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Abstract
Boolean networks (BNs) are discrete dynamical systems with applications to the model-ing of cellular behaviors. In this paper, we demonstrate how the software BoNesis can beemployed to exhaustively identify combinations of perturbations which enforce proper-ties on their fixed points and attractors. We consider marker properties, which specifythat some components are fixed to a specific value. We study 4 variants of the markerreprogramming problem: the reprogramming of fixed points, of minimal trap spaces, andof fixed points and minimal trap spaces reachable from a given initial configuration withthe most permissive update mode. The perturbations consist of fixing a set of compo-nents to a fixed value. They can destroy and create new attractors. In each case, wegive an upper bound on their theoretical computational complexity, and give an imple-mentation of the resolution using the BoNesis Python framework. Finally, we lift thereprogramming problems to ensembles of BNs, as supported by BoNesis, bringing in-sight on possible and universal reprogramming strategies. This paper can be executedand modified interactively.
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Introduction
Boolean networks (BNs) are formal discrete dynamical systems with pertinent applicationsformodeling cellular differentiation and fate decision processes (Cohen,Martignetti, Robine, Bar-illot, Zinovyev, and Calzone, 2015; Montagud et al., 2022; Saez-Rodriguez, Alexopoulos, Epper-lein, Samaga, Lauffenburger, Klamt, and Sorger, 2009; Schwab, Ikonomi, Werle, Weidner, Geiger,and Kestler, 2021; Jorge Gómez Tejeda Zañudo et al., 2021). In these applications, BNs aim atcapturing the stable behaviors (attractors) and the transient dynamics (trajectories) of the cell.From this perspective, BNs offer a formal framework for predicting perturbations that destabilizethe system and drive it towards a desired new stable behavior. BN control or BN reprogramming,in reference to cellular reprogramming which aims at converting cell types, is thus receiving alot of interest from the computational systems biology community (Biane and Delaplace, 2019;Fontanals, Tonello, and Siebert, 2020; Mandon, Su, Haar, Pang, and Paulevé, 2019; Rozum, De-ritei, Park, Jorge Gómez Tejeda Zañudo, and Albert, 2021; Su and Pang, 2020; Yang, Jorge GómezTejeda Zañudo, and Albert, 2018; Jorge G. T. Zañudo and Albert, 2015).The reprogramming of BNs led to a range of methods and tools addressing different instan-tiations of this problem: with different type of perturbations (instantaneous, temporary, perma-nent), different temporal modalities (one-step, sequential), different scopes (global reprogram-ming or from a given initial condition), different restrictions on the target attractor (fixed pointsonly, attractors of the original “wild-type” BN). On top of that, the update mode of the BN, whichdetermines how the trajectories are computed, can play an important role on the predictions.In this paper, we address the BN reprogramming with the Most Permissive (MP) update mode,where attractors are the minimal trap spaces of the BN (Paulevé, Kolčák, Chatain, and Haar,2020). The problems we tackle are related to marker reprogramming: the desired target attrac-tors are specified by a set ofmarkers, associating a subset of nodes of the network to fixed values(e.g., A = 1,C = 0). After reprogramming, all the configurations in all (reachable) attractors mustbe compatible with these markers. Importantly, the target attractors are not necessarily attrac-tors of the original (wild-type) BN: the reprogramming can destroy and create new attractors. Inparticular, if there is no attractor in the original model matching with the marker, the reprogram-ming will identify perturbations that will create such an attractor and ensure its reachability. Thisis a substantial difference with many of the methods in the literature. Moreover, the approachwe present here can return all the possible solutions, possibly up to a given maximum numberof perturbations to apply, and possibly avoiding uncontrollable nodes.
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We address the following BN reprogramming problems in the scope of the MP update mode:
• P1: Marker reprogramming of fixed points: after reprogramming, all the fixed points ofthe BN match with the given markers; optionally, we can also ensure that at least onefixed point exists.
• P2: Source-marker reprogramming of fixed points: after reprogramming, all the fixedpoints that are reachable from the given initial configuration match with the given mark-ers.
• P3: Marker reprogramming of attractors: after reprogramming, all the configurations ofall the MP attractors (the minimal trap spaces) of the BN match with the given markers.
• P4: Source-marker reprogramming of attractors: after reprogramming, all the configura-tions of all the attractors that are reachable from the given initial configurationmatch withthe given markers.

MP fixed points match with the fixed points of the global Boolean map of the BN and arethus identical to the fixed points of the (a)synchronous update modes. MP attractors matchwith so-called minimal trap spaces of the BN, which are the smallest sub-hypercubes closed bythe Boolean map. Problem P1 has been already addressed in the literature, notably by Bianeand Delaplace (2019) with the ActoNet method and by Moon, Lee, Chopra, and Kwon (2022),based on bilevel integer programming. To our knowledge, none of the other problems have beenaddressed completely in the literature.
The software BoNesis (https://github.com/bnediction/bonesis) provides a generic environ-ment for the automated construction of BNswithMP updatemode from specified structural anddynamical properties. The properties are translated into a logic satisfiability problem, expressedin Answer-Set Programming (ASP). Initially,BoNesis has been designed for performing BN synthe-sis (Chevalier, Froidevaux, Paulevé, and Zinovyev, 2019): solutions of the logic model correspondto BNs that possess the specified structural and dynamical properties. Leveraging this genericdeclarative specification of properties, BoNesis is a versatile tool for reasoning on BNs in general,with the MP update mode: besides synthesis, it can be used to do model checking, identify fixedpoints and attractors in ensemble of BNs, and identifying reprogramming strategies.
In this paper, we show how the software BoNesis can be employed to solve P1, P2, P3, and P4in the scope of locally-monotoneBNs,where each local function is unate (https://en.wikipedia.org/wiki/Unate_function), i.e., where each local function never depends on both positively and neg-atively from a same component. Locally-monotone BNs cover all the models where it assumedthat a node cannot be both an activator and inhibitor of a same other node, which is a commonassumption when modeling biological system.
BoNesis enables reasoning on ensembles of BNs: one of its basic input is the domain of BNsto consider. This domain could be reduced to a singleton BN: in that case, the reasoning is simi-lar to standard model checking and reprogramming. In general, the domain is specified from aninfluence graph, possibly with additional constraints on the underlying logical functions. For BNsynthesis, this domain is used to delimit symbolically the set of candidate models: BoNesis willoutput the subset of them that verify the desired dynamical properties. We show how problemsP1 to P4 can be partly lifted to ensembles of BNs using this approach. The paper is structuredas follows. The Methods section gives the necessary background on BNs and MP update modeand formulation of elementary dynamical properties as satisfaction problems, as well as mainprinciples of the BoNesis environment. The Results section details how the different reprogram-ming problems P1-P4 can be addressed using BoNesis and shows some experiments to assesstheir scalability. Finally, the Discussion section sketches possible extensions of the addressedproblems and underlines current challenges for their resolution.
This paper is executable: it contains snippets of Python code employing BoNesis to demon-strate its usage on small examples, including command line usage. Instructions for its executionare given at the beginning of the Results section. It can be visualized online (https://nbviewer.org/
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github/bnediction/reprogramming-with-bonesis/blob/release/paper.ipynb) and interactively ex-ecuted either online (https://mybinder.org/v2/gh/bnediction/reprogramming-with-bonesis/rele-ase?urlpath=tree/paper.ipynb) using mybinder online free service, or locally, following instruc-tions given later in this paper.
1. Methods

1.1. Boolean networks and the Most Permissive update mode
1.1.1. Basic definitions. A Boolean network (BN) of dimension n is specified by a function f :
Bn → Bn where B = {0, 1} is the Boolean domain. For i ∈ {1, · · · , n}, fi : Bn → B is referredto as the local function of the component i . The Boolean vectors x ∈ Bn are called configurations,where for any i ∈ {1, · · · , n}, xi denotes the state of component i in the configuration x .A BN f is locally monotone whenever every of its local functions are unate: for each i ∈
{1, · · · , n}, there exists an ordering of components �i∈ {≤,≥}n such that

∀x , y ∈ Bn, (x1 �i
1 y1 ∧ · · · ∧ xn �i

n yn) =⇒ fi (x) ≤ fi (y) .

Intuitively, a BN is locally monotone whenever each of its local function can be expressed inpropositional logic such that each variable appears either never or always with the same sign.For instance f1(x) = x1 ∨ (¬x3 ∧ x2) is unate, whereas f1(x) = x2⊕ x3 = (x2 ∧¬x3)∨ (¬x2 ∧ x3) isnot unate.
Example. The BN f of dimension 3 with f1(x) = ¬x2, f2(x) = ¬x1, and f3(x) = ¬x1 ∧ x2 is locallymonotone; and an instance of application is f (000) = 110.

Locally monotone BNs should not be confused with monotone BNs where a component ap-pears in all local functions with the same sign. Monotone BNs are a particular case of locally-monotone BNs.
1.1.2. Update modes. Given a BN f and a configuration x , the update mode specifies how tocompute the next configuration. There is a vast zoo of update modes (Paulevé and Sené, 2022),but traditionally, two modes are usually considered in biological modeling: the synchronous (orparallel) deterministic mode, where the next configuration is given by its application to f (x issucceeded by f (x)), and the fully asynchronous (often denoted only asynchronous) where thenext configuration results from the application of only one local function, chosen non-deter-ministically.However, (a)synchronous update modes do not lead to a complete qualitative abstractionof quantitative systems and preclude the prediction of trajectories that are actually feasiblewhen considering time scales or concentration scales. TheMost Permissive (MP) (Paulevé, Kolčák,Chatain, and Haar, 2020; Paulevé and Sené, 2021) is a recently-introduced update mode whichbrings the formal guarantee to capture any trajectory that is feasible by any quantitative sys-tem compatible with the Boolean network (see (Paulevé et al., 2020) for details). The main ideabehind the MP update mode is to systematically consider a potential delay when a componentchanges state, and consider any additional transitions that could occur if the changing compo-nent is in an intermediate state. It can bemodeled as additional dynamic states “increase” (↗) and“decrease” (↘): when a component can be activated, it will first go through the “increase” statewhere it can be interpreted as either 0 or 1 by the other components, until eventually reachingthe Boolean 1 state; and symmetrically for deactivation. A formal definition of MP dynamics isgiven later in this section.
1.1.3. Perturbations. In this paper we will consider BN perturbations that modify the local func-tions of some components so they become a constant function. Perturbations model mutations,where a gene is silenced or constitutively activated. Mathematically, a perturbation is a map as-sociating a set of components to a Boolean value, for instance, P = {2 7→ 0, 4 7→ 1}. Given aperturbation P , the perturbed BN f /P is given by, for each component i ∈ {1, ... , n}:

(f /P)i (x) =

{
b if i 7→ b ∈ P

fi (x) otherwise.
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1.2. Quantified Boolean expressions and computational complexity
A Boolean expression is a logic formula composed of Boolean variables and propositionallogic operators (negation ¬, conjunction ∧, disjunction ∨, implication =⇒ , equivalence ≡, ex-clusive disjunction ⊕). Given variables x1, · · · , xm, a quantified Boolean expression is of the form

Q1x1 · · ·Qnxmφ(x1, · · · , xm) where Q1, · · · ,Qm can be the existential ∃ or universal ∀ quantifier,and φ(x1, · · · , xm) a quantifier-free Boolean expression composed of variables x1, · · · , xm. Forinstance, consider the quantified Boolean expression “∃x1∃x2∀x3 (x3 ∧ x1) ∨ (¬x3 ∧ ¬x2)”. Thisexpression is satisfiable: fix x1 = 1 and x2 = 0, then the Boolean expression becomes equivalentto x3 ∨ ¬x3 which is true for all assignments of x3.Deciding whether such an expression is true (satisfiable) is a fundamental problem in com-puter science. The complexity of this problem actually depends on the alternation of quantifiers.Thus, in the following we will classify the quantified Boolean expressions by their sequence ofquantifiers Q1 · · ·Qm but ignoring repetitions: an ∃∃∀∀∀∃∃∀-expression has the same decisioncomplexity as an ∃∀∃∀-expression.Computational complexity (Papadimitriou, 1995) is a fundamental theory of computer sci-ence to classify decision problems: a (decision) problem is in class C whenever there exists analgorithm of worst-case complexity C, C referring to either a time or space complexity. For in-stance, the class PTIME gathers all the problems that can be decided in time polynomial withthe size of the input (e.g., the length of the Boolean expression).The decision of satisfiability of ∃-expressions is the infamous (Boolean) SAT(isfiability) prob-lem, which is NP-complete: it can be solved by a non-deterministic polynomial time algorithm,and it is among the hardest problems in this class: any problem in NP can be (efficiently) trans-formed into a SAT problem. In practice, our computers being deterministic, the resolution ofthe SAT problems employs algorithms running in worst-case time and space exponential withthe number of variables in the Boolean expression. However, modern SAT solvers can approachexpressions with thousands to millions of variables.The decision of satisfiability of ∀-expressions can be seen as a complementary problem to ∃-expression: ∀X φ(X ) is satisfiable if and only if ∃X ¬φ(X ) is not satisfiable: it is a coNP-completeproblem. It is not known whether coNP = NP.Then, the alternation of quantifiers makes the problem climbing into the so-called polynomialhierarchy (see https://en.wikipedia.org/wiki/Polynomial_hierarchy). The ∃ ...-expressions are ΣP
k -complete problems, where k is the number of alternating quantifiers (starting with ∃), while ∀ ...-expressions are ΠP

k -complete (ΣP
1=NP and ΠP

1=coNP). It is not known yet whether all these com-plexity classes are equal, but in practice, algorithms of resolution scale rapidly down with theirheight in the polynomial hierarchy. Each of these complexity classes are included in PSPACE, theclass of problems solvable in polynomial space. PSPACE-complete problems, such as the verifica-tion of properties of asynchronous BNs, are known to be difficult to tackle in practice (currentlylimited to a couple of hundreds of variables in the case of BNs).The reader should keep inmind that the length of the expression is a crucial parameter for thedecision complexity. When variables have a finite domain, one can rewrite quantified Booleanexpression in a universal-free one. However, the length of the obtained expression will be expo-nentially larger.In the rest of the paper, for the sake of simplicity, we will not fully detail the size of thequantified Boolean expression we derive, and are expected to be of length linear or polynomialwith the size of the BN.
1.3. Elementary dynamical properties and their complexity

Wepresent the formal aspects of theMP dynamics that are employed in the rest of the paper,i.e., related to attractors and the reachability of attractors. The proofs and full MP definition andproperties can be found in (Paulevé, Kolčák, Chatain, and Haar, 2020).
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1.3.1. Sub-hypercubes and trap spaces. A sub-hypercube specifies for each dimension of the BNif it is either fixed to a Boolean value, or free: it can be characterized by a vector h ∈ {0, 1, ∗}n.Its vertices are denoted by c(h) = {x ∈ Bn | hi 6= ∗ =⇒ xi = hi}. For instance, h = 0 ∗ ∗ is asub-hypercube of dimension 3, with c(h) = {000, 001, 010, 011}.A sub-hypercube h is a trap space whenever for each of its vertices x ∈ c(h), f (x) is also oneof its vertices (h is closed by f ). In particular, the (sub-)hypercube ∗n is always a trap space.A sub-hypercube h is smaller than a sub-hypercube h′, denoted by h � h′ whenever c(h) ⊆
c(h′). Equivalently, this means that each non-free component of h′ is fixed to the same value in
h: h � h′ ⇐⇒ ∀i ∈ {1, ... , n}, h′i 6= ∗ =⇒ hi = h′i .
1.3.2. MP attractors are minimal trap spaces. The attractors of MP dynamics are the minimaltrap spaces of the Boolean function f (Paulevé, Kolčák, Chatain, and Haar, 2020), i.e., the trapspaces which do not include strictly smaller trap spaces. Thus, we denote MP attractors by sub-hypercubes, i.e., anMP attractor A is a vector in {0, 1, ∗}n. Therefore, a component with a ∗ valuein an MP attractor A indicates that the component that can always oscillate between 0 and 1 inthe (cyclic) attractor.The computational complexity of decision problems related to minimal trap spaces has beenextensively addressed in (Moon, Lee, and Paulevé, 2022) with different representations of BNsFor the case of local functions representedwith propositional logic, aswe consider here, decidingwhether a sub-hypercube is a trap space is coNP-complete problem, whereas deciding whetherit is a minimal trap space is a coNPcoNP-complete problem, i.e., equivalent to the decision ofsatisfiability of ∀∃ expressions. In the case of locally-monotone BNs, deciding whether a sub-hypercube is a trap space is in PTIME, whereas deciding whether it is a minimal trap spaces is acoNP-complete problem, i.e., equivalent to the decision of satisfiability of ∀-expressions.
1.3.3. MP reachability of attractors. Given a configuration x and an MP attractor A ∈ {0, 1, ∗}n,there is an MP trajectory from x to any configuration y ∈ A if and only if A is smaller than thesmallest trap space containing x . We write reach(x , y) the existence of such a trajectory.Let us denote by TS(x) ∈ {0, 1, ∗}n the smallest trap space containing x . The computation of
h = TS(x) can be performed from x by iteratively freeing the components necessarily to fulfillthe closeness property. Here is a sketch of algorithm, where SAT(h, f[i] = -x[i]) is true ifand only if there exists a configuration y ∈ c(h) such that fi (y) = ¬xi :
Algorithm TS(x: configuration)
Returns sub-hypercube h
--
h := x
repeat

changed := false
for i in 1..n:

if h[i] != * and SAT(h, f[i] = -x[i]):
h[i] := *
changed := true

while changed
In the worst case, this algorithmmakes a quadratic number of calls to the SAT problem. There-fore, the decision of MP reachability of attractors is in PTIMENP in general (this problem is ac-tually in NP when allowing a number of variables quadratic with n), and PTIME in the locally-monotone case.Note that the general MP reachability property is not addressed here, but its overall com-plexity is identical. With (a)synchronous update modes, it is a PSPACE-complete problem.

1.3.4. Belonging to an MP attractor. In the following, we will consider the problem of decidingwhether a given configuration x belongs to an MP attractor of f . We write IN-ATTRACTOR(x)such a property. This can be verified in two steps: (1) compute the smallest trap spaces containing
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x , noted TS(x), and (2) verify whether TS(x) is a minimal trap space. This later property is trueif and only if for any vertex y of TS(x), the minimal trap space containing y is equal to TS(x):
IN-ATTRACTOR(x) ≡ ∀y ∈ c(TS(x)), TS(y) = TS(x) .

Finally, given a set of perturbations P , we write TSP(x) for the small trap space of perturbedBN (f /P) containing x , and IN-ATTRACTORP(x) the property of x belonging to an attractor ofthe perturbed BN (f /P).
1.4. BoNesis

BoNesis (Paulevé, 2023a) is a Python library which has been primarily designed for identify-ing BNs satisfying user-given dynamical properties among a given domain of BNs and with theMP update mode. It takes as input (1) a domain of BNs F, and (2) a set of Boolean dynamicalproperties φ, and can enumerate the BNs f ∈ F such that f |= φ, i.e., f verifies the properties φ.Currently, the domain of BNs F can be one of the following:
• A singleton locally-monotone BN F = {f }. In that case, BoNesis can be employed as amodel checker to verify that f has the specified dynamical properties. In this paper, thisis the main setting we will consider, in order to predict perturbations to reprogram theattractors of f .
• An explicit ensemble of locally-monotone BNs F = {f 1, · · · , f m}.
• Any locally-monotone BN matching with a given influence graph G: F = {f | G (f ) ⊆ G}.An influence graph is a signed digraph between components of the form ({1, · · · , n},V )with V ⊆ {1, · · · , n} × {+1,−1} × {1, · · · n}. The influence graph of a BN f , denotedby G (f ) has an edge i

s−→ j if and only there exists a configuration x ∈ Bn such that
fj(x1, ... , xi−1, 1, xi+1, ... , xn)− fj(x1, ... , xi−1, 0, xi+1, ... , xn) = s .
• Any locally-monotone BN matching with a partially-defined BN following the AEONframework (Beneš, Brim, Pastva, and Šafránek, 2021).

BoNesis offers a Python programming interface to declare the dynamical properties over BNs,including reachability, fixed points and trap spaces. BoNesis relies on Answer-Set Programming(ASP) and the ASP solver clingo (https://potassco.org/clingo) for the enumeration of solutions.ASP is a declarative logic programming framework for expressing combinatorial decision prob-lems and enumerate their solutions, possibly with optimizations. ASP can be employed for effi-ciently solving ∃- and ∃∀-expressions, thus having an expressiveness higher than classical SAT.We emphasize that BoNesis is currently restricted to locally-monotone BNs only for whichefficient logical encoding of domains of models are possible.Whereas it is a common assumptionwhen modeling of biological systems (a node cannot be both an activator and inhibitor of a sameother node), non-monotone BNs are also employed, and cannot be addressed with the currentimplementation.The usage of BoNesis Python programming interface and command line will be explainedalong with the code snippets provided in the next sections.
2. Results

We show how the general declarative approach of BoNesis can be instantiated to computethe complete solutions to the P1, P2, P3, and P4 reprogramming problems on BNs, and alsoextend the reasoning to ensembles of BNs. Importantly, note that BoNesis currently supportsonly locally-monotone BNs.This is an executable paper which demonstrates the use of BoNesis for the reprogrammingof BNs. The corresponding notebook can be downloaded from https://doi.org/10.5281/
zenodo.7733095. Its execution requires the Jupyter notebook system, Python, and the Pythonpackage bonesis to be installed. Alternatively, the notebook can be executed within the CoLo-MoTo Docker distribution (Naldi et al., 2018) as follows:
pip install colomoto-docker
colomoto-docker -V 2023-03-01
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then open http://127.0.0.1:8888 and upload the notebook from the Jupyter interface.The code provided in this article requires the following setup:
In [1]: #!pip install --user bonesis # uncomment to install bonesis

import bonesis
In [2]: from colomoto_jupyter import tabulate # for display

import pandas as pd # for display
import mpbn # for analyzing individual Boolean networks with MP update mode
from colomoto.minibn import BooleanNetwork

Alternatively, the computation of reprogramming perturbations from single BNs can be per-formed using the command line program bonesis-reprogramming, provided alongside the bone-
sis Python package. We detail its usage in each case.
2.1. Marker reprogramming of Boolean networks

We first consider the reprogramming of a single BN f of dimension n. In the framework ofBoNesis, this means the domain of BNs is the singleton F = {f }.AmarkerM is a map associating a subset of components of f to a Boolean value. For instance,
M = {1 7→ 0, 3 7→ 1} is the marker where component 1 is 0 and component 3 is 1. We denote by
dom(M) the domain of the map M , i.e., in our example dom(M) = {1, 3}. Given a configuration
x ∈ Bn, we say x matches with a markerM , denoted by x |= M , if and only if ∀i ∈ dom(M), xi =
M(i). Given a set of configurations A ⊆ Bn, we say A matches with a marker M if and only ifeach of its configurations match with M (∀x ∈ A, x |= M ). Given k ∈ N, we denote by M≤k thesets of maps associating at most k components among {1, · · · , n} to a Boolean value.The objective of marker-reprogramming is to identify perturbations so that all the attractorsof the perturbed f matchwith themarkerM . The source-marker reprogramming then focuses onthe attractors reachable from a given initial configuration only, thus potentially requiring fewerperturbations.A very important aspect ofmarker reprogramming is that it accounts for the creation and dele-tion of attractors due to the perturbation. Thus, in general, the attractors of the reprogrammedBN are different from the attractors of the input (wild-type) BN.In this section, we tackle the following instantiations of the reprogramming problem:

1. Marker reprogramming of fixed points (P1);2. Source-marker reprogramming of fixed points (P2);3. Marker reprogramming of attractors (P3);4. Source-marker reprogramming of attractors (P4).
In each case, we briefly study the complexity of the associated decision problem (existenceof a perturbation given the desired reprogramming property), and give the Python and commandline recipe to identify the perturbations with BoNesis. The following table summarizes the results,with the complexity in the locally-monotone case and command line usage:

Problem Complexity Command line
P1 ∃∀ [base] --fixpointsP2 ∃∀ [base] --fixpoints --reachable-from zP3 ∃∀∃ [base]P4 ∃∀∃ [base] --reachable-from z

where [base] is the command line bonesis-reprogramming model.bnet M k, with model.bnetthe path to a file in BooleanNet format (http://colomoto.org/biolqm/doc/format-bnet.html), Mspecifies the marker as a JSON map, k is the maximum number of simultaneous perturbations,and z is the initial configuration as a JSON map. For instance,
bonesis-reprogramming model.bnet '{"A": 0, "C": 1}' 3 \

--reachable-from '{"A":1, "B":0, "C":0,"D":0}'
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2.1.1. Marker-reprogramming of fixed points (P1). We identify the perturbations P of at most kcomponents so that all the fixed points of f /P match with the given marker M . The associateddecision problem can be expressed as the following ∃∀-expression, hence being at most in ΣP
2 :

(1) ∃P ∈M≤k ,∀x ∈ Bn, (f /P)(x) = x ⇒ x |= M

“There exists a perturbation being a map of at most k components to a Boolean value, suchthat for all configurations x ∈ Bn, if x is a fixed point of the perturbed BN (f /P), then x matcheswith the markerM”.Remark that any BN having no fixed point verify the above equation with an empty perturba-tion. Thus, in practice, one may also expect that the perturbed BN possesses at least one fixedpoint:
(2) ∃P ∈M≤k ,∃y ∈ Bn, (f /P)(y) = y , ∀x ∈ Bn, (f /P)(x) = x ⇒ x |= M .

With the BoNesis Python interface, this reprogramming property can be declared as follows,where f is a BN, M the marker (specified as Python dictionary associating a subset of componentsto a Boolean value), and k the maximum number of components that can be perturbed (at most
n):
In [3]: def marker_reprogramming_fixpoints(f: BooleanNetwork,

M: dict[str,bool],
k: int, ensure_exists:bool=True):

# f: Boolean network; M: marker; k: maximum number of components to perturb
bo = bonesis.BoNesis(f)
P = bo.Some(max_size=k) # perturbations to identify
with bo.mutant(P):

# impose that all the fixed points of the perturbed BN match with M
bo.all_fixpoints(bo.obs(M))
if ensure_exists:

# impose the existence of at least one fixed point matching with M
bo.fixed(~bo.obs(M))

return P.assignments()

The line bo = bonesis.BoNesis(f) instantiates a BoNesis object bo with the domain f. Inthis section, we assume that f is a single Boolean network. It can be either the path to a Boolean-Net file, a minibn object, for instance as returned by the biolqm.to_minibn function for import-ing models from various formats, or a Python dictionary, associating components to a Booleanfunction. Examples are given below. Then, the line P = bo.Some(max_size=k) declares a vari-able that will consist of a map associating at most k components to a Boolean value (the per-turbation to be identified). The instruction with bo.mutant(P) opens a context where dynam-ical properties will be verified against the BN f with the perturbation P applied. Within thismutant context, we declare with bo.all_fixpoints(bo.obs(M)) that each fixed point of theperturbed model matches with M. Moreover, whenever ensure_exists is true, the constraint
bo.fixed(~bo.obs(M)) imposes that the configuration associatedwith M (~bo.obs(M)) is a fixedpoint. Finally, P.assignments() returns an iterator over all the possible assignments of P thatfulfill the above dynamical properties.The corresponding command line is of the form
bonesis-reprogramming model.bnet M k --fixpoints

where model.bnet is a BN encoded in BooleanNet format, M specifies the marker as a JSONmap, and k is the maximum number of perturbations. The existence of at least one fixed pointcan be lifted with the option --allow-no-fixpoint.
Example. We illustrate the marker-reprogramming of fixed points on a small toy BN example,which has no fixed point. In the following, we use colomoto.minibn.BooleanNetwork to definethis BN.
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Figure 1 – Influence graph of the example BN for P1
In [4]: f = BooleanNetwork({

"A": "B",
"B": "!A",
"C": "!A & B"

})
f

Out[4]: A <- B
B <- !A
C <- !A&B

This example BN has two components in negative feedback: they will oscillate forever. The stateof the third component C is then determined by the state of the oscillating components. Thefollowing command returns its influence graph:
In [5]: f.influence_graph()

The resulting graphics is reproduced in Figure 1.With the (fully) asynchronous update mode, the system has a single attractor, consisting ofall the configurations of the network.
In [6]: f.dynamics("asynchronous")

The resulting graphics is reproduced in Figure 2.Recall that the fixed points are identical in asynchronous andMP.We use mpbn (https://github.com/bnediction/mpbn) to analyze the dynamical properties with the MP update mode:
In [7]: mf = mpbn.MPBooleanNetwork(f)

list(mf.fixedpoints())
Out[7]: []
In [8]: list(mf.attractors())
Out[8]: [{’A’: ’*’, ’B’: ’*’, ’C’: ’*’}]

Indeed, the network has no fixed points, and its attractor is the full hypercube of dimension 3.Using the marker_reprogramming_fixpoints snippet defined above, we identify all pertur-bations of at most 2 components which ensure that (1) all the fixed points have C active, and (2)at least one fixed point exists:
In [9]: list(marker_reprogramming_fixpoints(f, {"C": 1}, 2))
Out[9]: [{’A’: 0}, {’C’: 1, ’B’: 0}, {’A’: 1, ’C’: 1}, {’B’: 1, ’C’: 1}]

Indeed, fixing A to 0 breaks the negative feedback, and make B converge to 1. There, C convergesto state 1. Then, remark that fixing C to 1 is not enough to fulfill the property, as A and B stilloscillate. Thus, one of these 2 must be fixed as well, to any value. The solution {'A': 0, 'C':
1} is not returned as {'A': 0} is sufficient to acquire the desired dynamical property.
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Figure 2 – Fully-asynchronous dynamics of the example BN for P1

In our BoNesis code snippet defined above, by default we ensure that the perturbed BNpossesses at least one fixed point. When relaxing this constraint, we obtain that the empty per-turbation is the (unique) minimal solution, as f has no fixed point.
In [10]: list(marker_reprogramming_fixpoints(f, {"C": 1}, 2, ensure_exists=False))

Out[10]: [{}]

In the following, we demonstrate how to perform the same computation with the command line.By default, the reprogramming of fixed points adds the constraint that at least one fixed pointmust exist.
In [11]: with open("example1.bnet", "w") as fp:

fp.write(f.source())
%cat example1.bnet

A, B
B, !A
C, !A&B

In [12]: !bonesis-reprogramming example1.bnet ’{"C": 1}’ 2 --fixpoints

{’A’: 0}
{’C’: 1, ’B’: 0}
{’A’: 1, ’C’: 1}
{’B’: 1, ’C’: 1}

Adding the option --allow-no-fixpoint would return an empty perturbation as uniqueminimal solution.
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2.1.2. Source-marker reprogramming of fixed points (P2). Given an initial configuration z , we iden-tify the perturbations P of at most k components so that all the fixed points of f /P that arereachable from z in f /P match with the given marker M . The associated decision problem canbe expressed as the following ∃∀-expression, hence being at most in ΣP
2 :

(3) ∃P ∈M≤k , ∀x ∈ Bn, ((f /P)(x) = x ∧ reachP(z , x)) =⇒ x |= M

“There exists a perturbation P such that for any configuration x ∈ Bn, if x is a fixed point ofthe perturbed BN (f /P), and x is reachable from z in (f /P), then x must match withM”.As explained in the Method section, the reachability property boils down to computing thesmallest trap space containing z : if it contains the fixed point x , then x is reachable from z withthe MP update mode.
(4) ∃P ∈M≤k ,∀x ∈ Bn, ((f /P)(x) = x ∧ x ∈ TSP(z)) =⇒ x |= M .

As with the previous case, in practice we may also want that there exists at least one fixedpoint reachable from z .With theBoNesis Python interface, this reprogramming property is declared as follows, where
f is a BN, z the initial configuration (Python dictionary), M themarker, and k themaximumnumberof components that can be perturbed (at most n):
In [13]: def source_marker_reprogramming_fixpoints(f: BooleanNetwork,

z: dict[str,bool],
M: dict[str,bool],
k: int):

# f: Boolean network; z: initial configuration;
# M: marker; k: maximum number of components to perturb
bo = bonesis.BoNesis(f)
P = bo.Some(max_size=k) # perturbation to identify
with bo.mutant(P):

# all the fixed points reachable from z match with M
~bo.obs(z) >> "fixpoints" ^ {bo.obs(M)}
# at least one fixed point matching with M is reachable from z
~bo.obs(z) >= bo.fixed(~bo.obs(M))

return P.assignments()

Compared to the previous code snippet, this function relies on specific operators to restrictthe properties to the fixed point reachable from z. The instruction ~bo.obs(z) refers to a specificconfiguration matching with z; ~bo.obs(z) >> "fixpoints" ˆ {bo.obs(M)} specifies that allthe fixed points reachable from such configuration have to match with at least one configurationgiven in the set {bo.obs(M)}, i.e., M in this case. This property is satisfied whenever no fixedpoint are reachable. Thus, the next line ensures that at least one fixed point is reachable fromthe configuration associated with z: bo.fixed(~bo.obs(M)) refers to one configuration whichis a fixed point (in the perturbed BN), and which matches with M. Then, the binary operator >=declares the existence of a trajectory from its left to its right configuration.Notice that with this formulation, in the case whenever z is only partially defined (some com-ponents are not associated to a Boolean value), a perturbation is returned as long as there existsat least one fully-defined configurationmatchingwith z which fulfil the specified dynamical prop-erties.The corresponding command line is of the form
bonesis-reprogramming model.bnet M k --fixpoints --reachable-from z

where model.bnet is a BN encoded in BooleanNet format, M specifies the marker as a JSONmap, k is the maximum number of perturbations, and z is the initial configuration as a JSONmap.The existence of at least one fixed point can be lifted with the option --allow-no-fixpoint.
Example. Let us consider the following toy BN with two positive feedback cycles:
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Figure 3 – Influence graph of the example BN for P2
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Figure 4 – Fully-asynchronous dynamics of the example BN for P2 from the configuration
1100

In [14]: f = BooleanNetwork({
"A": "B",
"B": "A",
"C": "!D & (A|B)",
"D": "!C"

})
f.influence_graph()

The resulting graphics is reproduced in Figure 3.This BN has 3 fixed points, 2 of which are reachable from the configuration where A and Bare active, and C and D inactive:
In [15]: z = {"A": 1, "B": 1, "C": 0, "D": 0}

f.dynamics("asynchronous", init=z)

The resulting graphics is reproduced in Figure 4.
In [16]: list(mpbn.MPBooleanNetwork(f).fixedpoints())
Out[16]: [{’A’: 0, ’B’: 0, ’C’: 0, ’D’: 1},

{’A’: 1, ’B’: 1, ’C’: 0, ’D’: 1},
{’A’: 1, ’B’: 1, ’C’: 1, ’D’: 0}]

In [17]: list(mpbn.MPBooleanNetwork(f).fixedpoints(reachable_from=z))
Out[17]: [{’A’: 1, ’B’: 1, ’C’: 1, ’D’: 0}, {’A’: 1, ’B’: 1, ’C’: 0, ’D’: 1}]

Let us compare the results of the global marker-reprogramming of fixed points (P1) with thesource-marker reprogramming of fixed points (P2), the objective being to have fixed points hav-ing C active. In the first case, putting aside the perturbation of C, this necessitates to act on either
A or B to prevent the existence of the fixed points where A, B and C are inactive:
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In [18]: list(marker_reprogramming_fixpoints(f, {"C": 1}, 2))
Out[18]: [{’A’: 1, ’D’: 0}, {’B’: 1, ’D’: 0}, {’C’: 1}]

Considering only the fixed points reachable from the configuration z, there is no need to act on
A or B:
In [19]: list(source_marker_reprogramming_fixpoints(f, z, {"C": 1}, 2))
Out[19]: [{’D’: 0}, {’C’: 1}]

The program bonesis-reprogramming can perform P2 by specifying the --rechable-from op-tion giving the initial configuration in JSON format:
In [20]: with open("example2.bnet", "w") as fp:

fp.write(f.source())
In [21]: !bonesis-reprogramming example2.bnet ’{"C": 1}’ 2 --fixpoints \

--reachable-from ’{"A": 1, "B": 1, "C": 0, "D": 0}’
{’D’: 0}
{’C’: 1}

2.1.3. Marker reprogramming of attractors (P3). We identify the perturbations P of at most kcomponents so that the configurations of the all the attractors of f /P match with the givenmarkerM (i.e., in each attractor, the specified markers cannot oscillate). The associated decisionproblem can be expressed as follows:
(5) ∃P ∈M≤k , ∀x ∈ Bn, IN-ATTRACTORP(x) =⇒ x |= M

(“There exists a perturbation P of at most k components, such that for all configurations x , if
x belongs to an attractor of the perturbed BN f /P , then x matches with the specified markers
M”)By restricting the range of the universal part of the equation to the configurations which donot match with the markerM , we obtain:
(6) ∃P ∈M≤k ,∀x ∈ Bn : x 6|= M,¬ IN-ATTRACTORP(x)

The IN-ATTRACTOR property being itself a quantified Boolean expression, we obtain thefollowing ∃∀∃-expression:
(7) ∃P ∈M≤k ,∀x ∈ Bn : x 6|= M,∃y ∈ Bn, y ∈ TSP(x), TSP(y) 6= TSP(x)

The problem of satisfiability of this quantified Boolean expression is beyond the expressive-ness power of ASP which is limited to ∃∀-expressions. Nevertheless, we can approach this prob-lem by its complementary: the existence of perturbations of size k such that at least one con-figuration belonging to an attractor does not match with the marker M . This complementaryproblem can be expressed with this following expression
(8) ∃P ∈M≤k , ∃x ∈ Bn, x 6|= M ∧ IN-ATTRACTORP(x)

which is an ∃∀-expression:
(9) ∃P ∈M≤k ,∃x ∈ Bn, x 6|= M ∧ ∀y ∈ Bn, y ∈ TSP(x) =⇒ TSP(y) 6= TSP(x) .

Because the domain of candidate perturbations M≤k is finite, one can first resolve the com-plementary problem, giving all bad perturbations, and returns its complement.Notice that this approach is highly combinatorics, and is likely limited to identifying pertur-bations of small size. However, to our knowledge, this is the first implemented method whichaddresses the complement reprogramming of MP attractors, i.e., of the minimal trap spaces ofthe BN.With theBoNesis Python interface, this reprogramming property is declared as follows, where
f is a BN, M the marker, and k the maximum number of components that can be perturbed (atmost n):
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In [22]: def marker_reprogramming(f: BooleanNetwork,
M: dict[str,bool],
k: int):

bo = bonesis.BoNesis(f)
coP = bo.Some(max_size=k)
with bo.mutant(coP):

x = bo.cfg()
bo.in_attractor(x)
x != bo.obs(M)

return coP.complementary_assignments()

The idea of the above code snippet is to declare the property of being a bad perturbation(coP). In the context of this perturbation, we declare with x=bo.cfg() a configuration. Then,
bo.in_attractor(x) imposes that x belongs to an attractor (minimal trap space) of the per-turbed BN; and the x != bo.obs(M) instruction adds the constraint that xmust not match with
M. The .complementary_assignments()method performs the computation of the complementof solutions. It solves the above problemwith perturbation sizes ranging from 0 to k, and returnscomplement minimal perturbations only.The corresponding command line is of the form
bonesis-reprogramming model.bnet M k

where model.bnet is a BN encoded in BooleanNet format, M specifies the marker as a JSONmap, k is the maximum number of perturbations.
Example. Let us consider the following BN:
In [23]: f = mpbn.MPBooleanNetwork({

"A": "!B",
"B": "!A",
"C": "A & !B & !D",
"D": "C | E",
"E": "!C & !E",

})
f.influence_graph()

The resulting graphics is reproduced in Figure 5.Essentially, A and B always stabilize to opposite states. Whenever A is active (and B inactive)then C will oscillate, otherwise it stabilizes to 0. In each case D and E oscillate. This lead to thefollowing MP attractors:
In [24]: tabulate(list(f.attractors()))
Out[24]: A B C D E

0 0 1 0 * *
1 1 0 * * *

Let us say that our objective is to reprogram the BN such that all the attractors of the component
C fixed to 1. The reprogramming of fixed points (P1) gives the following solutions:
In [25]: list(marker_reprogramming_fixpoints(f, {"C": 1}, 3))
Out[25]: [{’D’: 0}, {’C’: 1}]

Putting aside the trivial solution of perturbing C, let us analyze the BN perturbed with the Dforced to 0:
In [26]: pf = f.copy()

pf["D"] = 0
tabulate(pf.attractors())

Out[26]: A B C D E
1 0 1 0 0 *
0 1 0 1 0 0
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Figure 5 – Influence graph of the example BN for P3
The (only) fixed point of the network indeed has C active. However, it possesses another (cyclic)attractor, where C is inactive. This example points out that focusing on fixed point reprogrammingmay lead to predicting perturbations which are not sufficient to ensure that all the attractorsshow the desired marker.The complete attractor reprogramming returns that the perturbation of D must be coupledwith a perturbation of A or B, in this case to destroy the cyclic attractor.
In [27]: list(marker_reprogramming(f, {"C": 1}, 3))
Out[27]: [{’C’: 1}, {’D’: 0, ’B’: 0}, {’D’: 0, ’A’: 1}]

The same results can be obtained using the command line as follows.
In [28]: with open("example3.bnet", "w") as fp:

fp.write(f.source())
In [29]: !bonesis-reprogramming example3.bnet ’{"C": 1}’ 3
{’C’: 1}
{’D’: 0, ’B’: 0}
{’D’: 0, ’A’: 1}

In other cases, the reprogramming of attractorsmay also lead to fewer required perturbationsthan focusing on fixed points, provided we enforce the existence of at least one fixed point. Thiscan be illustrated with the following example:
In [30]: g = mpbn.MPBooleanNetwork({

"A": "!B",
"B": "A",
"C": "A & B",
"D": "C"

})
g.influence_graph()

16 Loïc Paulevé

Peer Community Journal, Vol. 3 (2023), article e30 https://doi.org/10.24072/pcjournal.255

https://doi.org/10.24072/pcjournal.255


A

B

+

C

+

-

+

D

+

Figure 6 – Influence graph of the example BN g for P3
The resulting graphics is reproduced in Figure 6.Unperturbed, this network has a single cyclic attractor, as A and B are in a sustained oscillation.
In [31]: tabulate(g.attractors())
Out[31]: A B C D

0 * * * *

Enforcing that all attractors have D fixed to 1 can be achieved either by perturbing A, or byperturbing only C, letting A and B oscillate.
In [32]: list(marker_reprogramming(g, {"D": 1}, 2))
Out[32]: [{’A’: 1}, {’C’: 1}, {’D’: 1}]

However, besides the forced activation of A, ensuring that all and at least one fixed point have Dactive always requires perturbing at least two components.
In [33]: list(marker_reprogramming_fixpoints(g, {"D": 1}, 2))
Out[33]: [{’A’: 1},

{’D’: 1, ’A’: 0},
{’D’: 1, ’B’: 0},
{’B’: 1, ’D’: 1},
{’C’: 1, ’A’: 0},
{’C’: 1, ’B’: 0},
{’B’: 1, ’C’: 1}]

2.1.4. Soure-marker reprograming of attractors (P4). Given an initial configuration z , we identifythe perturbations P of at most k components so that the configurations of the all the attractorsof f /P that are reachable from z match with the given markerM (i.e., in each reachable attractor,the specified markers cannot oscillate). Thus, P4 is the same problem as P3, except that we focusonly on attractors reachable from z , therefore potentially requiring fewer perturbations.The associated decision problem can be expressed as follows:
(10) ∃P ∈M≤k , ∀x ∈ Bn, x |= M ∨ x /∈ ρ̄f /P

mp (z) ∨ ¬ IN-ATTRACTORP(x)

(“There exists a perturbation P of at most k components, such that for all configurations x ,either x matches with the marker M , or x does not belong to an attractor, or x is not reachablefrom z”).
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By integrating the definition of the IN-ATTRACTOR property, we obtain the following ∃∀∃-expression:
(11) ∃P ∈M≤k ,∀x ∈ Bn, x |= M ∨ x /∈ ρ̄f /P

mp (z) ∨ ∃y ∈ Bn, y ∈ TSP(x), TSP(y) 6= TSP(x)

The resolution of the problem can be approached in a very similar way to P3, i.e., by solvingits complement. The equation is almost the same, with the addition that x must be reachablefrom z , leading to the ∃∀-expression:
(12) ∃P ∈M≤k ,∃x ∈ Bn, x ∈ TSP(z)∧x 6|= M ∧∀y ∈ Bn, y ∈ TSP(x) =⇒ TSP(y) 6= TSP(x) .

With theBoNesis Python interface, this reprogramming property is declared as follows, where
f is a BN, z the initial configuration, M the marker, and k the maximum number of componentsthat can be perturbed (at most n):
In [34]: def source_marker_reprogramming(f: BooleanNetwork,

z: dict[str,bool],
M: dict[str,bool],
k: int):

bo = bonesis.BoNesis(f)
coP = bo.Some(max_size=k)
with bo.mutant(coP):

x = bo.cfg()
bo.in_attractor(x)
x != bo.obs(M)
~bo.obs(z) >= x

return coP.complementary_assignments()

The above code snippet is very similar to the previous marker_reprogramming, with the ad-dition of the ~bo.obs(z) >= x instruction which declares that x, a configuration which belongsto an attractor of the perturbed BN and which does not match with M, is reachable from z. Thecorresponding command line is of the form
bonesis-reprogramming model.bnet M k --reachable-from z

where model.bnet is a BN encoded in BooleanNet format, M specifies the marker as a JSONmap, k is the maximum number of perturbations, and z is the initial configuration as a JSONmap.
Example. Let us consider again the BN f analyzed in the previous section. By focusing only onattractors reachable from the configuration where A is fixed to 1 and other nodes to 0, the re-programming required to make all attractors have C fixed to 1 consists only of fixing D to 0. Notethat in the specific example, the reprogramming of reachable fixed point would give an equiva-lent result.
In [35]: z = f.zero()

z["A"] = 1
list(source_marker_reprogramming(f, z, {"C": 1}, 3))

Out[35]: [{’D’: 0}, {’C’: 1}]

The same results can be obtained using the command line as follows.
In [36]: !bonesis-reprogramming example3.bnet ’{"C": 1}’ 3 \

--reachable-from ’{"A": 1, "B": 0, "C": 0, "D": 0}’

{’D’: 0}
{’C’: 1}
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2.2. Reprogramming of ensembles of Boolean networks
In the previous section, the reprogramming was performed on a single BN, by giving to BoNe-sis the singleton domain of BNs to consider. As described in the Method section, BoNesis canreason on ensembles of BNs, either specified explicitly, or implicitly by an influence graph. Thefunctions defined above can then be directly applied to such ensembles of BNs. In this section,we briefly discuss how the resulting reprogramming solutions should then be interpreted withrespect to these ensembles.Given a domain of BNs F, BoNesis returns a solution whenever at least one BN of this domainsatisfies the given properties. Intuitively, this means that the logic satisfiability problem is ofthe form ∃f ∈ F, Φ(f ). As detailed in (Chevalier, Froidevaux, Paulevé, and Zinovyev, 2019) inthe scope of locally-monotone BNs, the size of the “f ∈ F” formula is, in general, exponential(binomial coefficient) with the in-degree of nodes in the influence graph. This complexity is due tothe maximum number of clauses a Boolean function can have. Our encoding in BoNesis allowsspecifying an upper bound to this number, which enables tackling very large scale instancesalthough giving access only to a subset of F. The encoding of F in BoNesis also supports enforcinga canonic representation of BNs in order to offer a non-redundant enumeration of the BNs, atthe price of a quadratic size of the formula. However, in our case, as we are only interested inenumerating the perturbations, the canonic form of BNs is not needed.In the case of our implementation of marker reprogramming of fixed points (P1 and P2), theexpression becomes of the form:

∃f ∈ F,∃P ∈M≤k , · · ·
Therefore, a perturbation P is returned as soon as it is a reprogramming solution for at least oneBN of the input domain: P may not work on every BN in F, but at least one.In the case of our implementation of marker reprogramming of attractors (P3 and P4), be-cause we tackle the complementary problem, the expression becomes of the form:

∃f ∈ F, ∃coP ∈M≤k , · · ·
Therefore, a bad perturbation coP is returned as soon as it is a bad perturbation for at least oneBN of the input domain. By taking the complement of these perturbations (in M≤k ), we obtainthat the returned perturbations are reprogramming solutions for all the BNs in F. Let us illustratethe ensemble reprogramming with the following example. First, let us define an influence graphto delimit the domain of admissible BNs:
In [37]: dom = bonesis.InfluenceGraph([

("C", "B", {"sign": 1}),
("A", "C", {"sign": 1}),
("B", "C", {"sign": -1}),
("C", "D", {"sign": 1}),

], exact=True, canonic=False) # we disable canonic encoding
dom

The resulting graphics is reproduced in Figure 7.This domain encloses all the BNs having exactly (exact=True) the specified influence graph,4 distinct BNs in this case:
In [38]: dom.canonic = True # we set canonic encoding for enumerating BNs

F = list(bonesis.BoNesis(dom).boolean_networks())
dom.canonic = False
pd.DataFrame(F)

Out[38]: A B C D
0 1 C A|!B C
1 0 C A|!B C
2 0 C A&!B C
3 1 C A&!B C

Let us explore the attractors of each individual BNs:
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Figure 7 – Influence graph delimiting the ensembles of BNs in the example
In [39]: for i, f in enumerate(F):

print(f"Attractors of BN {i}:", list(f.attractors()))
Attractors of BN 0: [{’A’: 1, ’B’: 1, ’C’: 1, ’D’: 1}]
Attractors of BN 1: [{’A’: 0, ’B’: ’*’, ’C’: ’*’, ’D’: ’*’}]
Attractors of BN 2: [{’A’: 0, ’B’: 0, ’C’: 0, ’D’: 0}]
Attractors of BN 3: [{’A’: 1, ’B’: ’*’, ’C’: ’*’, ’D’: ’*’}]

In this example, we focus on reprogramming the attractors so that the component D is fixedto 1.On the one hand, when reprogramming fixed points only, because one BN already verifiesthis property, the empty perturbation is a solution:
In [40]: list(marker_reprogramming_fixpoints(dom, {"D": 1}, 2))
Out[40]: [{}]

On the other hand, the reprogramming of attractors returns solution that work on every BN:
In [41]: list(marker_reprogramming(dom, {"D": 1}, 2))
Out[41]: [{’C’: 1}, {’D’: 1}, {’B’: 0, ’A’: 1}]

Indeed, fixed C to 1, ensures in each case that D is fixed to 1. The computation of universalsolutions for the reprogramming of fixed points can be tackled by following a similar encodingthan the reprogramming of attractors, i.e., by identifying perturbations which do not fulfill theproperty for at least one BN in the domain (the complement results in perturbations working forall the BNs):
In [42]: def universal_marker_reprogramming_fixpoints(f: BooleanNetwork,

M: dict[str,bool],
k: int):

bo = bonesis.BoNesis(f)
coP = bo.Some(max_size=k)
with bo.mutant(coP):

x = bo.cfg()
bo.fixed(x) # x is a fixed point
x != bo.obs(M) # x does not match with M

return coP.complementary_assignments()
In [43]: list(universal_marker_reprogramming_fixpoints(dom, {"D": 1}, 2))
Out[43]: [{’C’: 1}, {’A’: 1}, {’D’: 1}]

Note that in this implementation, we do not ensure the existence of a fixed point after reprogram-ming. This is why the perturbation fixing only A to 1 is considered as a solution in our example:
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In [44]: for i, f in enumerate(F):
f["A"] = 1
print(f"Attractors of BN {i} after fixing A to 1:", list(f.attractors()))

Attractors of BN 0 after fixing A to 1: [{’A’: 1, ’B’: 1, ’C’: 1, ’D’: 1}]
Attractors of BN 1 after fixing A to 1: [{’A’: 1, ’B’: 1, ’C’: 1, ’D’: 1}]
Attractors of BN 2 after fixing A to 1: [{’A’: 1, ’B’: ’*’, ’C’: ’*’, ’D’: ’*’}]
Attractors of BN 3 after fixing A to 1: [{’A’: 1, ’B’: ’*’, ’C’: ’*’, ’D’: ’*’}]

As BNs 2 and 3 have no fixed point, they fulfill the criteria “all the fixed points match with marker
M”.
2.3. Scalability

In order to evaluate the scalability on realistic BNs, we use the benchmark constituted byMoon, Lee, Chopra, and Kwon (2022) to evaluate the reprogramming of fixed points (P1). Theirbenchmark gathers 10 locally-monotone BNs and 1 non-monotone one, that BoNesis cannotaddress. The dimension of the 10 BNs are respectively 14, 17, 18, 20, 28, 32, 53, 59, 66, and75. For each of these models, a target marker for reprogramming has been defined from the cor-responding published studies. Moreover, a subset of nodes has been declared as uncontrollableto avoid trivial solutions. We used this benchmark to evaluate the scalability of the P1 and P3implementation we propose in this paper (Paulevé, 2023b).For these 10 models, we applied the P1 and P3 reprogramming for different maximum num-ber of simultaneous perturbations (denoted k in the previous sections), up to k = 6. In each case,we measured the time for the first solution, for listing up to 100 solutions, and for listing all thesolutions, with a timeout of 10 minutes. The experiments have been performed on an Intel(R)Xeon(R) processor at 3.3Ghz with 16BG of RAM.In the case of P1, with k = 6, it took around 1s to get at least one solution for each of the 10models; up to 100 solutions have been listed in the same timing, except for one model whichtook 8s. The full listing of solutions of 3 of the larger models have timed out, the rest necessitat-ing between 1 and 18s. With k = 4, BoNesis was able to list all the solutions for all models (upto 5min for one of the larger model).In the case of P3, with k ≥ 4, 3 of the 10 models could not find a single solution in the given timelimit; for most of the other models, a first solution was found in around 1s, a couple of modelstook around 1-2min. The enumeration of the first 100 solutions took a similar time with k = 4,but timed out with k = 6 for all but the 4 smallest models. With k ≤ 2, BoNesis has found all thesolutions to P3 for all the 10 models in a few seconds maximum.These experiments testify of the difference of complexity between P1 and P3, and moreprecisely on the resolution approach taken for P3: the computation of the complementary sets ofsolutions becomes rapidly intractable for large combinations of perturbation. Indeed, in practice,there are many bad perturbations, thus their enumeration, which is necessary to compute theircomplement, is an important bottleneck.Evaluating the scalability of P2 and P4 would require defining initial configurations which aremeaningful for the different models, which are not available in the selected benchmark. Nev-ertheless, because the source constraint does not change the complexity classes, we can con-jecture that their scalability should be comparable to P1 and P3 respectively. Moreover, havingbenchmarks at larger scale would be insightful, but none of them are available to the best ofour knowledge. It should be noted BoNesis has been applied to do BN synthesis for models with1,000 nodes (Chevalier, Froidevaux, Paulevé, and Zinovyev, 2019), suggesting a potential appli-cability of BoNesis for the reprogramming of large BNs.As stressed in the introduction, there exists only tools addressing P1 to comparewith. The ex-periments of Moon, Lee, Chopra, and Kwon (2022) show that their bilevel integer programming-based method systematically outperforms the ASP implementation of pyActoNet (Biane andDelaplace, 2019). On the same benchmark, BoNesis performed either similarly or in shorter time,albeit limited to locally-monotone BNs only.
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Discussion
In this paper, we demonstrated how the BoNesis Python library can be employed to fully char-acterize permanent perturbations which guarantee that all the fixed points or all minimal trapspaces of the perturbed BN have a subset of components fixed to desired values (marker).We fo-cused on reprogramming for achieving elementary dynamical properties, that are the fixed pointsor attractors, optionally reachable from a given configuration. Nevertheless, the snippets shownin this paper can be extended to account for more complex or specific dynamical properties aftermutation, e.g., existence of additional trajectories, considering multiple initial configurations.It should be noted that the candidate combinations of perturbations are computed solelybased on the Boolean dynamics, and do not account for experimental feasibility, e.g., in the scopeof models of biological systems. Future work may consider optimization or prioritization of per-turbations based on such extra information. Currently, BoNesis enables specifying uncontrollablecomponents which must not be perturbed (exclude option for the Some object, or --excludefor the command line, taking a list of components which should be excluded from the candidateperturbations).We considered for problems, referred to as P1, P2, P3, P4, where P1-P2 relate to the re-programming of fixed points, and P3-P4 to the reprogramming of MP attractors (i.e., minimaltrap spaces). The computational complexity of P1-P2 allows an efficient implementation usingAnswer-Set Programming (ASP), whereas the one of P3-P4 necessitate working around comple-mentary solution to fit into the expressiveness of ASP, limiting their scalability. Future work mayexplore alternative implementations using different logic frameworks.The identified perturbations may destroy and create new fixed points and attractors for theBN. This is a significant difference with most of the methods developed in the literature wheremany focus on the control towards attractors of the unperturbedBNs only.Whereas the problemP1 which has been already addressed with different methods, we are not aware of any otherapproach tackling P2, P3, and P4.Besides the four reprogramming problems tackled in this paper, an additional variant wouldbe themarker-reprogramming of fixed points which also ensures the absence of cyclic attractors.Note that its complexity is equivalent to the one of P3/P4, i.e., it can be expressed as a ∃∀∃-expression. This problem may be relevant for modeling cases where cyclic attractors do notmake sense. The programming interface of BoNesis do not permit an efficient encoding of thisproblem at the moment.This paper focused on permanent perturbations, i.e., enforcing the value of one or severalcomponents constantly over time, independently of the state of the system. Sequential repro-gramming (Mandon, Haar, and Paulevé, 2017; Pardo, Ivanov, and Delaplace, 2021) consists inapplying sets of perturbations at different time. This can lead to reducing the overall numberof component to perturb, by taking advantage of the natural transient dynamics of the system.Sequential reprogramming brings the BN reprogramming settings closer to classical control the-ory, as the control can depend both on time and state of the system. Having fixed a number ofsteps, say m, the reprogramming problems consists in identifying m sets of perturbations whichwill be applied in sequence, and their application may be restricted to attractors only (Mandon,Su, Haar, Pang, and Paulevé, 2019). Interestingly in that case, having fixed the number of repro-gramming steps, the computational complexity remains identical to the one-step reprogrammingwith locally-monotone BNs, due to the PTIME complexity of the reachability. For instance, the 2-steps reprogramming of BNs along fixed points only with theMP update mode can be expressedas the following ∃∀-expression, as P1:

∃P,Q ∈M≤k ,∀x , y ∈ Bn, fP(x) = x ⇒ reachQ(x , y)⇒ fQ(y) = y ⇒ y |= M

“There exist two sets of perturbations P and Q , such that for any configuration x and anyconfiguration y , if x is a fixed point of under the perturbation P , then if y is reachable from xunder the perturbation Q , then if y is a fixed point under the perturbation Q , then it must matchwith the markerM”. The more general 2-steps reprogramming along attractors can be expressedas follows:
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∃P,Q ∈M≤k , ∀x , y ∈ Bn, IN-ATTRACTORP(x)

⇒ reachQ(x , y)⇒ IN-ATTRACTORQ(y)⇒ y |= M

Accounting for IN-ATTRACTOR, this leads to an ∃∀∃-expression, as for the single-step repro-gramming. Future work may then investigate the encoding of sequential reprogramming withBoNesis.Finally, we demonstrated how BoNesis can be employed to reason on the reprogramming ofBNs, leading to either solutions that work for at least one BN of the ensemble, or working oneach of them (universal reprogramming). We believe that reasoning on ensemble of models isa promising direction to address the robustness of predictions in the scope of applications insystems biology.
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