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Abstract
The effective population size is an important concept in population genetics. It corre-
sponds to a measure of the speed at which genetic drift affects a given population.
Moreover, this is most of the time the only kind of population size that empirical popula-
tion genetics can give access to. Dioecious populations are expected to display excesses
of heterozygosity as compared to monoecious panmictic populations, as measured by
Wright’s FIS. It can be shown that these excesses are negatively correlated with the pop-
ulation size. This is why FIS can be used to estimate the eigenvalue effective population
size of dioecious populations. In this paper, we propose a new approximation that pro-
vides a very accurate estimate of the eigenvalue effective population size of a dioecious
population as a function of the real population size. We then explore the accuracy of
different FIS-based methods using the leading eigenvalue of transition matrices or coa-
lescence. It appears that the eigenvalue-based method provides more accurate results
in very small populations, probably due to approximations made by the coalescence ap-
proach that are less valid in such situations. We also discuss the applicability of this
method in the field.
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Introduction 

A convenient way to measure the speed at which a given population loses its genetic diversity by 
genetic drift is to compute its effective population size Ne (Vitalis & Couvet, 2001b). Several formal 
definitions exist. They all refer to an ideal population that follows all Castle-Weinberg assumptions (Castle, 
1903; Weinberg, 1908) (see De Meeûs et al. (2021) for an explanation why this labelling is fairer than the 
more popular Hardy-Weinberg), except for the size of the population that is limited to Ne. It means a self-
compatible diploid monoecious and panmictic population of size Ne, with no selection, no migration, no 
mutation and discrete generations, and where alleles for the next generation are binomially sampled from 
the 2Ne available ones, which causes genetic drift at a specific speed, proportional to 1/(2Ne). Such a 
population is also known as following the Wright-Fisher (WF) model (Crow & Kimura, 1970) , as opposed 
to the Castle-Weinberg model, where the population is of infinite size, and thus without genetic drift. Some 
approaches focus on the rate of inbreeding increase, the rate of heterozygosity loss, the variation of allele 
frequencies from one generation to the other (Vitalis & Couvet, 2001b), or the coalescence time (Balloux 
& Lehmann, 2003; Balloux et al., 2003; Balloux, 2004; Nomura, 2008). This led authors to define the 
inbreeding effective population size, which refers to the speed at which inbreeding evolves, the eigenvalue 
effective population size (see appendices 1-3 to see the detailed analytical tools and Appendix 4 to see why 
it was named as such), the variance (of allele frequencies from one generation to the next) effective 
population size (Crow & Kimura, 1970; Vitalis & Couvet, 2001b; Ewens, 2004) and the coalescence (or 
coancestry) effective population size (Balloux & Lehmann, 2003; Balloux et al., 2003; Balloux, 2004; 
Nomura, 2008) (see below), respectively. In all cases, the effective population size is computed for a given 
population of census size N, which deviates from an ideal population (following WF) at one or several of 
the properties defined above. Because of these deviations, genetic drift operates at a faster rate, or 
sometimes at a slower rate, than the same population if it fulfilled the ideal conditions. The effective 
population size of such a non-ideal population is the ideal population of size Ne that would drift at the same 
speed as the non-ideal one, also known as the size of a population following WF and drifting at the same 
speed as the focal population (Vitalis & Couvet, 2001b).  

 Many species have separate sexes. Several authors have investigated the impact that dioecy and 
sex ratio have on effective population size. In this note, we review some of these results and we then derive 
a new and apparently more accurate approximation for the eigenvalue effective population size of a 
dioecious population. We also propose another estimator of Ne from Wright's FIS. We compare the relative 
performances of the different methods. Several appendices present the proofs of all equations used in the 
main text. These appendices are extremely detailed so that almost anybody willing to understand precisely 
how a given result was obtained, here and in the cited literature, can easily access this knowledge. 
Nevertheless, more skilled readers will probably not need to read any of those. 

Classic results from the literature 

The effective population size of a dioecious population has been defined in different ways. In Wright's 
book (Wright, 1969) (page 197), the approximate (eigenvalue) effective size of a population of size N, with 
Nf females and Nm males is:  

(1)  𝑁𝑒 =
4𝑁𝑓𝑁𝑚

𝑁
 

Nevertheless, in the same book (page 197 again), a better approximation is suggested, and a quick 
proof can be found in Felsenstein's book (pages 266-267) (Felsenstein, 2019) (see also below, equation 15), 
for the eigenvalue effective population size Ne: 

(2)  𝑁𝑒 =
4𝑁𝑓𝑁𝑚

𝑁
+
1

2
 

More recently, Balloux (Balloux, 2004), computed the coalescence effective population size as: 
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(3)  𝑁𝑒 =
4𝑁𝑓𝑁𝑚

𝑁
+
1

2
+

1

2𝑁
 

From equations (2) and (3), and for sex-ratios (SR) that are not too female biased (e.g. 𝑁𝑓 −𝑁𝑚 <

√𝑁 2⁄ , for Equation 2), one can see that dioecy tends to slightly increase Ne. This is obviously a 
consequence of the supplementary delay required for two alleles to become identical by descent in the 
same individual, since selfing cannot occur. Another consequence is that dioecious populations are 
expected to display heterozygote excesses (Robertson, 1965). This led to formalizing the expected 
deviation of heterozygote frequency in dioecious populations, as measured by Wright's FIS (Wright, 1965), 
which may provide a simple tool to estimate the effective population size, assuming even sex ratios. Using 
simple algebra on observed and expected heterozygosity, Pudovkin et al. (1996) proposed the following 
equation (see Appendix 5 for a detailed proof) for the eigenvalue effective population size: 

(4)  𝑁𝑒 = −
1

2𝐹IS
 

They also proposed a supposedly more accurate approximation with their equation 4 (but see also 
Appendix 5): 

(5)  𝑁𝑒 = −
1

2𝐹IS
+

1

2(1−𝐹IS)
 

Balloux (2004) proposed another solution, based on the coalescent effective population size and 
requiring quite cumbersome analytic treatments, which are detailed in Appendix 6: 

(6)  𝑁𝑒 = −
1

2𝐹IS
−

𝐹IS

(1+𝐹IS)
 

The general model of a dioecious pangamic population 

For now, and unless specified otherwise, we assume a dioecious diploid population of constant size 
and sex-ratio, with discrete generations, no mutation and no migration. At each generation, alleles that 
will be present in an individual of generation t were randomly drawn with replacement in the pool of 
gametes of their two parents (or from infinite pools of gametes), and females and males are polygamous 
and mate randomly. For a dioecious population with Nf females and Nm males, probabilities of identity 
within individuals QI(t) and between individuals within the subpopulation QS(t) at generation t respectively 
are (see for instance Balloux (2004), equation 14 or Felsenstein (2019), pages 266-267): 

(7)  𝑄I(𝑡) = 𝑄S(𝑡−1) 

and 

(8) 
𝑄S(𝑡) =

1

4
[
1

𝑁𝑓
(
1

2
+
1

2
𝑄I(𝑡−1)) + (1 −

1

𝑁𝑓
)𝑄S(𝑡−1)]  +

1

4
[
1

𝑁𝑚
(
1

2
+
1

2
𝑄I(𝑡−1)) + (1 −

1

𝑁𝑚
)𝑄S(𝑡−1)]

+
1

2
𝑄S(𝑡−1)

 

Equation 7 is straightforward: inbreeding of individuals at any generation comes from the genetic 
similarity between their parents. Equation 8 is less intuitive. We want to compute the probabilities of 
identity by descent between two alleles of two different individuals taken at random at generation t, and 

assuming random mating of parents and a great number of matings nM (i.e. nM→). This way, the 
probability of mating between two individuals remains independent of previous copulas these may have 
been involved in. The probability that two alleles of generation t come from two females of generation t-1 
is ¼, from two males is also ¼, and from one male and one female is ½. If both come from two females, the 
probability they came from the same mother is 1/Nf (i.e. found in full or half sibs) or two different females 
is 1-1/Nf. In the same diploid individual, the probability to sample twice the same allele is ½. Otherwise, 
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two different alleles are sampled from the same individual with probability ½, but in that case they are 
identical by descent with probability QI(t-1). If the two alleles came from two different females, the 
probability that these two alleles are identical by descent is QS(t-1). The same reasoning applies to the two-
males case. For the one-female-one-male case, the probability that the two alleles are identical is also QS(t-

1). 

Combining equations 7 and 8, we get: 

𝑄𝑠(𝑡) =
1

4
[
1

𝑁𝑓
(
1

2
+
1

2
𝑄S(𝑡−2)) + (1 −

1

𝑁𝑓
)𝑄S(𝑡−1)]   

+
1

4
[
1

𝑁𝑚
(
1

2
+
1

2
𝑄S(𝑡−2)) + (1 −

1

𝑁𝑚
)𝑄S(𝑡−1)] +

1

2
𝑄S(𝑡−1) 

        𝑄𝑠(𝑡) = 𝑄S(𝑡−1)
1

4
(1 −

1

𝑁𝑓
+ 1 −

1

𝑁𝑚
+ 2) + 𝑄S(𝑡−2)

1

4
(
1

2𝑁𝑓
+

1

2𝑁𝑚
) +

1

4
(
1

2𝑁𝑓
+

1

2𝑁𝑚
) 

 

𝑄S(𝑡) = 𝑄S(𝑡−1)
1

4
(
4𝑁𝑓𝑁𝑚 −𝑁𝑚 −𝑁𝑓

𝑁𝑓𝑁𝑚
) + 𝑄S(𝑡−2)

1

8
(
𝑁𝑓 +𝑁𝑚

𝑁𝑓𝑁𝑚
) +

1

8
(
𝑁𝑓 +𝑁𝑚

𝑁𝑓𝑁𝑚
) 

 

𝑄S(𝑡) = 𝑄S(𝑡−1)
1

4
(
4𝑁𝑓𝑁𝑚 −𝑁

𝑁𝑓𝑁𝑚
) + 𝑄S(𝑡−2)

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) +

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) 

 
Using the genetic diversity of the subpopulation Hs=1-Qs yields simpler expressions: 

1 − 𝐻S(𝑡) = (1 − 𝐻S(𝑡−1))
1

4
(
4𝑁𝑓𝑁𝑚 −𝑁

𝑁𝑓𝑁𝑚
) + (1 − 𝐻S(𝑡−2))

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) +

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) 

𝐻S(𝑡) = 1 − (1 − 𝐻S(𝑡−1))
1

4
(
4𝑁𝑓𝑁𝑚 −𝑁

𝑁𝑓𝑁𝑚
) − (1 − 𝐻S(𝑡−2))

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) −

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) 

 

𝐻S(𝑡) = 1 −
1

4
(
4𝑁𝑓𝑁𝑚 −𝑁

𝑁𝑓𝑁𝑚
) +

1

4
𝐻S(𝑡−1) (

4𝑁𝑓𝑁𝑚 −𝑁

𝑁𝑓𝑁𝑚
) −

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) +

1

8
𝐻S(𝑡−2) (

𝑁

𝑁𝑓𝑁𝑚
)

−
1

8
(

𝑁

𝑁𝑓𝑁𝑚
) 

 

𝐻S(𝑡) = 𝐻S(𝑡−1)
1

4
(
4𝑁𝑓𝑁𝑚 −𝑁

𝑁𝑓𝑁𝑚
) + 𝐻S(𝑡−2)

1

8
(

𝑁

𝑁𝑓𝑁𝑚
) + 1 −

1

4
(
4𝑁𝑓𝑁𝑚 −𝑁 +𝑁

𝑁𝑓𝑁𝑚
) 

 

(9)  𝐻S(𝑡) = 𝐻S(𝑡−1)
4𝑁𝑓𝑁𝑚−𝑁

4𝑁𝑓𝑁𝑚
+𝐻S(𝑡−2)

𝑁

8𝑁𝑓𝑁𝑚
 

Let λ be: 

(10)  𝜆 =
𝐻S(𝑡)

𝐻S(𝑡−1)
 

Assuming λ to be constant from one generation to the next, and dividing all terms by HS(t-1), Equation 
10 writes: 

𝜆 =
4𝑁𝑓𝑁𝑚 −𝑁

4𝑁𝑓𝑁𝑚
+
1

𝜆

𝑁

8𝑁𝑓𝑁𝑚
 

 

𝜆2 −
4𝑁𝑓𝑁𝑚 −𝑁

4𝑁𝑓𝑁𝑚
𝜆 =

𝑁

8𝑁𝑓𝑁𝑚
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 

𝜆2 − 2
4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
𝜆 + (

4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
)

2

=
𝑁

8𝑁𝑓𝑁𝑚
+ (

4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
)

2

 

 

(𝜆 −
4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
)

2

=
𝑁

8𝑁𝑓𝑁𝑚
+ (

4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
)

2

 

 

𝜆 =
4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
±√

𝑁

8𝑁𝑓𝑁𝑚
+ (

4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
)

2

 

 
As λ is positive, the single positive (leading) root of this equation is: 

𝜆 =
4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
+√

𝑁

8𝑁𝑓𝑁𝑚
+ (

4𝑁𝑓𝑁𝑚 −𝑁

8𝑁𝑓𝑁𝑚
)

2

 

 

𝜆 =
1

2
−

𝑁

8𝑁𝑓𝑁𝑚
+√

𝑁

8𝑁𝑓𝑁𝑚
+ (

1

2
−

𝑁

8𝑁𝑓𝑁𝑚
)

2

 

 

𝜆 =
1

2
−

𝑁

8𝑁𝑓𝑁𝑚
+
1

2
√

𝑁

2𝑁𝑓𝑁𝑚
+ (1 −

𝑁

4𝑁𝑓𝑁𝑚
)

2

 

 

𝜆 =

1 −
𝑁

4𝑁𝑓𝑁𝑚
+√

𝑁
2𝑁𝑓𝑁𝑚

+ 1 + (
𝑁

4𝑁𝑓𝑁𝑚
)
2

− 2
𝑁

4𝑁𝑓𝑁𝑚

2
 

 

(11)  𝜆 =
1−

𝑁

4𝑁𝑓𝑁𝑚
+√1+(

𝑁

4𝑁𝑓𝑁𝑚
)

2

2
 

Note that the same results can be obtained with the leading eigenvalue of the transition matrix 
describing the evolution of genetic identities (Appendix 7). 

For a monoecious panmictic population: 

𝐻S(𝑡) = 𝐻S(𝑡−1) (1 −
1

2𝑁𝑒
) 

and in that case: 

(12)  𝜆 = 1 −
1

2𝑁𝑒
 

We now need to combine Equations 11 and 12 to get: 

1 −
1

2𝑁𝑒
=

1 −
𝑁

4𝑁𝑓𝑁𝑚
+√1+ (

𝑁
4𝑁𝑓𝑁𝑚

)
2

2
 

 
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1

2𝑁𝑒
= 1 −

1 −
𝑁

4𝑁𝑓𝑁𝑚
+√1+ (

𝑁
4𝑁𝑓𝑁𝑚

)
2

2
 

 

1

2𝑁𝑒
=

2 − 1 +
𝑁

4𝑁𝑓𝑁𝑚
−√1+ (

𝑁
4𝑁𝑓𝑁𝑚

)
2

2
 

 

1

𝑁𝑒
= 1 +

𝑁

4𝑁𝑓𝑁𝑚
−√1 + (

𝑁

4𝑁𝑓𝑁𝑚
)

2

 

 

𝑁𝑒 =
4𝑁𝑓𝑁𝑚

4𝑁𝑓𝑁𝑚 +𝑁 − 4𝑁𝑓𝑁𝑚√1+ (
𝑁

4𝑁𝑓𝑁𝑚
)
2

 

 

(13)  𝑁𝑒 =
4𝑁𝑓𝑁𝑚

4𝑁𝑓𝑁𝑚[1−√1+(
𝑁

4𝑁𝑓𝑁𝑚
)

2

]+𝑁

 

A new approximation 

According to Taylor-MacLaurin's expansion series, √1 + 𝑋 ≈ 1 +
1

2
𝑋 −

1

8
𝑋2 (see Appendix 8 for a 

detailed proof). We can thus approximate the square root in equation 13 with: 

√1 + (
𝑁

4𝑁𝑓𝑁𝑚
)

2

≈ 1 +
1

2
(

𝑁

4𝑁𝑓𝑁𝑚
)

2

−
1

8
(

𝑁

4𝑁𝑓𝑁𝑚
)

4

+⋯ 

The quantity 4NfNm is the lowest for the most uneven sex-ratios, like Nm=1 and Nf=N-1. In that case: 

−
1

8
(

𝑁

4𝑁𝑓𝑁𝑚
)

4

+⋯ = −
1

8
(

𝑁

4(𝑁 − 1)
)
4

+⋯ = −
1

32
(
𝑁

𝑁 − 1
)
4

+⋯ ≪ 1 +
1

2
(

𝑁

4𝑁𝑓𝑁𝑚
)

2

 

We can then consider that: 

 √1 + (
𝑁

4𝑁𝑓𝑁𝑚
)

2

≈ 1+
1

2
(

𝑁

4𝑁𝑓𝑁𝑚
)

2

 

Eq 13 can thus write: 

𝑁𝑒 ≈
4𝑁𝑓𝑁𝑚

4𝑁𝑓𝑁𝑚 [1 − 1 −
1
2 (

𝑁
4𝑁𝑓𝑁𝑚

)
2

] + 𝑁

 

 
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𝑁𝑒 ≈
4𝑁𝑓𝑁𝑚

−2𝑁𝑓𝑁𝑚 (
𝑁

4𝑁𝑓𝑁𝑚
)
2

+𝑁

 

 

𝑁𝑒 ≈
4𝑁𝑓𝑁𝑚

𝑁 −
𝑁2

8𝑁𝑓𝑁𝑚

 

 

(14)  𝑁𝑒 ≈
4𝑁𝑓𝑁𝑚

𝑁
×

1

1−
𝑁

8𝑁𝑓𝑁𝑚

 

UsingTaylor-MacLaurin again we can see that: 1/(1-X)=1+X+X²+X3+… (Appendix 8). 
We can thus rewrite the second term of the denominator of equation 14: 

1

1 −
𝑁

8𝑁𝑓𝑁𝑚

≈ 1 +
𝑁

8𝑁𝑓𝑁𝑚
+ (

𝑁

8𝑁𝑓𝑁𝑚
)

2

+ (
𝑁

8𝑁𝑓𝑁𝑚
)

3

+⋯ 

Using this in equation 14 yields: 

𝑁𝑒 ≈
4𝑁𝑓𝑁𝑚
𝑁

×
1

1 −
𝑁

8𝑁𝑓𝑁𝑚

=
4𝑁𝑓𝑁𝑚
𝑁

(1 +
𝑁

8𝑁𝑓𝑁𝑚
+ (

𝑁

8𝑁𝑓𝑁𝑚
)

2

+ (
𝑁

8𝑁𝑓𝑁𝑚
)

3

+⋯) 

 

𝑁𝑒 =
4𝑁𝑓𝑁𝑚

𝑁
+
1

2
+
1

2

𝑁

8𝑁𝑓𝑁𝑚
+
1

2
(

𝑁

8𝑁𝑓𝑁𝑚
)

2

+
1

2
(

𝑁

8𝑁𝑓𝑁𝑚
)

3

+⋯ 

For the same reasons as those given above, in this equation, terms that are squared, cubed etc… can 
be neglected, and we then get: 

(15)  𝑁𝑒 ≈
4𝑁𝑓𝑁𝑚

𝑁
+
1

2
+
1

4

𝑁

4𝑁𝑓𝑁𝑚
 

Note that if we neglect N/(16NfNm), we obtain equation 2. 
For an even sex ratio, we get: 

(16)  𝑁𝑒 ≈ 𝑁 +
1

2
+

1

4𝑁
 

Equations 15 and 16 are a little different from Balloux's equations 18 and 10 (Balloux, 2004), 
respectively: 

{
𝑁𝑒 =

4𝑁𝑓𝑁𝑚

𝑁
+
1

2
+
1

2𝑁

𝑁𝑒 ≈ 𝑁 +
1

2
+
1

2𝑁
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The reasons for this discrepancy between these two sets of equations are unclear due to the lack of 
details in Balloux' paper. For his equation 10, Balloux simply cites Wright's book (Wright, 1969) without 
mentioning the page or the equation number. A glance at Wright's book only provided a stronger 
approximation (page 212, equation 8.4): Ne=N+1/2, without giving much details (but see Felsenstein's book 
page 266-267 (Felsenstein, 2019)). Appendix 6 provides a detailed proof for Balloux's equation 10 in the 
(simpler) case of even sex-ratios. 

In Figure 1, it can be seen that the first approximation found in Wright's book (Equation 1), as in all 
population genetics textbooks, strongly underestimates Ne, except for very big populations (as expected), 
as compared to other approximations. Wright's second equation and Balloux's one seem to display an 
equivalently small bias, though in varying directions for Balloux's equation, depending on the sex-ratio. 
This can be seen with a study of the sign of ΔNe_B=Ne_Eq3-Ne_Eq13 (see appendix 9), where we notice that 
with the unique valid root of ΔNe (SR2), Balloux's equation will provide an over-estimate when SR>SR2, an 

under-estimate when SR<SR2 and will be accurate when SR=SR2=3-2√2≈0.1716 (e.g.SR≈1/6; SR≈4/23). 
From there, it is easily deduced that, in Figure 1, positive values of ΔNe_B correspond to SR>SR2, negative 
ones to SR<SR2, and close or very close to accuracy around this threshold (for instance 35/204 is very close 
to SR2). This bias is very small when Ne>10 (Figure 1). Finally, the new simplified estimate proposed in 
Equation 15 perfectly fits to Equation 13, except for very small Ne<4 where a very small overestimate can 
be noticed (Figure 1). 

 

Figure 1 - Comparisons of the performances of different approximations of effective population size 
(Ne_a) in dioecious populations with uneven (left) and even (right) sex-ratios, as compared to equation 
13 (Eq 13) (Ne). Performance was measured as Δe=(Ne_a-Ne)/Ne, with Wright's equations 1 and 2 (Eq1 
and Eq2 respectively), Balloux (Eq3), and the new simplified estimate of the present paper (Eq15). 

Estimating the effective population size from Wright's FIS 

As seen above with equations 4, 5 and 6, heterozygote excesses expected in pangamic dioecious 
populations as computed by Wright's FIS, can give access to an estimate of Ne from genotypic data. In the 
following, we propose other FIS based estimates.  

Let Hexp and Hobs be the expected (under Castle-Weinberg expectations) and the observed proportion 
of heterozygotes in the population, respectively. We can express these proportions as the probabilities of 
drawing at random two different alleles in the population HS(t) and in an individual HI(t) respectively at any 
generation t: Hexp=HS(t) and Hobs=HI(t). Finally, from equation 7, we can see that HI(t)= HS(t-1). If we take Nei's 
parametric definition of FIS (Nei & Chesser, 1983): 

𝐹IS =
𝐻exp −𝐻obs

𝐻exp
 

 

8 Thierry De Meeûs & Camille Noûs

Peer Community Journal, Vol. 3 (2023), article e51 https://doi.org/10.24072/pcjournal.280

https://doi.org/10.24072/pcjournal.280


 

𝐹IS = 1 −
𝐻obs
𝐻exp

 

 

(17)  𝐹IS = 1 −
𝐻S(𝑡−1)

𝐻S(𝑡)
 

We can combine equations 10 and 17 to obtain: 

(18)  𝐹IS = 1 −
1

𝜆
 

Now, combining equation 18 with equation 12 yields: 

𝐹IS = 1 −
1

1 −
1
2𝑁𝑒

 

 

𝐹IS =
1 −

1
2𝑁𝑒

− 1

1 −
1
2𝑁𝑒

 

 

𝐹IS =
−

1
2𝑁𝑒

1 −
1
2𝑁𝑒

 

 

𝐹IS = −
1

2𝑁𝑒 − 1
 

 
2𝑁𝑒𝐹IS − 𝐹IS = −1 

 

𝑁𝑒 =
𝐹IS − 1

2𝐹IS
 

 

(19)  𝑁𝑒 =
1

2
−

1

2𝐹IS
 

This result is the same as Equation 4 plus one half of an individual. 
We can also express N as a function of FIS in a dioecious population with an even sex-ratio (Appendix 

10): 

(20)  𝑁 = −
1+𝐹IS

2𝐹IS
 

Here, N can be called the effective number of breeders, which must not be confused with the effective 
population size. Notice that equation 20 differs from equation 4 by the subtraction of half an individual. 

If we use Equation 20 in Equation 16 and rearrange the formula we get (Appendix 10): 

(21)  𝑁𝑒 ≈ −
1

2𝐹IS
−

𝐹IS

2(1+𝐹IS)
 

We can here note that, if we use equation 20 in equation 2 (Wright (1969), page 197), with an even 
sex-ratio, we obtain equation 4 (first FIS based estimate of Pudovkin et al. (1996)). 

We have estimated FIS based Ne under various population sizes and sex-ratios, using the expected FIS 
computed in Appendix 11: 
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(22)  𝐹IS ≈ −
𝑁𝑚+𝑁𝑓

𝑁𝑚+𝑁𝑓+8𝑁𝑚𝑁𝑓
 

In the Figure 2, it can be seen that, as compared to expected values (Equation 13) Equations 5 (Pudovkin 
et al., second equation) and 19 (simple equation of the present paper) tend to over-estimate Ne as 
compared to other estimates, unless population size becomes big enough. Equations 4 (Pudovkin et al., 
first equation) and 6 (Balloux) present an equivalent bias but in the opposite direction (under-estimate and 
over-estimate, respectively). This bias is only visible for small Ne's (i.e. Ne<10). Interestingly, the average of 
these two is exactly equation 21 of the present study, which fits perfectly with the expected one, with an 
extremely small over-estimate for the smallest Ne<3. 

 

Figure 2 - Comparisons of the performances of different FIS based (Equation 22) estimates of effective 
population size (Ne_a) in dioecious populations, as compared to equation 13 (Eq 13) (Ne), measured 
as Δe=(Ne_a-Ne)/Ne, with Pudovkin et al. equations 1 and 2 (Eq 4 and Eq 5 respectively), Balloux (Eq 6), 
and the new simplified estimates of the present paper: the most simple (Eq 19), and the final one (Eq 
21). 

Discussion 

Genetic drift can be influenced by several factors other than dioecy, population size and sex-ratio: 
reproductive variance, non-overlapping generations, changes in population size and/or sex ratio, 
subdivision and selection. Such complications may lead to very cumbersome algebra if one wanted to 
present a more general expression for the effective population size.  

The main goals of the present study were, in decreasing order of importance. 1) to present an improved 
approximation of the classic case where only dioecy and/or uneven sex-ratio have an effect and compare 
it to previous approximations; 2) to present detailed derivations of both the old and new results that would 
be accessible to most readers; and 3) to provide an improved FIS estimate deriving from this new 
approximation, to be used in empirical population genetics studies instead of the two most often used 
methods: Pudovkin et al. (1996) and Balloux (2004) (11 and 8 citations per year respectively according to 
Google scholar's based research in the computer program Publish and Perish 8.8.4275.8412 (Harzing, 
2007)).  

We do not expect any natural population to closely follow the model we explored in the present work. 
Nevertheless, excluding reproductive system variation and selection, any combination of the factors 
mentioned above will tend to reduce Ne and FIS accordingly, and most probably their variance, with not 
much harm to the average expectations. Partial selfing (e.g. deriving from some kinds of automictic 
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parthenogenesis of females (De Meeûs et al., 2007)), or partial sib-mating, should be easily detected, 
produce generalized heterozygote deficits and thus exclude our method. Clonal propagation (e.g. through 
a special kind of endomitotic automixis of females (De Meeûs et al., 2007)) should also be easy to detect 
(De Meeûs et al., 2006) and again the FIS based method would be dismissed. Selection is locus specific and 
should only affect one or two of the loci used, which consequently should be easy to detect and exclude. 
Subdivision can have two effects: if there is a Wahlund effect, this should be easy to detect (Manangwa et 
al., 2019); and if not, highly subdivided populations should exhibit effective sub-population sizes that are 
very close to the one that these would exhibit if totally isolated (because rare immigrants are not expected 
to display much influence), and if not, subsamples should all converge toward the total effective population 
size, which should be easily detected too (Ravel et al. (2023), see also Waples & Do (2010), and Waples & 
England (2011)). Additionally, in most situation, empiricists have no idea of the effective sex-ratio, of the 
scenarios regarding how generations overlap, or how population size fluctuates across generations. 
Consequently, complication of estimates will neither allow an easy understanding of the mathematical 
developments, which was an important goal of the present work, nor take into account with certainty the 
real scenarios that occurred in the population under investigation. This is why, even if the new estimate 
will hardly give significantly different values as compared to the previous ones, we think it is still better 
using the theoretical one that is closer to the exact expected value (equation 21) and interpretable on more 
sound biological means (see below). 

The new approximation proposed in Equation 15 is equivalent to what is expected in large dioecious 
populations (Equation 1), plus half an individual, plus half of a coalesced individual in a large dioecious 
population. As far as we know, such added quantities were never discussed before (but see Felsenstein 
(2019), page 266). We can here try to provide some biological interpretation of such quantities. One half 
of heterozygosity is lost when an individual reproduces by selfing. In a panmictic population (i.e. 
monoecious) of size N, a proportion 1/N of gametes are produced by selfing (Rousset, 1996), in which case 
half the genes coalesce in the progeny (PCM=1/2N). This can happen in the N individuals. Hence 
(1/N)×(1/2)×N=1/2 individuals are produced with coalesced genes per generation through selfing in a WF 
population. This means that one half of such coalescent event does not happen when random selfing is 
forbidden, as it is necessarily the case in dioecious populations. Additionally, in very big dioecious 
populations, Ne≈4NfNm/N (Equation 1). For any diploid population, the instantaneous probability of 
coalescence is PC=1/(2Ne) (see Laporte & Charlesworth (2002), Equation 7; or Nomura (2008), Equation 3). 
Consequently, for a very big dioecious population, this probability becomes (Equation 1) 
PCBD=(1/2)×N/(4NfNm). The number of individuals concerned are those that inherited twice the same allele 
from their grand-parents, which is (1/Nf)×(1/4)×Nf for females and (1/Nm)×(1/4)×Nm for males, hence ½ 
individuals. This yields PCBD×(1/2) individuals. In small dioecious populations, such coalescent events hardly 
happen, because as long as polymorphism is kept, male and female parents that mate randomly can only 
rarely have sampled twice the same alleles from the same grand-parent. These two differences with 1) 
panmictic populations, and 2) big dioecious populations, may explain Equation 15. In other words, if we 
call Ne_BD the effective population size of a very big dioecious population, NNCNS the number of individuals 
that cannot be coalescent due to the absence of selfing and NNCSD the number of individuals that cannot 
be coalescent in a dioecious population due to the limited number of possible mates, then, in small 
dioecious populations, the effective population size is Ne_SD = Ne_BD + NNCNS + NNCSD. 

Interestingly, the highly sophisticated, and fairly complicated to compute, Balloux's equation (Balloux, 
2004), Equation 3 in the present paper, did not perform better than Wright's second equation (Equation 
2), and worse than our Equation 15. As shown in Appendix 6, the coalescence effective population size was 
obtained after neglecting different terms at several successive steps of the analytical process. To be as 
accurate as Equation 21, Equation 2 indeed requires Ne > 10 and/or a sufficient number of generations (e.g. 
10). As seen from the Figure 1, this seems to indeed apply as long as Ne>12. No explanations were provided 
for the abstract notion of the coalescence effective population size and the way used to weight 
approximated coalescent times computed at different hierarchical levels (e.g. individuals, subpopulations, 
etc…). What we were interested in, in this paper, was to compute the local effective population size, i.e. 
the one that affects the speed of polymorphism loss within subpopulations. In that case, the eigenvalue 
effective population size may be the most accurate. 

Regarding FIS-based estimates, the fact that Pudovkin et al., 2nd equation (Pudovkin et al. (1996), 
equation 5) did not perform well, probably comes from the confusion between effective population size 
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and the number of individuals (or of breeders), at different steps of the analytical procedure. Equation 19 
provided similar results as equation 5, though with a slightly stronger bias and is thus too biased also. 
Pudovkin et al., second equation (equation 5 of the present manuscript), is quite popular in empirical 
population genetics studies, and is the one implemented in NeEstimator (Do et al., 2014). It presented 
underestimates, even when Ne>20. Balloux's equation (equation 6), also popular, suffered from an 
overestimation of Ne, in a symmetric position as compared to underestimations of Equation 4 (Pudovkin et 
al., first equation). For both, the biases are small, particularly so when Ne>4. Interestingly, following the 
steps described in Balloux's paper (Balloux, 2004), but replacing the coalescence approach by the leading 
eigenvalue approach, provided the most accurate FIS-based estimate of the effective population size in 
dioecious populations (Equation 21). It appeared to exactly correspond to the average between Equations 
4 (Pudovkin et al., first equation) and 6 (Balloux). 

It is worth recalling that the FIS-based estimates given in Equation 21 assumes an even sex ratio. 
Nevertheless, strongly biased sex-ratios will affect FIS accordingly and should not have strong consequences 
on the estimate of effective population sizes, as suggested by the Figure 2.  

We may also bear in mind that although random mating was assumed, we did not specify any 
reproductive strategy (mono or polygamy). Indeed, Equation 8 assumes polygamy, but monogamy is 
known to lead to the same result as polygamy, as demonstrated pages 267-268 in Felsenstein's book 
(Felsenstein, 2019), and in Appendix 12. The only difference is that, in monogamous populations, the sex-
ratio of individuals that reproduce is necessarily even. Consequently, monogamy can prevent a possible 
high variance in male mating success, which would reduce Ne. But monogamy cannot produce an increase 
of Ne as compared to pangamic polygamy. In that sense, and everything else being equal, gibbons (which 
are monogamous) should preserve better their genetic diversity than gorillas, but not better than bonobos 
(assuming bonobos are pangamous). 

It is worth mentioning that these computations were based on accurate (exact) measures of FIS. 
Unbiased estimators of F-statistics (Weir & Cockerham, 1984) suffer from large variances (Robertson & Hill, 
1984). It is thus likely that deviation from the real value will have a large impact on FIS-based estimates of 
Ne, especially for small expected ("real") values. It can be seen that Ne_Eq4<Ne_Eq21<Ne_Eq6<Ne_Eq5<Ne_Eq19. 
From there, it can be expected that with small underestimations of FIS, Ne_Eq6 will be closer to the real value; 
then Ne_Eq5 for bigger underestimations, and finally Ne_Eq19 for the strongest underestimations. On the 
contrary, overestimations of FIS will necessarily lead Ne_Eq4 to stay closer to the real Ne. However, the 
differences are expected to be quite small, particularly so as compared to Pudovkin 1 (Equation 4) and 
Balloux (Equation 6), especially for the highest values (e.g. Ne>6): Nevertheless, not knowing what the real 
FIS should be, it is probably wiser using the less biased estimate, i.e. Ne_Eq21.  

It is also worth mentioning that FIS should be estimated from adults, as the genetic structure in 
immature individuals may considerably differ from the one they would display in the pool of adults that 
survived. 

The fact that our equation 21 outperformed other equations for Ne<4-6 may suggest strong limitations 
in the practical applicability of this performance since such systems may be expected to quickly undergo 
extinction. In addition to the fact that it is generally preferable to work with the most accurate equation, 
these results are likely to be especially pertinent for certain types of biological systems that are able to 
persist for extended periods despite having very small effective population sizes. For instance, the 
populations of the parasitoid wasp Nasonia vitripenis, depending on the distribution of its host (parasitic 
flies), often display systematic mating of females with their brothers (Werren, 1980). For the mite Varroa 
destructor, a female enters a brood cell, which she caps, where she feeds on the bee larva and then gives 
birth to a haploid male, which later mates with its diploid sisters, laid by the mother from fertilized eggs 
from a previous mating that occurred before the colonization of the brood cell, or after mating with her 
son (which may happen for 30% of females) (Beaurepaire et al., 2017; Häußermann et al., 2020). In both 
cases, males are produced by arrhenotokous parthenogenesis (unfertilized haploid eggs), meaning that 
many populations of these organisms probably display very small Ne, and even smaller than 1 in some 
instances. We did not undertake an extensive review of similar cases, as it is not in the scope of the present 
paper, but such kind of situations may not be rare in dioecious parasitic organisms like parasitoid 
hymenoptera, mites or nematodes. 

According to recent papers based on simulations (i.e. perfect data), FIS-based single sample (or 
subsample) estimates of Ne are not the most accurate (Wang, 2009; Do et al., 2014; Wang, 2016). According 
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to Do et al. (2014), the linkage disequilibrium (LD) based estimate (Waples, 2006), appeared to perform 
better than the co-ancestry method (CoA) (Nomura, 2008) and the FIS-based method (Equation 5) 
(Pudovkin et al., 1996). According to more recent simulation studies (Wang, 2016), the sibship frequency 
based estimate (SF) (Wang, 2009) seemed to provide more accurate results than the previous ones. No 
comparison was ever made with an alternative method based on one and two locus identity measures 
(1&2LI) (Vitalis & Couvet, 2001c, 2001b), implemented by the software Estim 1.2.2 (Vitalis, 2002), updated 
from Estim 1 (Vitalis & Couvet, 2001a). Based on simulations, the 1&2LI method provided accurate (though 
slightly underestimated) results, especially when more than four loci were used (Vitalis & Couvet, 2001b). 
Again, no simulation study exhaustively compared all available one-sample estimates. This would require 
replicated simulations of different scenarios of population structure (Island or stepping stone models with 
varying subpopulation number, sub-population sizes and immigration rates), different kinds of loci 
(microsatellite like or SNP like loci) with varying number of loci, number of alleles and mutation rates, and 
with or without amplification problems (null alleles, stuttering, short allele dominance or allelic dropouts), 
and varying sampling strategies. A comparison with temporal methods (Nei & Tajima, 1981; Pollak, 1983; 
Wang & Whitlock, 2003; Jorde & Ryman, 2007) might also prove interesting, though the number of 
generations between two samples of the same site will add another relevant parameter to explore (Waples 
& Do, 2010). This will obviously require much more work to undertake, which is beyond the scope of the 
present paper. 

We nevertheless undertook a quick simulation study with Easypop (Balloux, 2001). We simulated single 
isolated and randomly mating dioecious populations, with varying sex-ratio, at 100 independent loci with 
a KAM model of mutation with K=100 possible allelic states and a mutation rate of u=0.00001, and 100 
generations. All simulations started with maximum diversity. We then computed effective population sizes. 
We computed FIS with Fstat (Goudet, 1995). For these simulations, most of the averaged FIS across loci 
were positive and therefore could not be used to estimate Ne. We then preferred computing the average 
across loci displaying a negative FIS. For NeEstimator analyses (LD and Coancestries), we assumed polygamy 
and kept estimates excluding alleles less frequent than 5% (LD method). For Estim (1&2LI), we assumed 
panmixia. For Colony (SF), we generated data using Create (Coombs et al., 2008) and assumed polygamy 
and some inbreeding, as this may occur at unknown level in real data. Figure 3 illustrates what kind of 
variations could be observed from one parameter set to the other and from one method to the other. It 
suggests that some kind of average across methods may allow grasping the range of actual effective 
population sizes of sub-populations from genotyped sub-samples.  

 

Figure 3 - Effective population size estimates (Ne) with five different methods as compared to the 
expected value (Equation 22), for different simulated populations with varying numbers of females 
(N_f) and males (N_m). 
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Regarding real data, quoting Nomura, "combined estimate of several independent estimates is 
expected to improve the precision of separate estimates" (Nomura, 2008). For each method, one could 
compute the average Ne across subsamples of the same population, ignoring undefined values (negative 
or infinite), note the maximum and minimum values obtained and keep the number of usable values as a 
weight. Finally, the grand average (across methods) and average minimum and maximum, all weighted by 
the number of usable values obtained in each method, could be computed. For more clarity, a template of 
this method can be found in the file "TemplateRhipicephalusFstatResNeFiveMethods.xlsx", coming from 
the analysis of cattle tick populations from New-Caledonia (De Meeûs et al., 2010). With all data, average 
Ne≈120 in minimax≈[80, 200]. When excluding the two most extreme values Ne≈50 in minimax≈[10, 110]. 
Using the harmonic mean, as suggested by Nomura (Nomura, 2008), Ne≈20 in minimax=[10, 30]. Simulation 
studies could be used to identify an estimator that more accurately approximates the eigenvalue effective 
population size of genotyped populations. 

Temporal data are rarely available (but see Palstra & Ruzzante (2008)), but when these are, they give 
access to different estimates, which may be usefully included in the computations of averages and 
magnitude of variations. 

Undefined Ne may correspond to very big values. Thus, ignoring these may lead to underestimates. 
They may also correspond to the variance of estimate of the parameter used, like FIS, as mentioned above. 
This possible flaw may be attenuated by the use of repeated subsamples and independent loci. Waples 
and Do proposed to include negative Ne as such in the computation of an harmonic mean, with weights 
proportional to reciprocals of variances (Waples & Do, 2010). Nevertheless, on the tick data set, this 
strategy ended with globally negative (and then unsound) values for these populations (not shown), which 
are expected to display important population sizes (i.e. 120 ≤ Ne ≤ 1200 (Koffi et al., 2006)). As already 
discussed, this will require a more thorough exploration through simulations of various kinds of 
populations. 

To conclude, even if the differences with some other equations are not very big, the new approximation 
proposed here appeared almost perfect and biologically relatively sound, and, wherever it is used for, we 
suggest to use it instead of the previous and more biased estimates found in the literature. 
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Appendices 

Appendix 1: Matrix multiplication, identity matrix, matrix determinant and matrix inversion. 
By convention, matrices and vectors appear in bold, while scalars write in italics, and matrix 

multiplication is noted by a point. 
Let matrix A and vector x be: 

A = (
𝑎 𝑏
𝑐 𝑑

) and x = (
𝑥1
𝑥2
) 

 
Multiplying A by x yields a new vector: 

(A1-1)  A.x = (
𝑎 𝑏
𝑐 𝑑

) . (
𝑥1
𝑥2
) = (𝑎𝑥1+𝑏𝑥2

𝑐𝑥1+𝑑𝑥2
) 

With B=(
𝑒 𝑓
𝑔 ℎ

), then: 

(A1-2)  A.B = (
𝑎 𝑏
𝑐 𝑑

) . (
𝑒 𝑓
𝑔 ℎ

) = (
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

) 

Please, note that most of the time A.B≠B.A, since: 

B.A = (
𝑒 𝑓
𝑔 ℎ

) . (
𝑎 𝑏
𝑐 𝑑

) = (
𝑎𝑒 + 𝑐𝑓 𝑑𝑒 + 𝑑𝑓
𝑎𝑔 + 𝑐ℎ 𝑐𝑔 + 𝑑ℎ

) 

 
The identity matrix I must verify: 

(A1-3)  {
𝐀. 𝐈 = 𝐈. 𝐀 = 𝐀
𝐈. 𝐱 = 𝐱           

 

Let I = (
𝐼11 𝐼12
𝐼21 𝐼22

). 
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Then: 

(
𝑎 𝑏
𝑐 𝑑

) . (
𝐼11 𝐼12
𝐼21 𝐼22

) = (
𝑎 𝑏
𝑐 𝑑

) 

 

(
𝑎𝐼11 + 𝑏𝐼21 𝑎𝐼12 + 𝑏𝐼22
𝑐𝐼11 + 𝑑𝐼21 𝑐𝐼12 + 𝑑𝐼22

) = (
𝑎 𝑏
𝑐 𝑑

) 

 

{

𝑎𝐼11 + 𝑏𝐼21 = 𝑎
𝑎𝐼12 + 𝑏𝐼22 = 𝑏
𝑐𝐼11 + 𝑑𝐼21 = 𝑐
𝑐𝐼12 + 𝑑𝐼22 = 𝑑

 

 

{
 
 
 
 

 
 
 
 𝐼11 =

𝑎 − 𝑏𝐼21
𝑎

                 

𝐼12 =
𝑏(1 − 𝐼22)

𝑎
             

𝑐
𝑎 − 𝑏𝐼21

𝑎
+ 𝑑𝐼21 = 𝑐    

𝑐
𝑏(1 − 𝐼22)

𝑎
+ 𝑑𝐼22 = 𝑑

 

 

(A1-4)  

{
  
 

  
 𝐼11 =

𝑎−𝑏𝐼21

𝑎
                

𝐼12 =
𝑏(1−𝐼22)

𝑎
            

𝐼21 (𝑑 −
𝑏𝑐

𝑎
) = 𝑐 −

𝑐𝑎

𝑎

𝐼22 (𝑑 −
𝑏𝑐

𝑎
) = 𝑑 −

𝑏𝑐

𝑎

 

For a≠0, then equation A1-4 writes: 

{
 
 
 
 

 
 
 
 𝐼11 =

𝑎 − 𝑏𝐼21
𝑎

                     

𝐼12 =
𝑏(1 − 𝐼22)

𝑎
                

𝐼21 (
𝑎𝑑 − 𝑏𝑐

𝑎
) = 0            

𝐼22 (
𝑎𝑑 − 𝑏𝑐

𝑎
) =

𝑎𝑑 − 𝑏𝑐

𝑎

 

 

(A1-5)  

{
 
 

 
 𝐼11 =

𝑎−𝑏𝐼21

𝑎
     

𝐼12 =
𝑏(1−𝐼22)

𝑎
 

𝐼21(𝑎𝑑 − 𝑏𝑐) = 0

𝐼22 =
𝑎𝑑−𝑏𝑐

𝑎𝑑−𝑏𝑐
     

 

Expression ad-bc is the determinant of matrix A, Det(A). Equation A1-5 has a solution only if Det(A)≠0, 
in which case A1-5 writes: 
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{

𝐼11 = 1
𝐼12 = 0
𝐼21 = 0
𝐼22 = 1

 

 

𝐈 = (
1 0
0 1

) 

 
From there, it is easy to understand that the identity matrix of any dimension n is a squared matrix with 

diagonal numbers equal to 1 and others to 0: 

𝐈𝒏 = (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

) 

For n=3, I3=(
1 0 0
0 1 0
0 0 1

) 

 
We now have the tools to find the inverse of matrix A, A-1, which must verify A-1.A=I. If we set  

A-1=(
𝛼 𝛽
𝛾 𝛿

), we can write: 

(
𝛼 𝛽
𝛾 𝛿

) . (
𝑎 𝑏
𝑐 𝑑

) = (
1 0
0 1

) 

 

{

𝛼𝑎 + 𝛽𝑐 = 1
𝛼𝑏 + 𝛽𝑑 = 0
𝛾𝑎 + 𝛿𝑐 = 0
𝛾𝑏 + 𝛿𝑑 = 1

 

 

{
 
 
 

 
 
 𝛼 =

1 − 𝛽𝑐

𝑎
             

1 − 𝛽𝑐

𝑎
𝑏 + 𝛽𝑑 = 0

𝛾 = −
𝛿𝑐

𝑎

−
𝛿𝑐

𝑎
𝑏 + 𝛿𝑑 = 1   

 

 

{
 
 
 
 

 
 
 
 𝛼 =

1 − 𝛽𝑐

𝑎
            

𝛽 (𝑑 −
𝑏𝑐

𝑎
) = −

𝑏

𝑎

𝛾 = −
𝛿𝑐

𝑎

𝛿 (𝑑 −
𝑐𝑏

𝑎
) = 1    

 

 
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{
 
 
 
 
 

 
 
 
 
 𝛼 =

1 − 𝛽𝑐

𝑎
                     

𝛽 (𝑑 −
𝑏𝑐

𝑎
) =

−
𝑏
𝑎

𝑎𝑑 − 𝑏𝑐
𝑎

𝛾 = −
𝛿𝑐

𝑎

𝛿 (𝑑 −
𝑐𝑏

𝑎
) =

1

𝑎𝑑 − 𝑏𝑐
𝑎

 

 

(A1-6)  

{
 
 
 

 
 
 𝛼 =

1−𝛽𝑐

𝑎
   

𝛽 =
−
𝑏

𝑎
𝑎𝑑−𝑏𝑐

𝑎

𝛾 = −
𝛿𝑐

𝑎
       

𝛿 =
1

𝑎𝑑−𝑏𝑐

𝑎

 

For a≠0, equation A1-6 becomes: 

{
 
 
 

 
 
 𝛼 =

1 − 𝛽𝑐

𝑎
   

𝛽 =
−𝑏

𝑎𝑑 − 𝑏𝑐

𝛾 = −
𝛿𝑐

𝑎
       

𝛿 =
𝑎

𝑎𝑑 − 𝑏𝑐

 

 

{
 
 
 
 

 
 
 
 
𝛼 =

1 +
𝑏

𝑎𝑑 − 𝑏𝑐
𝑐

𝑎

𝛽 =
−𝑏

𝑎𝑑 − 𝑏𝑐
          

𝛾 = −

𝑎
𝑎𝑑 − 𝑏𝑐

𝑐

𝑎
    

𝛿 =
𝑎

𝑎𝑑 − 𝑏𝑐
           

 

 

{
 
 
 
 

 
 
 
 
𝛼 =

𝑎𝑑 − 𝑏𝑐 + 𝑏𝑐
𝑎𝑑 − 𝑏𝑐

𝑎

𝛽 =
−𝑏

𝑎𝑑 − 𝑏𝑐
           

𝛾 = −

𝑎𝑐
𝑎𝑑 − 𝑏𝑐

𝑎
      

𝛿 =
𝑎

𝑎𝑑 − 𝑏𝑐
           

 

 
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{
 
 
 

 
 
 𝛼 =

𝑑

𝑎𝑑 − 𝑏𝑐

𝛽 =
−𝑏

𝑎𝑑 − 𝑏𝑐

𝛾 =
−𝑐

𝑎𝑑 − 𝑏𝑐

𝛿 =
𝑎

𝑎𝑑 − 𝑏𝑐

 

 
Consequently, the reverse of matrix A is: 

A−1 =
1

𝑎𝑑 − 𝑏𝑐
(
𝑑 −𝑏
−𝑐 𝑎

) 

 
We know that ad-bc=Det(A), thus: 

(A1-7)  A−1 =
1

Det(A)
(
𝑑 −𝑏
−𝑐 𝑎

) 

When Det(A)=0, A is singular. When Det(A)≠0, A is nonsingular. A nonsingular matrix is necessarily 
squared. 

To compute the inverse of a 33 matrix, it is easier using a mathematical software as Maxima 
(Vodopivec, 2017) (command invert(A)). 

Appendix 2: eigenvalues and eigenvectors 
For the sake of space saving and simplicity, we will take the example of a 2×2 matrix X and a two lines 

column vector e: 

{
𝐗 = (

𝑥11 𝑥12
𝑥21 𝑥22

)

𝐞 = (
𝑒1
𝑒2
)

 

 
If λi is an eigenvalue and ei the corresponding eigenvector of matrix X, then they must satisfy the 

equation: X.ei=λi.ei. We can translate this into the system of equations: 

{
𝑥11 × 𝑒1 + 𝑥12 × 𝑒2 = 𝜆𝑒1
𝑥21 × 𝑒1 + 𝑥22 × 𝑒2 = 𝜆𝑒2

 

 
Excluding the trivial solution where e1=e2=0, we can rewrite the preceding equations as: 

{

𝑥11 + 𝑥12 ×
𝑒2
𝑒1
= 𝜆

𝑥21 + 𝑥22 ×
𝑒2
𝑒1
= 𝜆

𝑒2
𝑒1

 

 

{

𝑥11 + 𝑥12 ×
𝑒2
𝑒1
= 𝜆

𝑥21 =
𝑒2
𝑒1
(𝜆 − 𝑥22)

 

 

{

𝑥11 + 𝑥12 ×
𝑒2
𝑒1
= 𝜆

𝑥21
𝜆 − 𝑥22

=
𝑒2
𝑒1

 

 
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{

𝑥11 + 𝑥12 ×
𝑥21

𝜆 − 𝑥22
= 𝜆

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 

 
(𝜆 − 𝑥22)𝑥11 + 𝑥12 × 𝑥21

𝜆 − 𝑥22
= 𝜆

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
𝑥11 × 𝜆 − 𝑥11𝑥22 + 𝑥12 × 𝑥21 = 𝜆

2 − 𝑥22 × 𝜆
𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
𝜆2 − (𝑥11 + 𝑥22) × 𝜆 = −𝑥11𝑥22 + 𝑥12 × 𝑥21

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
𝜆2 − 𝑥11 × 𝜆 − 𝑥22 × 𝜆 + 𝑥11𝑥22 − 𝑥12 × 𝑥21 = 0

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
−𝜆(𝑥11 − 𝜆) + 𝑥22(𝑥11 − 𝜆) − 𝑥21 × 𝑥12 = 0

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

(A2-1)  {
(𝑥11 − 𝜆)(𝑥22 − 𝜆) − 𝑥21 × 𝑥12 = 0

𝑒2

𝑒1
=

𝑥21

𝜆−𝑥22

 

Knowing that the determinant of a matrix A Det(A)=Det (
𝑎 𝑏
𝑐 𝑑

)=ad-cd, Eq A2-1 writes: 

{
 
 

 
 Det (

𝑥11 − 𝜆 𝑥12
𝑥21 𝑥22 − 𝜆

) = 0

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 
 

 
 Det ((

𝑥11 𝑥12
𝑥21 𝑥22

) − (
𝜆 0
0 𝜆

)) = 0

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

(A2-2)  

{
 
 

 
 Det ((

𝑥11 𝑥12
𝑥21 𝑥22

) − 𝜆 (
1 0
0 1

)) = 0

𝑒2

𝑒1
=

𝑥21

𝜆−𝑥22

 

The matrix I=(
1 0
0 1

) is called the identity matrix (Appendix 1). 
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The first line of EqA2-2 writes Det(A)-λ.I=0 and corresponds to the so called characteristic equation of 
matrix A. We can solve EqA2-2: 

{
 
 

 
 Det ((

𝑥11 − 𝜆 𝑥12
𝑥21 𝑥22 − 𝜆

)) = 0

𝑥2
𝑥1
=

𝑥21
𝜆 − 𝑥22

 

 

{

(𝑥11 − 𝜆)(𝑥22 − 𝜆) − 𝑥21𝑥12 = 0

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{

−𝜆𝑥11 − 𝜆𝑥22 + 𝜆
2 + 𝑥11𝑥22 − 𝑥21𝑥12 = 0

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 
 

 
 𝜆2 − 2𝜆

1

2
(𝑥11 + 𝑥22) + [

1

2
(𝑥11 + 𝑥22)]

2

= −(𝑥11𝑥22 − 𝑥21𝑥12) + [
1

2
(𝑥11 + 𝑥22)]

2

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 
 

 
 [𝜆 −

1

2
(𝑥11 + 𝑥22)]

2

= −Det(𝐴) + [
1

2
(𝑥11 + 𝑥22)]

2

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 
 

 
 
𝜆 −

1

2
(𝑥11 + 𝑥22) = ∓√−Det(𝐴) + [

1

2
(𝑥11 + 𝑥22)]

2

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 
 

 
 
𝜆 =

1

2
(𝑥11 + 𝑥22) ∓ √−Det(𝐴) + [

1

2
(𝑥11 + 𝑥22)]

2

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 

{
 
 

 
 
𝜆 =

1

2
(𝑥11 + 𝑥22) ∓ √−𝑥11𝑥22 + 𝑥21𝑥12 +

1

4
(𝑥112 + 𝑥222 + 2𝑥11𝑥22)

𝑒2
𝑒1
=

𝑥21
𝜆 − 𝑥22

 

 
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(A2-3)  

{
 

 𝜆 =
(𝑥11+𝑥22)∓√𝑥11

2+𝑥22
2+4𝑥21𝑥12−2𝑥11𝑥22

2

𝑒2

𝑒1
=

𝑥21

𝜆−𝑥22

 

We have two eigenvalues: 

(A2-4)  

{
 
 

 
 𝜆1 =

𝑥11+𝑥22+√𝑥11
2+𝑥22

2+4𝑥21𝑥12−2𝑥11𝑥22

2

𝜆2 =
𝑥11+𝑥22−√𝑥11

2+𝑥22
2+4𝑥21𝑥12−2𝑥11𝑥22

2

 

Note that a solution exists only if λ≠xii (i=1 or 2), and if e1≠0 or e2≠0. For a 2×2 matrix, if a solution exists 
for its characteristic equation, it has two eigenvalues, i.e. the same number as the dimension of the matrix: 
λ1 and λ2. For each eigenvalue, we can find an infinite collection of of eigenvectors that all satisfy: 

{
𝑥11 × 𝑒1 + 𝑥12 × 𝑒2 = 𝜆𝑒1
𝑥21 × 𝑒1 + 𝑥22 × 𝑒2 = 𝜆𝑒2

 

 

{
(𝑥11 − 𝜆) × 𝑒1 = −𝑥12 × 𝑒2
(𝑥22 − 𝜆) × 𝑒2 = −𝑥21 × 𝑒1

 

 

{
𝑒2 = −

(𝑥11 − 𝜆)

𝑥12
× 𝑒1

(𝑥22 − 𝜆) × 𝑒2 = −𝑥21 × 𝑒1

 

 
Then, for e1=1, a first pair of eigenvectors would be: 

(A2-5)  

{
 
 

 
 𝐞1 = (

1
𝜆1−𝑥11

𝑥12

)

𝐞2 = (
1

𝜆2−𝑥11

𝑥12

)

 

We can go back to EqA2-2 to obtain eigenvalues as function of x21 (as is the case in certain textbooks), 
this leads to: 

{
 
 

 
 𝐞1 = (

𝜆1 − 𝑥22
𝑥21
1

)

𝐞2 = (

𝜆2 − 𝑥22
𝑥21
1

)

 

Appendix 3: Matrix power and diagonalization 
Computing matrix powers is difficult, except for diagonal matrices. Indeed, using equation A1-2, it is 

easy to see that: 

(
𝑎 0
0 𝑑

)
2

= (
𝑎 0
0 𝑑

) (
𝑎 0
0 𝑑

) = (𝑎
2 + 0 0 + 0
0 + 0 0 + 𝑑2

) 

 

(A3-1)  (
𝑎 0
0 𝑑

)
𝑡

= (𝑎
𝑡 0
0 𝑑𝑡

) 
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For any other squared matrix A, it may thus be useful to diagonalize it, if one wants to compute any 
power of it. In Horn and Johnson's book, page 59 (Horn & Johnson, 2013), we are invited to solve the 
equation:  

(A3-2)  P-1.A.P=D 

where P is an invertible matrix and D a diagonal matrix. 
Let A, P and D, v1 and v2 be: 

{
 
 
 
 

 
 
 
 𝐀 = (

𝑥11 𝑥12
𝑥21 𝑥22

)

𝐏 = (
𝑝11 𝑝12
𝑝21 𝑝22

)

𝐃 = (
𝜆1 0
0 𝜆2

)

𝐯1 = (
𝑝11
𝑝21

)

𝐯2 = (
𝑝12
𝑝22

)

 

 
We can also write P=(v1 v2). We can thus rewrite equation A(3.2) as: 

𝐏−1. 𝐀. (𝐯1 𝐯2) = (
𝜆1 0
0 𝜆2

) 

 

𝐏. 𝐏−1. 𝐀. (𝐯1 𝐯2) = 𝐏. (
𝜆1 0
0 𝜆2

) 

 

𝐏. 𝐏−1. 𝐀. (𝐯1 𝐯2) = (
𝑝11 𝑝12
𝑝21 𝑝22

) . (
𝜆1 0
0 𝜆2

) 

 

(𝐀. 𝐯1 𝐀. 𝐯2) = (
𝜆1. 𝑝11 𝜆2. 𝑝12
𝜆1. 𝑝21 𝜆2. 𝑝22

) 

 
(𝐀. 𝐯1 𝐀. 𝐯2) = (𝜆1. 𝐯1 𝜆2. 𝐯2) 

 

{
𝐀. 𝐯1 = 𝜆1. 𝐯1
𝐀. 𝐯2 = 𝜆2. 𝐯2

 

 
We recognize what we saw about eigenvalues and eigenvectors in Appendix 2, meaning that matrix S 

is a combination of eigenvectors of A, and D is a diagonal matrix with matrix A's eigenvalues on the diagonal 
from the bigger (top left) to the smallest (bottom right). 

From there, computing the power of any matrix A is relatively easy. Indeed, if we have P-1.A.P=D, then 
this also writes P.P-1.A.P.P-1=P.D.P-1  A=P.D.P-1. From there, computing At is easy: 

At=(P.D.P-1).(P.D.P-1).(P.D.P-1).(P.D.P-1)……(P.D.P-1) 
 

At=P.D.(P-1.P).D.(P-1.P).D.(P-1.P).D.(P-1.P)……(P-1P).D.P-1 
 

At=P.D.I.D.I.D.I.D.I ……I.D.P-1 

 
where I is the identity matrix. From there, we can compute: 

(A3-3)  At=P.Dt.P-1 

Consequently, we can use equation (A3-3) to calculate the power of any diagonalizable square matrix. 
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We can now derive some other properties of eigenvalue-eigenvector pairs (eigenpairs).  
For the 2×2 matrix A, with the eigenpairs λi and ei, where i stands for 1 or 2, A.ei=λi.ei. Then 

A².ei=A.(A.ei)=A.(λi.ei)=λi.A.ei= λi².ei. It follows that: 

(A3-4)  𝐀𝑡. 𝐞𝑖 = 𝜆𝑖
𝑡. 𝐞𝑖 

Let v be a vector composed of a combination of eigenvectors of matrix A so that v=∑ 𝑥𝑖 . 𝐞𝑖𝑖 , where the 
xi's are scalars that can be computed. We can then write: 

𝐀. 𝐯 = 𝐀.∑ 𝑥𝑖 . 𝐞𝑖
𝑖

 

 

𝐀. 𝐯 =  ∑ 𝑥𝑖 . 𝐀. 𝐞𝑖 =∑ 𝑥𝑖 . 𝜆𝑖 . 𝐞𝑖
𝑖𝑖

 

 

𝐀.𝐀. 𝐯 =  𝐀.∑ 𝑥𝑖 . 𝜆𝑖 . 𝐞𝑖
𝑖

 

 

𝐀𝟐. 𝐯 =∑ 𝑥𝑖 . 𝜆𝑖
2. 𝐞𝑖

𝑖
 

 

(A3-5)  𝐀𝒕. 𝐯 = ∑ 𝑥𝑖 . 𝜆𝑖
𝑡. 𝐞𝑖𝑖  

This property can be used to any power function of matrices. In particular, for the matrix S=(I-γ.A), 
which should be invertible, it is easy to see that the eigenpairs of S are (in decreasing order of the hierarchy) 
λ1'=1-γλ2, e1'=e2 and λ2'=1-γλ1, e2'=e1. Indeed, if we take the eigenvector ei, then: S.ei=ei-γ.A.ei  S.ei=ei-
γ.λi.ei  S.ei = (I-γ.λi).ei (QED). 

Using equation A3-5, we can write: 

𝐒𝒕. 𝐯 =∑ 𝑥𝑖 . (1 − 𝛾𝜆𝑖)
𝑡. 𝐞𝑖

𝑖
 

This logically yields: 

(𝐈 − 𝛾𝐀)−1. 𝐯 =∑ 𝑥𝑖 . (1 − 𝛾𝜆𝑖)
−1. 𝐞𝑖

𝑖
 

 

(A3-6)  (𝐈 − 𝛾𝐀)−1. 𝐯 = ∑
1

1−𝛾𝜆𝑖
. 𝑥𝑖 . 𝐞𝑖𝑖  

Equation A3-6 corresponds to equation A.10 of Rousset's book (page 219), which was given without 
any detailed proof. 

Appendix 4: eigenvalue effective population size 
This notion refers to the evolution of heterozygosity, or more exactly genetic diversity, defined as the 

probability, at generation t, to draw randomly two alleles that are not identical by descent, from one 
generation to the other, and labelled Ht-1 and Ht. If the evolution of a population by genetic drift has 
reached a steady state, the ratio of Ht/Ht-1 remains constant generation after generation and has been 
shown to correspond to the leading eigenvalue of the transition matrix for the evolution of vectors of 
genetic identity probabilities (see below). 

Let QI be the probability of identity within diploid individuals, and QS, the probability of identity 
between two alleles from two individuals of the same population. In an ideal population of size N, and thus 
under panmixia (thus here QI=QS), we can set the system of equations: 
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{
𝑄I𝑡 =

1

𝑁
(
1

2
+
1

2
𝑄I𝑡−1) + (1 −

1

𝑁
)𝑄S𝑡−1

𝑄S𝑡 =
1

𝑁
(
1

2
+
1

2
𝑄I𝑡−1) + (1 −

1

𝑁
)𝑄S𝑡−1

 

 

{
𝑄I𝑡 =

1

2𝑁
𝑄S𝑡−1 + (1 −

1

𝑁
)𝑄S𝑡−1 +

1

2𝑁

𝑄S𝑡 =
1

2𝑁
𝑄S𝑡−1 + (1 −

1

𝑁
)𝑄S𝑡−1 +

1

2𝑁

 

 

{
𝑄I𝑡 = (1 −

1

2𝑁
)𝑄S𝑡−1 +

1

2𝑁

𝑄S𝑡 = (1 −
1

2𝑁
)𝑄S𝑡−1 +

1

2𝑁

 

 
If we replace identities with their corresponding values in terms of genetic non-identity (hence 

diversity), we obtain: 

{
1 − 𝐻I𝑡 = (1 −

1

2𝑁
) (1 − 𝐻S𝑡−1) +

1

2𝑁

1 − 𝐻S𝑡 = (1 −
1

2𝑁
) (1 − 𝐻S𝑡−1) +

1

2𝑁

 

 

(A4-1)  {
𝐻I𝑡 = (1 −

1

2𝑁
)𝐻S𝑡−1

𝐻S𝑡 = (1 −
1

2𝑁
)𝐻S𝑡−1

 

Assuming a steady state, so that HSt/HSt-1=HSt-1/HSt-2=λ, we can set: 

𝜆 = 1 −
1

2𝑁
 

 
Let us now define the vector Ht and transition matrix A, as: 

𝐇𝒕 = (
𝐻I𝑡
𝐻S𝑡

) 

𝐀 = (
0 1 −

1

2𝑁

0 1 −
1

2𝑁

) 

 
Using these, equation A1-1 also writes: Ht=A.Ht-1  Ht=A2.Ht-2  Ht=At.H0. 
This also writes: 

(A4-2)  (
𝐻I𝑡
𝐻S𝑡

) = (
0 1 −

1

2𝑁

0 1 −
1

2𝑁

)

𝑡

. (
𝐻I
𝐻S
) 

were HI and HS  are genetic diversities at time 0. 
We can decompose H0 as a function of eigenvectors of A (e1 and e2) (see appendix 3) and scalars c1 and 

c2 such as: 

(A4-3)  (
𝐻I
𝐻S
) = 𝑐1. 𝐞1 + 𝑐2. 𝐞2 
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Combining Equations A4-2 and A4-3 yields: 

(
𝐻I𝑡
𝐻S𝑡

) = (
0 1 −

1

2𝑁

0 1 −
1

2𝑁

)

𝑡

. (𝑐1. 𝐞1 + 𝑐2𝐞2) 

 

(A4-4)  (
𝐻I𝑡
𝐻S𝑡

) = 𝑐1. (
0 1 −

1

2𝑁

0 1 −
1

2𝑁

)

𝑡

. 𝐞1 + 𝑐2. (
0 1 −

1

2𝑁

0 1 −
1

2𝑁

)

𝑡

. 𝐞2 

Following what we know from the properties of eigenpairs (see Appendices 2 and 3), using equation 
A3-5, we can rewrite equation A4-4 as: 

(A4-5)  (
𝐻I𝑡
𝐻S𝑡

) = 𝑐1. 𝜆1
𝑡. 𝐞1 + 𝑐2. 𝜆2

𝑡. 𝐞2 

With eigenpairs λi and ei of matrix A= (
0 1 −

1

2𝑁

0 1 −
1

2𝑁

), using EqA2-4, we can compute the two 

eigenvalues of matrix A: 

{
  
 

  
 

𝜆1 =
0 + 1 −

1
2𝑁 +

√02 + (1 −
1
2𝑁)

2

+ 4 × 0 × (1 −
1
2𝑁) − 2 × 0 × (1 −

1
2𝑁)

2

𝜆2 =
0 + 1 −

1
2𝑁 −

√02 + (1 −
1
2𝑁)

2

+ 4 × 0 × (1 −
1
2𝑁) − 2 × 0 × (1 −

1
2𝑁)

2

 

 

{
  
 

  
 

𝜆1 =
1 −

1
2𝑁 +

√(1 −
1
2𝑁)

2

2

𝜆2 =
1 −

1
2𝑁 −

√(1 −
1
2𝑁)

2

2

 

 

(A4-6)  {

𝜆1 = 1−
1

2𝑁

𝜆2 = 0

 

For the eigenvectors of A, using equation A2-5, we have: 

{
 
 
 

 
 
 
𝐞1 =

(

 

1

1 −
1
2𝑁 − 0

1 −
1
2𝑁 )

 

𝐞2 = (

1
0 − 0

1 −
1
2𝑁

)
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 

(A4-7)  {
𝐞1 = (

1
1
)

𝐞2 = (
1
0
)

 

Combining A4-7 and A4-6 with A1-5 we can write: 

(
𝐻I𝑡
𝐻S𝑡

) = 𝑐1. (1 −
1

2𝑁
)
𝑡

. (
1
1
) 

 

(A4-8)  {
𝐻I𝑡 = 𝑐1. (1 −

1

2𝑁
)
𝑡

𝐻S𝑡 = 𝑐1. (1 −
1

2𝑁
)
𝑡 

From there, we can also easily see that, for any c1≠0:  

(A4-9)  
𝐻S𝑡
𝐻S𝑡−1

=
𝑐1.(1−

1

2𝑁
)
𝑡

𝑐1.(1−
1

2𝑁
)
𝑡−1 = (1 −

1

2𝑁
) = 𝜆1 

The ratio of genetic diversities of generation t and t-1 is indeed the leading eigenvalue of the transition 
matrix describing the evolution of genetic diversities (and of genetic identities as well) (QED). 

We can also determine c1 and c2, if genetic diversities at time 0 are known. From equations A4-3 and 
A4-7, we know that: 

{
𝐻I = 𝑐1 + 𝑐2
𝐻S = 𝑐1

 

 

(A4-10)  {
𝑐1 = 𝐻S

𝑐2 = 𝐻I −𝐻S
 

Now if we combine equations A1-8 and A1-10 we can compute, for HS (which is here the same as HI): 

{
 
 

 
 
𝐻I𝑡 = 𝐻S. (1 −

1

2𝑁
)
𝑡

𝐻S𝑡 = 𝐻S. (1 −
1

2𝑁
)
𝑡 

 
This results confirms that, at any generation HI=HS, and hence c2=0. We can then simply write, for the 

Wright-Fisher model: 

𝐻I𝑡 = 𝐻S. (1 −
1

2𝑁
)
𝑡

 

 

(A4-11)  𝐻S𝑡 = 𝐻S. 𝜆1
𝑡 

where HS is the local genetic diversity at time 0, and λ1 id the leading eigenvalue of the transition matrix A. 
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Now, for any transition matrix 𝐀 = (
𝑥11 𝑥12
𝑥21 𝑥22

), where the xij are probabilities (e.g. of identity), with 

eigenvalues λ1 and λ2 and corresponding eigenvectors e1 and e2 (Appendix 2), we can use the same 
approach and obtain: 

(A4-12)  (
𝐻I𝑡
𝐻S𝑡

) = 𝑐1. 𝜆1
𝑡. 𝐞1 + 𝑐2. 𝜆2

𝑡. 𝐞2 

From equation A2-4, it is very easy to see that λ1+λ2=x11+x22, and that λ1>λ2. From matrix A defined for 
the WF model, we can see that all xij are probabilities that only sum to 1 for the Castle-Weinberg model 
and hence x11+x22≤1. In the case of WF, the difference between λ1 and λ2 is even very big (equation A4-6). 
Consequently, when t becomes big enough λ1

t>>λ2
t and equation A1-12 can be approximated as: 

(A4-13)  (
𝐻I𝑡
𝐻S𝑡

) ≈ 𝑐1. 𝜆1
𝑡. 𝐞1 

Combining A4-13 with A2-5 yields: 

(A4-14)  {
𝐻I𝑡 ≈ 𝑐1. 𝜆1

𝑡

𝐻S𝑡 ≈ 𝑐1. 𝜆1
𝑡 𝜆1−𝑥11

𝑥12

) 

From there, and for any HX (X=I or S), it is straightforward that the ratio Ht/Ht-1=λ1. From equation A4-
6, we know that the leading eigenvalue of the transition matrix of a fully panmictic model (i.e. WF) is λe=1-
1/(2Ne) and thus, the effective population size of any non-reference population will follow λ1=1-1/(2Ne), 
which is equivalent to: 

1 − 𝜆1 ≈
1

2𝑁𝑒
 

 
Consequently, the eigenvalue effective population size of any population will be: 

(A4-15)  𝑁𝑒 ≈
1

2(1−𝜆1)
 

where λ1 is the leading eigenvalue of the transition matrix, describing the evolution of genetic diversities 
(or same wise of genetic identities) from one generation to the other, for that population.  

All these detailed explanations leading to equation A4-15 provide the same result as equation 3.105 in 
Ewen's book (page 120) (Ewens, 2004), which was given with much more elliptic explanations. 

It is also worth noting that equation A4-15 is only accurate when t is big enough, or when the population 
has reached a steady state so that the ratio Ht/Ht-1 becomes constant and equal to λ1. 

Appendix 5: Pudovkin et al.'s methods to compute Ne 
Let pf and pm be allele frequencies of one of two alleles at a given locus in females and males 

respectively, in a population with an even sex-ratio. Then, in the progeny, the proportion of heterozygotes 
observed should be Hexp-dio=pf(1-pm)+(1-pf)pm. In this population, the frequency of this allele will be 
(pf+pm)/2. Consequently, the expected frequency of heterozygotes under the panmictic (monoecious) 
model in the progeny (Hexpmon) would be: 

𝐻exp−mon = 2(
𝑝𝑓 + 𝑝𝑚

2
) (1 −

𝑝𝑓 + 𝑝𝑚

2
) 

 

𝐻exp−mon = (𝑝𝑓 + 𝑝𝑚) (
2 − 𝑝𝑓 − 𝑝𝑚

2
) 

 
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𝐻exp−mon =
2𝑝𝑓 + 2𝑝𝑚 − 𝑝𝑓

2 − 𝑝𝑚
2 − 2𝑝𝑓𝑝𝑚

2
 

 

𝐻exp−on = 𝑝𝑓 + 𝑝𝑚 − 𝑝𝑓𝑝𝑚 −
𝑝𝑓

2 + 𝑝𝑚
2

2
 

 

𝐻exp−mon = 𝑝𝑓(1 − 𝑝𝑚) + 𝑝𝑚(1 − 𝑝𝑓) −
𝑝𝑓

2 + 𝑝𝑚
2 − 2𝑝𝑓𝑝𝑚

2
 

 

𝐻exp−mon = 𝐻exp−dio −
(𝑝𝑓 − 𝑝𝑚)

2

2
 

 

(A5-1)  𝐻exp−dio = 𝐻exp−mon +
(𝑝𝑓−𝑝𝑚)

2

2
 

Please note that Hexp-dio and Hexp-mon here correspond to Hobs and Hexp respectively in (Pudovkin et al., 
1996). There is thus an observed heterozygote excess in the progeny. 

The quantity pf-pm can be considered as a random variable with average 0 over all possible parental 
groups. If we consider that the frequency of the first allele was p in the parental population, then the 
average of (pf-pm)² is the variance of a difference in allele frequencies between two binomial samples of 
size N for each gender (N alleles in females and N in males=2N alleles in total). The variance of frequency 
of a given allele randomly taken in a population of size N, is p(1-p)/N, where p is the frequency of the allele 
in the parents. The variance of a difference between two uncorrelated (e.g. independent) random variables 
is the sum of individual variances (see the file VarDif.pdf), here p(1-p)/(N)+p(1-p)/(N)=2p(1-p)/N. Equation 
(A5-1), for the entire space of possible outcomes can thus write: 

(A5-2)  𝐻exp−dio = 𝐻exp−mon +
𝑝(1−𝑝)

𝑁
 

If we replace p(1-p) as Hexp-mon/2, N by Ne and rearrange equation (A5-2), one obtains: 

𝐻exp−dio = 𝐻exp−mon +

𝐻exp−mon
2
𝑁𝑒

 

−
𝐻exp−mon

2𝑁𝑒
= 𝐻exp−mon −𝐻exp−dio 

 

(A5-3)  𝑁𝑒 = −
1

2

𝐻exp−mon

𝐻exp−mon−𝐻obsexp−dio
 

The parametric formula of Wright's FIS can be written as (Nei & Chesser, 1983): 

(A5-4)  𝐹IS =
𝐻exp−𝐻obs

𝐻exp
 

If we combine equations (A5-3) and (A5-4), replacing Hexp with Hexp-mon and Hobs with Hexp-dio, we obtain 
the same result (with FIS) as equation (3) in Pudovkin et al.'s paper (if we replace FIS by –D): 

(A5-5)  𝑁𝑒 = −
1

2𝐹IS
 

In their appendix, Pudovkin et al. then used a sleight of hand. They set N=Ne again, 2p(1-p)=Ht-1 and 
Hexp-mon=Ht, and used the equation λ= Ht/Ht-1, citing Kimura and Crow's book (Crow & Kimura, 1970). Then, 
with p(1-p)=Ht-1/2, Ht-1=Ht/λ and Hexp=Ht, we can rewrite A5-2: 
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𝐻exp−dio = 𝐻𝑡 +
𝐻𝑡−1
2𝑁𝑒

 

 

𝐻exp−dio = 𝐻𝑡 +𝐻𝑡
1

2𝜆𝑁𝑒
 

 

(A5-6)  𝐻exp−dio = 𝐻𝑡 (1 +
1

2𝜆𝑁𝑒
) 

Pudovkin et al. used another sleight of hand from equation 3.11.8 (page 104) from Crow and Kimura's 
book (Crow & Kimura, 1970), replacing subpopulation sizes N by Ne (again) and obtained: 

(A5-7)  𝜆 =
𝑁𝑒−1+√𝑁𝑒

2+1

2𝑁𝑒
 

The way Pudovkin et al used this equation may be inaccurate because Crow and Kimura's equation 
refers to the number of individuals, not the effective population size. Nevertheless, if we combine 
equations A5-6 and A5-7 we obtain: 

𝐻exp−dio = 𝐻𝑡

(

 
 
 

1+
1

2
𝑁𝑒 − 1 +√𝑁𝑒

2 + 1

2𝑁𝑒
𝑁𝑒)

 
 
 

 

 

𝐻exp−dio = 𝐻𝑡

(

 1+
1

𝑁𝑒 − 1 +√𝑁𝑒
2 + 1)

  

 

𝐻exp−dio −𝐻𝑡 = 𝐻𝑡

(

 1+
1

𝑁𝑒 − 1 + √𝑁𝑒
2 + 1

− 1

)

  

 

(A5-8)  
𝐻exp−dio−𝐻𝑡

𝐻𝑡
=

1

2𝑁𝑒−1+√𝑁𝑒
2+1

 

From equation A5-4, and setting that Ht is the expected heterozygote frequency in the progeny, hence 
Hexp-mon, we can rewrite equation A5-8 as: 

−𝐹IS =
1

𝑁𝑒 − 1 + √𝑁𝑒
2 + 1

 

 

−𝐹IS𝑁𝑒 + 𝐹IS − 𝐹IS√𝑁𝑒
2 + 1 = 1 

 

−𝐹IS𝑁𝑒 + 𝐹IS − 1 = 𝐹IS√𝑁𝑒
2 + 1 

 
(−𝐹IS𝑁𝑒 + 𝐹IS − 1)(−𝐹IS𝑁𝑒 + 𝐹IS − 1) = 𝐹IS

2(𝑁𝑒
2 + 1) 
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 
𝐹IS

2𝑁𝑒
2 − 𝐹IS

2𝑁𝑒 + 𝐹IS𝑁𝑒 − 𝐹IS
2𝑁𝑒 + 𝐹IS

2 − 𝐹IS + 𝐹IS𝑁𝑒 − 𝐹IS + 1 − 𝐹IS
2𝑁𝑒

2 − 𝐹IS
2 = 0 

 
−2𝐹IS

2𝑁𝑒 + 2𝐹IS𝑁𝑒 − 2𝐹IS + 1 = 0 
 

2𝐹IS𝑁𝑒(1 − 𝐹IS) = 2𝐹IS − 1 
 

𝑁𝑒 = −
1 − 2𝐹IS

2𝐹IS(1 − 𝐹IS)
 

 

𝑁𝑒 = −
1 − 𝐹IS − 𝐹IS
2𝐹IS(1 − 𝐹IS)

 

 

𝑁𝑒 = −
1 − 𝐹IS

2𝐹IS(1 − 𝐹IS)
+

𝐹IS
2𝐹IS(1 − 𝐹IS)

 

 

(A5-9)  𝑁𝑒 = −
1

2𝐹IS
+

1

2(1−𝐹IS)
 

Considering that FIS=-D, we get: 

(A5-10)  𝑁𝑒 =
1

2𝐷
+

1

2(𝐷+1)
 

Equation A5-10 is the same as Pudovkin et al. (1996) equation 4. 

Appendix 6: Coalescent effective population size in a dioecious pangamic population 
Let QI and QS be the probabilities that the same allele is sampled twice, either in one individual or in 

two distinct individuals from the same population. Let u be the mutation rate per generation in an infinite 
allele model where each mutation event producesa new allele that never existed before (no homoplasy). 
Then, for a dioecious population with an even sex-ratio and random mating, we can set the following 
recurrences between generation t and t-1 (Equations 7 and 8 with an even sex-ratio and mutation rate u) 
(see equations 7 and 8 with Nf=Nm). 

{

𝑄I(𝑡) = (1 − 𝑢)
2𝑄S(𝑡−1)

𝑄S(𝑡) = (1 − 𝑢)
2 [
1

𝑁
(
1

2
+
1

2
𝑄I(𝑡−1)) + (1 −

1

𝑁
)𝑄S(𝑡−1)]

 

 

(A6-1)  {
QI(t) = (1 − u)

2QS(t−1)

QS(t) = (1 − u)
2 1

2N
QI(t−1) + (1 − u)

2 (1 −
1

N
)QS(t−1) + (1 − u)

2 1

2N

 

Let Qt the vector of genetic identities at time t and A be the squared matrix of transition for genetic 
identities, v the corresponding vector of residuals, and I the identity matrix. If γ=(1-u)² is the probability 
that two alleles taken at random did not mutate, then we can write: 

(A6-2)  𝐐𝑡 = 𝛾𝐀𝐐𝑡−1 + 𝛾𝐯 

For the example of a dioecious population with even sex ratio this would yield (see equation A6-1): 
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(A6-3)  

{
  
 

  
 𝐐𝑡 = (

𝑄I(𝑡)
𝑄S(𝑡)

)

𝐀 = (
0 1
1

2𝑁
(1 −

1

𝑁
)
)

𝐯 = (
0
1

2𝑁

)

 

Equation A6-2 is equivalent to: 

𝐐𝑡 = 𝛾𝐀(𝛾𝐀𝐐𝑡−2 + 𝛾𝐯) + 𝛾𝐯 
 

𝐐𝑡 = 𝛾
2𝐀2𝐐𝑡−2 + 𝛾

2𝐀𝐯 + 𝛾𝐯 
 

𝐐𝑡 = 𝛾
2𝐀2(𝛾𝐀𝐐𝑡−3 + 𝛾𝐯) + 𝛾

2𝐀𝐯 + 𝛾𝐯 
 

𝐐𝑡 = 𝛾
3𝐀3𝐐𝑡−3 + 𝛾

3𝐀2𝐯 + 𝛾2𝐀𝐯 + 𝛾𝐯 
 

𝐐𝑡 = 𝛾
(𝑡−1)𝐀(𝑡−1)𝐐1 + 𝛾

(𝑡−1)𝐀(𝑡−2)𝐯 + 𝛾(𝑡−2)𝐀(𝑡−3)𝐯 +⋯+ 𝛾2𝐀1𝐯 + 𝛾1𝐀0𝐯 
Assuming that equilibrium values has been reached at time t (t→): 

(A6-4)  𝐐 = 𝛾(𝑡−1)𝐀(𝑡−1)𝐐1 + (∑ 𝛾𝑡𝐀(𝑡−1)𝐯∞
𝑡=1 ) 

 (A6-4) 
We can see that the second term in these equations will increase with t, albeit at a diminishing rate, 

while the first term will decrease with t.. Hence, if inbreeding within individuals and within subpopulation 
are small enough at time t=1, after a sufficient number of generations, and using equation A3-5 and 
decomposing v as v=∑ 𝑥𝑖 . 𝐞𝑖𝑖 , where the xi's are scalars that can be computed and ei are eigenvectors of A, 
we can approximate equation A6-4 as: 

(A6-5)  𝐐 ≈ ∑ 𝛾𝑡 ∑ 𝜆𝑖
(𝑡−1)𝑥𝑖𝐞𝑖𝑖

∞
𝑡=1  

This is the same as the second part of equation 4.10 in Rousset's book, page 56 (Rousset, 2004). It is 
worthy of note that such an approximation is invalid in populations with poor levels of genetic diversity in 
the first generations. 

We can also compute Q at equilibrium. For this we set equation A6-2 as: 

𝐐 = 𝛾𝐀𝐐+ 𝛾𝐯 
 

𝐐(𝐈 − 𝛾𝐀) = 𝛾𝐯 
 

(A6-6)  𝐐 = 𝛾(𝐈 − 𝛾𝐀)−𝟏𝐯 

We can use equation A3-6 to obtain: 

(A6-7)  𝐐 = 𝛾∑
1

1−𝛾𝜆𝑖
. 𝑥𝑖 . 𝐞𝑖𝑖  

This equation corresponds to the first part of equation 4.10 given in Rousset's book. 
We can also express Q as a function of probability of pairwise coalescence at time t. If we define a 

vector Ct of such probabilities within individuals and between individuals (to stick to our framework with 
two hierarchies), we can write: 

(A6-8)  𝐂𝑡 = (
𝐶I(𝑡)
𝐶S(𝑡)

) 
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In equation A6-8, CI(t) and CS(t) are the probabilities, at time t, that two alleles of one individual (I) or of 
different individuals in the subpopulation (S), respectively, all randomly chosen, had coalesced somewhere 
in the past. At equilibrium, or after a lot of generations, identities will correspond to the sum of all 
coalescent events that occurred in the past, and if no mutation ever occurred, and hence: 

(A6-9)  𝐐 = ∑ 𝐂𝑡𝛾
𝑡∞

𝑡=1  

Combining equations A6-5 and A6-9 provides the following equality: 

∑ 𝛾𝑡∑𝜆𝑖
(𝑡−1)𝑥𝑖𝐞𝑖

𝑖

∞

𝑡=1
≈∑ 𝛾𝑡𝐂𝑡

∞

𝑡=1
 

This means that: 

(A6-10)  𝐂𝑡 ≈ ∑ 𝜆𝑖
(𝑡−1)𝑥𝑖𝐞𝑖𝑖  

This equation meets with equation 4.11 page 56 in Rousset's book (Rousset, 2004). 
The mean coalescent time between two alleles in hierarchy J TJ(t) (J=I or S for the example treated in 

the present paper) at time t, can be computed as the sum of the products of the time of each event of 
coalescence by the probability of coalescence at that time for these two alleles of J (Rousset, 2004) (page 
59), in vector format: 

(A6-11)  𝐓𝑛 = ∑ 𝑡𝐂𝑡
𝑛
𝑡=1  

Please note that in Rousset's book or other papers n=∞. 
Using the result of equation A6-10 we get: 

(A6-12)  𝐓𝑛 = ∑ 𝑡∑ 𝜆𝑖
(𝑡−1)𝑥𝑖𝐞𝑖𝑖

𝑛
𝑡=1  

 

𝐓𝑛 =∑ 𝑡𝜆1
(𝑡−1)𝑥1𝐞1

𝑛

𝑡=1
+∑ 𝑡𝜆2

(𝑡−1)𝑥2𝐞2
𝑛

𝑡=1
+∑ 𝑡𝜆3

(𝑡−1)𝑥3𝐞3
𝑛

𝑡=1
+⋯+∑ 𝑡𝜆𝑖

(𝑡−1)𝑥𝑖𝐞𝑖
𝑛

𝑡=1
 

for the general case of any squared transition matrices (for the present case this sum stops at λ2). 
The eigenpairs and scalars are constant through time and we can for now focus on the different sums, 

Si of each eigenpair of order i: 

𝑆𝑖 =∑ 𝑡𝜆𝑖
(𝑡−1)

𝑛

𝑡=1
= 1𝜆𝑖

0 + 2𝜆𝑖
1 + 3𝜆𝑖

2 +⋯+ 𝑛𝜆𝑖
(𝑛−1) 

 

𝜆𝑖𝑆𝑖 = 𝜆𝑖
1 + 2𝜆𝑖

2 +⋯+ (𝑡 − 1)𝜆𝑖
𝑡−1 + 𝑛𝜆𝑖

𝑛 
We can then set: 

𝑆𝑖 − 𝜆𝑖𝑆𝑖 = 1+ 𝜆𝑖
1 + 𝜆𝑖

2 +⋯+ 𝜆𝑖
(𝑛−1) − 𝑛𝜆𝑖

𝑛 
 

𝑆𝑖(1 − 𝜆𝑖) = 1 + 𝜆𝑖
1 + 𝜆𝑖

2 +⋯+ 𝜆𝑖
(𝑛−1) − 𝑛𝜆𝑖

𝑛 
 

𝑆𝑖(1 − 𝜆𝑖) = 𝑆𝑖′ − 𝑛𝜆𝑖
𝑛 

 

𝑆𝑖 =
𝑆𝑖′ − 𝑛𝜆𝑖

𝑛

1 − 𝜆𝑖
 

where 

𝑆𝑖
′ = 1 + 𝜆𝑖

1 + 𝜆𝑖
2 +⋯+ 𝜆𝑖

(𝑛−1) 
 

𝜆𝑖𝑆𝑖
′ = 𝜆𝑖

1 + 𝜆𝑖
2 +⋯+ 𝜆𝑖

(𝑛−1) + 𝜆𝑖
𝑛 
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We can again use the fact that: 

𝑆𝑖
′ − 𝜆𝑖𝑆𝑖

′ = 1 − 𝜆𝑖
𝑛 

 
𝑆𝑖
′(1 − 𝜆𝑖) = 1 − 𝜆𝑖

𝑛 
 

𝑆𝑖
′ =

1 − 𝜆𝑖
𝑛

1 − 𝜆𝑖
 

We can now replace this Si' in Si to obtain: 

𝑆𝑖 =

1 − 𝜆𝑖
𝑛

1 − 𝜆𝑖
− 𝑡𝜆𝑖

𝑛

1 − 𝜆𝑖
 

 

𝑆𝑖 =∑ 𝑡𝜆𝑖
(𝑡−1)

𝑛

𝑡=1
=

1 − 𝜆𝑖
𝑛

(1 − 𝜆𝑖)
2
− 𝑛

𝜆𝑖
𝑛

1 − 𝜆𝑖
=

1

1 − 𝜆𝑖
[

1

1 − 𝜆𝑖
− 𝜆𝑖

𝑛 (
1

1 − 𝜆𝑖
+ 𝑛)] 

Now, using this Si in equation A6-12 yields: 

(A6-13)  𝐓𝑛 = ∑
1

1−𝜆𝑖
[
1

1−𝜆𝑖
− 𝜆𝑖

𝑛 (
1

1−𝜆𝑖
+ 𝑛)] 𝑥𝑖𝐞𝑖𝑖  

Here, simplifying equation A6-13 is possible, but at the expense of another approximation. In the case 
of an isolated dioecious subpopulation, numerical applications suggested that if n big (i.e.n>400 
generations) or if the subpopulation is big enough (N>4) and n>10, then equation A6-13 can be 
approximated as: 

(A6-14)  𝐓 ≈ ∑
1

(1−𝜆𝑖)
2 𝑥𝑖𝐞𝑖𝑖  

For a dioecious population with random mating and even sex-ratio we can write Equation A6-2 (see 
also A6-3) as: Qt=γ(A.Qt-1+v). 

Eigenpairs of matrix A are of the form (see A2-4 or Scripts 1,2 and 4): 

(A6-15)  

{
 
 
 
 

 
 
 
 
𝜆1 =

1−
1

𝑁
+√1+(

1

𝑁
)
2

2

𝐞1 = (
1
𝜆1
)

𝜆2 =
1−

1

𝑁
−√1+(

1

𝑁
)
2

2

𝐞2 = (
1
𝜆2
)

 

Vector v is composed of a combination of eigenvectors e1 and e2: 

𝐯 = (
0
1

2𝑁

) = 𝑥1(

1

1 −
1
𝑁
+√1 + (

1
𝑁)

2

2

) + 𝑥2(

1

1 −
1
𝑁
−√1 + (

1
𝑁)

2

2

) 

 

{

0 = 𝑥1 + 𝑥2

1

2𝑁
= 𝑥1

1 −
1
𝑁 +

√1+ (
1
𝑁)

2

2
+ 𝑥2

1 −
1
𝑁 −

√1 + (
1
𝑁)

2

2

 

 
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{

𝑥2 = −𝑥1

1

2𝑁
= 𝑥1

1 −
1
𝑁
+ √1+ (

1
𝑁)

2

− 1 +
1
𝑁
+√1 + (

1
𝑁)

2

2

 

 

{

𝑥2 = −𝑥1

1

2𝑁
= 𝑥1√1+ (

1

𝑁
)
2

= 𝑥1(𝜆1 − 𝜆2)
 

 

(A6-16)  

{
 
 

 
 𝑥1 =

1

2𝑁√1+(
1

𝑁
)
2
=

1

2𝑁(𝜆1−𝜆2)

𝑥2 = −
1

2𝑁√1+(
1

𝑁
)
2
= −

1

2𝑁(𝜆1−𝜆2)

 

If we combine equations A6-14, and A6-16, we get: 

𝐓 = (
𝑇I
𝑇S
) ≈

1

(1 − 𝜆1)2
1

2𝑁(𝜆1 − 𝜆2)
(
1
𝜆1
) −

1

(1 − 𝜆2)2
1

2𝑁(𝜆1 − 𝜆2)
(
1
𝜆2
) 

 

{
 
 

 
 𝑇I ≈

1

2𝑁(𝜆1 − 𝜆2)
[

1

(1 − 𝜆1)2
−

1

(1 − 𝜆2)2
]

𝑇S ≈
1

2𝑁(𝜆1 − 𝜆2)
[

𝜆1
(1 − 𝜆1)2

−
𝜆2

(1 − 𝜆2)2
]

 

 

{
 
 

 
 𝑇I ≈

1

2𝑁(𝜆1 − 𝜆2)
[
(1 − 𝜆2)

2 − (1 − 𝜆1)
2

(1 − 𝜆1)2(1 − 𝜆2)2
]

𝑇S ≈
1

2𝑁(𝜆1 − 𝜆2)
[
𝜆1(1 − 𝜆2)

2 − 𝜆2(1 − 𝜆1)
2

(1 − 𝜆1)2(1 − 𝜆2)2
]

 

 

{
 
 

 
 𝑇I ≈

1

2𝑁(𝜆1 − 𝜆2)
[
1 + 𝜆2

2 − 2𝜆2 − 1 − 𝜆1
2 + 2𝜆1

(1 − 𝜆1)2(1 − 𝜆2)2
]

𝑇S ≈
1

2𝑁(𝜆1 − 𝜆2)
[
𝜆1(1 + 𝜆2

2 − 2𝜆2) − 𝜆2(1 + 𝜆1
2 − 2𝜆1)

(1 − 𝜆1)2(1 − 𝜆2)2
]

 

 

{
 
 

 
 𝑇I ≈

1

2𝑁(𝜆1 − 𝜆2)
[
𝜆2
2 − 𝜆1

2 − 2𝜆2 + 2𝜆1
(1 − 𝜆1)2(1 − 𝜆2)2

]

𝑇S ≈
1

2𝑁(𝜆1 − 𝜆2)
[
𝜆1 + 𝜆2

2𝜆1 − 2𝜆1𝜆2 − 𝜆2 − 𝜆1
2𝜆2 + 2𝜆1𝜆2

(1 − 𝜆1)2(1 − 𝜆2)2
]

 

 

{
 
 

 
 𝑇I ≈

1

2𝑁(𝜆1 − 𝜆2)
[
(𝜆2 − 𝜆1)(𝜆2 + 𝜆1) + 2(𝜆1 − 𝜆2)

(1 − 𝜆1)2(1 − 𝜆2)2
]

𝑇S ≈
1

2𝑁(𝜆1 − 𝜆2)
[
𝜆1 − 𝜆2 + 𝜆1𝜆2(𝜆2 − 𝜆1)

(1 − 𝜆1)2(1 − 𝜆2)2
]

 

 
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{
 
 

 
 𝑇I ≈

(𝜆1 − 𝜆2)

2𝑁(𝜆1 − 𝜆2)
[

2 − 𝜆1 − 𝜆2
(1 − 𝜆1)

2(1 − 𝜆2)
2
]

𝑇S ≈
𝜆1 − 𝜆2

2𝑁(𝜆1 − 𝜆2)
[

1 − 𝜆1𝜆2
(1 − 𝜆1)2(1 − 𝜆2)2

]

 

 

(A6-17)  

{
 

 𝑇I ≈
1

2𝑁
[

2−𝜆1−𝜆2

(1−𝜆1)
2(1−𝜆2)

2]

𝑇S ≈
1

2𝑁
[

1−𝜆1𝜆2

(1−𝜆1)
2(1−𝜆2)

2]

 

If we use A6-15 in A6-17, we obtain: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑇I ≈
1

2𝑁

[
 
 
 
 
 
 
 
 

2 −
1 −

1
𝑁
+ √1 + (

1
𝑁)

2

2
−
1 −

1
𝑁
−√1+ (

1
𝑁)

2

2

(

 1−
1 −

1
𝑁
+√1 + (

1
𝑁)

2

2

)

 

2

(

 1 −
1 −

1
𝑁
−√1+ (

1
𝑁)

2

2

)

 

2

]
 
 
 
 
 
 
 
 

𝑇S ≈
1

2𝑁

[
 
 
 
 
 
 
 
 

1 −
1 −

1
𝑁 +

√1 + (
1
𝑁)

2

2

1 −
1
𝑁 −

√1 + (
1
𝑁)

2

2

(

 1 −
1 −

1
𝑁 +

√1+ (
1
𝑁)

2

2

)

 

2

(

 1−
1 −

1
𝑁 −

√1+ (
1
𝑁)

2

2

)

 

2

]
 
 
 
 
 
 
 
 

 

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑇I ≈
1

2𝑁

[
 
 
 
 
 
 
 
 

2 −
1 −

1
𝑁 +

√1 + (
1
𝑁)

2

+ 1−
1
𝑁 −

√1+ (
1
𝑁)

2

2

(

 
1 +

1
𝑁 −

√1 + (
1
𝑁)

2

2

)

 

2

(

 
1 +

1
𝑁 +

√1+ (
1
𝑁)

2

2

)

 

2

]
 
 
 
 
 
 
 
 

𝑇S ≈
1

2𝑁

[
 
 
 
 
 
 
 
 

1 −
(1 −

1
𝑁)

2

− 1 − (
1
𝑁)

2

4

(

 
1 +

1
𝑁 −

√1+ (
1
𝑁)

2

2

)

 

2

(

 
1+

1
𝑁 +

√1 + (
1
𝑁)

2

2

)

 

2

]
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑇I ≈
1

2𝑁

2 − (1 −
1
𝑁)

(
(1 +

1
𝑁)

2

− 1 − (
1
𝑁)

2

4 )

2

𝑇S ≈
1

2𝑁

[
 
 
 
 
 
 
 

1 −
1 + (

1
𝑁)

2

− 2
1
𝑁
− 1 − (

1
𝑁)

2

4

(
(1+

1
𝑁)

2

− 1 − (
1
𝑁)

2

4
)

2

]
 
 
 
 
 
 
  

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑇I ≈

1

2𝑁

1 +
1
𝑁

(
1 + (

1
𝑁)

2

+ 2
1
𝑁 − 1 − (

1
𝑁)

2

4
)

2

𝑇S ≈
1

2𝑁

[
 
 
 
 
 
 
 

1 +
1
2𝑁

(
1 + (

1
𝑁)

2

+ 2
1
𝑁 − 1 − (

1
𝑁)

2

4 )

2

]
 
 
 
 
 
 
  

 

{
 
 
 
 

 
 
 
 
𝑇I ≈

1

2𝑁

1 +
1
𝑁

(
1
2𝑁)

2

𝑇S ≈
1

2𝑁

1 +
1
2𝑁

(
1
2𝑁)

2

 

 

{
 
 

 
 𝑇I ≈ 2𝑁(1 +

1

𝑁
)

𝑇S ≈ 2𝑁 (1 +
1

2𝑁
)

 

 

(A6-18)  {
𝑇I ≈ 2(𝑁 + 1)

𝑇S ≈ 2𝑁 + 1
 

This result is the same as in Balloux's paper (Balloux, 2004) (equation 15) with an even sex ratio.  
For a panmictic population of size Ne: 
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{
 

 𝑄I𝑡 =
1

𝑁𝑒
(
1

2
+
1

2
𝑄It−1) + (1 −

1

𝑁𝑒
)𝑄S𝑡−1

𝑄S𝑡 =
1

𝑁𝑒
(
1

2
+
1

2
𝑄It−1) + (1 −

1

𝑁𝑒
)𝑄S𝑡−1

 

 

{
 

 𝑄I𝑡 =
1

2𝑁𝑒
𝑄𝑆t−1 + (1 −

1

𝑁𝑒
)𝑄S𝑡−1 +

1

2𝑁𝑒

𝑄S𝑡 =
1

2𝑁𝑒
𝑄St−1 + (1 −

1

𝑁𝑒
)𝑄S𝑡−1 +

1

2𝑁𝑒

 

 

{
 

 𝑄I𝑡 = (1 −
1

2𝑁𝑒
)𝑄S𝑡−1 +

1

2𝑁𝑒

𝑄S𝑡 = (1 −
1

2𝑁𝑒
)𝑄S𝑡−1 +

1

2𝑁𝑒

 

The corresponding transition matrix has the following eigenpair: 

(A6-19)  

{
  
 

  
 𝜆𝑒1 = 1 −

1

2𝑁𝑒

𝜆𝑒2 = 0

𝐞𝑒1 = (
1
1
)

𝐞𝑒2 = (
1
0
)

 

Hence: 

𝐕𝒆 =

(

 

1

2𝑁𝑒
1

2𝑁𝑒)

 = 𝑥𝑒1 (
1
1
) + 𝑥𝑒2 (

1
0
) 

 

{
 

 
1

2𝑁𝑒
= 𝑥𝑒1 + 𝑥𝑒2

1

2𝑁𝑒
= 𝑥𝑒1

 

 

(A6-20)  {
𝑥𝑒1 =

1

2𝑁𝑒

𝑥𝑒2 = 0
 

If we apply equation A6-14 with the values of equations A6-19 and A6-20), we obtain: 

{
  
 

  
 𝑇I𝑒 ≈

1

(1 − 1 −
1
2𝑁𝑒

)
2

1

2𝑁𝑒

𝑇S𝑒 ≈
1

(1 − 1 −
1
2𝑁𝑒

)
2

1

2𝑁𝑒

 

 

(A6-21)  {
𝑇I𝑒 ≈ 2𝑁𝑒
𝑇S𝑒 ≈ 2𝑁𝑒
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From there, it is easy to understand that the coalescent effective population size can then be defined 
as in equation 17 of Balloux et al. (2003), i.e.: 

(A6-22)  𝑁𝑒 ≈
1

2
𝑇̅ 

where 𝑇̅ is the weighted average of the different Ti's, here: 

(A6-23)  𝑇̅ =
1

𝑁
𝑇I + (1 −

1

𝑁
)𝑇S 

The weights in fact correspond to the probabilities to sample two genes from the considered hierarchy: 
within one individual, from two different individuals within the same sub-population, from two different 
sub-populations from the same archipelago, etc… 

In our context, for a dioecious and isolated population of size N with an even sex-ratio, combining 
equations A6-18, A6-22 and A6-23 leads to: 

𝑁𝑒 ≈
1

2
[
1

𝑁
2(𝑁 + 1) + (1 −

1

𝑁
) (2𝑁 + 1)] 

 

𝑁𝑒 ≈
1

2
[2 (1 +

1

𝑁
) + 2𝑁 + 1 − 2 −

1

𝑁
] 

 

𝑁𝑒 ≈
1

2
[2 +

2

𝑁
+ 2𝑁 − 1 −

1

𝑁
] 

 

𝑁𝑒 ≈
1

2
[1 +

1

𝑁
+ 2𝑁] 

 

(A6-24)  𝑁𝑒 ≈ 𝑁 +
1

2
+

1

2𝑁
 

Equation A6-24 is exactly the same as equation 10 in Balloux (2004). To give a biological meaning to 
this result, it corresponds to the census size (or number of breeders) plus half an individual that would have 
been coalescent through random selfing in a WF population, plus one coalescent individual that would 
occur in a WF population (which may sound redundant with the second). 

Appendix 7: Matrix method to compute eigenvalue effective population size in a dioecious population 
Let QI(t) and QS(t) be the probabilities of identity between two alleles at time t within individuals and 

between individuals in a dioecious random mating population. We can then use Equations 7 and 8 in the 
main text: 

{
 
 

 
 

𝑄I(𝑡) = 𝑄S(𝑡−1)

𝑄S(𝑡) =
1

4
[
1

𝑁𝑓
(
1

2
+
1

2
𝑄I(𝑡−1)) + (1 −

1

𝑁𝑓
)𝑄S(𝑡−1)]

+
1

4
[
1

𝑁𝑚
(
1

2
+
1

2
𝑄I(𝑡−1)) + (1 −

1

𝑁𝑚
)𝑄S(𝑡−1)] +

1

2
𝑄S(𝑡−1)

 

 

(A7-1)  {

𝑄I(𝑡) = 𝑄S(𝑡−1)

𝑄S(𝑡) = 𝑄I(𝑡−1)
1

8
(
1

𝑁𝑓
+

1

𝑁𝑚
) + 𝑄S(𝑡−1) (1 −

1

4𝑁𝑓
−

1

4𝑁𝑚
) +

1

8
(
1

𝑁𝑓
+

1

𝑁𝑚
)

 

Equation A9-1 has transition matrix (see appendices 1-4): 
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(A7-2)  𝐀 = (
0 1

1

2
(
1

4𝑁𝑓
+

1

4𝑁𝑚
) (1 −

1

4𝑁𝑓
−

1

4𝑁𝑚
)) 

To save time we used wxMaxima to find the leading eigenvalue of A (see Script 1): 

𝜆1 =
√(16𝑁𝑓

2 + 1)𝑁𝑚
2 + 2𝑁𝑓𝑁𝑚 +𝑁𝑓

2 + (4𝑁𝑓 − 1)𝑁𝑚 −𝑁𝑓

8𝑁𝑓𝑁𝑚
 

 

𝜆1 =
1

2
−

𝑁

8𝑁𝑓𝑁𝑚
+
√(4𝑁𝑓𝑁𝑚)

2
+𝑁𝑓

2 +𝑁𝑚
2 + 2𝑁𝑓𝑁𝑚

8𝑁𝑓𝑁𝑚
 

 

𝜆1 =
1

2
−

𝑁

8𝑁𝑓𝑁𝑚
+
1

2
√1 + (

𝑁

4𝑁𝑓𝑁𝑚
)

2

 

which is the same as equation 11 in the main text (QED). 

Appendix 8: Derivatives and Taylor-MacLaurin's expansion series 

Basic notions about derivative functions 
Readers acquainted with derivatives can skip this first section.  
The derivative of a function f(x) describes the orientation and speed of variation of this function, 

measured between two points separated by a distance Δx that tends to 0: 

𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

For the present paper, we will need to compute the derivative of several functions. For instance for the 
function f(x)=xn

, then: 

𝑓′(𝑦) = lim
∆𝑥→0

(𝑥 + ∆𝑥)𝑛 − 𝑥𝑛

∆𝑥
 

For any n, beginning with n=2 or 3, it is easy to show that: 

𝑓′(𝑥) = lim
∆𝑥→0

𝑛𝑥(𝑛−1) + ∆𝑥 × 𝑔(𝑥) 

where g(x) is a function of x with one term in xm<n, one term in Δxn-2 and other terms in xΔx, so that the 
limit when Δx→0 necessary is nxn-1. Then f'(x)=nxn-1. It is easy to see that the derivative of a sum of functions 
is simply the sum of derivatives of the different functions of this sum. 

Next, we need to compute the derivative of f(g(x)) or more correctly (f ○ g)(x). For this, it will be easier 
to change of notation: 

(𝑓 ○ 𝑔)′(𝑥) = lim
∆𝑥→0

𝑓(𝑔(𝑥) + ∆𝑥) − 𝑓(𝑔(𝑥))

∆𝑥
 

 Let 𝑓(𝑔(𝑥) + ∆𝑥) − 𝑓(𝑔(𝑥)) = ∆𝑢, and ∆𝑣 = 𝑔(𝑥 + ∆𝑥) − 𝑔(𝑥), then: 

(𝑓 ○ 𝑔)′(𝑥) = lim
∆𝑥→0

∆𝑢

∆𝑥
 

 

(𝑓 ○ 𝑔)′(𝑥) = lim
∆𝑥→0

∆𝑢∆𝑣

∆𝑣∆𝑥
 

 

(𝑓 ○ 𝑔)′(𝑥) = 𝑔′(𝑥) lim
∆𝑥→0

∆𝑢

∆𝑣
 

Since it is easy to see that when Δx→0, then Δv→0, we can rewrite: 
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(𝑓 ○ 𝑔)′(𝑥) = 𝑓′(𝑢)𝑔′(𝑥) 
or 

(𝑓 ○ 𝑔)′(𝑥) = 𝑓′(𝑔(𝑥))𝑔′(𝑥) 
We then have the necessary tools for Taylor-MacLaurin's expansion series. 

Taylor-MacLaurin's expansion series 
In the neighborhood of a, any infinitely differentiable function f(x), writes: 

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +⋯+

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝜀 

Indeed, let f be a derivable function of variable x so that:  

𝑓(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑎) + 𝑎2(𝑥 − 𝑎)
2 + 𝑎3(𝑥 − 𝑎)

3 + 𝑎4(𝑥 − 𝑎)
4 +⋯ 

If we derivate f, we get: 

𝑓′(𝑥) = 𝑎1 + 2𝑎2(𝑥 − 𝑎) + 3𝑎3(𝑥 − 𝑎)
2 + 4𝑎4(𝑥 − 𝑎)

3 +⋯ 
𝑓′′(𝑥) = 2𝑎2 + 3 × 2 × 𝑎3(𝑥 − 𝑎) + 4 × 3 × 𝑎4(𝑥 − 𝑎)

2 +⋯ 
𝑓′′′(𝑥) = 3 × 2 × 𝑎3 + 4 × 3 × 2 × 𝑎4(𝑥 − 𝑎) +⋯ 

If x→a, then (x-a)→0 and: 
𝑓′(𝑥) = 𝑎1 
𝑓′′(𝑥) = 2𝑎2 

𝑓′′′(𝑥) = 3 × 2 × 𝑎3 
𝑓′′′′(𝑥) = 4 × 3 × 2 × 𝑎3 

𝑓(𝑛)(𝑥) = 𝑛! × 𝑎𝑛 
where f(n) is the nth derivative of f. 

We can thus set that, in the neighborhood of a: 

𝑎𝑛 =
𝑓(𝑛)(𝑥)

𝑛!
 

From there we can rewrite f(x) in the neighborhood of a: 

𝑓(𝑥) =
𝑓(𝑎)

0!
+
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 +⋯ 

If a→0, f(x) writes (QED): 

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 +

𝑓′′′(0)

3!
(𝑥)3 +⋯ 

This method will offer very good approximations of cumbersome functions of small variables (e.g. 
1/(2N) or 1/N²). 

Examples of Taylor-MacLaurin's expansion series 

We need to find a proxy for √1 + 𝑋 and for 1/(1-X), when X is small.  

For 𝑓(𝑥) = √𝑥: 

𝑓′(𝑥) = lim
∆𝑥→0

√𝑥 + ∆𝑥 − √𝑥

∆𝑥
 

 

𝑓′(𝑥) = lim
∆𝑥→0

[√𝑥 + ∆𝑥 − √𝑥][√𝑥 + ∆𝑥 + √𝑥]

∆𝑥[√𝑥 + ∆𝑥 + √𝑥]
 

 

𝑓′(𝑥) = lim
∆𝑥→0

𝑥 + ∆𝑥 + √𝑥 + ∆𝑥√𝑥 − √𝑥√𝑥 + ∆𝑥 − 𝑥

∆𝑥[√𝑥 + ∆𝑥 + √𝑥]
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 

𝑓′(𝑥) = lim
∆𝑥→0

∆𝑥

∆𝑥[√𝑥 + ∆𝑥 + √𝑥]
 

 

𝑓′(𝑥) = lim
∆𝑥→0

1

√𝑥 + ∆𝑥 + √𝑥
 

 

𝑓′(𝑥) =
1

2√𝑥
 

Let g(X) be: 

𝑔(𝑋) = √1 + 𝑋 
Then: 

𝑔′(𝑋) = (√1 + 𝑋)′ × 1 
 

𝑔′(𝑋) =
1

2√1 + 𝑋
 

For the function 1/x: 

(
1

𝑥
) ′ = lim

∆𝑥→0

(
1

𝑥 + ∆𝑥) −
1
𝑥

∆𝑥
 

 

(
1

𝑥
) ′ = lim

∆𝑥→0

𝑥 − 𝑥 − ∆𝑥
𝑥(𝑥 + ∆𝑥)

∆𝑥
 

 

(
1

𝑥
) ′ = lim

∆𝑥→0

−∆𝑥

𝑥(𝑥 + ∆𝑥)∆𝑥
 

 

(
1

𝑥
) ′ = lim

∆𝑥→0

−1

𝑥(𝑥 + ∆𝑥)
 

 

(
1

𝑥
) ′ =

−1

𝑥2
 

Using the same approach as for g'(X): 

𝑔′′(𝑋) = −
1

22(√1 + 𝑋)
3 

If we now use Taylor for 𝑔(𝑋) = √1 + 𝑋 in the neighborhood of a: 

𝑔(𝑋) ≈
𝑔(𝑎)

0!
(𝑋 − 𝑎)0 +

𝑔′(𝑎)

1!
(𝑋 − 𝑎)1 +

𝑔′′(𝑎)

2!
(𝑋 − 𝑎)2 +⋯ 

 

𝑔(𝑋) ≈
√1 + 𝑎

0!
(𝑋 − 𝑎)0 +

1

2√1 + 𝑎
1!

(𝑋 − 𝑎)1 +

−
1

22(√1 + 𝑎)
3

2!
(𝑋 − 𝑎)2 +⋯ 

When a→0, we get: 

𝑔(𝑋) = √1 + 𝑋 = 1 +
1

2
𝑋 −

1

8
𝑋2 +⋯ 

The same result can be obtained with the command "taylor(sqrt(1+X),X,0,3)" in wxMaxima (Vodopivec, 
2017). 
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𝑔(𝑋) = √1 + 𝑋 = 1 +
1

2
𝑋 −

1

8
𝑋2 +

1

16
𝑋3… 

Now, if X<<1, we can approximate this expression as: 

√1 + 𝑋 ≈ 1 +
1

2
𝑋 −

1

8
𝑋2 

The first and second derivatives of 1/(1-X) are 1/(1-X)² and 2(1-X)/(1-X)4. We can use Taylor-MacLaurin 
again and write: 1/(1-X)=1+X+X²+X3+… (note that the same result would have been obtained with Maxima 
(Vodopivec, 2017) typing "taylor(1/(1-X),X,0,3)"). 

Appendix 9: Finding the root of Ne_Eq3-Ne_Eq13 
Since Equation 15 gave an almost perfect estimate of equation 13, we studied the sign of ΔNe=Ne_Eq3-

Ne_Eq15 instead of Ne_Eq3-Ne_Eq13 for the sake of simplicity. 

∆𝑁𝑒 =
4𝑁𝑓𝑁𝑚
𝑁

+
1

2
+
1

2𝑁
−
4𝑁𝑓𝑁𝑚
𝑁

−
1

2
−
1

4

𝑁

4𝑁𝑓𝑁𝑚
 

 

∆𝑁𝑒 =
1

2𝑁
−
1

4

𝑁

4𝑁𝑓𝑁𝑚
 

=> 

∆𝑁𝑒 ∝
1

𝑁
−

𝑁

8𝑁𝑓𝑁𝑚
 

=> 

∆𝑁𝑒 ∝
8𝑁𝑓𝑁𝑚 −𝑁

2

8𝑁𝑓𝑁𝑚𝑁
 

=> 

∆𝑁𝑒 ∝ 8𝑁𝑓𝑁𝑚 − (𝑁𝑓 +𝑁𝑚)
2
 

=> 

∆𝑁𝑒 ∝ 8𝑁𝑓𝑁𝑚 −𝑁𝑓
2 −𝑁𝑚

2 − 2𝑁𝑓𝑁𝑚 

=> 

∆𝑁𝑒 ∝ 6𝑁𝑓𝑁𝑚 −𝑁𝑓
2 −𝑁𝑚

2 

We can divide the right term by Nf², then, noting SR=Nm/Nf: 

∆𝑁𝑒 ∝ 6𝑆𝑅 − 1 − 𝑆𝑅
2 

=> 
∆𝑁𝑒 ∝ 𝑆𝑅

2 − 6𝑆𝑅 + 1 
=> 

∆𝑁𝑒 ∝ 𝑆𝑅
2 − 2 × 3𝑆𝑅 + 9 − 8 

=> 
∆𝑁𝑒 ∝ (𝑆𝑅 − 3)

2 − 8 
We need to find the two roots of the right term, which must satisfy: 

(𝑆𝑅 − 3)2 = 8 
 

𝑆𝑅 − 3 = ±√8 
 

𝑆𝑅 = 3 ± √8 
 

{
𝑆𝑅1 = 3 + √8 ≈ 5.8284

𝑆𝑅2 = 3 − √8 ≈ 0.1716
 

A sex-ratio above 1 is not relevant here, since an excess of females would lead to the same result as in 
populations with an even sex-ratio. Consequently, SR2 is the only relevant root. From there, it can be seen 
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that Balloux's equation will provide an over-estimate when SR>SR2, an under-estimate when SR<SR2 and 

will be exact when SR=SR2=3-2√2. 

Appendix 10: Balloux's like method to compute FIS based Ne 
Let QI and QS be the probabilities to sample twice the same allele in one individual and between 

individuals from the same population, respectively, u the mutation rate, then, for a dioecious population 
with an even sex-ratio and random mating, we can set the following recurrences between generation t and 
t-1 (see equations 7 and 8 with Nf=Nm): 

{

𝑄I(𝑡) = (1 − 𝑢)
2𝑄S(𝑡−1)

𝑄S(𝑡) = (1 − 𝑢)
2 [
1

𝑁
(
1

2
+
1

2
𝑄I(𝑡−1)) + (1 −

1

𝑁
)𝑄S(𝑡−1)]

 

 

(A10-1) {
𝑄I(𝑡) = (1 − 𝑢)

2𝑄S(𝑡−1)

𝑄S(𝑡) = (1 − 𝑢)
2 1

2𝑁
𝑄I(𝑡−1) + (1 − 𝑢)

2 (1 −
1

𝑁
)𝑄S(𝑡−1) + (1 − 𝑢)

2 1

2𝑁

 

Let Qt and Qt-1 be the vectors defining genetic identities at generations t and t-1, A the transition matrix 
and v the vector of residuals, then: 

(A10-2)  

{
 
 
 

 
 
 𝐐𝑡 = (

𝑄I(𝑡)
𝑄S(𝑡)

)

𝐀 = (
0 (1 − 𝑢)2

(1 − 𝑢)2
1

2𝑁
(1 − 𝑢)2 (1 −

1

𝑁
)
)

𝐯 = (
0

(1 − 𝑢)2
1

2𝑁

)

 

and Qt=A.Qt-1+V. 

At equilibrium, we can write that the vector of genetic identities Q writes Q=(I-A)-1.V, where I=(
1 0
0 1

) 

is the identity matrix (see appendix 5). 
To solve this equation, and get QI and QS at equilibrium, we used wxMaxima 17.10.1 (Vodopivec, 2017) 

as detailed in the section wxMaxima scripts, Script 2. Taking into account that u<<1, we obtained: 

(A10-3)  𝐹IS =
𝑄I−𝑄S

1−𝑄S
≈ −

1

2𝑁+1
 

The same results can be obtained with classic algebra, without the use of matrix computations, but it 
is much faster this way. This is also the same results as equation 8 in Balloux's paper. It is worth mentioning 
here that equation A10-3 can also theoretically give access to the census size of individuals in the 
population (N) or, more precisely, to the exact number of adult parents of the individuals in the population, 
that some may call the effective number of breeders: 

(A10-4)  𝑁 = −
1+𝐹IS

2𝐹IS
 

If we go back to equation 16 of the main manuscript, we can compute the eigenvalue effective 
population size as: 

(A10-5)  𝑁𝑒 ≈ 𝑁 +
1

2
+

1

4𝑁
 

If we combine equations A9-5 with A9-4, we obtain: 
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𝑁𝑒 ≈ −
1 + 𝐹IS
2𝐹IS

+
1

2
−

1

4
1 + 𝐹IS
2𝐹IS

 

 

(A10-6)  𝑁𝑒 ≈ −
1

2𝐹IS
−

𝐹IS

2(1+𝐹IS)
 

Now, with a stronger approximation, Ne≈N+1/2, which, combined with equation A9-4 yields Pudovkin 
et al.'s equation 3 (see equation 4 of the present manuscript). We can also notice that A9-6 is the average 
of equations 4 (Pudovkin et al. second equation) and 6 (Balloux). 

Appendix 11: Equilibrium value for FIS in a dioecious population (general case) 
For this we need to use equation A6-1 and add a mutation rate u so that equation A6-1 becomes: 

(A10-7)  

{
 
 

 
 

𝑄I(𝑡) = 𝑄S(𝑡−1)(1 − 𝑢)
2

𝑄S(𝑡) = 𝑄I(𝑡−1)
1

8
(
1

𝑁𝑓
+

1

𝑁𝑚
) (1 − 𝑢)2 + 𝑄S(𝑡−1) (1 −

1

4𝑁𝑓
−

1

4𝑁𝑚
) (1 − 𝑢)2

+
1

8
(
1

𝑁𝑓
+

1

𝑁𝑚
) (1 − 𝑢)2

 

The transition matrix and the associated vectors of this equation are: 

{
 
 
 
 

 
 
 
 𝐐𝑡 = (

𝑄I(𝑡)
𝑄S(𝑡)

)

𝐀 = (

0 (1 − 𝑢)2

1

2
(
1

4𝑁𝑓
+

1

4𝑁𝑚
) (1 − 𝑢)2 (1 −

1

4𝑁𝑓
−

1

4𝑁𝑚
) (1 − 𝑢)2

)

𝐕 = (
0

1
8(

1
𝑁𝑓
+

1
𝑁𝑚

) (1 − 𝑢)2
)

 

and equation A7-1 can be rewritten as Qt=A.Qt-1+V. 

At equilibrium, the vector of genetic identities satisfies the equation Q=(I-A)-1.V, where I=(
1 0
0 1

) is the 

identity matrix (see appendix 5). 
To solve this equation, and get QI and QS at equilibrium, we used wxMaxima 17.10.1 (Vodopivec, 2017), 

as detailed in the section wxMaxima scripts (Script 3) and obtained: 

𝐹𝐼𝑆 −
(𝑁𝑚 +𝑁𝑓)𝑢

2 − 2(𝑁𝑚 +𝑁𝑓)𝑢 + 𝑁𝑚 +𝑁𝑓

(𝑁𝑚 +𝑁𝑓)𝑢2 − 2(𝑁𝑚 +𝑁𝑓)𝑢 + 𝑁𝑚 +𝑁𝑓 + 8𝑁𝑚𝑁𝑓
 

 

(A10-8)  𝐹IS = −
(𝑁𝑚+𝑁𝑓)(1−𝑢)

2

(𝑁𝑚+𝑁𝑓)(1−𝑢)
2+8𝑁𝑚𝑁𝑓

 

Terms in u are small in front of 1 so that equation A7-2 can be simplified as: 

(A10-9)  𝐹IS ≈ −
𝑁𝑚+𝑁𝑓

𝑁𝑚+𝑁𝑓+8𝑁𝑚𝑁𝑓
 

Appendix 12: Effective population size of an isolated monogamous population 
We will use the same notations as in other sections. Monogamy implies an even sex ratio in the pool 

of adults that are involved in a mating. For the identity within individuals, the recurrence stays the same 
as in polygamous populations. The recursion for the identity between individuals can be determined by 
conditioning on the ancestry of the sampled pair in the previous generation. One possibility is that the two 
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sampled individuals are sibs, i.e., they share the same parents, which is true with probability 1/(N/2). In 
this case, with probability 1/2, the two alleles will have come from the same parent, in which case they are 
equally likely to be derived from a single parental allele or from both parental alleles. In the former case, 
the sampled alleles are necessarily IBD, whereas in the latter case, the probability that they are IBD is QI(t-

1). Alternatively, with probability 1/2, each sampled allele may have come from a different parent, in which 
case the probability that they are IBD is QS(t-1). The second possibility, which has probability 1 - 1/(N/2), is 
that the two sampled individuals are not sibs, in which case the probability that the sampled alleles are IBD 
is QS(t-1). . We can thus set the following recurrence: 

{
 
 

 
 

𝑄I(𝑡) = 𝑄S(𝑡−1)

𝑄S(𝑡) =
1

1
2𝑁

[
1

2
(
1

2
+
1

2
𝑄I(𝑡−1)) +

1

2
𝑄S(𝑡−1)] + (1 −

1

1
2𝑁

)𝑄S(𝑡−1)
 

 

{
 
 

 
 

𝑄I(𝑡) = 𝑄S(𝑡−1)

𝑄S(𝑡) = 𝑄I(𝑡−1)
1

2𝑁
+ 𝑄S(𝑡−1)(

1

𝑁
+ 1 −

1

1
2
𝑁
) +

1

2𝑁

 

 

{

𝑄I(𝑡) = 𝑄S(𝑡−1)

𝑄S(𝑡) = 𝑄I(𝑡−1)
1

2𝑁
+ 𝑄S(𝑡−1) (1 −

1

𝑁
) +

1

2𝑁

 

Using Maxima, it is easy to compute the leading eigenvalue of the corresponding transition matrix as: 

𝜆1 =
1

2
−
1

2𝑁
+
1

2
√1 + (

1

𝑁
)
2

 

For X small, Taylor-MacLaurin of √1 + 𝑋 ≈ 1 +
1

2
𝑋, hence: 

𝜆1 ≈
1

2
−
1

2𝑁
+
1

2
[1 +

1

2
(
1

𝑁
)
2

] 

 

𝜆1 ≈ 1 −
1

2𝑁
(1 −

1

2𝑁
) 

The eigenvalue effective population size is: 

𝑁𝑒 ≈
1

2(1 − 𝜆1)
 

 

𝑁𝑒 ≈
1

2(1 − 1 +
1
2𝑁 (1 −

1
2𝑁))

 

 

𝑁𝑒 ≈
1

1
𝑁 (1 −

1
2𝑁)

 

 

𝑁𝑒 ≈
𝑁

1 −
1
2𝑁

 

 
Using Taylor-MacLaurin again leads to: 
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1

1 −
1
2𝑁

≈ 1 +
1

2𝑁
+ (

1

2𝑁
)
2

 

Then: 

 𝑁𝑒 ≈ 𝑁 [1 +
1

2𝑁
+ (

1

2𝑁
)
2

] 

 

𝑁𝑒 ≈ 𝑁 +
1

2
+
1

2𝑁
 

This result is exactly the same as for a dioecious pangamic population with even sex ratio. 

wxMaxima scripts 

Script 1: Computing the eigenvalues of Matrix A (equation A6-2) 
(%i1)   A: matrix( [0,1],  [(1/N_f+1/N_m)/8,1−1/(4·N_f)−1/(4·N_m)]); 

(A) (

0 1
1

Nm
+
1

Nf

8
−

1

4 Nm
−

1

4 Nf
+ 1

) 

(%i2)  eigenvalues(A); 

(%o2)  [[−
√(16 Nf

2+1) Nm
2+2 Nf Nm+Nf

2+(1−4 Nf) Nm+Nf

8 Nf Nm
,
√(16 Nf

2+1) Nm
2+2 Nf Nm+Nf

2+(4 Nf−1) Nm−Nf

8 Nf Nm
], [1,1]] 

Script 2: recomputing Ne and FIS in dioecious populations with an even sex ratio 
(%i1)  A: matrix( [0,(1−u)^2],  [(1−u)^2/(2·N),(1−u)^2·(1−1/N)]); 

(A) (
0 (1 − u)2

(1−u)2

2 N
(1 −

1

N
)  (1 − u)2

) 

(%i2) I: matrix( [1,0],  [0,1]); 

(I) (
1 0
0 1

) 

(%i3)  V: matrix( [0],  [(1−u)^2/(2·N)]); 

(V) (
0

(1−u)2

2 N

) 

(%i4) Q:invert(I−A).V; 

(Q) 

(

 
 

(1−u)4

2 N (−
(1−u)4

2 N
−(1−

1

N
) (1−u)2+1)

(1−u)2

2 N (−
(1−u)4

2 N
−(1−

1

N
) (1−u)2+1)

)

 
 

 

(%i5)  QI:(1−u)^4/(2·N·(−(1−u)^4/(2·N)−(1−1/N)·(1−u)^2+1)); 

(QI) 
(1−u)4

2 N (−
(1−u)4

2 N
−(1−

1

N
) (1−u)2+1)

 

(%i6)  QS:(1−u)^2/(2·N·(−(1−u)^4/(2·N)−(1−1/N)·(1−u)^2+1)); 
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(QS) 
(1−u)2

2 N (−
(1−u)4

2 N
−(1−

1

N
) (1−u)2+1)

 

(%i7)  FIS:(QI−QS)/(1−QS); 

(FIS) 

(1−u)4

2 N (−
(1−u)4

2 N −(1−
1
N) 
(1−u)2+1)

−
(1−u)2

2 N (−
(1−u)4

2 N −(1−
1
N) 
(1−u)2+1)

1−
(1−u)2

2 N (−
(1−u)4

2 N −(1−
1
N) 
(1−u)2+1)

 

(%i9)  FIS2:ratsimp(FIS); 

(FIS2) −
u2−2 u+1

u2−2 u+2 N+1
 

(%i10)  eigenvalues(A); 

(%o10) [[−
√N2+1 (u2−2 u+1)+(1−N) u2+(2 N−2) u−N+1

2 N
,
√N2+1 (u2−2 u+1)+(N−1) u2+(2−2 N) u+N−1

2 N
], [1,1]] 

(%i11) λ1:ratsubst(0,u,(sqrt(N^2+1)·(u^2−2·u+1)+(N−1)·u^2+(2−2·N)·u+N−1)/(2·N)); 

(λ1) 
√N2+1+N−1

2 N
 

Script 3: Computing FIS in a dioecious population (general case) 
(%i2)  A: matrix( [0,(1−u)^2],  

[(1−u)^2·(1/(4·N_f)+1/(4·N_m))/2,(1−1/(4·N_f)−1/(4·N_m))·(1−u)^2]); 

(A) (

0 (1 − u)2

(
1

4 Nm
+

1

4 Nf
) (1−u)2

2
(−

1

4 Nm
−

1

4 Nf
+ 1)  (1 − u)2

) 

(%i3)  V: matrix( [0],  [(1−u)^2·(1/N_f+1/N_m)/8]); 

(V) (

0
(
1

Nm
+
1

Nf
) (1−u)2

8

) 

(%i4)  I: matrix( [1,0],  [0,1]); 

(I) (
1 0
0 1

) 

(%i5)  Q:invert(I−A).V; 

(Q) 

(

 
 
 
 
 

(
1

Nm
+
1

Nf
) (1−u)4

8 (−
(

1
4 Nm

+
1
4 Nf

) (1−u)4

2
−(−

1

4 Nm
−

1

4 Nf
+1) (1−u)2+1)

(
1

Nm
+
1

Nf
) (1−u)2

8 (−
(

1
4 Nm

+
1
4 Nf

) (1−u)4

2
−(−

1

4 Nm
−

1

4 Nf
+1) (1−u)2+1)

)

 
 
 
 
 

 

(%i6)  ratsimp(%); 

(%o6)  (
−

(Nm+Nf) u
4+(−4 Nm−4 Nf) u

3+(6 Nm+6 Nf) u
2+(−4 Nm−4 Nf) u+Nm+Nf

(Nm+Nf) u
4+(−4 Nm−4 Nf) u

3+((8 Nf+4) Nm+4 Nf) u
2−16 Nf Nm u−Nm−Nf

−
(Nm+Nf) u

2+(−2 Nm−2 Nf) u+Nm+Nf

(Nm+Nf) u
4+(−4 Nm−4 Nf) u

3+((8 Nf+4) Nm+4 Nf) u
2−16 Nf Nm u−Nm−Nf

) 

(%i7)  
QI:−((N_m+N_f)·u^4+(−4·N_m−4·N_f)·u^3+(6·N_m+6·N_f)·u^2+(−4·N_m−4·N_f)·u+N_m+N_f)/((N_
m+N_f)·u^4+(−4·N_m−4·N_f)·u^3+((8·N_f+4)·N_m+4·N_f)·u^2−16·N_f·N_m·u−N_m−N_f); 
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(QI) 
−(Nm+Nf) u

4−(−4 Nm−4 Nf) u
3−(6 Nm+6 Nf) u

2−(−4 Nm−4 Nf) u−Nm−Nf

(Nm+Nf) u
4+(−4 Nm−4 Nf) u

3+((8 Nf+4) Nm+4 Nf) u
2−16 Nf Nm u−Nm−Nf

 

(%i8)  
QS:−((N_m+N_f)·u^2+(−2·N_m−2·N_f)·u+N_m+N_f)/((N_m+N_f)·u^4+(−4·N_m−4·N_f)·u^3+((8·N_f
+4)·N_m+4·N_f)·u^2−16·N_f·N_m·u−N_m−N_f); 

(QS) 
−(Nm+Nf) u

2−(−2 Nm−2 Nf) u−Nm−Nf

(Nm+Nf) u
4+(−4 Nm−4 Nf) u

3+((8 Nf+4) Nm+4 Nf) u
2−16 Nf Nm u−Nm−Nf

 

(%i9)  FIS:(QI−QS)/(1−QS); 
(FIS)  

 
(%i10)  FIS2:ratsimp(FIS); 

(FIS2) −
(Nm+Nf) u

2+(−2 Nm−2 Nf) u+Nm+Nf

(Nm+Nf) u
2+(−2 Nm−2 Nf) u+(8 Nf+1) Nm+Nf

 

Script 4: Computing eigenpairs in a dioecious population (even sex-ratio) 
(%i1)  A: matrix( [0,1],  [1/(2·N),1−1/N]); 

(A) (
0 1
1

2 N
1 −

1

N

) 

(%i2)  eigenvectors(A); 

(%o2)  [[[−
√N2+1−N+1

2 N
,
√N2+1+N−1

2 N
], [1,1]], [[[1,−

√N2+1−N+1

2 N
]], [[1,

√N2+1+N−1

2 N
]]]] 

Script 5: Computing partial Q in a dioecious population (even sex-ratio) 
(%i7)  D: matrix( [λ_1^(t−1),0],  [0,λ_2^(t−1)]); 

(D) (
λ1
t−1 0

0 λ2
t−1) 

(%i8)  P: matrix( [1,1],  [λ_1,λ_2]); 

(P) (
1 1
λ1 λ2

) 

 -->  ; 
 -->  Q_1: matrix( [Q_I_1],  [Q_S_1]);¦ 

(Q_1) (
Q_I1
Q_S1

) 

(%i10)  Q_partial:γ^(t−1)·P.D.invert(P).Q_1; 

(Q_partial) 

(

 
 
γt−1 (λ1

t−1 (
Q_I1 λ2

λ2−λ1
−

Q_S1

λ2−λ1
) + λ2

t−1 (
Q_S1

λ2−λ1
−
Q_I1 λ1

λ2−λ1
))

γt−1 (λ1
t (
Q_I1 λ2

λ2−λ1
−

Q_S1

λ2−λ1
) + λ2

t (
Q_S1

λ2−λ1
−
Q_I1 λ1

λ2−λ1
))

)
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