grackle within the state of Arizona and alongthe northern extreme of the cells within the 75th percentile (Oregon, Nevada, Colorado, andKansas). However, connectivity increased along the eastern extreme (Texas and Oklahoma) andthe northern edges in Arizona and New Mexico (Fig S7). Only one region of high connectivityin Montana was isolated from the core of connected cells, and no areas became isolated or con-nected between 1979 and 2019. Similar to the boat-tailed grackle, our model does not predictmajor connectivity changes occurring across the range of the great-tailed grackle.
Discussion

We investigated how changes in habitat availability, habitat breadth, and connectivity relateto differential range dynamics in a sister-species pair.We found that the rapidly-expanding great-tailed grackle has increased the variety of occupied habitats in the past 40 years. The currentrealized niche of the great-tailed grackle contains more arid climate conditions and is less depen-dent on bodies of fresh water than in the past realized niche. We did not find evidence for anincrease in the connectivity of previously isolated patches of suitable habitat. Overall, our resultsfor the great-tailed grackle are consistent with hypothesis 2, that an expansion in the realizedniche of the great-tailed grackle may have contributed to the geographic range expansion ofthe species (Fig 1). While this expansion might predate the period we investigated, which couldbe the case if these behavioral traits are part of the inherent repertoire of great-tailed gracklesin line with hypothesis 4, the change in the range does not seem to reflect a lag to move intopreviously unoccupied habitat as the novel habitats the great-tailed grackle now occupies didexist within dispersal distance of the historic range for the species. In contrast, the boat-tailedgrackle has remained within the same habitat conditions. Climate change in the northern ex-treme of the boat-tailed grackle range increased the area of predicted suitable habitat, matchingobserved expansions of the species in that area. Similar to the great-tailed grackle, we foundno changes in connectivity. Accordingly, the range dynamics of the boat-tailed grackle matchexpectations based on changes in habitat availability, our hypothesis 1 (Fig 1).Our current boat-tailed grackle model is consistent with past work showing that boat-tailedgrackles are highly restricted to coastal areas, and that an expansion into northern coastal ar-eas could be due to climate changes. Boat-tailed grackles rarely occur far from saltwater in thenorthern portion of their range, but can nest inland across Florida (Post et al., 1996; Selanderand Giller, 1961). Our current model recreated this distribution and predicted that elevation and
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distance to coastline were highly important environmental limitations. The historical model didnot recreate the same high suitability within the interior of Florida and had both elevation anddistance to coastlines as less important. However, our historic model also had lower transferabil-ity and could have reduced accuracy due to a low sample size, which can inflate the impact ofgeographic bias in samples (Anderson and Gonzalez, 2011; Elith, Kearney, et al., 2010; Guillera-Arroita, Lahoz-Monfort, Elith, et al., 2015; Yates et al., 2018). Our niche similarity test also sup-ports consistent habitat use for the boat-tailed grackle in both time periods. Both SDMs predictincreased suitability in the northern portion of the species range, which matches past observa-tions (Selander and Giller, 1961) and general trends observed in several bird species that tracktheir optimal conditions as anthropogenic climate change has altered environments (Chen et al.,2011; Thomas, 2010; Tomiolo and Ward, 2018; Vitousek et al., 1997).The changes in species range we found in the great-tailed grackle matched those predictedby previous researchers. Selander and Giller, 1961 note that, along the northern range edge,great-tailed grackles have expanded into new arid prairie habitat but were highly restricted tohuman settlements and farms in these areas. Great-tailed grackles require access to open habitatand standing water across their range (Selander and Giller, 1961), and human land use changeand irrigation could meet these needs. Our models did find higher habitat suitability values forthe great-tailed grackle close to bodies of freshwater in the historic but not the current timeperiod, suggesting that great-tailed grackles occupy habitats farther from natural open watersources. The differences between the current and historic models were also supported by ourniche similarity test, which indicated that great-tailed grackles occupied a significantly differentarea of environmental space in the current time period relative to the historic time period. Thecurrent great-tailed grackle model also predicted higher suitability in areas with more croplandand pasture, but neither land cover class had high predictor importance. Instead, precipitation inthe wettest and driest months marked the greatest difference between the current and historicmodels. Wehtje (2003) proposed that lower nest predation and abundant food in human modi-fied environments could allow the great-tailed grackle to support populations within otherwisesuboptimal climate conditions. The great-tailed grackle could use the same land cover classes inboth time periods, but current populations have novel or preexisting ways to use human alteredenvironments to expand their realized climatic niche. It is possible that the fundamental nicheof the great-tailed grackle has remained the same, while the realized niche has expanded dueto anthropogenic environmental change. Our results show that the great-tailed grackle is cur-rently found across a wider variety of broad-scale habitats than 40 years ago. Further work onlocal-scale habitat use across the range of the great-tailed grackle could explore the causes ofthe trend we have observed.It remains unclear why the great-tailed grackle has expanded its realized nichewhile the boat-tailed grackle has not. Both the boat-tailed grackle and the great-tailed grackle are highly adapt-able species with similar foraging habits. Human-associated species like boat-tailed grackles andgreat-tailed grackles that use urban habitats are typically more behaviorally flexible and bettersuited to use new environments than other species (Sol, Duncan, et al., 2005; Sol, Lapiedra, etal., 2013; Sol, Timmermans, et al., 2002; Wong and Candolin, 2015). There could be meaningfuldifferences in the degree of flexibility between these species or other factors that limit the abil-ity of the boat-tailed grackle to expand to new habitats. The greater nest-site specificity of theboat-tailed grackle could be a limiting factor, though nest-site plasticity does exist in the species(Post et al., 1996). Further studies are needed to compare ecologically relevant differences inflexibility, exploration, dispersal, and reproductive behaviors between these two species.Our results demonstrate vastly different niche dynamics within closely related species andillustrate the divergent responses species can have to anthropogenic change. The distinct nichedynamic of each species represents opposing responses to anthropogenic change: the boat-tailed grackle has shifted its range in response to climate change, while the rapidly expandinggreat-tailed grackle has acclimated to new climates possibly due to human land-use change.Species with similar responses to the boat-tailed grackle could be more vulnerable to futureclimate change (Thomas, 2010), while the great-tailed grackle parallels rapidly expanding intro-duced species, despite being native to North America (Peer, 2011). The expansion habitats used
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by the great-tailed grackle also confounds our ability to project how the species rangewill changein the future, and could have implications for a projected expansion in the common grackle (Quis-calus quiscalus) (Capainolo et al., 2021). Evidence of bird species not following predicted rangeshifts in response to climate change is building, withmany species becoming decoupled from pre-viously identified climatic niches (Viana and Chase, 2022). Species appear to shift their ranges inways that do not directly track the rapid changes in climate (Currie and Venne, 2017), potentiallybecause the local climate shapes niches indirectly by leading to habitat changes that often cantake many years to fully manifest (Neate-Clegg et al., 2020). Identifying the mechanism of rangedynamics in both grackle species expands the knowledge of the complex and changing factorsthat shape species ranges globally.The high accuracy of our SDMs when cross validated on their own datasets and the trans-ferability of the current boat-tailed grackle model support the use of SDMs as tools to studyhow species ranges change over time. While improving model transferability remains a chal-lenge for SDMs (Vaughan and Ormerod, 2005; Yates et al., 2018), using a combination of cli-mate and land use data can improve model accuracy and transferability in some situations (Elithand Graham, 2009; Regos, Gagne, et al., 2019). Our results also stress the importance of test-ing model transferability before assuming niche conservatism for all species. While the nichesof species commonly remain consistent (Liu, Wolter, et al., 2020), assuming species will retaintheir niche through time can limit the usefulness of SDMs. When model transferability is tested,SDMs become amore effective tool for studying species ranges to both understand fundamentalquestions in ecology and evolution and set conservation priorities in the face of ongoing anthro-pogenic changes (Chen et al., 2011; Elith, Kearney, et al., 2010; Grenouillet and Comte, 2014;Sofaer et al., 2018).SDMs are accompanied by several limitations that are important to consider. SDMs are correl-ative in nature and are susceptible to biases in sample and parameter selection (Regos, Gagne, etal., 2019; Sofaer et al., 2018). Here, we used geographic undersampling and a balanced randomforest design to reduce the impact of sampling bias and selected both climate and land coverparameters to include biologically relevant variables, but other potentially causative variablescould remain. We note that our results capture correlations between species occurrence andenvironmental factors, and thus cannot determine a causal link between where either species isfound and the environment. Habitat occupancy change could occur independently of environ-mental change, such as if all suitable sites were not yet occupied due to temporal lag. Increasedoccupancy as the species reaches already suitable sites would correlate with further environ-mental change and be captured by our species distribution models. Our models similarly cannotdistinguish lagged responses to environmental trends that pre-date our dataset from responsesto within-dataset trends. The temporal limits of our study could influence our results as thespecies ranges could react to changes beyond the scales we investigated. Environmental changethat occurred before 1970 could have influenced the observed ranges of the species during1970-1979 due to temporal lag in the species occupying areas within their fundamental niches.Because our models were trained on species occurrences, the niches described by our model de-pend on a combination of environmental factors that are physiologically or behaviorally favoredby the species (the fundamental niche for the species), dispersal behavior and limitations, and bi-otic factors that influence where the two species will occur (Soberón and Nakamura, 2009). Weincluded a broad set of climatic, land use, topographic, and hydrologic factors within our SDMsto capture the environmental factors that could influence occurrence, but these factors may beincomplete, or may be too coarse to capture local scale habitat use. Our connectivity analysisinvestigated whether environmental change could influence the dispersal limitations for eitherspecies, but assumed that dispersal ability and habitat use remained constant over time. Fur-ther work is needed to investigate variation in dispersal behavior within the great-tailed grackleand boat-tailed grackle to determine the possible influence of dispersal behavior in the rangedynamics for both species (see Q1 and Q2 of Logan et al., 2020 for project proposals). Recentwork promotes the inclusion of biotic factors in SDMs such as pathogen, predator, or competi-tor species because interspecific dynamics can play a major role in determining species ranges(Gaston, 2003; Paquette and Hargreaves, 2021; Stephan et al., 2021). Determining the relevant
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biotic factors for each species remains challenging, but future work could investigate how thepresence of nest predators such as the fish crow (Corvus ossifragus), which overlaps in rangewith boat-tailed grackles but not great-tailed grackles (Post et al., 1996), could also prevent theboat-tailed grackle from expanding its range.In conclusion, this investigation found that across the range expansion of the great-tailedgrackle, the species now occupies a wider variety of habitats than 40 years ago, while the boat-tailed grackle is found within the same habitats over time, even as environments have changed.Despite the many similarities between these two species, they occupy distinct niches and ap-pear to have divergent responses to anthropogenic change. While the boat-tailed grackle rangecurrently conforms to climate change, the great-tailed grackle has expanded across new human-altered environments. The potential causes for the observedwidening of habitat use in the great-tailed grackle, but not the boat-tailed grackle, demand further investigation of the ecology, geneflow, and behavior of both species that could have created such different range dynamics. Weencourage others to also consider behavior when attempting to understand what limits speciesranges (e.g., Greggor et al., 2016). Here we have detailed how environmental and habitat usechange can play important roles in range expansions and range stability, and future work willelucidate the factors shaping species ranges in our rapidly changing world.
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Appendix

BTGR Current GTGR Current

BTGR Historic GTGR Historic

Supplementary Figure 1 – Map of observation locations for boat-tailed grackles (BTGR) or great-tailed grackles (GTGR) from historic (1970-1979) and current (2010-2019) eBird records. Theselocations are filtered for record quality
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Supplementary Figure 2 – Predicted habitat suitability using random forest models for boat-tailedgrackles (BTGR) and great-tailed grackles (GTGR). Brighter colors indicate higher habitat suitability.The presented results are the average of the 10 replicates.
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Supplementary Figure 3 – Partial dependence curves for environmental predictors across all mod-els (boat-tailed grackle: BTGR; great-tailed grackle: GTGR). The curves represent how changingeach environmental predictor changes the encounter rate for the modeled species. The historicmodels are represented by the darker dashed lines and the current models are represented by thelighter solid lines. Shaded regions indicate one standard deviation. The differences between thehistoric and current models for each species present how the species niche has changed based onour models.
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Supplementary Figure 4 – Results of the niche similarity test between the historic (1970-1979)and current (2010-2019) time periods for the boat-tailed grackle. (A) Species occurrence pointsplotted along the first two principal component (PC) axes used for the niche similarity test. Thepercent variance captured by each principal component is presented in the axis label. The blacklines expanding from the origin indicate the rotation values for the environmental predictors alongthe two principal components. The current time period observations were randomly subsampledto 1000 points for visual clarity. (B) Values of Warren’s I from the niche similarity test based onthe observed data (solid line) and 100 simulations (histogram). Higher values of Warren’s I indicategreater niche similarity. The p-value presented for the observed value is based on the null hypoth-esis that the observed value presents equal or greater niche similarity than the simulations.
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Supplementary Figure 5 – Results of the niche similarity test between the historic (1970-1979)and current (2010-2019) time periods for the great-tailed grackle. (A) Species occurrence pointsplotted along the first two principal component (PC) axes used for the niche similarity test. Thepercent variance captured by each principal component is presented in the axis label. The blacklines expanding from the origin indicate the rotation values for the environmental predictors alongthe two principal components. The current time period observations were randomly subsampledto 1000 points for visual clarity. (B) Values of Warren’s I from the niche similarity test based onthe observed data (solid line) and 100 simulations (histogram). Higher values of Warren’s I indicategreater niche similarity. The p-value presented for the observed value is based on the null hypoth-esis that the observed value presents equal or greater niche similarity than the simulations.
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Supplementary Figure 6 – Change in connectivity between 1979 and 2019 measured as changein accumulated current for boat-tailed grackles (BTGR) and great-tailed grackles (GTGR). Currentvalues were divided into high and low categories based on whether the values were above orbelow the 75th percentile of current values for each map. Colors indicate whether the currentvalues remained low between the two time steps (gray), went from high to low (magenta), wentfrom low to high (blue), or remained high (green). The darker gray color indicates areas outside therange where checklists were selected for each species, and were excluded from the connectivityanalysis. The regions that have remained highly connected are continuous for both species, whichindicates that changes in connectivity are not responsible for range changes in either species..
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