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Abstract
Inferring the demographic history of species is a great challenge in population genetics.This history is classically represented as a history of size changes, ignoring populationstructure. We present here the work carried out over the last decade around the con-cept of IICR (Inverse Instantaneous Coalescence Rate), which makes it possible to link,on the one hand, the history of the true population size for a panmictic population, andthe inferred size, sometimes called ”effective size”, when structure is taken into account.We show that population structure can lead to misinterpretations of some demographichistory inference results, we propose a framework for inferring structure-specific demo-graphic parameters (number and size of subpopulations, migration rates), andwe analyzethe link between IICR and some form of selection modeling on genetic sequences.
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1. Introduction
Note to the reader: this article was originally conceived for readers who are mathematicians, with the objective

of presenting an example of the application of mathematics in life sciences. It is for them that the first part has been
designed, which readers already in the know can advantageously skip. On the other hand, the few mathematical
formulas are likely to make the reading more difficult for people with a biology background, we hope that the expla-
nations of their meanings will remain accessible tomost people. The presentation of results in a field that is essentially
multidisciplinary is always a little perilous.

Wepropose in this article a brief description of thework, over almost a decade, resulting froma collaboration betweenmathematicians and biologists from four different research laboratories,identifiable as the co-authors of the articles whose results are described here, and implicitelyco-authors of this article, under the signature of Camille Noûs. This modeling work is part ofpopulation genetics, and is therefore essentially at the interface between mathematical tools,more particularly probabilistic ones, and biological data, more specifically genetic ones.In a first part, we briefly present the theory of coalescence, which is the basis of our models,and the problems that this modeling tries to address. In a second part we describe our first resultsand the development of the IICR (Inverse of Instantaneous Coalescence Rate), the nodal pointfromwhich the different research pathswe have been following are branching. The first results ofthese paths are summarized in the two following parts, one about the inference of demographicparameters of a structured population, the other about the consideration of selection.
2. Coalescent theory in population genetics

Population genetics is the study of the evolution of the genotypes in a population of living be-ings, under various evolutionary pressures such as mutation, selection or genetic drift. Initiatedin the first half of the XXth century with the work of the British statistician Ronald Fisher andthe American geneticist Sewall Wright, it has seen the emergence of a backward model calledcoalescent, the first developments of which are due to the British mathematician John Kingmanin the 80’s (Kingman, 1982).The coalescent theory consists in sampling individuals – more precisely loci of individuals’genomes – in the present population, and tracing their genealogies back in time, until a commonancestor, from two or more lineages, is found. The instants, backward to the past, when suchcommon ancestors appear are called coalescence times, and are considered as random variableswith values in N or in R+.The mathematical object of interest is then the joint distribution of the various coalescencetimes of family trees, which allows to express the observable quantities in the genomes of apresent population, as functions of this distribution. Those functions depend on genetic param-eters (like mutation rate, recombination rate, selection rate) and demographic parameters (likesizes and numbers of sub-populations, migration rates between sub-populations). Note that in

2 Olivier Mazet & Camille Noûs

Peer Community Journal, Vol. 3 (2023), article e53 https://doi.org/10.24072/pcjournal.285

https://doi.org/10.24072/pcjournal.285


this paper, we will focus on loci separated by recombination events, and the topology of eachtree of each locus won’t matter. Observations of genetic sequences can then be used to infer ge-netic or demographic parameters using various statistical methods, and technological advancesover the last two decades have made it possible to acquire huge masses of data, which can beused to refine existing models and develop new ones.
Wright-Fisher model and Kingman coalescent.

More precisely, the Wright-Fisher model describes the evolution of a population of 2N indi-viduals (the individuals can be genes or loci) with the following assumptions: in each generation,each individual independently generates a number of descendants following a Poisson distribu-tion of the same constant parameter, with the offsprings completely replacing their parents, allconditioned by the fact that the size of the population must remain constant. The process can bedescribed in an equivalent way backward in time: each individual of a given generation randomlychooses its parent in the previous generation in a uniform way. An illustration of the process isgiven in Figure 1 (Figure from Hein et al. (2004)).
(a) (b) (c)

Figure 1 – Here is a realization of the Wright-Fisher process on 16 generations with a populationsize of 2N = 10. Panel (a) presents the evolution when each row is a generation, the individualshave been rearranged in panel (b) in order to highlight the family tree, and for panel (c) three indi-viduals have been chosen in the last generation, their respective lineages having been put in bold.We see that the first coalescence between individuals 1 and 2 takes place two generations ago inthe past, and that the last coalescence to the most recent common ancestor of individuals 1, 2 and3 takes place nine generations ago in the past.
If we now consider a pair of individuals in the last generation, and if we note T2 the waitingtime for the coalescence of the two lineages (going back in time), we have

P(T2 > i) =

(
1 − 1

2N

)i

,

and if we suppose N to be large, by changing the time scale, we obtain the usual approximationof the geometric distribution by the exponential distribution
P(T2 > 2Nt) =

(
1 − 1

2N

)2Nt

∼ e−t .

We can thus generalize for the first renormalized coalescence time, which for convenience wekeep noting Tk , even if it is not expressed in the same units, for k individuals sampled in the lastgeneration:
P(Tk > t) ∼ e−(k2)t ,
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and one thus obtains the coalescence tree, corollary of Kingman’s coalescent, where the succes-sive times of coalescence are independent, following exponential distributions of parametersequal to the binomial coefficients (k2).
Demographic complications of the coalescence model.

The coalescent defined this way is only valid in the context of a so-called panmictic popu-lation, i.e. without geographical structure (each individual randomly chooses its parent in thewhole population), and with constant size. We will see how to generalize the coalescent in thecase of a population of changing size, and in the case of a structured population.
Population size change. If we consider that the size of the population can vary, by posing N(i)the size of the population at generation i in the past, and by considering the quantity
(1) λ(t) =

N(⌊2Nt⌋)
N(0)

,

the relative size of the population in the past with the same temporal renormalization as in theprevious section, it can be shown (see e.g. Tavaré (2004), section 2.4) that under reasonable con-ditions of variation of λ in the neighbourhood of infinity, the coalescence timeTk of k individualssampled in the present satisfies
(2) P(Tk > t) = exp

(
−
(
k

2

)∫ t

0

dτ

λ(τ)

)
.

But unlike the panmictic case, the successive Tk are no longer independent, which makes theglobal study of the tree more difficult.
Structured population. To relax the assumption of panmixy opens the door to multiple ways ofmodeling population structuring. Classically, the global population is considered to be made upof subpopulations (called islands, or demes), each of which is panmictic, between which migra-tion events may occur, with rates that may depend on each pair of islands. The demographicparameters of the model are thus: the number of islands n, the respective renormalized sizes
(si )i=1...n of the n islands (again assumed constant in time), and the renormalized migration rates(to take into account the scaling already described which allows us to go to continuous time byassuming that populations are sufficiently large) (Mij)i ̸=j between the islands i and j .The description of the coalescent tree thus becomes much more complex, but the informa-tion can be summarized, as Hilde Herbots-Wilkinson showed in 1994 in her landmark thesiswork (Herbots, 1994). If we note α = (α1, ... ,αn) the configuration where αi represents thenumber of lineages present in the island i , then the coalescence process can be described by theinfinitesimal generator Q such that

(3) Q(nα, nβ) =





αi
Mij

2 if β = α − ϵi + ϵj (i ̸= j)
1
si

αi (αi−1)
2 if β = α − ϵi

−∑i

(
αi

Mi
2 + 1

si

αi (αi−1)
2

) if β = α

0 otherwise,
where ϵi is the vector of size nwhose components are all zero except the i-th which is 1. In orderto have positive integers as indices of thematrix, we denote by nα and nβ the respective numbersof the α and β configurations, once chosen a prior ordering of all possible configurations. Thefirst line stands for a migration event, from island i to island j , with the corresponding migrationrate αi

Mij

2 . The second means that two lineages in island i coalesced, with rate 1
si

αi (αi−1)
2 .

Genetic parameters, estimations and inferences.
From a genetic point of view, all these models are assumed to be neutral, i.e. not taking intoaccount the possible influence of selection in the reproductive capacity of each individual. How-ever, it is possible to easily incorporate the phenomena ofmutation and recombination into thesemodels, because they can be considered as events independent of the genealogical process. The
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classical assumptions are that each mutation or recombination event affects a different part ofthe genome (the so-called infinite site model), and that the mutation and recombination rates areconstant both in time and along the genetic sequences.
Mutation and genetic diversity. Mutation events are distributed on the genealogical tree accord-ing to a Poisson process, and we can link genetic diversity data, by observing for example thenumber of alleles of a given gene, or its distribution, and more generally the quantification ofpolymorphism, with the configuration of the tree (topology, length of branches) associated withthe chosen model. By choosing a model, we can estimate the mutation parameter, and on thecontrary, by assuming the mutation parameter to be known, we can estimate the lengths of thebranches of the tree, and thus have information on the distributions of the coalescence times.Among the best known estimators, let us mention Watterson’s θW based on the number of seg-regating sites (Watterson, 1975) or the number of pairwise nuleotide differences (Tajima, 1983).
Recombination and SequentialMarkovianCoalescence. The phenomenon of recombination ismuchmore difficult to incorporate into these models than mutation, since it requires sexual reproduc-tion, and at each recombination event the resulting genome is derived not from one parent butfrom two, thus exponentially increasing the number of ancestors involved for each lineage of indi-viduals sampled in the present population. The ancestral recombination graph (ARG, see Griffithsand Marjoram (1996)) requires a computational treatment that is very quickly prohibitive whenthe sample size increases.The work of McVean and Cardin (2005) allowed, under an original hypothesis of the Markov-ian dependence property along the genome (hence the so-called sequential property), to greatlyrestrict the space to be explored for statistical inference methods. Several demographic param-eter inference software packages then emerged, including the famous PSMC (for Pairwise Se-quentially Markovian Coalescent, Li and Durbin (2011)), which has been widely used since 2011,and allows to estimate the variation of the population size (noted λ(t) in equation (1)), using thegenetic data from a diploid individual only (fully sequenced genome), see for example Figure 2.

Figure 2 – Demographic inference obtained from human DNA from individuals of different pop-ulations (Li and Durbin, 2011). On the x-axis, the number of years in the past. On the y-axis, therenormalized size of the population, assumed to be panmictic.

3. Consideration of population structure, central role of the IICR
Some work in the first decade of this century (Chikhi et al., 2001, 2010;Wakeley, 2001) high-lighted the effect that a structured population could generate on statistics assuming panmixia,with notably the detection of false bottleneck signals in some cases. This can be problematic, for
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instance for conservation population issues. It is not always easy to quantify some kind of de-gree of structuration, there exists a large bibliography on this topic (see for instance Chakraborty(1993) or Excoffier (2004)).After a preliminary study which consisted in analyzing a simple case of comparison of anisland model and a size change model (Mazet et al., 2015), we obtained a first result, which hasbecome a nodal point of our subsequent research and which we present here.
The IICR and the change in size. We have highlighted in Mazet et al. (2016) the following result.Considering that whatever the chosen demographic model is, the coalescence time T2 of thelineages of two individuals chosen in the present population is a random variable with values in
R+. This variable thus can be considered as a lifetime of density fT2 , and as such, admits a “failurerate” which here translates into an (instantaneous) rate of coalescence equal to

µ(t) =
fT2(t)

P(T2 > t)
.

The density of T2 can thus always be written
fT2(t) = µ(t) exp

(
−
∫ t

0
µ(τ)dτ

)
,

hence
(4) P(T2 > t) = exp

(
−
∫ t

0
µ(τ)dτ

)
.

If we now bring equation (4) together with the particular case k = 2 of equation (2), werealize that in the panmictic case, the change in size λ(t) is exactly equal to 1
µ(t) , which is thus

the inverse of the instantaneous coalescence rate, noted by the acronym IICR. Two importantconsequences can be drawn from this observation:
(1) The sole data of the T2 distribution cannot be informative of the demographic model, ifwe don’t know if it is structured or not, since whatever it is, there is always a panmicticmodel which will provide exactly this T2 distribution. Indeed, it is sufficient to choose theinverse of the coalescence rate as the size change.(2) What software like PSMC infers, on data from a single diploid genome and however longit may be, is the IICR associated with the demographic model, which is usually not thechange in size of the population when it is structured.

Taking the second consequence further, as a proof of concept we built a constant size demo-graphic model based solely on a symmetric island model, with the number of islands also con-stant, where only the migration parameter is allowed to vary. As we can see in Figure 3 extractedfromMazet et al. (2016), the PSMC output on data simulated under this model is very similar tothat on real human data.There is obviously no question of claiming that the human population is structured in sym-metrical islands and that its population size has remained constant over the course of evolution,but this example prompts us to question the interpretation of the IICR, which is the object in-ferred by the PSMC, and shows that it is necessary to investigate further, before drawing anyconclusions about the demographic history of a population.
Links with previous results. Beyond the formal framework, which confirms what simulations inWakeley (2001), Chikhi et al. (2001) or Chikhi et al. (2010) had already shown, i.e. bottleneckor population expansion signals depending on whether the lineages are sampled in the samedemes or not (see also Peter et al. (2010) or Heller et al. (2013)), the IICR also makes it possibleto establish links with works on various concepts of effective sizes of a structured population.Indeed, the IICR of a stationary structured model, after a transitory phase which depends onthe sampling, always converges towards a plateau which could be considered as an "asymptotic"effective size and whose value is calculable in an exact way, according to the demographic pa-rameters (number and size of the demes, rate of migration between the demes). It turns out thatfor the n-island and for fairly large migration values, in the first approximation this value is equal
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Figure 3 – In red the PSMC of real data from a human (CHN.A in Figure 2). In green the PSMC of10 simulations of the same model in islands, of constant size, with three changes of migration raterepresented by the vertical dotted lines, at 2.52Myr ago, 0.95Myr ago and 0.24Myr ago. The blueshaded areas correspond to the beginning of the Pleistocene at 2.57–2.60 Myr ago, the beginningof theMiddle Pleistocene at 0.77–0.79Myr ago and the oldest known fossils of anatomically mod-ern humans at 195–198 kyr ago. Following Li and Durbin (2011), we assumed that the mutationrate was µ = 2.5 × 10−8 and that generation time was 25 years. We also kept their ratio betweenmutation and recombination rates. Each deme had a size of 530 diploids and the total number ofhaploid genomes was thus constant and equal to 10 600.

to the metapopulation size Nn (n being the number of subpopulations and N the size of each ofthem), and in the second approximation (by adding the next term of the Taylor expansion) this
value is equal to N(n+ (n−1)2

nM ), which is the effective size computed in Nei and Takahata (1993)for this model.Let us also note in the work of Whitlock and Barton (1997) a certain similarity of approach,but for the case where the unit of time remains the generation, and where the eigenvalue ef-fective population size defined by Ewens (1982) is studied in connection with "their" Inverse ofInstantaneous Coalescence Rate.
Influence of the sample size. From the first consequence drawn above, we explored theoreticallywhat the data of a third lineage could bring as additional information. We then showed thatin the simple case of a population structured in islands, then adding the information of the T3distribution to the T2 distribution is enough to distinguish this model from the panmictic modelhaving the same T2 distribution, thus the same IICR (Grusea et al., 2018).This result provides theoretical evidence that a sample size strictly greater than two is suffi-cient to distinguish an island structured model from a panmictic model, but initial attempts tomove into practice have not yet been successful, because of the precision required, which oftenblends into the noise of the real data.
Structure and IICR: sampling strategy. Exploratory work was then done (Chikhi et al., 2018), us-ing simulated data, to find out what signatures are left on the IICR produced by different typesof structured models, and thus indirectly (or directly when dealing with software of the sametype as PSMC) on the false signals of size changes that these models generate. As an illustra-tion, we present in Figure 4 extracted from this paper, the simulated IICRs in a model with threeislands and asymmetric migration rates, by sampling a diploid individual in each of the islands.We see that not only the structure of the model can give false signals of size change for soft-ware assuming panmixia, but also the IICR is dependent on the sampling location, for the same
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demographic history. Indeed, sampling a diploid individual in island 3 would provide a signal ofmonotonic population decrease, whereas sampling it in island 1 or 2 would provide a signal offirst expansion, followed by reduction, with different magnitudes. This finding also deserves tobe further explored for use in model selection.

Figure 4 – The size of each island is constant. However, the IICRs of each pair of sequences aretime-varying functions, and these functions even may not be monotonic. Furthermore, they differdepending on the island fromwhich the pair is sampled. This Figure comes fromChikhi et al. (2018).

The IICR as a model validation. The IICR can also be used as a summary statistic of a given model,for validation or rejection. In the same paper (Chikhi et al., 2018) we thus tested a number ofmodels proposed in the literature for human evolution, for Homo sapiens as well as for Homoneandertalensis. Simulating the IICR of some of these models allowed us to discard them, asthe IICR produced differed radically from that estimated by PSMC on human data. For examplethe Figure 5 illustrates this situation for the models proposed in Yang et al. (2012), which wassupposed to prove that admixture between humans and Neanderthals explained better the datathan ancient structure.
IICR and structured coalescent. On the theoretical side, work has been undertaken to calculate,as precisely as we like, the IICR of any structured model (Rodríguez et al., 2018). The modelinginitiated by Herbots provides a set of infinitesimal generators of Markov processes (see formula(3)), and it is possible to exploit the semi-group property of the exponentials of these matrices.Indeed, changes in some parameters of the structured models, such as island sizes or migrationrates, leave the state space of the process unchanged, so the matrices can be piecewise constantfunctions of time. For example, if we suppose that at a dateT in the past some of the parameters
Mij or si change, and if we note by Q0 the generator for the time 0 ≤ t ≤ T and by Q1 the onecorresponding to the time t > T , the transition semi-group of the Markov chain can be writtenas follows:

Pt =

{
etQ0 , if t ≤ T

eTQ0e(t−T )Q1 , otherwise.
In particular, the distribution of Tα

2 , coalescence time of two lineages starting from a α configu-ration, is deduced from
P(Tα

k ≤ t) = Pt(nα, nc),
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Figure 5 – The PSMCs of real modern human and Neanderthal data (the last two in the order ofthe legend), set against the PSMCs of simulated data with parameter values used by the authorsof different proposed models in Yang et al. (2012) : the African, Non-African and Neanderthalindividuals were simulated under the model of recent admixture with a bottleneck that was eitherolder or younger than the admixture event. And for the record, the panmictic model suggested byLi and Durbin (2011) and the fictional structured model proposed by Mazet et al. (2016). For moredetailed explanation, see Chikhi et al. (2018).
where nα is the number of the state corresponding to α, and nc the number of the coalescencestate. Its density is then equal to fTα

k
(t) = P ′

t(nα, nc), where
P ′
t =

{
etQ0Q0, if t < T

eTQ0e(t−T )Q1Q1, otherwise.
These explanations allow to numerically determine the theoretical IICRs of a large numberof structured models, such as the continent-islands model in Figure 6, with possible changes indemographic parameters, such as subpopulation sizes or migration rates.

Figure 6 – Theoretical IICR of the structured model with a continent of size 1, three islands ofsizes 1
20
, and migration rates proportional to sizes between islands and the continent (no migrationbetween islands). We find, as in the simulations in Chikhi et al. (2018), the importance of samplinglocation, as well as the obvious false signals of population size changes that software such as PSMCcould infer, here the demographic model being constant over time.

Also as a proof of concept, an extended fictional model of human evolution was proposed,integrating Neanderthals alongside modern humans in the same constant size structured model,with only the migration coefficients allowed to change. The model is described in Figure 7, andthe simulated PSMCs are presented in Figure 8 with PSMCs of real data. We then see that rela-tively simple structured model can explains the PSMCs without change of the metapopulation
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sizes before and after the split between Neanderthals and modern humans from an unknowsHomo species.

Figure 7 – Hypothetical scenario presenting humans and Neanderthals as structured species de-rived from an unknown Homo species that was itself structured, and without any gene flow be-tween the two species after the split. The times at which gene flow (M) changed are indicated byhorizontal lines.

Figure 8 – Superposition of the PSMCs of real Neanderthal and Sapiens data, with the theoret-ical IICRs of the proposed structured model (left) and the PSMCs of the simulated data from thisstructured model (right).

4. Inference of parameters in a structured model
IICR of T2 for a structured model.

The theoretical possibility (presented in Rodríguez et al. (2018)) of numerically computing theIICR of two sampled lineages in any structured model, as a function of the demographic parame-ters such as the number of islands, the successive island sizes, the successivemigration rates, andthe times of change of parameters like sizes or migration rates, opens the way to estimate theseparameters from IICRs inferred from real data, e.g. via the inevitable PSMC. The challenges of
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complexity and computation time, even in the simplest case of the symmetric island model, havebeen overcome thanks to the work of Armando Arredondo, part of his PhD thesis (ArredondoSoto, 2021), with the design and realization of a software for inferring such parameters, calledSNIF (Structured Non-stationary Inferential Framework), presented in Arredondo et al. (2021).Testing this software on simulated data revealed a first problem of identifiability betweensubpopulation sizes and migration rates. Second, if we want to obtain an acceptable level ofprecision for the estimation of the migration rates, the number of different values over time(this number is called the number of “components”) should not be too large, generally not morethan 5 or 6. On the other hand, the estimated number of subpopulations is extremely reliable. Asynthesis of these first results can be seen on Figure 9.
(a) (b)
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Figure 9 – Scatter plots of simulated and inferred parameters. n is the number of islands, ti the
i-th change of value of the migration parameter, and Mi the i-th value of the latter. Panel (a) cor-responds to scenarios with c = 3 components, and (b) to scenarios with c = 6 components. Thedifferent sub-panels represent the simulated (horizontal axis) versus inferred (vertical axis) param-eter values for all the parameters (or a representative selection of parameters in the case of panel(b)) of L = 400 unscaled simulated scenarios.

An application on human data also allows to find a good model in symmetrical islands whichexplains surprisingly well the graph produced by the PSMC, see Figure 10.This method has already been used to contribute to the study of the evolution of speciesof microcebes, Malagasy lemuriform primates (Microcebus murinus and Microcebus ravelobensis).The results are published in (Teixeira et al., 2021). Other data on other species of mammals arebeing analysed using this software.
Increase of the sample size.

A natural way to increase the precision of the estimation of demographic parameters, is natu-ral to increase the size of the statistical sample. For instance, the distribution of alleles frequencyover the gene, generally called SFS (for Site Frequency Spectrum), is commonly used in populationgenetics, since it’s easy to extract values from real data. Nevertheless, the average SFS is theo-retically known only for a panmictic model (see for example Griffiths and Tavaré (1998)), but thecalculation becomes of great combinatorial complexity for any structured model. In the case of
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Figure 10 – Results of performing demographic inference on three representative human PSMCcurves. Panel (a) shows the various IICR plots inferred for the different populations, numbers ofcomponents c and weight parameters ω used, together with the target IICR curves (or PSMC plots)on which these estimations are based. Panel (b) shows the connectivity graphs for the same setof inferred scenario. As a reference point, the connectivity graph of the scenario proposed in Ro-dríguez et al. (2018) is also shown. The vertical axes represent migration rates (M ).

the island model, Armando Arredondo has just completed the theoretical treatment of obtainingthe average SFS for any value of k , as well as the feasibility in computation time for a samplesize of k ≤ 26 in the current state of computing capabilities (Arredondo Soto, 2021, chapter 3).It now remains to implement this algorithm in the inference software.
IICRk : derivation and first results. Coming back to the coalescences times Tk of such a sampleof size k , their IICR (noted here IICRk ) for k > 2 is theoretically easily computable thanks tothe infinitesimal generator of equation (3) and the extensions exposed in section 3. Indeed, theIICRk of the first time Tk of coalescence of k lineages can be defined in the same way as the

12 Olivier Mazet & Camille Noûs

Peer Community Journal, Vol. 3 (2023), article e53 https://doi.org/10.24072/pcjournal.285

https://doi.org/10.24072/pcjournal.285


IICR (which is in fact the IICR2):
IICRk(t) =

fTk
(t)

P(Tk > t)
.

While we know that in the panmictic case we have
∀k ≥ 2,∀t > 0, IICRk(t) =

1
(k
2

) IICR2(t),

this is not the case for a structured model (as we formally showed for the symmetric islandmodel in Grusea et al. (2018)). There already exist powerful methods to estimate the IICRk of realgenomic data of sample size k , notably the extensions of the PSMC, called MSMC (for MultipleSequentially Markov Coalescent, see Schiffels and Durbin (2013)). The practical problem comesfrom the fact that the larger the sample size, the shorter the coalescence time, and thus the fewerthe genomic traces on the data, because the number of mutation and recombination eventsdecreases very quickly, and falls below the acceptable threshold for the statistical estimation tobe satisfactory.Still, for small values of k , (let’s say from k = 3 to k = 8), some results are being obtainedin a work in progress, which show that IICRk could provide an efficient tool to distinguish astructured population from a panmictic one.

5. IICR and consideration of selection
All themodels we have discussed so far are so-called neutral models, i.e. they do not take intoaccount the selection pressure that individuals undergo at some loci to increase the frequency ofnew advantageous alleles (positive selection), decrease the frequency of new deleterious alleles(negative selection) or maintain polymorphism (balancing selection). A large bibliography dealswith the detection of positive selection events (the so-called selective sweeps see the reviewin Walsh and Lynch (2018)), and many studies have investigated the influence of demographyon sweep detection (including for instance Jensen et al. (2005) or Bonhomme et al. (2010), butthere are many others). On an other side, fewer and more recent papers studied the impactof selection on demography inference, like Ewing and Jensen (2016) or Johri et al. (2020) fornegative selection, and for sweeps, Schrider et al. (2016) or Harris and Rogers (2020).One classical way to model the long-term combined effect of selection and genetic linkage(i.e. linked selection) on genomic sequences is to assume that some portions of the genomeundergo a recurrent higher impact of selection due to their local gene content or recombinationrate, resulting in an effective size that differs from that in neutral areas (see Hill and Robertson(1966), Charlesworth (2009), Gossmann et al. (2011) or Jiménez-Mena, Bataillon, et al. (2016)for example). Under this approach, regions under positive or negative selection are modelled bya lower effective size, while regions under balancing selection are modelled by a higher. Thisis a way to make the coalescence rate variable over the genome, this rate being linked to thereproductive capacity.Since the IICR is directly related to the coalescence rate, it is natural to explore the influ-ence of modeling selection by the variability of the effective size along the genome on the IICR(Boitard et al., 2022). A theoretical calculation allows us to show, under the simple hypothesisof a panmictic population, that if we assume the existence of K classes of the genome underrespective effective sizes equal to λi =

1
µi

for i = 1 ...K , each corresponding to a proportion aiof the genome (with∑K
i ai = 1) then the IICR is

IICR(t) =
K∑
i=1

aie
−µi t

K∑
i=1

aiµie−µi t

,
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and a basic calculation indicates that for all values of K , ai and λi , this IICR is always increasingon R+, with
IICR(0) = 1

K∑
i=1

aiµi

and lim
t→+∞

IICR(t) = max
i=1...K

λi .

It is thus mathematically shown that the IICR will exhibit a decline signal of population size, asit can be seen in Figure 11. An interpretation could be that in recent past the coalescent rateis high (and consequently the effective size appears to be small) because of coalescent eventshappening in zones of small effective size, and in distant past are remaining the coalescent eventsoccuring in zones of large effective size. Figure 11 shows also that under these assumptions, thelargest effective size present in the genome, even under a very small proportion, has a significantinfluence on the growth of the IICR as a function of time from the present to the past. Themagnitude of this variation may be surprising, but the simulations also show, especially in thepresence of structure in the population, that it may be statistically difficult to detect the finalplateau, given the small number of corresponding coalescence events.

Figure 11 – Example of IICR for K = 3, λ1 = 0.1, λ2 = 1 and λ3 = 3. On the left we set a3 = 0.01and on the right a1 = 0.5. The value λ3 determines the limit, and a3 the speed of convergence, withmore or less pronounced transient plateaus depending on the other values.
It is possible to generalize the derivation of the analytic expression of the IICR if the popula-tion is structured. If we denote by fi (t) and by ai respectively the density of the coalescence time

T i
2 and the proportion of the i-th of theK classes of the genome, let’s recall that in the panmicticcase we have P(T i

2 > t) = e−µi t and fi (t) = µie
−µi t , so if the population is not panmictic, theformula becomes

IICR(t) =
∑K

i=1 aiP(T i
2 > t)

∑K
i=1 ai fi (t)

,

and thanks to our previous work on island-structured models, we can combine the effects ofstructure and of selection and numerically calculate the corresponding IICRs (see Figure 12). Wecan then see that, even if we find the same monotonic pattern as in the panmictic case, thestructure hides partly the growth towards the limit value, which is reached quite far in the past.Throughout this section, the coalescence rate was considered variable along the genome,but was assumed to be constant over time to model the long-term average effect of selection.The IICR mathematical framework also allows to model transient selection, which was done inBoitard et al. (2022) for one specific scenario, again from the point of view of the impact on thePSMC. In order not to overload this section, we let the interested reader refer to this article.Finally, it should be noted that this study only uses information from the T2 distribution,which may explain why our results contradict some of the literature by showing signals of re-cent population decline. Indeed, for larger sample sizes, especially when using the SFS, negativeselection leads to an excess of singletons, which under the neutral hypothesis leads to a signa-ture of a recent population expansion.
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Figure 12 – Example of IICR for a symmetric 10-island model, migration rate M , and a genomewith K = 2 effective size classes λ1 = 0.1 and λ2 = 1 of relative proportions a1 and a2.

6. Conclusion and prospects
In summary, the IICR of T2, despite its intrinsic limitations, on the one hand because it is adistribution of a variable which is not directly observable, and on the other hand because it isbased on a sample of size 2, proves to be an extremely fertile object of modeling. The matrixwriting of this time function (it should be noted that the mathematical objects studied in ourwork are part of a general formalism coming from the theory of phase-type distributions, see forexample Hobolth et al. (2019)) facilitates precise numerical calculations (Rodríguez et al., 2018),andmakes accessible powerful inferencemethods, such as the recently developed SNIF program(Arredondo et al., 2021).The IICR also sheds new light on a concept with which it is naturally associated, that of ef-fective size, which is the source of an abundant literature (see, for example Charlesworth (2009),or the recent Waples (2022) for a complete review), and is subject to many different, sometimescontradictory, interpretations. The starting point is the evidence of a direct correspondence be-tween the IICR and the population size in panmictic condition. But a first level of hypothesiscomplexification, with the introduction of a population structuring, quickly leads to erroneousconclusions about size changes. We can thus observe variations in the effective size that donot correspond to those of the real size, or even that are in the opposite sense (Chikhi et al.,2018; Rodríguez et al., 2018). It is nevertheless difficult to quantify a level of structuration fromwhich the problem highlighted could be qualified as serious. Moreover, it seems obvious that ifstructure is omnipresent, so is real variation in population size, and the combination of the twophenomena, as well as their variability over time, makes the inference of demographic parame-ters and the interpretation of results more complex. Similarly, it is useful to know how to detectpossible effective size variations, induced by the introduction of genomic areas under selection,positive or negative (Boitard et al., 2022). Another crucial contribution of the IICR is to highlightthe importance of the sampling strategy (Chikhi et al., 2018), the exploitation of which shouldallow new methods for model selection.Among the other more immediate prospects, we note the continuation of the theoreticalstudy of the IICR for models a little more elaborate than the symmetric island model (first ofall the asymmetric island model, the island-continents model, or even the one or two dimen-sional stepping-stone model), with the objective of highlighting the influence of the values ofthe demographic parameters on the variations of the IICR, via the eigenvalues of the associatedinfinitesimal generator. Finally, in order to increase the predictive and explanatory capacities ofour models by enlarging the sample size, we have to develop the inference methods from the
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existing one (Arredondo et al., 2021), by incorporating on the one hand the average SFS of anisland model, and on the other hand the IICR of Tk .
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