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Abstract
A new generation of scalable single cell whole genome sequencing (scWGS) methods al-lows unprecedented high resolution measurement of the evolutionary dynamics of cancercell populations. Phylogenetic reconstruction is central to identifying sub-populations anddistinguishing the mutational processes that gave rise to them. Existing phylogenetic treebuilding models do not scale to the tens of thousands of high resolution genomes achiev-able with current scWGS methods. We constructed a phylogenetic model and associatedBayesian inference procedure, sitka, specifically for scWGS data. The method is based on anovel phylogenetic encoding of copy number (CN) data, the sitka transformation, that sim-plifies the site dependencies induced by rearrangements while still forming a sound founda-tion to phylogenetic inference. The sitka transformation allows us to design novel scalableMarkov chain Monte Carlo (MCMC) algorithms. Moreover, we introduce a novel point mu-tation calling method that incorporates the CN data and the underlying phylogenetic treeto overcome the low per-cell coverage of scWGS. We demonstrate our method on threesingle cell datasets, including a novel PDX series, and analyse the topological properties ofthe inferred trees. Sitka is freely available at https://github.com/UBC-Stat-ML/sitkatree.git
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1. Introduction
A main challenge in investigating cancer evolution is the need to resolve the subpopulationstructure of a heterogeneous tumour sample. Advances in next generation scWGS have enabledmore accurate, quantitativemeasurements of tumours as they evolve (Baslan et al., 2012; Gawadet al., 2016; Laks et al., 2019; Pellegrino et al., 2018). Phylogenetic reconstruction is central toidentifying clones in longitudinal xenoengraftment (Quinn et al., 2021; Salehi et al., 2021) aswell as patients (Abbosh et al., 2017), and has been used to approximate the rate and timing ofmutation (Wang et al., 2014) to determine the origins and clonality of metastasis (Leung et al.,2017; Yu et al., 2014).Single cell cancer phylogenetics is an evolving field. Multiple approaches, spanning differentstudy designs and data sources are reviewed in Schwartz and Schäffer, 2017. Many phyloge-netic inference methods such as Scite, SciΦ, OncoNEM and SciClone use the often-made infi-nite site model assumption and consider point mutations as input or assume a small numberof leaf nodes (Jahn et al., 2016; Miller et al., 2014; Ross and Markowetz, 2016; Singer et al.,2018). However, emerging single cell platforms produce up to thousands of single cell genomesand are suitable for determining copy number aberrations (CNA) (Laks et al., 2019; Zahn et al.,2017). Compared to phylogenetic methods based on point mutations, fewer can build phyloge-nies from large scale CN data. Recent related work includes MEDALT (Kaufmann et al., 2022),which models single-cell copy number lineages using a spanning tree over cells rather than aphylogeny; and SCARLET (Satas et al., 2020), which proposes a point mutation-based phylogenyinference procedure that calibrates mutation losses with copy number profiles. Distance basedand agglomerative clustering methods such as neighbour joining (Wang et al., 2021; Xu et al.,2012) are often used to elucidate hierarchical structures over cells, in particular, in the context
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of CNA, see Kaufmann et al., 2022, however, distance-based methods tend to produce less ac-curate tree reconstructions (Guindon and Gascuel, 2003; Kuhner and Felsenstein, 1994; Som,2009; Williams and Moret, 2003).Single cell whole genome DNA sequencing provides low, yet uniform coverage (Laks et al.,2019). That is, the sequenced reads cover for each single cell about 0.1 per cent of the genome.In this setting, most point mutations are not observed in most single cells making calling SNVsdifficult. However, it is possible to identify the relative copy number for segments of the genome.These copy number events can be used as phylogenetic markers.We describe sitka, a phylogenetic model and an associated Bayesian inference proceduredesigned specifically for inference based on CN information extracted from scWGS data (seeFig. 1). Our method addresses two key challenges: first, each CNA event typically affects a largenumber of genomic sites, breaking the independence assumptions required by existing phylo-genetic methods (Ma et al., 2008; Malikic et al., 2019; Ross and Markowetz, 2016; Singer etal., 2018); second, while detailed modelling of dependent evolutionary processes is in principlepossible, they entail computational requirements incompatible with the scale of modern scWGSdata (Greenman et al., 2012). To confront these two difficulties, sitka uses a novel phylogeneticencoding of CN data, providing a statistical-computational trade-off by simplifying the site de-pendencies induced by rearrangements, while still forming a sound foundation to phylogeneticinference. Based on this encoding, we propose an innovative phylogenetic tree explorationmovewhich makes the cost of Markov chain Monte Carlo (MCMC) iterations bounded by O(|C |+ |L|),where |C | is the number of cells and |L| is the number of loci. In contrast, existing off-the-shelflikelihood-basedmethods incur an iteration cost ofO(|C | |L|) (Ross andMarkowetz, 2016; Singeret al., 2018; Zafar et al., 2017). Moreover, the novel move considers an exponential number ofneighbouring trees whereas off-the-shelf moves consider a polynomial size set of neighbours.Sitka’s workflow proceeds by partitioning the CN information extracted from scWGS dataof each cell into bins of fixed size (500Kb) with an integer CN state associated with each bin.This input data is then transformed into a binary format that captures CN changes, but not theirdirection or magnitude. Conditional on this binary encoding, sitka then yields an approximateposterior distribution on compatible phylogenetic trees.Potential applications of sitka include lineage tracing and subclonal structure identification. Inlineage tracing the goal is to relate single cells to their ancestors based on genomic markers. Thisis especially useful in experimental designs where multiple samples from the same subject exist,e.g., multi-region or timeseries studies (Salehi et al., 2021). In subclonal structure identification,the topology of the inferred phylogeny can be used to make inferences about the evolutionaryforces acting on the trees (Househam et al., 2022).We compare sitka with other tree inference methods on three real-world datasets, includ-ing triple negative breast cancer patient derived xenograft samples, high grade serous ovarianprimary and matched relapse samples. Since the true phylogeny is unknown, we design a phylo-genetic goodness-of-fit framework to quantitatively assess the performance of our method andto visualize reconstruction confidence as well as violations of our assumptions.Weuse the sitka inferred trees to analyse the topological properties of the real-world datasets.Finally, we introduce a model extension that enables the placement of single nucleotide variants(SNV) with high levels of missingness on a tree inferred from the CN data.
2. Methods

2.1. Pre-processing
The raw data contain cells that are either contaminated (e.g., contains biological materialfrom mice) or have undesired sequencing artefacts. These include cells that were captured forDNA sequencing when undergoing mitosis. Since the sitka model does not account for suchphenomena, the filtering is an important step. Supplementary Fig. 1 shows the steps taken frompulling the raw data to the CNA integer matrix ready for sitka transformation (details in theSupplementary Information).
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Figure 1 – (a) Sitka takes copy number calls data from a heterogeneous single-cell pop-ulation. The cells (rows of the copy number matrix) are randomly sorted. (b) A lossy bi-nary transformation is applied to obtain markers data. (Methods section 2.2 and Fig. 2).Note that each single-cell is now represented by the presence or absence of CN changesbetween consecutive bins. (c) The boundary conditions are smoothed to account forcell-specific marker misalignment (Methods section 2.3). Note how the columns in theinset in panel-c are less noisy than their counterpart in panel-b. (d) A subset of markerspresent in at least 5 percent of the cells are chosen for input to the tree inference algo-rithm. (e) An MCMC algorithm efficiently explores the tree space. (f) An example of anedge-insertion. The two insets are zoomed in from panel-e. Each inset depicts a subtree,where red diamonds and blue circles denote marker nodes and single-cells respectively.Also see Fig. 4 for details. (g) The indicator matrix of all post-burn-in MCMC trees areaveraged to generate a matrix indicating the posterior probability of a cell being attachedto a marker (Methods section 2.4.5). (h) The copy number data in (a) is sorted accordingto the inferred consensus tree, shown on the left of the matrix. (i) The inset shows thetuple of marker columns in the context of the copy number calls, namely inf. (inferredmarkers, i.e., latent state xc,l ), post. (posterior probability of the latent state xc,l ), and obs.(observed markers), interlaced with the CN columns (similar to Fig. 2). The results arefrom the SA535 dataset, a triple negative breast cancer patient derived xenograft sample(Methods section 3.2.)
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Briefly, we remove control cells, cells with highly-noisy CN calls, and cells that have very fewmapped reads. We also remove copy number bins that lie in difficult to sequence regions of thegenome (bins with low-mappability). Finally, we drop cells that, based on their CNA profile, aresuspected to be cycling cells. See the Section 1 of the supplementary text for further details.
2.2. The sitka transformation

To obtain the C×LMarkers phylogenetic markers matrix y that comprises the input to the sitkamodel, we apply a lossy transformation to theC×LBins CNAmatrix a that involves computing thechange in copy number state between two consecutive bins. Fig. 2 shows a small CNAmatrix andits corresponding transformation into the marker matrix. For brevity, in what follows we assumethat only one chromosome is used, so that LBins = L and LMarkers = LBins − 1. In practice, we useall available chromosomes, and LMarkers = LBins − NChr where NChr denotes the total number ofchromosomes used.
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Given a filtered cell-by-locus matrix a, we sort bins by their genomic position. Then in eachchromosome, we compute markers as the binarised difference between consecutive bins. Inother words, y = (yc,l ′) and l ′ ∈ {1, ... , L− 1}, and

(1) yc,l ′ := 1 ( |ac,l ′ − ac,l ′+1| > 0) ,

where 1(x) is the indicator function.
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2.3. Fixing jitter and selection of phylogenetic markers
The copy numbers available to us in this work are estimated independently for each cell.This is one reason why the start position (bin) of the same CN change event may be slightlydifferent across cells, generating some jitter. We address this by enumerating each change pointcolumn in order of decreasing density (where the density of column l is given by∑c∈C yc,l/|C |)and merging the column with its k = 2 immediate neighbours (see Algorithm 1 for details). Anexample of the result of the jitter correction heuristic is shown in Fig. 1 panel c. To speed-upcomputation, only a subset of markers present in at least a minimum number of cells are chosenfor phylogenetic inference. That is, we removed columns l in y with relative density∑c∈C yc,l/|C |less than a threshold, set to 5%. Larger values of this threshold may lead to less resolved cladesin the inferred tree.

Algorithm 1 JitterFix
1: procedure jitter-fix(y , k )2: column-queue← OrderByDensityDecreasing(y )3: columns-visited← {}4: for column-index c in column-queue do5: neighbours← neighbours (c, y , k)6: for column-index n in neighbours do . The function neighbours is defined as the k columns to the leftand k to the right of c (when applicable)7: if n /∈ columns-visited then8: y1:C ,c ← y1:C ,c ∨ y1:C ,n9: y1:C ,n ← 010: columns-visited← columns-visited ∪ n11: return y

2.4. The sitka model
2.4.1. Model description. The sitka model starts with the perfect phylogeny assumption for thelatent variables xc,l but allows deviation from it via allowing noisy observations yc,l . In a perfectphylogeny model, each phylogenetic trait arises only once on the rooted tree topology and allcells descending from that position will inherit that trait and no deletions are allowed.Let C and L denote the sets of cells and loci respectively.We posit an observation probabilitymodel p(y |x , θ), where θ aremodel parameters describedshortly, and both x and y are cell by locus matrices, the former being latent (derived from the un-observed tree via x = x(t)), while the latter is the matrix obtained from the sitka transformation.To model errors in copy number calls as well as perfect phylogeny violations, we introduce falsepositive and negative rate parameters rFP ∈ (0, 1) and rFN ∈ (0, 1) respectively, and an errormatrix

er
FP,rFN =

[
1− rFP rFP
rFN 1− rFN

]
,

p
(
yc,l |xc,l , r

FP, rFN
)

= er
FP,rFN

xc,l ,yc,l
,

from which we set:
p(y |x , θ) =

∏

l∈L

∏

c∈C
p
(
yc,l |xc,l , r

FP
c,l (θ), rFNc,l (θ)

)
.

We define two type of models, differing in the choice of functions r ·c,l(·) and dimensionalityof θ: one based on global error parameters, and one based on locus-specific error parameters.For the global parameterization, θ = θglobal = (rFNglobal, rFNglobal), and the false positive and false
negative functions are given by rFPc,l (θglobal) = rFPglobal and rFNc,l (θglobal) = rFNglobal.For the locus-specific error model, we set the error rates to be locus-dependent: θ =
(rFP1 , rFP2 , ... , rFP|L| , rFN1 , rFN2 , ... , rFN|L| ), rFPc,l (θ) = rFPl and rFNc,l (θ) = rFNl . With this extra flexibility, themodel can discount the effect of a trait violating the perfect phylogeny assumption, by settinghigh error rates for the trait’s locus.
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The two parameterizations are compared in the Supplementary Information. We use theglobal parameterization by default unless mentioned otherwise.In both the global and locus-specific parameterizations, we need to construct a prior distri-bution p(θ) over the error parameters. Using a uniform prior distribution with support on [0, 1]can lead to pathological cases as shown in Fig. 3. To avoid that, we use the following prior distri-butions on the two types of error:
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1.3. Workflow

x = (xc,l), y is the data or a data summary, and ✓ are model parameters. To model errors in copy

number calls, we introduce false positive and negative rate parameters rFP 2 (0, 1) and rFN 2 (0, 1)

respectively, and an error matrix

erFP,rFN
=

2
64

1 � rFP rFP

rFN 1 � rFN

3
75 ,

p
⇣
yc,l|xc,l, r

FP, rFN
⌘

= erFP,rFN

xc,l,yc,l
.

from which we set:

p(y|x, ✓) =
Y

l2L

Y

c2C

p
⇣
yc,l|xc,l, r

FP
c,l (✓), rFN

c,l (✓)
⌘

.

where the scalar erFP,rFN

xc,l,yc,l takes values as in Table 1.1. Here we use a global parameterisation where

the false positive and false negative functions rFP
c,l (✓) and rFN

c,l (✓) are chosen to be constant.

xc,l yc,l pc,l

1 0 0 1 � rFP

2 0 1 rFP

3 1 0 rFN

4 1 1 1 - rFN

Table 1.1: The false positive and false negative errors in sitka’s observation model.
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Figure 3 – (a) The true tree reconstruction in a simple example with a balanced phylogenywith two clades of size two, and two unique markers, coloured red and blue, that distin-guish the left and right clades respectively. (b) The binarised input matrix correspond-ing to the four cells at the two markers. The desired observation error rates should bezero and the latent and observed marker matrices should match exactly, as the perfectphylogeny assumption holds. If the observation error parameters are set to one, that is
rFPglobal = 1 and rFNglobal = 1, then the latent marker matrix with all entries flipped as shown in(c) will have an equal likelihood under this setting as the desired latent matrix has whenerror rates are set to zero. (d) The incorrect tree reconstruction where the left and rightclades are erroneously assigned to the blue and red markers.

rFP ∼ Uniform (0, rFP
)

,

rFN ∼ Uniform (0, rFN
)

.

Weuse rFP = 1/2 and rFN = 1/2 in our experiments involving synthetic data. For experimentson real world data, we use rFP = 1/10 and rFN = 1/2 as default. When the model is misspecifiedfrom an overly conservative bound, the trace, and thus posterior distribution, collapses to theboundaries. For example, when using a false positive rate of 0.1 for synthetic data, the resultingapproximate marginal posterior of the false positive rate corresponds to a near-point mass at
0.1. We did not observe such boundary collapse on the real datasets studied in this work.Next, we describe the prior p(t) on phylogenies using a two-step generative process:

Sampling a mutation tree:: let Vm = L ∪ {v∗} denote a vertex set composed of one vertexfor each of the |L| loci plus one artificial root node v∗. The artificial root node inducesan implicit notion of direction on the edges, viewing them as pointing away from v∗. Let
T m denote the set of trees tm spanning Vm. The interpretation of tm is as follows: thereis a directed path from vertex/locus l to l ′ in tm if and only if the trait indexed by l ishypothesized to have emerged in a cell which is ancestral to the cell in which l ′ emerged.Pick one element tm ∈ T m.Sampling cell assignments:: assign each cell to a vertex in tm. The interpretation of assign-ing cell c to locus l is that among the traits under study, c is hypothesized to possess onlythe traits visited by the shortest path from v∗ to l in tm. If a cell c is assigned to v∗, theinterpretation is that c is hypothesized to possess none of the traits under study.
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The number of possible trees obtained from this two-step sampling process is:
|T | = |T m||{f : C → L ∪ {v∗}}|

= (|L|+ 1)(|L|+1)−2(|L|+ 1)|C |

= (|L|+ 1)|L|+|C |−1,

where we use Cayley’s formula to compute |T m|. Hence the uniform prior probability mass func-tion over the possible outputs of this two-step sampling process is given by:
p(t) =

1[t ∈ T ]

(|L|+ 1)|L|+|C |−1
,

where T is the set of all perfect phylogenetic trees that result from the two step generativeprocess described above. Simulation from the prior can be performed using Wilson’s algorithm(Wilson, 1996), followed by independent categorical sampling to simulate the cell assignments.This simple prior has a useful property: if a collection of say two splits are supported by m1and m2 traits, then the prior probability for an additional trait to support the first versus secondsplit is proportional to (m1 + 1,m2 + 1). Therefore, there is a “rich gets richer” behaviour built-ininto the prior, which is viewed as useful in many Bayesian non-parametric models (Teh et al.,2010). More precisely, this “rich gets richer” behaviour emerges when grouping trees into equiv-alence classes and looking at the induced prior on these equivalence classes, i.e., the distributionobtained by summing the prior over the trees in the equivalence class. Specifically, consider theequivalence relation such that two type I trees t , t ′ are in the same equivalence class if and onlyif f (t) = f (t ′), where f (·) consists in transforming t into a type II tree while annotating eachedge by the number of events on that edge. Since there are different numbers of type I treesin different equivalent classes, this means that the induced prior on these equivalence classes isnon-uniform.
2.4.2. Inference. The posterior distribution,

π(t, θ) ∝ p(t)p(θ)p(y |x(t), θ),

is approximated using MCMC. Two MCMC moves are used, described in the next two sections.The posterior distribution is summarized using a Bayes estimator described in Section 2.4.5. Themodel is implemented in the Blang probabilistic programming language (Bouchard-Côté et al.,2022).
2.4.3. MCMC tree exploration move. Sitka uses a tree sampling move to efficiently explore, ateach MCMC iteration, the posterior distribution in a large neighbourhood of a given tree. Givena tree t and locus l , we define a neighbourhood N l(t) ⊂ T by removing l from t , and consideringall possible ways to reattach l and hence defining a neighbourhood of phylogenetic trees (wealso implemented a separate move reattaching cell nodes instead of locus nodes, its derivationfollows similar lines as the move described in this section). The process of removing l is calledan edge-contraction (removing an edge after connecting its two end-points) while the process ofadding back a locus is called an edge-insertion. An edge insertion (see Fig. 4 for a visualization)can be described as follows:

(1) Pick a non-cell vertex v , i.e., an element from the set R = {v∗} ∪ L\{l} where v∗ is theroot node.(2) Pick any subset of v ’s descendent subtrees and disconnect them from v .(3) Add a new node l under v and move the selected nodes from step 2 above and attachthem to l .
In the following, we derive the probability distributions to be used in steps 1 and 2 above thatlead to a Gibbs sampling algorithm (Geman and Geman, 1984). The Gibbs sampler first selectsa locus l from a fixed distribution (a tuning parameter), which we take for simplicity as beinguniform over the |L| loci.
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a b c

d e

a b c d e

Edge contraction

Edge insertion

v

v’

v
a b

v

Figure 4 – (a) Reading from left to right: the interpretation of removing a column in thematrix x is to perform contraction of an edge corresponding to a locus shown in bold.Reading from right to left: the interpretation of inserting back a column while assigningnew binary values is an edge insertion. The circled node v refers to Step 1. The subtreesin bold refer to those selected in Step 2. The edge in bold, the one introduced in Step 3.(b) Decomposition used for the recursion of Section 2.4.3.
After having sampled l , we partition N l(t\l) into blocks corresponding to the choice of node

v made in Step 1, N l(t\l) = ∪vN l
v (t\l). The Gibbs conditional probabilities required in step 1above are of the form:

ρ̄v =
ρv∑

ṽ∈R ρṽ
,

where:
ρv =

∑

t∈N l
v (t\l )

p(t)p(y |x(t), θ),(2)
and t\l denotes the tree obtained after performing an edge contraction, where the contractededge is between l and the parent node of l . To compute ρv efficiently, we start with the followinglikelihood recursion for all vertex v in t\l . First, for all vertices c corresponding to a cell and

b ∈ {0, 1}, define:
pbc = p (yc,l |b, θ) .

Next, we perform the following bottom-up recursion for all subtrees of t\l : for all v ∈ R ,
b ∈ {0, 1},

pbv =
∏

v ′′∈children(v)

pbv ′′ ,

where children(v) denotes the list of children of vertex v .We can now return to the problem of computing ρ̄v . First, observe that the sum in Equa-tion (2) can be re-indexed by a bit vector b = (b1, b2, ... , bk), bv ′′ ∈ {0, 1} of length equal to
k = |children(v)|. Each bit bv ′′ is equal to one if children v ′′ is to be moved into a child of v ′ (referto Fig. 4), and zero if it is to stay as a child of v . For each possible assignment, we obtain a tree
t ∈ N l

v (t\l), and its probability can be decomposed into factors corresponding to cells that aredescendant of v (denoted Cv , solid red thick line under the tree of Fig. 4-B) and those that arenot (denoted C\v , dashed green thick line under the tree of Fig. 4-B).The product of the likelihood factors corresponding to cells that are not descendants of v(“outside product”) does not depend on the choice of the bit vector. This outside product can beobtained as follows:
∏

c∈C\v
p0
c =

p0
v∗

p0
v

.

Note that this assumes p0
v > 0. As a workaround to cases where there are structural zeros, werecommend injecting small numerical values if p0

v = 0 (we used 10−6 in our implementation).
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For the cells under v , we now have to take into account whether they are selected under thenewly introduced locus or not. More precisely, for each of the children v1, v2, ... , vk , we have totake into account the value of the bit vector b = (b1, b2, ... , bk). The sum over possible assign-ments written naively has a number of terms which is exponential in k , but can be rewritten intoa product over k factors:
∑

t∈N l
v(t\l)

∏

c∈Cv

p
xc,l (t)
c =

1∑

b1=0

...
1∑

bk=0

k∏

i=1

pbivi =
k∏

i=1

(p0
vi

+ p1
vi

).

Putting it all together, we obtain for some constants Ki independent of v :
ρv = K1

∑

t∈N l
v(t\l)

p(y |x(t), θ)

= K1

∑

t∈N l
v(t\l)

∏

l ′∈L

∏

c∈C
p
(
yc,l ′ |xc,l ′(t), rFPc,l ′(θ), rFNc,l ′(θ)

)

= K1


 ∏

l ′∈L,l ′ 6=l

∏

c∈C
p
(
yc,l ′ |xc,l ′(t), rFPc,l ′(θ), rFNc,l ′(θ)

)

 ∑

t∈N l
v(t\l)

∏

c∈C
p
(
yc,l |xc,l(t), rFPc,l (θ), rFNc,l (θ)

)

= K1K2

∑

t∈N l
v(t\l)

∏

c∈C
p
(
yc,l |xc,l(t), rFPc,l (θ), rFNc,l (θ)

)

= K1K2

∑

t∈N l
v(t\l)

∏

c∈C
p
xc,l (t)
c

= K1K2

∑

t∈N l
v(t\l)


 ∏

c∈Cv

p
xc,l (t)
c




 ∏

c∈C\v
p
xc,l (t)
c




= K1K2


 ∏

c∈C\v
p
xc,l (t)
c


 ∑

t∈N l
v(t\l)

∏

c∈Cv

p
xc,l (t)
c

= K1K2

(
p0
v∗

p0
v

) ∑

t∈N l
v(t\l)

∏

c∈Cv

p
xc,l (t)
c

= K1K2

(
p0
v∗

p0
v

)
k∏

i=1

(p0
vi

+ p1
vi

)

= K1K2K3

∏k
i=1(p0

vi
+ p1

vi
)

p0
v

.

Putting these together we can compute the probabilities required in step 1 above:
ρ̄v =

ρv∑
ṽ∈R ρṽ

(3)

=

(∏
vi∈children(v)(p

0
vi

+p1
vi

)
p0
v

)

∑
ṽ∈R



∏

v′
i
∈children(ṽ)

(
p0
v′
i

+p1
v′
i

)

p0
ṽ




.(4)

Once v is sampled, we choose a subset of its children to move to v ′ by sampling k indepen-dent Bernoulli random variables with the i-th one having bias
p1
vi

p0
vi

+ p1
vi

,
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and selecting children with corresponding Bernoulli realisations of 1.
2.4.4. MCMC parameter exploration move. To resample the parameters θ we condition on thetree t , and hence on the hidden state matrix x , and update θ in a Metropolis-within-Gibbs frame-work. There are two different samplers depending on whether the global or locus-specific pa-rameterization is used. We start with describing the former.We compute two sufficient statistics from the matrix x (i) the number of false positive in-stances, nFP, and (ii) the number of false negative instances, nFN,

nFP = nFP(x) =
∑

c∈C

∑

l∈L
1[xc,l = 0, yc,l = 1]

nFN = nFN(x) =
∑

c∈C

∑

l∈L
1[xc,l = 1, yc,l = 0].

Based on these cached statistics, we obtain:
p(y |x , θglobal) ∝

(
rFP
)nFP(

rFN
)nFN(

1− rFP
)nN−nFN(

1− rFN
)nP−nFP

,(5)
where the the number of positive nP and negative nN instances in the data can be pre-computed,

nP =
∑

c∈C

∑

l∈L
1[yc,l = 1]

nN = |C ||L| − nP.

Based on the above expression, which can be evaluated in O(1) once the statistics are com-puted, we then use a slice sampling algorithm to update the parameters (Neal, 2003).The sampler for the locus-specific parameterization is very similar. The main difference isthat we compute the statistics for each locus l :
nFPl = nFPl (x) =

∑

c∈C
1[xc,l = 0, yc,l = 1]

nFNl = nFNl (x) =
∑

c∈C
1[xc,l = 1, yc,l = 0]

nPl =
∑

c∈C
1[yc,l = 1]

nNl = |C | − nPl
p(y |x , θ) =

∏

l

(
rFPl
)nFPl (

rFNl
)nFNl (

1− rFPl
)nNl −nFNl (

1− rFNl
)nPl −nFPl

.

Then a slice sampling move is applied to each locus-specific parameter.
2.4.5. Posterior summarization. To summarize the posterior distribution using a point estimate,we approximate the Bayes estimator (Robert, 2007) by minimising the Bayes risk for a loss func-tion L̃(a, (t ′, θ′)) encoding the cost of selecting an “action” awhen the true tree is t ′ and the trueparameter is θ′:

arg min
a

∑

t′∈T

∫
L̃(a, (t ′, θ′))π(t ′, θ′) dθ′.(6)

Here, an “action” consists in selecting a consensus tree t . Moreover, the loss function weconsider only depends on the true tree t ′ and not on the true parameter θ′, so we write this lossfunction as L(t, t ′), simplifying the above equation into:
τConsensus = arg min

t∈T

∑

t′∈T

∫
L(t, t ′)π(t ′, θ′) dθ′.(7)
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One default choice for L(t, t ′) is the L1 metric on thematrices of induced indicators x(t), x(t ′):
L(t, t ′) =

∑

l∈L

∑

c∈C
|xc,l(t)− xc,l(t

′)|.

It is useful to define the marginal indicators mc,l that can be conceptualised as the posteriorprobability of cell c to have trait l :
mc,l =

∑

t′∈T

∫
1[xc,l(t

′) = 1]π(t ′, θ′) dθ′.

Using the MCMC samples t1, t2, ... , tN , we obtain a Monte Carlo approximation:
m̄c,l =

1

N

N∑

i=1

xc,l(t
i )→ mc,l ,

with probability one.Fig. 1-g shows an example of the matrixm each element of which is one of the approximated
m̄c,l . We can now write the objective function of Equation (7) via the above marginal indicators:

∑

t′∈T

∫
L(t, t ′)π(t ′, θ′) dθ′ =

∑

t′∈T

∫ ∑

l∈L

∑

c∈C
|xc,l(t)− xc,l(t

′)|π(t ′, θ′) dθ′

=
∑

l∈L

∑

c∈C

∑

t′∈T

∫
|xc,l(t)− xc,l(t

′)|π(t ′, θ′) dθ′

=
∑

l∈L

∑

c∈C
{mc,l(1− xc,l(t)) + (1−mc,l)xc,l(t)}

=
∑

l∈L

∑

c∈C
{xc,l(t)− 2mc,lxc,l(t)}+ constant.(8)

We use a greedy algorithm to approximately minimize Equation (8). We start with a star treewith leaves C rooted at v∗ and add loci from L one by one from a locus queue sorted by priorityscore. The priority score of each locus l is computed as
priority(l) = max

t′∈N l (t)

q(t ′)∑
t′′∈N l (t) q(t ′′)

,

where
q(x) =

∏

c∈C

∏

l∈L(x)

qc,l(xc,l)

qc,l(xc,l) = 2mc,lxc,l − xc,l .

The quantities in the priority queue can be computed as in Section 2.4.3. We take the result ofthe minimization of the Bayes risk as the consensus tree τConsensus.
2.4.6. Consensus tree and CNA heatmap visualisation. To visualize the consensus tree, we col-lapse the chains (sequence of loci having only one child) as well as remove the subtrees contain-ing no cells. We align the leaves of the tree which correspond to cells after collapsing to the rowsof a cell-locus matrix.
2.5. Synthetic experiments
2.5.1. Benchmarking. To assess the performance of sitka against alternative approaches, we raninference on 90 simulated datasets of varying characteristics. We will refer to this set of datasetsas S90; its simulation procedure is described in Section 2.5.3. Fig. 5 shows four such simulateddatasets. For each dataset in S90, we scored each method by computing the Robinson-Foulds(RF) (Robinson and Foulds, 1981) distance between the simulated tree and the inferred tree.The scores were normalized within each dataset by dividing each method’s score by the worstperforming method’s score (note that the set of methods includes sampling a tree uniformly atrandom; the motivation of this normalization is to correct for the intrinsic difficulty of datasets).
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Figure 5 – Synthetic datasets simulated from the GBFBS model. The number of cells,number of loci, and β values are are (500 × 800,−0.83), (1000 × 400,−0.1), (2000 ×
800,−0.9), (3000× 400,−0.48) for the upper left, upper right, lower left, and lower rightfigures respectively.

We compared sitka against the following baseline methods: UPGMA, WPGMA, NJ, HDBSCAN, andbalanced and ordinary least-squares minimum-evolution methods (BME, OME respectively) of Des-per and Gascuel, 2002.We also report the score of a uniformly random bifurcating tree, Uniform,to help interpret the absolute scores. Each method was given raw data from S90, as well as inputidentical to that of sitka, i.e., filtered binary marker data. Sitka’s inference settings are summa-rized in Supplementary Table 1.Baseline methods performed significantly worse with sitka’s input and are thus omitted fromthe following summary. Sitka’s normalized RF score (0.57±0.04) outperformed all baseline meth-ods, the next best performer was BME (0.91±0.07). Sitka ranked first in all 90 but one set of data,where it ranked third for one dataset of size 500× 800. These results are summarized in Fig. 6.
2.5.2. Exploratory experiments within sitka. To explore the effectiveness of global versus local(locus-specific) parameterization (Section 2.4.1), and the posterior summarization method (Sec-tion 2.4.5), we ran inference on 10 synthetic datasets. We will refer to this set of datasets as
S10; its simulation procedure is described in Section 2.5.3. Inference settings are summarized inSupplementary Table 1.RF distances from the best-possible tree were computed as a metric. The best-possible treeis defined as the perfect phylogenetic tree constructed from the noiseless synthetic, unviolatedcell-locus matrix data. Note that the best possible tree is derived from the true tree (i.e., the oneused in the first step of the generating process), but in general can be different. To understandwhy, note that the tree generation process will simulate on each edge of the true tree a Poissondistributed number of evolutionary events (Section 2.5.3). As a result, some edges can have zeroassociated evolutionary events. This means that even if we turned off all observation noise itwould not be possible to recover these zero-event edges, they are in a sense unidentifiable. The
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Figure 6 – Tree reconstruction evaluation using a normalized Robinson–Foulds metric onsynthetic datasets from S90, simulated fromBeta-splitting processes. Here normalizationis done by dividing the RF distance of each inference method by the worst performer perdataset.
process of producing the best possible tree essentially consists in collapsing these zero-eventedges, hence forming a multifurcating reference tree.For a baseline with which to compare the greedy estimator (GE) of Section 2.4.5, considerthe trace search estimator (TSE). The TSE is defined as a tree in the sampler trace that minimizesthe sample L1 distance (Section 2.4.5). Formally,

τTSE = arg min
t∈{t i}

∑

t′∈{t i}
L(t, t ′),

where {t i} denotes the set of trees that were sampled during the MCMC procedure.The GE method outperformed the TSE method under both the global and local models. Thissuggests the proposed GE can, informally, harness more information from the posterior. Underthe TSE, the global model (0.44±0.09; mean normalized RF score± standard error) outperformedthe local model (0.71 ± 0.06). This observation suggests that the local parameterization has a
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strong influence on the trace (in tree space) of our sampler, as the TSE is essentially a searchover the posterior sample. Under the GE, the global model (0.31± 0.07) and local model (0.30±
0.07) performed evenly well. This observation suggests that the choice of parameterization doesnot heavily influence the information contained in the marginal posterior over trees. Ultimatelythis experiment suggests that the GE summarizes the marginal posterior sufficiently well suchthat the global model, the simpler model of the two, suffices for reconstructing phylogenies andshould be the preferred model. A summarizing plot is shown in Fig. 7.
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Figure 7 – A model and estimator comparison based on tree reconstruction accuracy fordatasets from S10. For each dataset, inference was performed on both the globally- andlocally-parameterizedmodel. Both the greedy and trace search estimateswere computedfor each inference result.
In our next synthetic experiment, we aimed to study the effects of perfect phylogeny as-sumption violations on the reconstruction of trees, and attempted to draw connections to realworld data. The two violations considered are infinite sites and loss violations, described in Sec-tion 2.5.3. Inference was performed on 130 datasets (S130). Inference settings are summarizedin Supplementary Table 1, and the simulation procedure for S130 is described in Section 2.5.3.The experiment results are summarized in Fig. 8-a. Holding one violation rate fixed at zeroand varying the other, we observed linear effects for both types of violations. The results suggestsitka is more robust to infinite sites violations, with estimated effects to be 0.31± 0.07 (normal-ized RF distance ± standard error), which is much less than loss violations (0.47 ± 0.07). Whenvaried together, the linear effects were estimated to be 0.25 ± 0.04, 0.38 ± 0.04 respectively. Inan attempt to draw connections to real datasets, we developed a heuristic method to obtain arough estimate of both violation rates. The estimated rates obtained on real data were all lessthan 0.25 (the estimation heuristic is described below; Fig. 8-b).We now describe the heuristic we used to obtain rough estimates of the rates of the twotypes of violation. Given the inferred tree and its corresponding marker matrix x (as in Sec-tion 2.4.1), and the sitka-transformed marker matrix y (as in Section 2.2), define the differencematrix z := x − y , i.e., z has entries zi ,j = xi ,j(t) − yi ,j , where t is the consensus reconstruction.To motivate how we can detect violations of the Infinite Site assumption (IS, i.e., genomic bins inwhich more than one events occur), and losses, refer to Fig. 9, and notice that these violationstend to leave a distinctive pattern on the difference of the twomatrices x (positive entries shown
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Figure 8 – (a) RF distance of sitka tree estimate to the best-possible tree. The first plotholds pis constant at zero. The second plot holds ploss constant at 0. The third plot varies
pis = ploss jointly. (b) Estimation of violation rates in real data and a set of synthetic data.(c) Over 20,000 SNV’s with high levels of missingness are placed on a backbone treeinferred from the CNA data for SA535.

in black in the Figure) and y (positive entries shown in orange in the Figure). Specifically, define
zLoss with entries zLossi ,j := 1(zi ,j > 0), and similarly zIS with entries z ISi ,j := 1(zi ,j < 0). Given aninteger-valued threshold εv > 0, we say a column or trait l in zv (for v ∈ {Loss, IS}) has a violationif there exists an island of size at least as large as εv. An island of size s in column l is defined tobe any sequence of row indices i , i + 1, ... , i + s such that zvi ,l = zvi+1,l = · · · = zvi+s,l = 1 and
zvi−1,l , z

v
i+s+1,l are, not necessarily the same, 0 or undefined. Finally, the proportion of columnswith a given type of violation, loss or infinite sites, is taken to be the violation rate estimate.We also performed experiments to compare our full Bayesian analysis to Maximum Likeli-hood estimation (MLE). To do so, we generated data as follows: we first sampled a tree gener-ated uniformly over topologies; second, we generated synthetic data according to yc,l |xc,l ∼Normal(xc,l ,σ

2), varying σ2 to control the amount of noise. We generate matrices of size
|C | = 1000 and |L| = 50 for σ2 ∈ {1/10, 2/10, ... , 5/10}. In these experiments we provide thewell-specified noise model to both inference methods. We approximate the MLE using a greedyscheme with the same structure as the one described in Section 2.4.5. The results are shownin Fig. 10. The Bayesian methods outperform the greedy maximum likelihood heuristic by a largemargin.Finally, we investigate the impact of ignoring pairwise dependencies between the two endpoints of CNA events. We first make the observation that if we subset the sitka markers to keeponly those where the copy number is increasing from left to right, we retain only one end pointof each paired event. This creates a smaller set of independent markers L′ ⊂ L. We can computeone sitka tree t based on all L loci (which includes ignored pairwise dependencies), and one sitkatree t ′ based on L′ (a smaller set of independent loci). We can then inspect the proportion ofidentical entries in the matrices x(t ′) compared to x(t), the latter subsetted to the columns in L′.
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Figure 10 – Synthetic data results comparing our Bayesian estimator to a Maximum Like-lihood Estimator (MLE). Boxes from left to right show different amounts of noise in thesynthetic data generation, corresponding to values for σ2. The y axis measures the L1tree distances loss, normalized by |C ||L|.
We performed the experiment described above on the S90 datasets (described in 2.5.3)with three noise regimes described as follows: (I) where step (ii) in 2.5.3 is skipped; (II)uniform noise parameters FPR and FNR drawn from uniform distributions on the intervals

(0.0005, 0.005), (0.005, 0.015) respectively, doubling noise parameters drawn from a uniform dis-tribution on (0.015, 0.035) distribution, jitter noise parameters drawn from a uniform distributionon (0.15, 0.35); (III) uniform noise parameters FPR and FNR drawn from uniform distributionson the intervals (0.001, 0.01), (0.01, 0.03) respectively, doubling noise parameters drawn from auniform distribution on (0.03, 0.07) distribution, jitter noise parameters drawn from a uniformdistribution on (0.3, 0.7). All results are averaged over 15 datasets.In all three noise regimes we observed a large overlap between t and t ′, but this overlap isnegatively correlated with noise: in regime (I) we observed a mean overlap of 0.99 (sd 0.004);in regime (II), a mean overlap of 0.97 (sd 0.009); in regime (III), a mean overlap of 0.76 (sd 0.18).The results support that in a low to moderate noise regime, it is reasonable to ignore violationof pairwise dependencies for the purpose of point estimation (consensus tree construction). Inthe higher noise regime, it may be advantageous to build the two trees t and t ′. We expectneither to systematically outperform the other, the trade-off being that t is built from more data
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but with independence violations, whereas t ′ is built from less data but without independenceassumption violations. Our goodness-of-fit tests can be used to select one of these two treesfor final output.
2.5.3. Data simulation. Datasets in S90 were generated in two steps: (i) simulate a cell tree andits corresponding CNA data, and (ii) inject noise into the CNA data from step one.In the first step we used the simulator of Mallory et al., 2020 to generate trees along withCNAs, where leaf nodes represent observed cells and internal nodes represent latent ancestralcells, i.e., unobserved cells. An edge in the tree represents an ancestral relationship between therespective cells.The simulator of Mallory et al., 2020 itself consists of two parts, which we briefly describeas follows. First, the simulator samples a tree based on a generalization of the Blum-FrançoisBeta-splitting (GBFBS) model (Blum and François, 2006; Sainudiin and Véber, 2016), which isinspired by the Beta-splitting model of Aldous, 1996. Authors of Sainudiin and Véber, 2016argue the GBFBS model is capable of realizing topologies comparable to that of the originalBeta-splitting model. When β = α→ −1, trees are totally imbalanced; when β = α→∞, treesare perfectly balanced. The Beta-splitting model is particularly well-suited for generating a widerange of topologies, varying from balanced to imbalanced tree structures. Second, given a tree,CNAs are simulated on the edges of the tree where the number and size of CNAs are drawnfrom Poisson and exponential distributions respectively. The simulator also accounts for clonalwhole chromosome amplification events, motivated by punctuated evolution models (Gao et al.,2016).The second step of our synthetic data simulation process, independent ofMallory et al., 2020,injects noise into a cell by locus input CNA matrix y , and outputs a noisy matrix of the same size.Three types of noise were employed, namely, uniform noise, jitter noise, and a doubling noise.The uniform noise is parameterized by false positive (FPR) and false negative (FNR) rate pa-rameters. For each element of the input matrix yij , add an integer Nij ∼ Binomial(yij ,FNR) orsubtract an integerMij ∼ Binomial(1,FPR).The doubling noise is parameterized by a probability pd: for each row of the CNA matrix y ,draw a factor K where K − 1 ∼ Binomial(1, pd), which is then multiplied to the row of the CNAmatrix as noise. This procedure effectively, on average, doubles the copy number values for pdproportion of cells in the sample.The jitter noise is parameterized by a probability pj. First, map the CNA matrix to its markermatrix. Then for each marker, the locus corresponding to the marker is randomly duplicated tothe previous bin(s), or the next bin(s). The number of bins J to be overwritten — zero, one, ortwo — is drawn from a Binomial(2, pj) distribution.Datasets in S90 were of sizes {500, 1000, 1500, 2000, 2500, 3000} cells by (approximately)
{400, 600, 800} markers. For each combination of sizes, we generated five datasets based ondifferent random seeds and parameters to make a total of 6× 3× 5 = 90 datasets. The approxi-mate number of markers is the target number of markers after correcting for jitter and filtering.Fig. 5 shows the CNA profiles of a subset of simulated data.To describe the simulation parameters used for S90, we follow the terminologies and no-tation used in Mallory et al., 2020. For generating trees, the α and β values parameterizethe generalized Beta-splitting model. We used a symmetric parameterization of α = β ∈
{−0.9,−0.83,−0.7,−0.48,−0.1}. For generating CNA data, the mean number of CNA to beadded to a branch in the tree was chosen to generate data with approximately the number ofdesired markers post filtering and jitter-fixing. The multiplier of the mean CNA on the root wasset to 8, the whole amplification rate (rate of an allele chosen to be amplified) was set to 0.5.The remaining parameters used default settings. See Mallory et al., 2020 for a more thoroughdescription of parameters.For injecting noise, we drew the uniform noise parameters FPR and FNR from uniform distri-butions on the intervals (0.001, 0.01), (0.01, 0.03) respectively. The doubling noise parameters pdwere drawn from a Uniform(0.03, 0.07) distribution. The jitter noise parameters pj were drawnfrom a Uniform(0.3, 0.7) distribution.
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Datasets in S10 and S130 were also generated in two steps: (i) simulate a cell tree and itscorresponding binary marker data satisfying perfect phylogeny assumptions, and (ii) inject noiseand/or violations into the the binary marker data from step one.In the first step, a tree is generated via Kingman’s coalescent (Kingman, 1982).We used the Rpackages (Schliep, 2011; Staab andMetzler, 2016) for simulation. Briefly, we sample a coalescenttree for the set of cells C by uniformly selecting pairs of cells ci , cj ∈ C to coalesce backwardsin time. The waiting time, or the branch length, between each event is exponentially distributed.Conditionally on the coalescent tree and given a set of loci L, we simulate a |C | × |L| markermatrix y . Every entry yi ,j is initialized to 0. Then for each column l , we select a subset of cells C ′from C to set yi ,l to 1, for all i ∈ C ′. The subset of cells is sampled by choosing a branch on thetree with probability proportional to the branch length, and selecting all cells descendant fromthe selected branch. In essence, we are simulating the number of events via a Poisson process,and directly mapping these events to the cell-locus marker matrix. The above concludes the datageneration procedure satisfying perfect phylogeny assumptions.In the second step of S10’s simulator, we injected artificial noise by introducing standardfalse positive and negative values into y . This concludes S10’s simulator. The simulator for S130has an additional sampling step for controlling the degree of perfect phylogeny violations. Weconsidered two types of violations: (i) the loss of markers along a tree’s branches, and (ii) theviolation of the infinite sites (IS) assumption, that is, the occurrence of multiple distinct eventsin the same locus.The procedure for simulating loss of marker events can be described as follows. First, ran-domly select a locus l , then identify the most recent common ancestor a for the set of cells
{i : yi ,l = 1}. Given a, sample a cell d descendant of a (including a). Finally, the loss event issimulated by reverting yi ,l to 0, for all i descendant of, and including, d .ISmodel violationswere simulated as follows. Uniformly sample a pair of loci (j , k), andmerge
y·,j , y·,k into one column, yielding a cell-locus matrix of size one less than the original size. How-ever, to maintain control over |L|, datasets in S130 were simulated with |L| + NIS loci such thatafter simulating IS violations, we recover a matrix of size |C | × |L|, where NIS is the number of ISviolations.The total number of loss and infinite sites violation events (NLoss, NIS) were drawn from bi-nomial distributions with probability pLoss, pIS respectively (and size |L|). As a final step, falsepositives and negatives were artificially injected.For both S10 and S130, datasets of size |C | × |L| = 500 × 100 with FNR and FPR bothset to 0.002 were generated. For S130, the unordered pair (pLoss, pIS) were set to values in
{(0, 0), (0.1, 0.1), ... , (0.4, 0.4)}∪{(0, 0.1), (0, 0.2), (0, 0.3), (0, 0.4)}. For each configuration of sim-ulation parameters, 10 different seeds were used to generate a total of 10 and 130 datasets for
S10 and S130 respectively.
2.6. Goodness-of-fit

To evaluate the goodness-of-fit of inferred trees on real data, we suggest a test comparingthe posterior distribution over entries of the matrix x with the data y .Since we will assess the goodness-of-fit of not only our method but also different baseline,we start by explaining how we can generalize the notion of the x matrix used in our method toother tree reconstruction methods. To do so, consider an inferred rooted tree, τ , and define amatrix-value function g(τ) as follows. If τ is a tree inferred from sitka, set g(τ) = x(τ). For treesinferred from baseline methods, we proceed as follows. Let τ denote a rooted tree, u, one of itsunlabelled internal nodes, and c one of its leaves. Let clade(u) denote the clade correspondingto u, i.e., the set of leaves descendent from u. We define gc,u(τ) = 1[c ∈ clade(τ)].In general the inferred trees from the baseline methods do not have named internal nodes,nor do they have the same number of internal nodes as the number of loci L. Therefore we donot know which locus in the inferred tree τ corresponds to which locus in the matrix y . Wenote that this is not the case with trees inferred from sitka where the internal nodes of the treecorrespond to the columns of the induced genotype matrix g . As a result, for methods other
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than sitka, for each column in the input data matrix, we pick a clade in τ that has the highestprediction accuracy for the entries in that column.More precisely, for each method, we report Youden’s J index (Youden, 1950) which is equalto the sum of the sensitivity and specificity minus 1.We now define a binary classification countsmatrix function h, i.e., a function which, for two vectorsw and z of length C , forms the confusionmatrix:
hi ,j(w , z) =

∑

c∈C
1 (wc = i) 1 (zc = j) .

For example h0,0(w , z) would count the number of times both elements of w and z wereequal to zero (or true negative). We define accuracy for a given confusion matrix h = h(w , z) as
acc(h) :=

h0,0 + h1,1∑
i ,j hi ,j

.

We further define sensitivity and specificity as
sensitivity(h) :=

h1,1

h1,1 + h1,0
,

specificity(h) :=
h0,0

h0,0 + h0,1
,

youden(h) := sensitivity(h) + specificity(h)− 1.

For a given tree τ and its corresponding genotype matrix g = g(τ) we compute the Youden’sscore as follows:
(1) for all locus l in y , hl := arg maxl ′∈columns(g) acc (h(yl , g·,l ′)),(2) hτ :=

∑
l ′∈columns(g) hl ′(3) youdenτ := youden(hτ ).

That is for each locus in y , we take the clade that among all possible clades in τ maximizes theaccuracy in predicting which cells are present in the l-th column of y . We then sum over all thesescores to compute a confusion matrix for τ and use this agglomerative matrix to compute theYouden’s score for the tree. We use the delta method to calculate confidence intervals. Recallthat the delta method is concernedwith the asymptotic behaviour of a distribution for a function
ψ of an asymptotically Gaussian random vector. For a sequence of random vectors Xn for which√
n(Xn − θ)

D−→ N (0, Σ), we have that√n(ψ(Xn)−ψ(θ))
D−→ N (0,∇ψ ·Σ · ∇ψ). In this contextwe use the identity

youden(h) =

1
|C |h1,1

1
|C |h1,1 + 1

|C |h1,0
+

1
|C |h0,0

1
|C |h0,0 + 1

|C |h0,1
− 1 =: ψ

(
1

|C |h0,0,
1

|C |h0,1,
1

|C |h1,0,
1

|C |h1,1

)
.

Fig. 11-d shows the Youden’s score and its 95% confidence interval for sitka and 6 baselinemethods on 3 different real-world datasets. Sitka has a higher score than all competing methods.
2.7. Application: assignment of single nucleotide variants

Here we posit an observation probability model for adding single nucleotide variant (SNV)data to an existing phylogenetic tree.For locus l in cell c , let ySNVc,l = (dc,l , νc,l , cc,l) denote the observed SNV data where the totalnumber of reads, the number of reads with a variant allele, and the corresponding copy numberare indicated by dc,l , νc,l , and cc,l respectively.We use xSNVc,l to denote an indicator variable taking the value one if and only if an ancestorof cell c harboured a single nucleotide alteration event at locus l . This variable is unobservedand the focus of inference in this section. As in the sitka model, we assume a perfect phylogenystructure on these indicator variables, and add an error model to relate xSNVc,l to the observeddata while allowing violations of the perfect phylogeny assumption and measurement noise. Inthe context of single nucleotide data, this is similar to (Jahn et al., 2016). The parameters of the
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Figure 11 – (a), (b), and (c) show the consensus tree andmarker-space matrix for theOVA,
SA501, and SA535 datasets respectively. (d) Comparison to baseline methods.)

error model are denoted θSNV = (εFP , εFN), where εFP and εFN are false positive rate and falsenegative rates, respectively. Define:
(9) qbc,l = p(ySNVc,l |xSNVc,l , θSNV ) = p(νc,l |dc,l , cc,l , x

SNV
c,l = b, θSNV ),

where dc,l and cc,l are given inputs. The likelihood probability of cell node c is denoted by qbc,l ,where b ∈ {0, 1}. For b = 1, qbc,l reflects the likelihood of cell c being mutated at locus l ; andfor b = 0, qbc,l reflects the likelihood of cell c not being mutated at locus l . For dc,l = 0, we set
qbc,l = 0.5.The probability qbc,l is obtained bymarginalizing amixture of binomial distributions dependingon all possible genotype states of locus l at cell c . Given the copy number cc,l , the possiblegenotype states are G = {A ...A,AA ...B,A ...BB, ... ,B ...B}, where each element has a lengthequal to cc,l . For example, the genotype AAB refers to a genotype with one variant allele B andtwo reference alleles A. For each genotype state gi , where i indexes the elements of G, the meanparameter of the corresponding binomial distribution is denoted by ξic,l :
(10) ξic,l =





B(gi )
cc,l

, 1 ≤ B(gi ) < cc,l ,

1− εFP , B(gi ) = cc,l ,
εFP , otherwise,
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where B(gi ) represents the number of variant alleles of genotype gi . Therefore, for b = 1,
q1
c,l = p(νc,l |dc,l , cc,l , x

SNV
c,l = 1, θSNV )(11)

=

cc,l∑

i=1

p(gi )[ξ
νc,l

c,l (1− ξc,l)
dc,l−νc,l ](12)

+ εFN [ε
νc,l

FP (1− εFP)dc,l−νc,l ].

The value of p(gi ) equals 1−εFN
cc,l

, and εFN represents the error due to mutation loss or tree errors.
If the mutation status of cell c at locus l is a wildtype (i.e., mutation is not present), thenthe possible genotype states should not have any variant allele. The only possible genotypestate is {A ...A}. The mean parameter of the binomial distribution equals εFP (false positive rate).Therefore,

(13) q0
c,l = p(νc,l |dc,l , cc,l , x

SNV
c,l = 0, εFP).

With the proposed probability model for SNVs, we can incorporate both SNV data and CNAdata to infer the underlying tree phylogeny in the sitka model. Therefore,
(14) p(y |x , θ) =

∏

c∈C

∏

l∈LCNA
p(yCNAc,l |xCNAc,l , θCNA)

∏

l∈LSNV
p(ySNVc,l |xSNVc,l , θSNV ),

where C and L are the disjoint set of cells and loci, respectively. In this section, the loci set Lincludes both CNA and SNV traits.Assume now that we seek to add one locus to an existing tree. We proceed similarly toSection 2.4.3. Equation (4) can be rewritten in the following form:

(15) ρ̄v =




∏
vi∈children(v)

(γ0
vi

+γ1
vi

)

γ0
v




∑
v̄∈R




∏
v̄i∈children(v̄)

(γ0
v̄i

+γ1
v̄i

)

γ0
v̄




,

where γbv , for b ∈ {0, 1} is:
γbv =

{
pbv , if l represents a CNA locus,
qbv , if l represents a SNV locus.

For v ∈ R = {v∗}⋃ L\{l}, and b ∈ {0, 1} , the value of qbv is
(16) qbv =

∏

v ′′∈children(v)

qb
v ′′ .

For the cell nodes that are the leaves of the tree qbv = qbc,l .
2.7.1. Detection of SNVs for individual cells. Given a fixed CNA tree (denoted by t) and the readcounts data (ySNV denoted by y for simplicity), here the goal is to calculate the posterior distri-bution of xSNVc,l , the mutation status of locus l at cell c , which we denote by xc,l for simplicity.The joint probability distribution of xc,l , y and t can be written as:

p(xc,l , y , t) =
∑

v∈R

∑

t′∈N l
v (t\l)

p(xc,l , t
′, y)(17)

=
∑

v∈R

∑

t′∈N l
v (t\l)

p(xc,l |t ′)p(y |t ′)p(t ′),(18)
where R is the set of all loci nodes in the tree (including the root) excluding locus l . The jointprobability distribution is calculated as
(19) p(xc,l = 1, y , t) =

∑

v∈P(c,t)

∑

t′∈N l
v (t\l)

p(y |t ′)p(t ′).
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The setP(c , t) denotes all nodes on the shortest path from cell c to the root of the tree (includingthe root and excluding the cell c node). An example of the path on an imaginary tree is depictedin Fig. 12. The nodes coloured in green belong to P(c , t). Therefore, the posterior probabilitydistribution of xc,l = 1 yields
(20) p(xc,l = 1|y , t) =

p(xc,l = 1, y , t)

p(y , t)
=

∑
v∈P(c,t)

∑
t′∈N l

v (t\l) p(y |t ′)p(t ′)

p(y , t)
.

Rewriting Equation (20) assuming uniform probability distribution for p(t ′) yields:
p(xc,l = 1|y , t) ∝

∑

v∈P(c,t)

∑

t′∈N l
v (t\l)

p(y |t ′),

=
∑

v∈P(c,t)

∑

t′∈N l
v (t\l)

∏

l ′∈L

∏

c ′∈C
p(yc ′,l ′ |t ′),

=
∑

v∈P(c,t)

∑

t′∈N l
v (t\l)

∏

l ′∈L
l ′ 6=l

∏

c ′∈C
p(yc ′,l ′ |t ′)

∏

m′∈C
p(yc ′,l |t ′),

= K1

∑

v∈P(c,t)

∑

t′∈N l
v (t\l)

∏

c ′∈C
p(yc ′,l |t ′),

= K1

∑

v∈P(c,t)

∑

t′∈N l
v (t\l)

∏

c ′∈C\v
p(yc ′,l |t ′)

∏

c ′∈Lv
p(yc ′,l |t ′),

where N denotes the set of all trait nodes, C denotes the set of all cell nodes, Cv denotes thecells that are a descendant of node v , and C\v denotes the cells that are a not descendant ofnode v . The product of the likelihood contributions for non-descendant nodes can be calculatedby taking the product of q0
c for all cells, divided by the ones that are descendant of v :

∏

c ′∈C\v
q0
c ′ =

q0
v∗

q0
v

.

Therefore:
p(xc,l = 1|y , t) ∝ K1

∑

v∈P(c,t)

q0
v∗

q0
v

∑

t′∈N l
v (t\l)

∏

c ′∈Cv

p(yc ′,l |t ′).(21)

m 

Root 

v 

v1 
v2 vi

* 
vk 

Figure 12 – A schematic view of the underlying tree inferred from CNA and SNV lociacross multiple cells. Black and white nodes represent cells and loci, respectively. Thegrey triangle represents a subtree rooted at a node. It includes all of the nodes and edgesin the subtree.
The likelihood contribution of descendant cells can be re-indexed by a binary vector b =
(b1, b2, ... , bk), where bi ∈ {0, 1}, and bi = 1 if the child v is to be moved into a child of the
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node l . The value of k denotes the number of children of v . The i∗th child of v which is on thepath from node v to cell c is called v∗i . This implies bi∗ = 1 (See Fig. 12). Therefore:
(22) ∑

t′∈N l
v (t\l)

∏

c ′∈Cv

p(yc ′,l |t ′) = q1
v∗c

1∑

b1=0

1∑

b2=0

...
1∑

bi−1=0

1∑

bi+1=0

...
1∑

bk=0

k∏

i=1
i 6=i∗

qbivi .

Rewriting Equation (21) using Equation (22) yields:
p(xc,l = 1|y , t) ∝ K1

∑

v∈P(c,t)

q0
v∗

q0
v

q1
v∗c

1∑

b1=0

1∑

b2=0

...
1∑

bi−1=0

1∑

bi+1=0

...
1∑

bk=0

k∏

i=1
i 6=i∗

qbivi ,

= K1

∑

v∈P(c,t)

q0
v∗

q0
v

q1
v∗c

k∏

i=1
i 6=i∗

(q0
vi

+ q1
vi

),

= K1

∑

v∈P(c,t)

q0
v∗

q0
v

∏k
i=1(q0

vi
+ q1

vi
)

(q0
vi∗ + q1

vi∗ )
q1
vi∗ ,

= K1q
0
v∗

∑

v∈P(c,t)

q1
vi∗

q0
v (q0

vi∗ + q1
vi∗ )

k∏

i=1

(q0
vi

+ q1
vi

).(23)
2.8. Computational complexity of the SNV calling algorithm

The computational complexity of Equation (23) is O(|C | · |L|) with |C | the number of cellsand |L| the number of loci. In order to reduce the complexity of calculating p(xc,l = 1|y , t) foreach locus and cell, P ′(c , t) is defined to denote the nodes sitting on the path from root to cell
c , excluding the root node and including the cell c node. Then,
(24) q∗v =

k∏

i=1

(q0
vi

+ q1
vi

).

Therefore,
K1q

0
v∗

∑

v∈P(c,t)

q1
vi∗

q0
v (q0

vi∗ + q1
vi∗ )

k∏

i=1

(q0
vi

+ q1
vi

) = K1q
0
v∗

∑

v∈P ′(c,t)

q1
v

(q0
v + q1

v )

q∗parent(v)

q0parent(v)

.

Calculating p(xc,l = 1|y , t) with a recursive approach reduces the complexity from O(|C ||L|)to O(|C |+ |L|), where as in the last section L is the union of SNV and CNA loci.
3. Results

3.1. Sitka: scalable single cell phylogenetic tree inference
Fig. 1 shows the workflow of the sitka method. Sitka is based on a transformation of singlecell copy number matrices retaining only presence or absence of changes in copy number pro-files between contiguous genomic bins. This transformation allows us to approximate a complexevolutionary process (integer-valued copy numbers, prone to a high degree of homoplasy anddense dependence structure across sites) using a probabilistic version of a perfect phylogeny (seeFig. 2). We leverage the special structure created by the change point transformation to build aspecial purpose MCMC kernel, which has better computational scalability per move comparedto classical phylogenetic kernels (Methods section 2.4.3).We visualise the input data to sitka in a colour-coded matrix exemplified in Fig. 2-a. Each rowin the matrix corresponds to an individual cell that has been sequenced in a single-cell platform.Each column in the matrix is a locus that is represented by a bin (a contiguous set of genomicpositions). We assume that the integer copy number of each bin has been estimated as a prepro-cessing step, e.g., using a hidden Markov model (Zahn et al., 2017). In Fig. 2-a the copy numberstate is encoded by the colour of each entry in the matrix.
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The output of sitka includes two types of directed rooted trees. Type I is the tree used forMCMC sampling in the inference procedure, and type II, which is derived from type I, is used invisualisation (Fig. 11-a-c). The set of nodes in a type I tree is given by the union of the cells, theCN change points (markers) under study, and a root node v∗. The topology of a type I tree bearsthe following phylogenetic interpretation: given a cell c in the tree, c is hypothesized to harbourthe markers in the shortest path between c and the root node v∗, and only those markers. Weenforce the constraint that all cells are leaf nodes, while markers can be either internal or leafnodes.Markers placed at the leaves are interpreted as outliers, for examplemeasured CN changepoints that are false positives.To convert a type I tree to a type II tree, we remove from the type I tree all marker nodesthat are leaf nodes, i.e., markers that are not present in any cells. We also collapse into a singlenode, the list of connected marker nodes that have exactly one descendent (i.e., chains). Fig. 13shows a small type I tree, its transformation to a type II tree and the respective marker matrix. Wevisualise the input matrix and the estimated tree simultaneously by sorting the individual cells(rows of the matrix) such that they line up with the position of the corresponding leaves of thetree.
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Figure 4: Visualization of a small tree t 2 T . The right side shows the matrix of binary latent
values xc,l where rows are cells and columns are loci. The left side shows a summary of the perfect
phylogeny. To remove clutter, we remove from the tree (but not the matrix) all loci where xc,l = 0
for all cells. We also collapse chains (list of edges with exactly one descendant) into a single edge.
Note that all clade containing more than one descendant cells is necessarily supported by one or
more traits l having value xc,l = 1 if and only if c is a descendant of the clade. Clades at the leaves,
which have size one may or may not be supported.

Sampling a mutation tree: let Vm = L [ {v⇤} denote a vertex set composed of one vertex for

each of the |L| loci plus one artificial root node v⇤. The artificial root node induces an implicit

notion of direction on the edges, viewing them as pointing away from v⇤. Let T m denote the

set of trees tm spanning Vm. The interpretation of tm is as follows: there is a directed path

from vertex/locus l to l0 in tm if and only if the trait indexed by l is hypothesized to have

emerged in a cell which is ancestral to the cell in which l0 emerged.

Sampling cell assignments: assign each cell to a vertex in tm. The interpretation of assigning

cell c to locus l is that among the traits under study, c is hypothesized to possess only the traits

visited by the shorted path from v⇤ to l in tm. If a cell c is assigned to v⇤, the interpretation

is that c is hypothesized to possess none of the traits under study.

Both steps can be viewed as graphs (for the second step, it is a bipartite graph with one

component being the set of loci, and the other, the set of cells). It is convenient to summarize both

processes at the union of the two graphs, which is also a tree, this time on |L| + |C| + 1 vertices,

V = L [ C [ {v⇤}. Let us denote the set of trees obtained by this two step process by T . Again,

the vertex v⇤ induces an implicit direction to edges in t 2 T .

Given t 2 T , the matrix x is a deterministic function obtained by setting xc,l = 1 if vertex c is

a descendant of vertex l in t, and zero otherwise. We denote this deterministic function by x(t).

We show a small example in Figure 4.

The tree structure encoded by T is unidentifiable: for example, if a tree contains a chain of traits,

then permutations of the traits yield the same matrix x(t). Since we are taking a Bayesian approach

this is not problematic. As we describe later, tree summaries we build from the posterior distribution

collapse the non-identifiable parts. Moreover, the specific choice we make for constructing the set

T help us obtain simple and e�cient sampling algorithms.

To complete the construction of the prior on trees, we need to assign probabilities to elements
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Figure 13 – A small type I tree t (a), its transformation into a type II tree (b), and thecorresponding marker matrix x = (xc,l) (c). The red nodes in (a) correspond from topto bottom to markers 2, 3, 1 in this order. Given a tree t , the latent marker matrix x isa deterministic function x = x(t). Note that the clade comprising single-cells 3 and 4has support in both markers 1 and 3. For clarity, we do not visualise type I trees, butplot their transformation, i.e., type II trees as follows. We remove from the type I tree allmarker nodes that have xc,l = 0 for all single-cells c . Lists of connected edges that haveexactly one descendent (i.e., chains) are also collapsed into a single edge, e.g., the edgecorresponding to markers 2 and 3 are collapsed into one edge (since marker 2 has onlyone descendent, namely single-cell 2).
Sitka uses change points as phylogenetic traits modelled using a relaxation of the perfectphylogeny assumption. For a phylogenetic tree, the perfect phylogeny assumption holds if andonly if for all markers l , l changes at most once from its ancestral state over the tree. Changepoints arising from non-overlapping CNA events (i.e., such that the genomic locations affectedby the CN event do not intersect) preserve the perfect phylogeny assumption. Fig. 14 showsexamples of overlapping CNAevents and their effect onmarkers. The two scenarios that can leadto the violation of the perfect phylogeny assumption are (i) when a CNA gain event is followedby an overlapping loss event or (ii) when a loss event is followed by an overlapping loss event,and the second event removes either end-point of the first event. For both (i) and (ii), a violationoccurs only when the second overlapping event hits the same copy as the first event.Imposing a perfect phylogeny on the observed change points is restrictive, as we expectboth violations of the assumptions (e.g., due to homoplasy), and measurement noise. To addressthis we use an observation model (Methods section 2.4.1) which assigns positive probability toarbitrary deviations from the perfect phylogeny assumption, while encouraging configurations
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Figure 14 – The effects of overlapping CNA events on the perfect phylogeny assumption.A segment of a chromosome with five consecutive bins and their four correspondingmarkers are shown. Each panel follows the CN states interlaced with markers for a cellat the ancestral state (top), after a CNA event (middle), and after a second overlappingCNA event (bottom). The numbers in the CNA squares show the integer CN state (e.g.,the ancestral state has two copies of the 5-bins long segment). (a) Two overlapping CNAgains maintain the perfect phylogeny assumption. If the infinite site assumption holds, itis unlikely for the end-points of the two gain events to exactlymatch. The same argumentholds for a CNA loss followed by a CNA gain event. Note that in these cases, once achange point is acquired, it is not lost. (b) If a loss event is followed by another lossevent in which either end-points of the first event is removed, the perfect phylogenyassumption will be violated (e.g., marker 3 is lost after the second loss event). Note thata violation does not occur if the loss events hit different copies of a segment. (c) Similarly,if a gain event is followed by a loss event, only if the latter erases the end-points of theformer is the perfect phylogeny violated. Note how marker 2 and marker 3 are lost afterthe second CNA event.
where fewmarkers and cells are involved in violations. Subsequently we impose the perfect phy-logeny assumption on a latent maker matrix defined as follows. Given a type I tree t , the latentmarker matrix x is a deterministic function x = x(t). We compute x : t → {0, 1}C×L by setting
xc,l = 1 if the single-cell c is a descendent of the marker node l in tree t , and otherwise xc,l = 0.We use yc,l to refer to the observed change point l in individual cell c (Methods section 2.4.1).Synthetic experiments show that sitka’s performance decreases roughly linearly as a functionof the rate of the key types of expected violation of the perfect phylogeny assumption (Fig. 8-a,b,Methods section 2.5).
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3.2. Performance of sitka relative to alternative approaches
We compare the performance of sitka to alternative approaches (Section 2 of the supple-mentary text) on three scWGS datasets introduced here (Fig. 11-a-c). The first dataset, SA535, isgenerated for this project and contains 679 cells from three passages of a triple negative breastcancer (TNBC) patient derived xenograft sample. Passages X1, X5, and X8 had 62, 369, and 231cells post quality filtering (Methods section 2.1) respectively. We also include 17 mostly diploidcontrol cells. These cells are combined to generate the input to the analysis pipeline (Fig. 15).

Figure 15 – Phylogenetic tree and CNA profile heatmap for the SA535 dataset. The rowsof the heatmap are sorted according to the placement of cells on the phylogenetic tree.The columns of the heatmap are sorted by their genomic position.
The second dataset, labelled OVA (Laks et al., 2019), consists of cells from three samplestaken from a patient with high grade serous (HGS) ovarian cancer. The first sample, SA1090,was from an ascites pre-treatment, while SA922 was from an ascites post-treatment. The thirdsample, SA921, was taken from the ovary. See Fig. 16 for the tree and the CNA profile heatmapfor this dataset.

Figure 16 – Phylogenetic tree and CNA profile heatmap for the OVA dataset. The nearlydiploid cells with the loss of heterozygosity on chromosomeX are from SA1090. The cellswith an amplification on chromosome 22 are from SA922. The rest belong to SA921.
The final dataset, SA501 (Laks et al., 2019), is another TNBC xenograft tumour from 6 un-treated passages, namely X2, X5, X6, X8, X11, and X15. After filtering, 515, 236, 328, 189, 836,
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and 308 cells remain in each passage respectively (for a total of 2,412 cells, see Fig. 17). Supple-mentary Table 2 shows the attrition after each step of filtering cells per passage in each dataset.

Figure 17 – Phylogenetic tree and CNA profile heatmap for the SA501 dataset. Note thatthe diploid cells at the bottom of the heatmap are control cells that were included in theexperiment.
To evaluate inferred trees from sitka and other tree reconstruction methods, we use a good-ness of fit performance metric, which compares the compatibility of observed CN change pointswith a given phylogeny using Youden’s J index (Methods section 2.6, Fig. 11-d). Sitka has thehighest Youden’s index across all three datasets. UPGMA and WPGMA perform similarly on SA501and SA535. UPGMA performs slightly better than WPGMA on the OVA dataset. HDBSCAN has a closebut slightly smaller Youden’s index than UPGMA over the SA535 and OVA datasets, but per-forms marginally better on SA501. NJ trails WPGMA on SA501 and the OVA datasets, and has thelowest Youden’s index on SA535. MrBayes performs well on the smallest dataset, SA535, with

MrBayes-np2 and MrBayes-np8 performing similar to WPGMA, and MrBayesWithBinaryInput hav-ing achieved the second highest Youden’s index. On the OVA data, MrBayesWithBinaryInputand MrBayes-np2 trail behind medicc2 and MEDALT, while MEDALTWithBinaryInput has thelowest Youden’s index among all methods on all datasets. MrBayesWithBinaryInput and
MrBayes-np2 trail behind NJ over the SA501 dataset. medicc2 and MEDALT without binary in-put, ran with default settings, did not yield a result given our available computational budget,with the former not finishing after several days, and the latter running out of memory (144 GB).Following Eirew et al., 2015, we run MrBayes for 10,000,000 generations. MrBayes-np8 hadcompleted only 278,000 iterations running on SA501 after several days. The results in this com-parison suggest that sitka performs better than the baseline methods. While due to limitationto our available computational budget, we could not allocate more time to the benchmarkedmethods, it is possible that given more runtime/computation budget, the other methods mighthave converged to more accurate solutions. Running sitka on the real-world datasets took onaverage 22.3, 46.6, and 12.9 hours for the OVA, SA501, and SA535 datasets respectively, on aLinux workstation with 72 Intel Xeon Platinum 8272CL 2.60GHz CPU processors and 144 GBof memory.
3.3. Single cell resolution phylogenetic inference in PDX

Here we analyse the foregoing three multi-sample datasets. To visualise the tree inferenceresults we arrange the inferred consensus tree t (Methods section 2.4.5) and the cell-by-binCN matrix side by side where the rows of the matrix correspond to the position of individualcells on the tree and the markers are arranged by their genomic position (Fig. 1-h). Fig. 11-a-cshows examples of the multi-channel visualisation where each marker is represented by a tupleof three different data-types or channels, namely: (i) the latent markers induced by the consensus

28 Sohrab Salehi et al.

Peer Community Journal, Vol. 3 (2023), article e63 https://doi.org/10.24072/pcjournal.292

https://doi.org/10.24072/pcjournal.292


tree, x(t); (ii) the matrix of marginal posterior probability that cell c is a descendent of marker
l , computed via the average m̄ (Fig. 1-g, Methods section 2.4.5); and (iii) the sitka transformedinput data yc,l .We use this view to assess potential discrepancies between the input data and the inferredtree. In most cells and markers (as quantified in Fig. 18), the observed data is in close agreementwith the inferred tree. In the following we provide some examples of disagreements. Considerfirst the ChrX in the OV 2295 dataset (Fig. 11-a). ChrX has a long orange band (inferred markerin channel (i)) not matched by a black band (observed marker in channel (iii)) suggesting that aperfect phylogeny violation has occurred.

Figure 18 – The distribution of mismatch rate defined as the fraction of cells that have amismatch between the inferred and jitter-fixed value of a marker.
The pattern in this marker is consistent with the presence of an ancestral event followed by adeletion. In Fig. 11-b, a set of diploid cells are attached to the root of the tree. These are controlcells included in the experiment and correspond to a region in the bottom of the matrix with noinferred markers (orange bands) and almost no observed markers (black bands). In this dataset,there are change points where the observed marker has a high density (black band), but the treeis reconstructed with the marker absent (no matching orange band). Examples can be found inChr1, Chr7 and Chr16. One possible explanation could be that the end-points of each eventwere detected as slightly shifted across cells. For instance, in Fig. 17 there are two bins with anamplification (CN state equal to three) in Chr1p where cells that harbour a mutation in the firstbin appear not to have a mutation in the second bin, suggesting that the same event was calledin the first bin in some cells, and in the second bin in others. An alternative hypothesis is thatthe cells in this dataset have a mutator phenotype that promotes CN mutations in these bins.Fig. 18 shows the distribution of mismatch rates for each dataset, defined as the fraction oftimes that the observed and inferred markers do not match, i.e., 1

C

∑
c∈C 1[yc,l 6= xc,l ] for l ∈ L(corresponding to the black and orange bands in Fig. 11-a). In OV 2295, 41 markers (11%) havea mismatch rate of over 50%, where marker chr15_67000001_67500000 has the highest mis-match rate at 70%. In SA501, 30 markers (11%) have a mismatch rate of over 50%, 13 of which(5%) have a mismatch rate of over 75%. SA535 has the lowest maximum mismatch rate at 49%(marker 15_72000001_72500000). See Section 3 of the supplementary text for a discussion ofthe tree shape statistics for these datasets.

3.4. Placement of SNVs using the CNA inferred tree
To determine the presence or absence of SNVs in cells using data with high levels of missing-ness, we develop an extension of sitka, the sitka-snvmodel. Given single cell level variant readcounts, the model incorporates CN data to place SNVs on the sitka-inferred phylogenetic tree.This backbone CN tree provides a principled way to pool statistical strength across groups of sin-gle cells sequenced at low coverage, including data from the DLP+ platform (Zahn et al., 2017).The output of the sitka-snvmodel is an extended tree that has marker nodes that comprise SNVsin addition to the original CNAs.
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The SNVs are added to the existing CNA-based tree with the computational complexity of
O(|C |+|L|) per SNV. Fig. 8-c shows the result of SNVplacementwith the number of variant readsin SA535, corresponding to the tree shown in Fig. 11-c. Figs. 19, 20, and 21 show the numberof variant reads and the matching SNV call probabilities for the SA535, OVA and SA501 datasetsrespectively. Sitka and sitka-snvprovide a comprehensive genomic analysis tool for large scalelow-coverage scWGS.
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Figure 19 – SNV variant reads data and SNV call probabilities for SA535 dataset besidethe underlying phylogenetic tree.

4. Discussion
Our method ignores certain pairwise dependencies induced by copy number change eventshaving two end-points (except in cases where one of the end points is the end of the chromo-some, e.g., whole-chromosome-arm events). This artificial duplication of the events having twoinput end-points can lead to the method being overconfident, i.e., outputting credible intervalsthat are smaller than expected. This is partly a reason for focusing more on point estimates (con-sensus trees) in this work, which we expect are less affected by this phenomenon (see Section2.5.2).
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Figure 20 – SNV variant reads data and SNV call probabilities for OVA dataset besidethe underlying phylogenetic tree..
In the present study we use data in which the genome of the single cells CNA profiles arepartitioned into bins of a fixed size (500Kb), each assigned a constant integer CN state. Therelatively large size is due to the low coverage inherent to the scWGS platform, but it impliesthat the same bin may harbour multiple CNA events. Biological processes that result in complexDNA rearrangements could further increase the probability of having two hits in one bin (Mishraand Whetstine, 2016; Yi and Ju, 2018). Post hoc inspection is necessary to rule out large viola-tions of our assumptions. This highlights the importance of our goodness-of-fit and visualisationmethods as they help detecting such violations.We note that we lose information when applying the sitka transformation. This transforma-tion is necessary for the computational feasibility of the likelihood. In absence of this relax-ation, the computational complexity of each iteration of the MCMC algorithm may no longerbe bounded by O(|C |+ |L|). Indeed, the approach to efficiently compute the likelihood dependson binary latent variables with specific perfect phylogeny assumptions, and it is not clear how togeneralize this calculation to models that keep track of the evolution of more detailed CN stateinformation along the phylogeny.Structural variations such as chromothripsis, that affect multiple segments of the genomeat the same time, make it difficult to determine the rate of CNA events and suggest that CNA
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Figure 21 – SNV variant reads data and SNV call probabilities for SA501 dataset besidethe underlying phylogenetic tree.
events may not be suitable molecular clocks to estimate branch lengths. One possible remedy isto first infer the tree topology via markers based on CNA events and then conditioned on thistopology, add SNVs to the tree. The number of SNVs on each edge of the tree may be used toinform branch lengths.Our preprocessing pipeline excludes multiple cells from the analysis (see Supplementary Ta-ble 2). We filter out a fraction of cells to remove contaminated cells, either doublets (DNA ma-terial from two cells that is inadvertently merged) or mouse cells (in our real world datasets, westudy human tumours that were transplanted into mice), cells with too many erroneous sequenc-ing artefacts, and cycling cells (in the process of replicating their DNA). Removing a portion of thesequenced cells will decrease the statistical power to determine the subclonal structure of thepopulation—an important application of this work—, and may bias the sampling against clonesthat have a higher division rate. We expect this will be an intrinsic limitation to any scWGS phy-logenetic methods and this motivates the design of improved classification methods detectingcell cycling from genomic and imaging data.
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We developed two main variants of our Bayesian models, one with error rate parametersshared by all loci (global) and one with locus-specific (local) error rates. In our simulation exper-iments, the global and local parameterizations performed similarly. Based on the similar perfor-mance of these two models and the fact that the global parameterization is computationallycheaper, we recommend the use of the global parameterization by default.Evaluating the performance of a phylogenetic reconstruction method on real-world datasetsis difficult, mainly due to a paucity of ground truth. One promising area of research is the useof CRISPR-Cas9 based lineage tracing (Quinn et al., 2021). In absence of ground truth data, wedeveloped a goodness-of-fit framework that to our knowledge enables a first of a kind bench-marking of phylogenetic inference methods over real-world scWGS CNA datasets.Phylogenetic tree reconstruction is a principled way to identify subpopulations in a hetero-geneous single-cell population. This in turn enables the use of population genetics models thattrack the abundance of subpopulations over multiple timepoints (Salehi et al., 2021) and to makeinferences about the evolutionary forces acting on each clone. Further study with timeseriesmodelling will provide insight into therapeutic strategies promoting early intervention, drug com-binations and evolution-aware approaches to clinical management.
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Supplementary Text: Cancer phylogenetic tree inference at scale from 1000s of singlecell genomes
1. Pre-processing

In this section we give an overview of the preprocessing steps for inferring Sitka trees. Thesesteps are summarised in Supplementary Fig. 1.

cn.csv

Copy number and cell meta-data

cn_bin_filtered.c
sv

drop low-mapability bins 

cn_bin_cell_filte
red.csv

drop low-quality, 
contaminated,

 and cycling cells

cn_bin_cell_filte
red_no_jump.csv

drop suspect cycling cells

Supplementary Figure 1 – Filtering the CNA data for tree inference.
1.1. HMMcopy pre-processing

Corrected CNA states from HMMCopy are stored in cn.csv.gz and this file is the input to ourpreprocessing pipeline. For this work the data was stored in the cloud (Microsoft Azure) andthe scgenome API was used to access and download the data. Please see https://github.com/
shahcompbio/scgenome for documentation. The scgenome API ensures that only cells with thecorrect sample_ids are selected, removes control cells and cells that have fewer than 10,000mapped reads.
1.2. Filtering low-mappability bins

Some copy number bins are located at parts of the genome where sequencing is difficult, forexample due to inaccessibility of the genome at that position. This is reflected in theirmappabilityscore. We filter the CNA matrix to keep high-map-ability bins cn_bin_filtered.csv.gz. In thiswork we use a cutoff threshold of map >=.99 that yields 4375/6206 or 0.705% of the bins. Thelist of kept bins is identical across all datasets.
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1.3. Filtering low-quality cells
In this step, a second round of quality control is done. Cells with a quality score, as de-fined in Laks et al., 2019, of over 0.75 or higher are kept, while the other ones which aresuspected to be contaminated (e.g., mouse cells) or cycling cells are removed. This results in

cn_bin_cell_filtered.csv.gz.
1.4. Filtering cells with excess CNA changes

Some cells show a “jumpy” CNA profile in which there are too many copy number changes.It appears that these cells are either in early or late stages of division and were missed by theS-phase classifier. The CNA profile of early replicating cells is patterned by seemingly scatteredfocal amplifications while the late replicating cells show scattered focal deletions. Note that notall parts of the genome duplicate at the same time upon cell division. Regions that start duplicat-ing later will show as having focal deletions in cells captured at their later replicating stage; theseregions would have not started to duplicate by the time the sample was prepared for sequencing.These scattered patterns Supplementary Fig. 2 do not directly reflect the evolutionary historyof the cells and are detrimental to phylogenetic tree inference.
2.5. Tree evaluation

Figure 2.8: Phylogenetic tree and CNA profile heatmap for the SA501 dataset.

2.5 Tree evaluation

2.5.1 Predictive test

To evaluate the inferred trees, we suggest a test that involves predicting the entries in the input

binary matrix given to the tree inference method. We take the binarised input matrix yC⇥L, the

input matrix to the sitka algorithm as described in Section 2.3.4 as ground truth. Consider an

inferred tree, ⌧ , and the corresponding genotype matrix g = T (⌧). In general the inferred trees

from the baseline methods do not have named internal nodes, nor do they have the same number of

internal nodes as the number of loci L. Therefore we do not know which locus in the inferred tree

⌧ corresponds to which locus in the matrix y. We note that this is not the case with trees inferred

from sitka where the internal nodes of the tree correspond to the columns of the induced genotype

matrix. As a result, for methods other than sitka, for each column in the input data matrix, we

pick a clade in ⌧ that has the highest prediction accuracy for the entries in that column.

For each method, we report Youden’s J index [109] which is equal to sensitivity + specificity -

1. We define below the function h to be a binary classification counts matrix, i.e., for two C-vectors

w and z it forms the confusion matrix. h : {0, 1}1⇥C ⇥ {0, 1}1⇥C 7! {0, 1}2⇥2 where

hi,j(w, z) =
X

c2C

1 (wc = i)1 (zc = j) .

25

Copy number state

Sporadic localised deletions on chromosome 4 (top) and
 chromosomes 7 and 8  (bottom) are 
likely a sign of late-replicating cells. 

C
ells

Chromosomes

Clade comprising likely late-replicating cells 

Supplementary Figure 2 – An example of replicating cells. Note the scattered localiseddeletions. This heatmap is from a HER2+ PDX line. These late replicating cells form afinger like clade in the tree. The top inset shows chromosome 4 while the bottom insetspans chromosomes 7 and 8.
Here we rank cells by the number of changes in their copy number states (achange is measured between consecutive bins) and pick the 90% percentile. The file

cn_bin_cell_filtered_no_jump.csv.gz contains the integer copy number state with the fi-nal list of cells and genomic bins. An example input matrix is shown in Fig. 1-awhere the integercopy numbers are coloured coded in a heatmap. Attrition rate due to filtering of cells is shownin Supplementary Table 2.
2. Baseline methods

Here we give a brief description of the baseline methods to which we compare sitka.
UPGMA Sokal, 1958, WPGMA Sokal, 1958 and Neighbour Joining (NJ) Saitou and Nei, 1987 are alldistance-based phylogenetic inference methods, that is, they use the input data to first computea similarity matrix between single-cells and then proceed to construct an agglomerative cluster-ing in an iterative process. HDBSCAN Campello et al., 2013 on the other hand is a heuristicthat, roughly speaking, computes the minimum spanning tree from a low dimensional represen-tation of the CN matrix. MEDALTWang et al., 2021 is another distance based method that usesthe Chu–Liu’s algorithm to compute a directed minimum spanning tree from the matrix of mini-mum edit distance. Medicc2 Kaufmann et al., 2022 uses a finite state transducer to model copynumber evolution over time, taking into account allele specific and whole genome duplicationevents. MrBayes Huelsenbeck and Ronquist, 2001 is a Bayesian phylogenetics framework that
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implements multiple evolutionary models and uses MCMC to approximate the posterior distri-bution of trees and model parameters.
3. Tree shape statistics

All three trees from the three real data experiments are imbalanced Bortolussi et al., 2006relative to a Yule model (Supplementary Fig. 3-a). Unbalanced tree topologies appear and are ex-
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pected in adapting populations Neher and Hallatschek, 2013. In SA535 and OV 2295 the samplesubtrees become more balanced over time and post-relapse respectively. In contrast, SA501 ex-hibits a decrease in balancedness, except timepoint X11, where a marked increase in imbalanceis observed (Supplementary Fig. 3-b,c).sitka inferred trees are not dichotomous therefore we first resolve multichotomies into di-chotomies. As there aremultiple ways to resolvemultichotomies, we do this 100 times, resolvingmultichotomies uniformly at random. We then compute the balance statistics on each resultingdichotomous tree and report the average in Supplementary Fig. 3-a-c. We report three balancestatistics, namely Sackin, Colless, and Beta Paradis, 2011.The Sackin Coronado et al., 2020 and Colless Coronado et al., 2020 statistics are both mea-sures of imbalance of a rooted phylogenetic tree. The former is the sum of the depth of theleaves, while the latter is the sum of the absolute values of the difference between the numberof descendent leaves of the left and the right child of each internal node. The Yule Coronado etal., 2020 model is a probabilistic model for bifurcating phylogenetic trees. Under this stochasticmodel, a phylogenetic tree with N leaves is generated by an iterative process: given rooted treewith 2 leaves, pick a leaf node uniformly randomly, and attach two new leaf nodes to it until thetree has N nodes.We measure the change in the balance of the tree over time in two ways: (i) starting withthe first timepoint and progressively adding more timepoints Supplementary Fig. 3-b), (ii) in in-dividual timepoints Supplementary Fig. 3-c). In the former, we start with the maximal subtree
τmax(Xt0) for cells in the first timepoint (Xt0 ), then compute themaximal subtree that contains the
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Dataset parameter value
Real datasets engine PTReal datasets globalParameterization trueReal datasets fprBound 0.1Real datasets fnrBound 0.5Real datasets nChains 1Real datasets nScans 1000Real datasets nPassesPerScan 1Real datasets thinning 1Real datasets burnin fraction 0.5
S90 engine PT
S90 globalParameterization true
S90 fprBound 0.5
S90 fnrBound 0.5
S90 nChains 1
S90 nScans 20000
S90 nPassesPerScan 1
S90 thinning 1
S90 burnin fraction 0.5
S10 globalParameterization true, false
S130 globalParameterization true
S10,S130 engine PT
S10,S130 fprBound 0.1
S10,S130 fnrBound 0.5
S10,S130 nChains 8
S10,S130 nScans 5000
S10,S130 nPassesPerScan 10
S10,S130 thinning 1
S10,S130 burnin fraction 0.5

Supplemental Table 1 – Inference settings used for each dataset.
first two timepoints τmax((Xt0 ,Xt1)), and continue until all timepoints are included.We report theimbalance statistic for each subtree constructed in this process. In the latter, for each timepoint
Xt , we find the maximal subtree τmax(Xt) that contains all cells from timepoint Xt , and report theimbalance index for it.
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