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Abstract

A new generation of scalable single cell whole genome sequencing (scWGS) methods al-
lows unprecedented high resolution measurement of the evolutionary dynamics of cancer
cell populations. Phylogenetic reconstruction is central to identifying sub-populations and
distinguishing the mutational processes that gave rise to them. Existing phylogenetic tree
building models do not scale to the tens of thousands of high resolution genomes achiev-
able with current scWGS methods. We constructed a phylogenetic model and associated
Bayesian inference procedure, sitka, specifically for scWGS data. The method is based on a
novel phylogenetic encoding of copy number (CN) data, the sitka transformation, that sim-
plifies the site dependencies induced by rearrangements while still forming a sound founda-
tion to phylogenetic inference. The sitka transformation allows us to design novel scalable
Markov chain Monte Carlo (MCMC) algorithms. Moreover, we introduce a novel point mu-
tation calling method that incorporates the CN data and the underlying phylogenetic tree
to overcome the low per-cell coverage of scWGS. We demonstrate our method on three
single cell datasets, including a novel PDX series, and analyse the topological properties of
the inferred trees. Sitka is freely available at https:/github.com/UBC-Stat-ML/sitkatree.git
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1. Introduction

A main challenge in investigating cancer evolution is the need to resolve the subpopulation
structure of a heterogeneous tumour sample. Advances in next generation scWGS have enabled
more accurate, quantitative measurements of tumours as they evolve (Baslan et al., 2012; Gawad
et al., 2016; Laks et al., 2019; Pellegrino et al., 2018). Phylogenetic reconstruction is central to
identifying clones in longitudinal xenoengraftment (Quinn et al., 2021; Salehi et al., 2021) as
well as patients (Abbosh et al., 2017), and has been used to approximate the rate and timing of
mutation (Wang et al., 2014) to determine the origins and clonality of metastasis (Leung et al.,
2017; Yu et al., 2014).

Single cell cancer phylogenetics is an evolving field. Multiple approaches, spanning different
study designs and data sources are reviewed in Schwartz and Schéaffer, 2017. Many phyloge-
netic inference methods such as Scite, Sci®, OncoNEM and SciClone use the often-made infi-
nite site model assumption and consider point mutations as input or assume a small number
of leaf nodes (Jahn et al., 2016; Miller et al., 2014; Ross and Markowetz, 2016; Singer et al.,
2018). However, emerging single cell platforms produce up to thousands of single cell genomes
and are suitable for determining copy number aberrations (CNA) (Laks et al., 2019; Zahn et al.,
2017). Compared to phylogenetic methods based on point mutations, fewer can build phyloge-
nies from large scale CN data. Recent related work includes MEDALT (Kaufmann et al., 2022),
which models single-cell copy number lineages using a spanning tree over cells rather than a
phylogeny; and SCARLET (Satas et al., 2020), which proposes a point mutation-based phylogeny
inference procedure that calibrates mutation losses with copy number profiles. Distance based
and agglomerative clustering methods such as neighbour joining (Wang et al., 2021; Xu et al.,
2012) are often used to elucidate hierarchical structures over cells, in particular, in the context
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of CNA, see Kaufmann et al., 2022, however, distance-based methods tend to produce less ac-
curate tree reconstructions (Guindon and Gascuel, 2003; Kuhner and Felsenstein, 1994: Som,
2009; Williams and Moret, 2003).

Single cell whole genome DNA sequencing provides low, yet uniform coverage (Laks et al.,
2019). That is, the sequenced reads cover for each single cell about 0.1 per cent of the genome.
In this setting, most point mutations are not observed in most single cells making calling SNVs
difficult. However, it is possible to identify the relative copy number for segments of the genome.
These copy number events can be used as phylogenetic markers.

We describe sitka, a phylogenetic model and an associated Bayesian inference procedure
designed specifically for inference based on CN information extracted from scWGS data (see
Fig. 1). Our method addresses two key challenges: first, each CNA event typically affects a large
number of genomic sites, breaking the independence assumptions required by existing phylo-
genetic methods (Ma et al., 2008; Malikic et al., 2019; Ross and Markowetz, 2016; Singer et
al., 2018); second, while detailed modelling of dependent evolutionary processes is in principle
possible, they entail computational requirements incompatible with the scale of modern scWGS
data (Greenman et al., 2012). To confront these two difficulties, sitka uses a novel phylogenetic
encoding of CN data, providing a statistical-computational trade-off by simplifying the site de-
pendencies induced by rearrangements, while still forming a sound foundation to phylogenetic
inference. Based on this encoding, we propose an innovative phylogenetic tree exploration move
which makes the cost of Markov chain Monte Carlo (MCMC) iterations bounded by O(|C| + |L|),
where |C| is the number of cells and |L| is the number of loci. In contrast, existing off-the-shelf
likelihood-based methods incur aniteration cost of O(|C| |L|) (Ross and Markowetz, 2016; Singer
et al., 2018; Zafar et al., 2017). Moreover, the novel move considers an exponential number of
neighbouring trees whereas off-the-shelf moves consider a polynomial size set of neighbours.

Sitka's workflow proceeds by partitioning the CN information extracted from scWGS data
of each cell into bins of fixed size (500Kb) with an integer CN state associated with each bin.
This input data is then transformed into a binary format that captures CN changes, but not their
direction or magnitude. Conditional on this binary encoding, sitka then yields an approximate
posterior distribution on compatible phylogenetic trees.

Potential applications of sitka include lineage tracing and subclonal structure identification. In
lineage tracing the goal is to relate single cells to their ancestors based on genomic markers. This
is especially useful in experimental designs where multiple samples from the same subject exist,
e.g., multi-region or timeseries studies (Salehi et al., 2021). In subclonal structure identification,
the topology of the inferred phylogeny can be used to make inferences about the evolutionary
forces acting on the trees (Househam et al., 2022).

We compare sitka with other tree inference methods on three real-world datasets, includ-
ing triple negative breast cancer patient derived xenograft samples, high grade serous ovarian
primary and matched relapse samples. Since the true phylogeny is unknown, we design a phylo-
genetic goodness-of-fit framework to quantitatively assess the performance of our method and
to visualize reconstruction confidence as well as violations of our assumptions.

We use the sitka inferred trees to analyse the topological properties of the real-world datasets.
Finally, we introduce a model extension that enables the placement of single nucleotide variants
(SNV) with high levels of missingness on a tree inferred from the CN data.

2. Methods

2.1. Pre-processing

The raw data contain cells that are either contaminated (e.g., contains biological material
from mice) or have undesired sequencing artefacts. These include cells that were captured for
DNA sequencing when undergoing mitosis. Since the sitka model does not account for such
phenomena, the filtering is an important step. Supplementary Fig. 1 shows the steps taken from
pulling the raw data to the CNA integer matrix ready for sitka transformation (details in the
Supplementary Information).
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Figure 1 - (a) Sitka takes copy number calls data from a heterogeneous single-cell pop-
ulation. The cells (rows of the copy number matrix) are randomly sorted. (b) A lossy bi-
nary transformation is applied to obtain markers data. (Methods section 2.2 and Fig. 2).
Note that each single-cell is now represented by the presence or absence of CN changes
between consecutive bins. (c) The boundary conditions are smoothed to account for
cell-specific marker misalignment (Methods section 2.3). Note how the columns in the
inset in panel-c are less noisy than their counterpart in panel-b. (d) A subset of markers
present in at least 5 percent of the cells are chosen for input to the tree inference algo-
rithm. (e) An MCMC algorithm efficiently explores the tree space. (f) An example of an
edge-insertion. The two insets are zoomed in from panel-e. Each inset depicts a subtree,
where red diamonds and blue circles denote marker nodes and single-cells respectively.
Also see Fig. 4 for details. (g) The indicator matrix of all post-burn-in MCMC trees are
averaged to generate a matrix indicating the posterior probability of a cell being attached
to a marker (Methods section 2.4.5). (h) The copy number data in (a) is sorted according
to the inferred consensus tree, shown on the left of the matrix. (i) The inset shows the
tuple of marker columns in the context of the copy number calls, namely inf. (inferred
markers, i.e., latent state x. ;), post. (posterior probability of the latent state x. ;), and obs.
(observed markers), interlaced with the CN columns (similar to Fig. 2). The results are
from the SA535 dataset, a triple negative breast cancer patient derived xenograft sample
(Methods section 3.2.)
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Briefly, we remove control cells, cells with highly-noisy CN calls, and cells that have very few
mapped reads. We also remove copy number bins that lie in difficult to sequence regions of the
genome (bins with low-mappability). Finally, we drop cells that, based on their CNA profile, are
suspected to be cycling cells. See the Section 1 of the supplementary text for further details.

2.2. The sitka transformation

To obtain the C x Lmarkers Phylogenetic markers matrix y that comprises the input to the sitka
model, we apply a lossy transformation to the C x Lg;,s CNA matrix a that involves computing the
change in copy number state between two consecutive bins. Fig. 2 shows a small CNA matrix and
its corresponding transformation into the marker matrix. For brevity, in what follows we assume
that only one chromosome is used, so that Lgjys = L and Lmarkers = Lgins — 1. In practice, we use

all available chromosomes, and Lymarkers = Lgins — Nche Where Nep, denotes the total number of
chromosomes used.

a b c
Copy number state Marker Copy number state Marker
. 0 1 2 30 4 . 5 . Present . 0 1 2 3 4 . 5 . Present
Mo W7 Ws WMo fol 1+ [] Absent Hs B Bs Mo [0l 11+ [] Absent
CNA matrix marker matrix CNA interlaced with markers
cell 1 Lol cell 1 © cell 1 B e
cell 2 Lo cell2 . | cell 2
cell 3 - cell 3 - j cell 3
cell 4 - cell 4 . . cell 4
cell 5 } cell5 i cell 5
~ N [sp} < ~— N o — - o ~ o - <
c C c C — — — c
5 5 5 5 g g g 5 5 5 5 5 5 =5
T © S x i~ X
E E E S S S
£ £ £
A chromosome

Figure 2 - A bin is a contiguous set of genomic positions. Each pair of consecutive bins
(e.g., bins 1 and 2 in (a)) is associated with a marker (e.g., marker 1) that measures for
each individual cell, whether there is a difference between the CNA states of the two
bins. (a) The observed CNA matrix for a subset of bins on a chromosome. The rows are
sequenced single cells, and the columns are bins. The CN states are colour-coded. (b)
The three markers shown are associated with the four bins. Each marker records the
presence (black) or absence (white) of a CN state change between a pair of consecutive
bins. Note that in the CNA matrix, there is a CN change at row 3 from bin 1 to bin 2
(CN state 3 to 6). This is reflected in the marker matrix, at row 3 of marker 1 with a
black square. There are no changes between bins 2 and 3 across any rows in the CNA
matrix. This is reflected in marker 2 comprising all white squares. (c) For visualisation
purposes, the CNA matrix can be interlaced with the marker matrix to more clearly show
where the CNA changes occur. Each column of the marker matrix is inserted between the
associated pair of columns in the CNA matrix. The resulting matrix is an example of an
augmented view that combines data from two or more sources (here the CNA matrix and
the marker matrix). In an augmented view, we call columns from each source a channel.

Given a filtered cell-by-locus matrix a, we sort bins by their genomic position. Then in each
chromosome, we compute markers as the binarised difference between consecutive bins. In
other words, y = (y.r)and /" € {1, ..., L — 1}, and
(1) Ve, = 1 ( |ac,l’ - ac,l’+1| > 0).
where 1(x) is the indicator function.
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2.3. Fixing jitter and selection of phylogenetic markers

The copy numbers available to us in this work are estimated independently for each cell.
This is one reason why the start position (bin) of the same CN change event may be slightly
different across cells, generating some jitter. We address this by enumerating each change point
column in order of decreasing density (where the density of column / is given by > . yc.1/|C|)
and merging the column with its kK = 2 immediate neighbours (see Algorithm 1 for details). An
example of the result of the jitter correction heuristic is shown in Fig. 1 panel c. To speed-up
computation, only a subset of markers present in at least a minimum number of cells are chosen
for phylogenetic inference. That is, we removed columns / in y with relative density 3~ . ¢ vc.1/|C|
less than a threshold, set to 5%. Larger values of this threshold may lead to less resolved clades
in the inferred tree.

Algorithm 1 JitterFix

1: procedure jitter-fix(y, k)
column-queue < OrderByDensityDecreasing(y)
columns-visited < {}
for column-index c in column-queue do
neighbours < neighbours (¢, y, k)
for column-index n in neighbours do > The function neighbours is defined as the k columns to the left
and k to the right of ¢ (when applicable)

S S

7: if n ¢ columns-visited then

8: Yi:Cc — Yi:Cc V Yi:cn

9: Yi:C,n < 0

10: columns-visited < columns-visited U n
11: return y

2.4. The sitka model

2.4.1. Model description. The sitka model starts with the perfect phylogeny assumption for the
latent variables x. ; but allows deviation from it via allowing noisy observations y. ;. In a perfect
phylogeny model, each phylogenetic trait arises only once on the rooted tree topology and all
cells descending from that position will inherit that trait and no deletions are allowed.

Let C and L denote the sets of cells and loci respectively.

We posit an observation probability model p(y|x, 8), where 6 are model parameters described
shortly, and both x and y are cell by locus matrices, the former being latent (derived from the un-
observed tree via x = x(t)), while the latter is the matrix obtained from the sitka transformation.
To model errors in copy number calls as well as perfect phylogeny violations, we introduce false
positive and negative rate parameters rf? ¢ (0,1) and r™N < (0, 1) respectively, and an error

matrix
PPN 11— rFP rFP
e = N PN

FP FN
p (.yC I|XCI rFP FN) - ;c,/:}r’c,/'
from which we set:
pylx.0) = TT TT p (veulxer, 5 (0), rEN(0)) -
lel ceC

We define two type of models, differing in the choice of functions r_ (-) and dimensionality
of 9: one based on global error parameters, and one based on locus- speaﬁc error parameters.

For the global parameterization, 0 = Ogiopal = (riiopar: fibbal)> ad the false positive and false
negative functions are given by rf7(0giopal) = rijopar and rE) (Ogiobal) = ripbal-

For the locus-specific error model, we set the error rates to be locus-dependent: § =
(rfP AP |FL'|D N AN r|FL’|\‘), rf’?(e) = rf” and rF() = rfN. With this extra flexibility, the
model can dlscount the effect of a trait violating the perfect phylogeny assumption, by setting
high error rates for the trait’s locus.
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The two parameterizations are compared in the Supplementary Information. We use the
global parameterization by default unless mentioned otherwise.

In both the global and locus-specific parameterizations, we need to construct a prior distri-
bution p(6) over the error parameters. Using a uniform prior distribution with support on [0, 1]
can lead to pathological cases as shown in Fig. 3. To avoid that, we use the following prior distri-
butions on the two types of error:

a b

True tree

root

P
latent / \ . latent

markerl/ \ v '"\r‘narker 2
© o0 >

cell1 cell2 cell3 cell4

Sitka transformation

oS oS
o' ()
&
& &

&

<&

Marker
. Present

D Absent

Latent marker matrix when Inferred tree when

FN FPo FN FP o

Tglobal =1+ T global — 1 Tglobal = L. 7global =1

root
. r " *
cell 1 ]
I; latent / Y . latent

cell 2 . Marker marker E/ \ Vs '\Lnarker 1

. Present

. © o0 >
| : Absent
cell 4 . 77777 D cell 1

cell2 cell3 cell4

Figure 3 - (a) The true tree reconstruction in a simple example with a balanced phylogeny
with two clades of size two, and two unique markers, coloured red and blue, that distin-
guish the left and right clades respectively. (b) The binarised input matrix correspond-
ing to the four cells at the two markers. The desired observation error rates should be
zero and the latent and observed marker matrices should match exactly, as the perfect
phylogeny assumption holds. If the observation error parameters are set to one, that is
rgﬁﬁbal =1land rgﬁybal = 1, then the latent marker matrix with all entries flipped as shown in
(c) will have an equal likelihood under this setting as the desired latent matrix has when
error rates are set to zero. (d) The incorrect tree reconstruction where the left and right
clades are erroneously assigned to the blue and red markers.

rFP ~ Uniform (O,ﬁ) ,

rFN ~ Uniform (Oﬁ) .

We use rFP = 1/2and rFN = 1/2in our experiments involving synthetic data. For experiments
on real world data, we use rFP = 1/10 and rFN = 1/2 as default. When the model is misspecified
from an overly conservative bound, the trace, and thus posterior distribution, collapses to the
boundaries. For example, when using a false positive rate of 0.1 for synthetic data, the resulting
approximate marginal posterior of the false positive rate corresponds to a near-point mass at
0.1. We did not observe such boundary collapse on the real datasets studied in this work.

Next, we describe the prior p(t) on phylogenies using a two-step generative process:

Sampling a mutation tree:: let V™ = L U {v*} denote a vertex set composed of one vertex
for each of the |L| loci plus one artificial root node v*. The artificial root node induces
an implicit notion of direction on the edges, viewing them as pointing away from v*. Let
T™ denote the set of trees t™ spanning V™. The interpretation of t™ is as follows: there
is a directed path from vertex/locus / to /I’ in t™ if and only if the trait indexed by / is
hypothesized to have emerged in a cell which is ancestral to the cell in which /” emerged.
Pick one element t™ € 7™,

Sampling cell assignments:: assign each cell to a vertex in t™. The interpretation of assign-
ing cell ¢ to locus / is that among the traits under study, c is hypothesized to possess only
the traits visited by the shortest path from v* to / in t,,. If a cell ¢ is assigned to v*, the
interpretation is that c is hypothesized to possess none of the traits under study.
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The number of possible trees obtained from this two-step sampling process is:
[T =|T"{f: C = LU{v"}}|
= (IL] + )IEFD=2( 1] 4 1)l
= (It + e,
where we use Cayley’s formula to compute |7™|. Hence the uniform prior probability mass func-
tion over the possible outputs of this two-step sampling process is given by:

1[t € T]
p(t) = (L + DT

where T is the set of all perfect phylogenetic trees that result from the two step generative
process described above. Simulation from the prior can be performed using Wilson’s algorithm
(Wilson, 1996), followed by independent categorical sampling to simulate the cell assignments.

This simple prior has a useful property: if a collection of say two splits are supported by m;
and my, traits, then the prior probability for an additional trait to support the first versus second
split is proportional to (m; + 1, my + 1). Therefore, there is a “rich gets richer” behaviour built-in
into the prior, which is viewed as useful in many Bayesian non-parametric models (Teh et al.,
2010). More precisely, this “rich gets richer” behaviour emerges when grouping trees into equiv-
alence classes and looking at the induced prior on these equivalence classes, i.e., the distribution
obtained by summing the prior over the trees in the equivalence class. Specifically, consider the
equivalence relation such that two type | trees t, t’ are in the same equivalence class if and only
if f(t) = f(t'), where f(-) consists in transforming t into a type Il tree while annotating each
edge by the number of events on that edge. Since there are different numbers of type | trees
in different equivalent classes, this means that the induced prior on these equivalence classes is
non-uniform.

2.4.2. Inference. The posterior distribution,

m(t,0) o< p(t)p(0)p(y|x(t). 0),
is approximated using MCMC. Two MCMC moves are used, described in the next two sections.
The posterior distribution is summarized using a Bayes estimator described in Section 2.4.5. The

model is implemented in the Blang probabilistic programming language (Bouchard-Coté et al.,
2022).

2.4.3. MCMC tree exploration move. Sitka uses a tree sampling move to efficiently explore, at
each MCMC iteration, the posterior distribution in a large neighbourhood of a given tree. Given
atree t and locus /, we define a neighbourhood N'(t) C 7 by removing / from t, and considering
all possible ways to reattach / and hence defining a neighbourhood of phylogenetic trees (we
also implemented a separate move reattaching cell nodes instead of locus nodes, its derivation
follows similar lines as the move described in this section). The process of removing / is called
an edge-contraction (removing an edge after connecting its two end-points) while the process of
adding back a locus is called an edge-insertion. An edge insertion (see Fig. 4 for a visualization)
can be described as follows:

(1) Pick a non-cell vertex v, i.e., an element from the set R = {v*} U L\{/} where v* is the
root node.

(2) Pick any subset of v's descendent subtrees and disconnect them from v.

(3) Add a new node / under v and move the selected nodes from step 2 above and attach
them to /.

In the following, we derive the probability distributions to be used in steps 1 and 2 above that
lead to a Gibbs sampling algorithm (Geman and Geman, 1984). The Gibbs sampler first selects
a locus / from a fixed distribution (a tuning parameter), which we take for simplicity as being
uniform over the |L| loci.
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a Edge contraction b

t

AA

Edge insertion AAAN

VANWANGN —EEsEss

Figure 4 - (a) Reading from left to right: the interpretation of removing a column in the
matrix x is to perform contraction of an edge corresponding to a locus shown in bold.
Reading from right to left: the interpretation of inserting back a column while assigning
new binary values is an edge insertion. The circled node v refers to Step 1. The subtrees
in bold refer to those selected in Step 2. The edge in bold, the one introduced in Step 3.
(b) Decomposition used for the recursion of Section 2.4.3.

After having sampled /, we partition N’(t\,) into blocks corresponding to the choice of node
v made in Step 1, N/(t;) = U,N/(t,). The Gibbs conditional probabilities required in step 1
above are of the form:

pv ==

Y Yverpv
where:
(2) po=Y_ p(t)p(ylx(t),0),

teN)(t\)

and t,; denotes the tree obtained after performing an edge contraction, where the contracted
edge is between / and the parent node of /. To compute p, efficiently, we start with the following
likelihood recursion for all vertex v in t,. First, for all vertices c corresponding to a cell and
b € {0,1}, define:

P2 =P (veu|b.0).
Next, we perform the following bottom-up recursion for all subtrees of t;: for all v € R,

be{0,1},
o= II »b
v’’echildren(v)
where children(v) denotes the list of children of vertex v.

We can now return to the problem of computing p,. First, observe that the sum in Equa-
tion (2) can be re-indexed by a bit vector b = (by, by, ..., bx), b,» € {0,1} of length equal to
k = |children(v)|. Each bit b, is equal to one if children v” is to be moved into a child of v/ (refer
to Fig. 4), and zero if it is to stay as a child of v. For each possible assignment, we obtain a tree
t e N",(t\,), and its probability can be decomposed into factors corresponding to cells that are
descendant of v (denoted C,, solid red thick line under the tree of Fig. 4-B) and those that are
not (denoted Cvs dashed green thick line under the tree of Fig. 4-B).

The product of the likelihood factors corresponding to cells that are not descendants of v
(“outside product”) does not depend on the choice of the bit vector. This outside product can be
obtained as follows:

0 __ Pe*
H pc -

0"
CEC\V Pv

Note that this assumes p8 > 0. As a workaround to cases where there are structural zeros, we
recommend injecting small numerical values if p% = 0 (we used 10~° in our implementation).
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For the cells under v, we now have to take into account whether they are selected under the
newly introduced locus or not. More precisely, for each of the children vi, vs, ..., vk, we have to
take into account the value of the bit vector b = (b1, by, ..., bx). The sum over possible assign-
ments written naively has a number of terms which is exponential in k, but can be rewritten into
a product over k factors:

ST e Z Z HPV, = H(pv, +pL).

tENI(t\/) CECV 1 =0 bk 0i=1
Putting it all together, we obtain for some constants K; independent of v:

pv=K > plylx(t).0)

ten!(t)

=k Y TT TP (verlxen(e) rE0). 1N ()

teNI(t\/) I'eL ceC

(H IT p (verlxer(e). iE5(0). f%(e))) S I P (verlxes(r). 50, rEN(0))

IeLl'#l ceC teN)(r,) c€C

=Kk S T P (veslxeu(t). 50, /£ (9))

teN)(t,) c€C
=Kk Y, ]I pre! )

teN)(t,) c€C

=KiK2 (H P?C"(t)) ( 11 Pfc"(t))

tEN‘I/(t\/) ceCy, CEC\V

— K]_K2 ( H péc,l(t)) Z H chI

CEC\V tEN",(l’\/) ceC,

0
— K1 Ko <on*> Z H p>c<c,/(t)

Y/ teNl(t,) c€C

0 k
= K1 K> <F;V0 > H(PS,- + P\lx,-)

H 1(pv, + pv,)
ol '

v

= K1 K> K3

Putting these together we can compute the probabilities required in step 1 above:

= Pv
’ D_veR Pv
< Hv,-echndren(v) (pe,-JFP\l/,) )
P
(4) _ |
Hv[.’EchiIdren(V) (PS;+P‘1,,(>
ZVGR pg

Once v is sampled, we choose a subset of its children to move to v/ by sampling k indepen-
dent Bernoulli random variables with the /-th one having bias
1
Py,
pe,' + pV,' ’
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and selecting children with corresponding Bernoulli realisations of 1.

2.4.4. MCMC parameter exploration move. To resample the parameters § we condition on the
tree t, and hence on the hidden state matrix x, and update 6 in a Metropolis-within-Gibbs frame-
work. There are two different samplers depending on whether the global or locus-specific pa-
rameterization is used. We start with describing the former.

We compute two sufficient statistics from the matrix x (i) the number of false positive in-

stances, n"", and (i) the number of false negative instances, nfN,

nP = nfP(x) = Z Z 1xc; =0,yc=1]

ceC lelL
nfN — nFN(x) = Z Z 1[xc; =1,y =0].
ceC lel
Based on these cached statistics, we obtain:
nFP nFN AN_pFN nP_pfP
(5) p(y|x, Oglobal) (rFP) (rFN) (1 — rFP> (1 — rFN> ,

where the the number of positive n” and negative n\ instances in the data can be pre-computed,
n’ = Z Z 1yc, = 1]
ceC leL
N =|C||L] - nP.
Based on the above expression, which can be evaluated in O(1) once the statistics are com-
puted, we then use a slice sampling algorithm to update the parameters (Neal, 2003).

The sampler for the locus-specific parameterization is very similar. The main difference is
that we compute the statistics for each locus /:

P = P(x) = 3 L = 0.yes = 1]

ceC

an = an(X) = Z 1[x.; =1y, =0]
ceC
”? = Z 1[)/6,/ =1]

ceC
N p
ny =|C|—nj
FN FP

_ PP (NN _FP n)—n] _FN ny—n]
P(}/|X:9)—17[<f/) (r, > (1 f/) (1 i ) :

Then a slice sampling move is applied to each locus-specific parameter.

2.4.5. Posterior summarization. To summarize the posterior distribution using a point estimate,
we approximate the Bayes estimator (Robert, 2007) by minimising the Bayes risk for a loss func-
tion L(a, (¢, 0')) encoding the cost of selecting an “action” a when the true tree is t’ and the true
parameter is ¢’:

(6) argmin 3 /Z(a,(t’,H/))ﬂ(t’,G’)dG’.
@ veT
Here, an “action” consists in selecting a consensus tree t. Moreover, the loss function we
consider only depends on the true tree t' and not on the true parameter ', so we write this loss
function as L(t, t’), simplifying the above equation into:

(7) TConsensus = arg min Z /L(t, tr(t',0')do'.
teT teT
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One default choice for L(t, t') is the L; metric on the matrices of induced indicators x(t), x(t'):
Lt ) =)0 Ixeu(t) = xeu(t)].
leL ceC

It is useful to define the marginal indicators m ; that can be conceptualised as the posterior
probability of cell ¢ to have trait /:

mei=Y /1[xc,,(t’) — 1Jx (¢, 6) d6.

t'eT
Using the MCMC samples t1, ¢, ..., t", we obtain a Monte Carlo approximation:

N

_ 1 i

Mme,| = N § Xc,l(tl) — Mc |,
i=1

with probability one.
Fig. 1-g shows an example of the matrix m each element of which is one of the approximated
mc,; . We can now write the objective function of Equation (7) via the above marginal indicators:

3 /L(t, (¢, 0)do’ = 3 /ZZ Ixe 1(£) = xe (£ (£, 0') d¢/

veT t'eT " lel ceC

=SS Y [ Irett) = xeal@) (e ) 00

leL ceCt'eT

= Z Z {mC,/(l — XC'/(t)) + (1 - mc,l)xc,l(t)}

lel ceC

(8) =" {xci(t) — 2mc xc,(t)} + constant.
lel ceC
We use a greedy algorithm to approximately minimize Equation (8). We start with a star tree
with leaves C rooted at v* and add loci from L one by one from a locus queue sorted by priority
score. The priority score of each locus / is computed as

. q(t")
ty(/) = —_,
priority(/) t/eml\zll’)((t) Zt”eN’(t) q(t")

where

q(x) = H H qe.i(Xe,1)

ceClel(x)
qc,I(Xc,l) = 2mC,/XC,/ — Xe,I-

The quantities in the priority queue can be computed as in Section 2.4.3. We take the result of
the minimization of the Bayes risk as the consensus tree Tconsensus-

2.4.6. Consensus tree and CNA heatmap visualisation. To visualize the consensus tree, we col-
lapse the chains (sequence of loci having only one child) as well as remove the subtrees contain-
ing no cells. We align the leaves of the tree which correspond to cells after collapsing to the rows
of a cell-locus matrix.

2.5. Synthetic experiments

2.5.1. Benchmarking. To assess the performance of sitka against alternative approaches, we ran
inference on 90 simulated datasets of varying characteristics. We will refer to this set of datasets
as S90; its simulation procedure is described in Section 2.5.3. Fig. 5 shows four such simulated
datasets. For each dataset in 590, we scored each method by computing the Robinson-Foulds
(RF) (Robinson and Foulds, 1981) distance between the simulated tree and the inferred tree.
The scores were normalized within each dataset by dividing each method’s score by the worst
performing method’s score (note that the set of methods includes sampling a tree uniformly at
random; the motivation of this normalization is to correct for the intrinsic difficulty of datasets).
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Figure 5 - Synthetic datasets simulated from the GBFBS model. The number of cells,
number of loci, and j values are are (500 x 800, —0.83), (1000 x 400, —0.1), (2000 x
800, —0.9), (3000 x 400, —0.48) for the upper left, upper right, lower left, and lower right
figures respectively.

We compared sitka against the following baseline methods: UPGMA, WPGMA, NJ, HDBSCAN, and
balanced and ordinary least-squares minimum-evolution methods (BME, OME respectively) of Des-
per and Gascuel, 2002. We also report the score of a uniformly random bifurcating tree, Uniform,
to help interpret the absolute scores. Each method was given raw data from 590, as well as input
identical to that of sitka, i.e., filtered binary marker data. Sitka's inference settings are summa-
rized in Supplementary Table 1.

Baseline methods performed significantly worse with sitka’s input and are thus omitted from
the following summary. Sitka’s normalized RF score (0.5740.04) outperformed all baseline meth-
ods, the next best performer was BME (0.91 4+ 0.07). Sitka ranked first in all 90 but one set of data,
where it ranked third for one dataset of size 500 x 800. These results are summarized in Fig. 6.

2.5.2. Exploratory experiments within sitka. To explore the effectiveness of global versus local
(locus-specific) parameterization (Section 2.4.1), and the posterior summarization method (Sec-
tion 2.4.5), we ran inference on 10 synthetic datasets. We will refer to this set of datasets as
510; its simulation procedure is described in Section 2.5.3. Inference settings are summarized in
Supplementary Table 1.

RF distances from the best-possible tree were computed as a metric. The best-possible tree
is defined as the perfect phylogenetic tree constructed from the noiseless synthetic, unviolated
cell-locus matrix data. Note that the best possible tree is derived from the true tree (i.e., the one
used in the first step of the generating process), but in general can be different. To understand
why, note that the tree generation process will simulate on each edge of the true tree a Poisson
distributed number of evolutionary events (Section 2.5.3). As a result, some edges can have zero
associated evolutionary events. This means that even if we turned off all observation noise it
would not be possible to recover these zero-event edges, they are in a sense unidentifiable. The
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Benchmark versus baseline methods
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Figure 6 - Tree reconstruction evaluation using a normalized Robinson-Foulds metric on
synthetic datasets from 590, simulated from Beta-splitting processes. Here normalization
is done by dividing the RF distance of each inference method by the worst performer per
dataset.

process of producing the best possible tree essentially consists in collapsing these zero-event
edges, hence forming a multifurcating reference tree.

For a baseline with which to compare the greedy estimator (GE) of Section 2.4.5, consider
the trace search estimator (TSE). The TSE is defined as a tree in the sampler trace that minimizes
the sample L; distance (Section 2.4.5). Formally,

TTSE = arg min Z L(t, t’),
te{t'} tre{t}

where {t'} denotes the set of trees that were sampled during the MCMC procedure.

The GE method outperformed the TSE method under both the global and local models. This
suggests the proposed GE can, informally, harness more information from the posterior. Under
the TSE, the global model (0.444-0.09; mean normalized RF score + standard error) outperformed
the local model (0.71 £ 0.06). This observation suggests that the local parameterization has a
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strong influence on the trace (in tree space) of our sampler, as the TSE is essentially a search
over the posterior sample. Under the GE, the global model (0.31 £ 0.07) and local model (0.30 +
0.07) performed evenly well. This observation suggests that the choice of parameterization does
not heavily influence the information contained in the marginal posterior over trees. Ultimately
this experiment suggests that the GE summarizes the marginal posterior sufficiently well such
that the global model, the simpler model of the two, suffices for reconstructing phylogenies and
should be the preferred model. A summarizing plot is shown in Fig. 7.

Estimator and parameterization comparison

0.8 1 ‘

o
o
f

Normalized RF distance
o
=

0.24

Gre'edy Traceéearch
estimator

Parameterization Global E2 Local

Figure 7 - A model and estimator comparison based on tree reconstruction accuracy for
datasets from S10. For each dataset, inference was performed on both the globally- and
locally-parameterized model. Both the greedy and trace search estimates were computed
for each inference result.

In our next synthetic experiment, we aimed to study the effects of perfect phylogeny as-
sumption violations on the reconstruction of trees, and attempted to draw connections to real
world data. The two violations considered are infinite sites and loss violations, described in Sec-
tion 2.5.3. Inference was performed on 130 datasets (5130). Inference settings are summarized
in Supplementary Table 1, and the simulation procedure for 5130 is described in Section 2.5.3.

The experiment results are summarized in Fig. 8-a. Holding one violation rate fixed at zero
and varying the other, we observed linear effects for both types of violations. The results suggest
sitka is more robust to infinite sites violations, with estimated effects to be 0.31 + 0.07 (normal-
ized RF distance + standard error), which is much less than loss violations (0.47 + 0.07). When
varied together, the linear effects were estimated to be 0.25 + 0.04, 0.38 & 0.04 respectively. In
an attempt to draw connections to real datasets, we developed a heuristic method to obtain a
rough estimate of both violation rates. The estimated rates obtained on real data were all less
than 0.25 (the estimation heuristic is described below; Fig. 8-b).

We now describe the heuristic we used to obtain rough estimates of the rates of the two
types of violation. Given the inferred tree and its corresponding marker matrix x (as in Sec-
tion 2.4.1), and the sitka-transformed marker matrix y (as in Section 2.2), define the difference
matrix z .= x — y, i.e., z has entries z; ; = x; j(t) — y; j, where t is the consensus reconstruction.
To motivate how we can detect violations of the Infinite Site assumption (IS, i.e., genomic bins in
which more than one events occur), and losses, refer to Fig. 9, and notice that these violations
tend to leave a distinctive pattern on the difference of the two matrices x (positive entries shown
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Figure 8 - (a) RF distance of sitka tree estimate to the best-possible tree. The first plot
holds p;s constant at zero. The second plot holds p,.ss constant at 0. The third plot varies
Pis = Pioss joOintly. (b) Estimation of violation rates in real data and a set of synthetic data.
(c) Over 20,000 SNV’s with high levels of missingness are placed on a backbone tree
inferred from the CNA data for SA535.

in black in the Figure) and y (positive entries shown in orange in the Figure). Specifically, define
Zl0ss With entries z{9% == 1(z;; > 0), and similarly zs with entries z> = 1(z; < 0). Given an
integer-valued threshold ¢, > 0, we say a column or trait / in z, (for v € {Loss, IS}) has a violation
if there exists an island of size at least as large as ¢,. An island of size s in column / is defined to
be any sequence of row indices /,i +1,...,i + s such that z, = z/,, , = --- = z/,,, = 1 and
7/ 11, 2{ 541, are, not necessarily the same, 0 or undefined. Finally, the proportion of columns
with a given type of violation, loss or infinite sites, is taken to be the violation rate estimate.

We also performed experiments to compare our full Bayesian analysis to Maximum Likeli-
hood estimation (MLE). To do so, we generated data as follows: we first sampled a tree gener-
ated uniformly over topologies; second, we generated synthetic data according to y.|xc; ~
Normal(x. , 02), varying o2 to control the amount of noise. We generate matrices of size
|C| = 1000 and |L| = 50 for 0 € {1/10,2/10, ...,5/10}. In these experiments we provide the
well-specified noise model to both inference methods. We approximate the MLE using a greedy
scheme with the same structure as the one described in Section 2.4.5. The results are shown
in Fig. 10. The Bayesian methods outperform the greedy maximum likelihood heuristic by a large
margin.

Finally, we investigate the impact of ignoring pairwise dependencies between the two end
points of CNA events. We first make the observation that if we subset the sitka markers to keep
only those where the copy number is increasing from left to right, we retain only one end point
of each paired event. This creates a smaller set of independent markers L’ C L. We can compute
one sitka tree t based on all L loci (which includes ignored pairwise dependencies), and one sitka
tree t’ based on L’ (a smaller set of independent loci). We can then inspect the proportion of
identical entries in the matrices x(t') compared to x(t), the latter subsetted to the columnsin L'.
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D\%

Markers a bc de

Figure 9 - Allocus in SA535 that violates the perfect phylogeny assumption. The method
is robust to this violation and correctly allocates the other relations (positive x entries
shown in black in the matrix; positive y entries shown in orange; posterior marginals
m in shades of red). (a) the part of the tree where the violation occurs, magnified in
(b), where the short band of orange not matched with a black band is indicative of the
violation. (c) the corresponding tree showing the two points of the tree where the two
events collocated in the same bin occurred in the tree. The sister clades of a,b and d
suggest that this is a case of two insertion events rather than a loss.
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Figure 10 - Synthetic data results comparing our Bayesian estimator to a Maximum Like-
lihood Estimator (MLE). Boxes from left to right show different amounts of noise in the
synthetic data generation, corresponding to values for ¢2. The y axis measures the L1
tree distances loss, normalized by | C||L|.

We performed the experiment described above on the S90 datasets (described in 2.5.3)
with three noise regimes described as follows: () where step (ii) in 2.5.3 is skipped; (ll)
uniform noise parameters FPR and FNR drawn from uniform distributions on the intervals
(0.0005, 0.005), (0.005, 0.015) respectively, doubling noise parameters drawn from a uniform dis-
tribution on (0.015, 0.035) distribution, jitter noise parameters drawn from a uniform distribution
on (0.15,0.35); (lll) uniform noise parameters FPR and FNR drawn from uniform distributions
on the intervals (0.001, 0.01), (0.01, 0.03) respectively, doubling noise parameters drawn from a
uniform distribution on (0.03, 0.07) distribution, jitter noise parameters drawn from a uniform
distribution on (0.3, 0.7). All results are averaged over 15 datasets.

In all three noise regimes we observed a large overlap between t and t/, but this overlap is
negatively correlated with noise: in regime (l) we observed a mean overlap of 0.99 (sd 0.004);
in regime (I1), a mean overlap of 0.97 (sd 0.009); in regime (ll1), a mean overlap of 0.76 (sd 0.18).
The results support that in a low to moderate noise regime, it is reasonable to ignore violation
of pairwise dependencies for the purpose of point estimation (consensus tree construction). In
the higher noise regime, it may be advantageous to build the two trees t and /. We expect
neither to systematically outperform the other, the trade-off being that t is built from more data
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but with independence violations, whereas t’ is built from less data but without independence
assumption violations. Our goodness-of-fit tests can be used to select one of these two trees
for final output.

2.5.3. Data simulation. Datasets in S90 were generated in two steps: (i) simulate a cell tree and
its corresponding CNA data, and (i) inject noise into the CNA data from step one.

In the first step we used the simulator of Mallory et al., 2020 to generate trees along with
CNAs, where leaf nodes represent observed cells and internal nodes represent latent ancestral
cells, i.e., unobserved cells. An edge in the tree represents an ancestral relationship between the
respective cells.

The simulator of Mallory et al., 2020 itself consists of two parts, which we briefly describe
as follows. First, the simulator samples a tree based on a generalization of the Blum-Francois
Beta-splitting (GBFBS) model (Blum and Francois, 2006; Sainudiin and Véber, 2016), which is
inspired by the Beta-splitting model of Aldous, 1996. Authors of Sainudiin and Véber, 2016
argue the GBFBS model is capable of realizing topologies comparable to that of the original
Beta-splitting model. When 3 = o — —1, trees are totally imbalanced; when 8 = o — oo, trees
are perfectly balanced. The Beta-splitting model is particularly well-suited for generating a wide
range of topologies, varying from balanced to imbalanced tree structures. Second, given a tree,
CNAs are simulated on the edges of the tree where the number and size of CNAs are drawn
from Poisson and exponential distributions respectively. The simulator also accounts for clonal
whole chromosome amplification events, motivated by punctuated evolution models (Gao et al.,
2016).

The second step of our synthetic data simulation process, independent of Mallory et al., 2020,
injects noise into a cell by locus input CNA matrix y, and outputs a noisy matrix of the same size.
Three types of noise were employed, namely, uniform noise, jitter noise, and a doubling noise.

The uniform noise is parameterized by false positive (FPR) and false negative (FNR) rate pa-
rameters. For each element of the input matrix y;;, add an integer Nj; ~ Binomial(y;;, FNR) or
subtract an integer M;; ~ Binomial(1, FPR).

The doubling noise is parameterized by a probability py4: for each row of the CNA matrix y,
draw a factor K where K — 1 ~ Binomial(1, pq), which is then multiplied to the row of the CNA
matrix as noise. This procedure effectively, on average, doubles the copy number values for pqy
proportion of cells in the sample.

The jitter noise is parameterized by a probability p;. First, map the CNA matrix to its marker
matrix. Then for each marker, the locus corresponding to the marker is randomly duplicated to
the previous bin(s), or the next bin(s). The number of bins J to be overwritten — zero, one, or
two — is drawn from a Binomial(2, p;) distribution.

Datasets in S90 were of sizes {500, 1000, 1500, 2000, 2500, 3000} cells by (approximately)
{400, 600, 800} markers. For each combination of sizes, we generated five datasets based on
different random seeds and parameters to make a total of 6 x 3 x 5 = 90 datasets. The approxi-
mate number of markers is the target number of markers after correcting for jitter and filtering.
Fig. 5 shows the CNA profiles of a subset of simulated data.

To describe the simulation parameters used for 590, we follow the terminologies and no-
tation used in Mallory et al., 2020. For generating trees, the « and 8 values parameterize
the generalized Beta-splitting model. We used a symmetric parameterization of « = § €
{-0.9,-0.83,—-0.7, —0.48, —0.1}. For generating CNA data, the mean number of CNA to be
added to a branch in the tree was chosen to generate data with approximately the number of
desired markers post filtering and jitter-fixing. The multiplier of the mean CNA on the root was
set to 8, the whole amplification rate (rate of an allele chosen to be amplified) was set to 0.5.
The remaining parameters used default settings. See Mallory et al., 2020 for a more thorough
description of parameters.

For injecting noise, we drew the uniform noise parameters FPR and FNR from uniform distri-
butions on the intervals (0.001, 0.01), (0.01, 0.03) respectively. The doubling noise parameters pq
were drawn from a Uniform(0.03, 0.07) distribution. The jitter noise parameters p; were drawn
from a Uniform(0.3, 0.7) distribution.
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Datasets in S10 and S130 were also generated in two steps: (i) simulate a cell tree and its
corresponding binary marker data satisfying perfect phylogeny assumptions, and (ii) inject noise
and/or violations into the the binary marker data from step one.

In the first step, a tree is generated via Kingman'’s coalescent (Kingman, 1982). We used the R
packages (Schliep, 2011; Staab and Metzler, 2016) for simulation. Briefly, we sample a coalescent
tree for the set of cells C by uniformly selecting pairs of cells ¢;, ¢; € C to coalesce backwards
in time. The waiting time, or the branch length, between each event is exponentially distributed.
Conditionally on the coalescent tree and given a set of loci L, we simulate a |C| x |L| marker
matrix y. Every entry y; ; is initialized to 0. Then for each column /, we select a subset of cells C’
from C to set y;, to 1, for all i € C'. The subset of cells is sampled by choosing a branch on the
tree with probability proportional to the branch length, and selecting all cells descendant from
the selected branch. In essence, we are simulating the number of events via a Poisson process,
and directly mapping these events to the cell-locus marker matrix. The above concludes the data
generation procedure satisfying perfect phylogeny assumptions.

In the second step of S10’s simulator, we injected artificial noise by introducing standard
false positive and negative values into y. This concludes S10’s simulator. The simulator for S130
has an additional sampling step for controlling the degree of perfect phylogeny violations. We
considered two types of violations: (i) the loss of markers along a tree's branches, and (ii) the
violation of the infinite sites (IS) assumption, that is, the occurrence of multiple distinct events
in the same locus.

The procedure for simulating loss of marker events can be described as follows. First, ran-
domly select a locus /, then identify the most recent common ancestor a for the set of cells
{i : yi; = 1}. Given a, sample a cell d descendant of a (including a). Finally, the loss event is
simulated by reverting y;, to 0, for all i descendant of, and including, d.

IS model violations were simulated as follows. Uniformly sample a pair of loci (j, k), and merge
y.j. Y.k into one column, yielding a cell-locus matrix of size one less than the original size. How-
ever, to maintain control over |L|, datasets in 5130 were simulated with |L| 4+ Njs loci such that
after simulating IS violations, we recover a matrix of size |C| x |L|, where Ns is the number of IS
violations.

The total number of loss and infinite sites violation events (N oss, Nis) were drawn from bi-
nomial distributions with probability p oss, pis respectively (and size |L|). As a final step, false
positives and negatives were artificially injected.

For both S10 and S130, datasets of size |C| x |L| = 500 x 100 with FNR and FPR both
set to 0.002 were generated. For S130, the unordered pair (pLoss, pis) were set to values in
{(0,0),(0.1,0.1),...,(0.4,0.4)}u{(0,0.1), (0,0.2),(0,0.3), (0, 0.4) }. For each configuration of sim-
ulation parameters, 10 different seeds were used to generate a total of 10 and 130 datasets for
510 and 5130 respectively.

2.6. Goodness-of-fit

To evaluate the goodness-of-fit of inferred trees on real data, we suggest a test comparing
the posterior distribution over entries of the matrix x with the data y.

Since we will assess the goodness-of-fit of not only our method but also different baseline,
we start by explaining how we can generalize the notion of the x matrix used in our method to
other tree reconstruction methods. To do so, consider an inferred rooted tree, 7, and define a
matrix-value function g(7) as follows. If 7 is a tree inferred from sitka, set g(7) = x(7). For trees
inferred from baseline methods, we proceed as follows. Let 7 denote a rooted tree, u, one of its
unlabelled internal nodes, and c one of its leaves. Let clade(u) denote the clade corresponding
to u, i.e., the set of leaves descendent from u. We define g. ,(7) = 1]c € clade(7)].

In general the inferred trees from the baseline methods do not have named internal nodes,
nor do they have the same number of internal nodes as the number of loci L. Therefore we do
not know which locus in the inferred tree 7 corresponds to which locus in the matrix y. We
note that this is not the case with trees inferred from sitka where the internal nodes of the tree
correspond to the columns of the induced genotype matrix g. As a result, for methods other
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than sitka, for each column in the input data matrix, we pick a clade in 7 that has the highest
prediction accuracy for the entries in that column.

More precisely, for each method, we report Youden'’s J index (Youden, 1950) which is equal
to the sum of the sensitivity and specificity minus 1. We now define a binary classification counts
matrix function h, i.e., a function which, for two vectors w and z of length C, forms the confusion

matrix:
hij(w,z) = Z 1(we=1)1(zc =)).
ceC
For example hyo(w, z) would count the number of times both elements of w and z were
equal to zero (or true negative). We define accuracy for a given confusion matrix h = h(w, z) as

hoo + h11
acc(h) := S by
We further define sensitivity and specificity as
h11
hia+ hio'
ho,o
hoo + ho1’
youden(h) := sensitivity(h) + specificity(h) — 1.

sensitivity(h) :=

specificity(h) :=

For a given tree T and its corresponding genotype matrix g = g(7) we compute the Youden's
score as follows:

(1) forall locus /in y, h; := arg maxy ccolumns(g) 3 (h(y1, &.1)),

(2) hr = ZI’Ecqumns(g) hy

(3) youden_ := youden(h,).

That is for each locus in y, we take the clade that among all possible clades in 7 maximizes the
accuracy in predicting which cells are present in the /-th column of y. We then sum over all these
scores to compute a confusion matrix for 7 and use this agglomerative matrix to compute the
Youden'’s score for the tree. We use the delta method to calculate confidence intervals. Recall
that the delta method is concerned with the asymptotic behaviour of a distribution for a function
1) of an asymptotically Gaussian random vector. For a sequence of random vectors X, for which
(X, — 0) 25 (0, T), we have that /n(1(X,) — 1(6)) -2 N(0, V4 - X - Vab). In this context
we use the identity

1 1
rerhit rerhoo 1 1 1 1
[C] I el i
+ —1=:% ( ho,0, = ho,1, T~ h1,0, h1,1> :
7|é| hl,l + 7|é~‘ hl,O \é|h0’0 + ‘a hO,l ’C’ ‘C‘ ’C| ‘C‘

Fig. 11-d shows the Youden'’s score and its 95% confidence interval for sitka and 6 baseline
methods on 3 different real-world datasets. Sitka has a higher score than all competing methods.

youden(h) =

2.7. Application: assighment of single nucleotide variants

Here we posit an observation probability model for adding single nucleotide variant (SNV)
data to an existing phylogenetic tree.

For locus /in cell , let y2)'V' = (dc /, vc,1, cc,1) denote the observed SNV data where the total
number of reads, the number of reads with a variant allele, and the corresponding copy number
are indicated by d. j, v, and c.  respectively.

We use xff,"V to denote an indicator variable taking the value one if and only if an ancestor
of cell ¢ harboured a single nucleotide alteration event at locus /. This variable is unobserved
and the focus of inference in this section. As in the sitka model, we assume a perfect phylogeny
structure on these indicator variables, and add an error model to relate x2)'V' to the observed
data while allowing violations of the perfect phylogeny assumption and measurement noise. In

the context of single nucleotide data, this is similar to (Jahn et al., 2016). The parameters of the
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Figure 11 - (a), (b), and (c) show the consensus tree and marker-space matrix for the OVA,
SA501, and SA535 datasets respectively. (d) Comparison to baseline methods.)

error model are denoted 95NV = (eep. €en), Where egp and egy are false positive rate and false

negative rates, respectively. Define:

(9) aly = plyl1x2". 0>")

where d.; and c.; are given inputs. The likelihood probability of cell node c is denoted by qf’,,
where b € {0,1}. For b = 1, g2, reflects the likelihood of cell ¢ being mutated at locus /; and
for b = 0, 2, reflects the likelihood of cell ¢ not being mutated at locus /. For d.; = 0, we set
qf’, =0.5.

The probability qf__’v, is obtained by marginalizing a mixture of binomial distributions depending
on all possible genotype states of locus / at cell c. Given the copy number c. , the possible
genotype statesare G = {A... A,AA...B,A... BB, ..., B ... B}, where each element has a length
equal to c. ;. For example, the genotype AAB refers to a genotype with one variant allele B and
two reference alleles A. For each genotype state g;, where i indexes the elements of G, the mean
parameter of the corresponding binomial distribution is denoted by 5;",:

= p(ve,ilde,1, Cc,/,xf?’v = b,0°"Y),

B(gi
. %. 1 S B(g,) < Ce,l
(10) EC,I = 1—¢epp, B(g,') = Ce,Is
€FP, otherwise,
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where B(g;) represents the number of variant alleles of genotype g;. Therefore, for b = 1,
(11) qé, = p(ve,ilde,1, Cc,/,Xf,’/W =1, QSNV)

Ce,l

(12) = ZP gi[EC (1 — e p)erver]

+ernlepp (1 — eqp)der—el].

The value of p(g;) equals 1= EFN , and efy represents the error due to mutation loss or tree errors.

If the mutation status of cell ¢ at locus / is a wildtype (i.e., mutation is not present), then
the possible genotype states should not have any variant allele. The only possible genotype
state is {A... A}. The mean parameter of the binomial distribution equals e£p (false positive rate).
Therefore,

(13) a2 = p(Veilder, cei, xSV =0, epp).

With the proposed probability model for SNVs, we can incorporate both SNV data and CNA
data to infer the underlying tree phylogeny in the sitka model. Therefore,

(14) ‘X 9 H H P NA‘ CNA QCNA H py(.:SIIVV <:S,,IVV'95NV)'

ceClelena leLsny

where C and L are the disjoint set of cells and loci, respectively. In this section, the loci set L
includes both CNA and SNV traits.

Assume now that we seek to add one locus to an existing tree. We proceed similarly to
Section 2.4.3. Equation (4) can be rewritten in the following form:

[T 60+
vj €children(v)
(15) p

v = TGN
vj €children(v)
ZVGR 0

T

where 2, for b € {0,1} is:

b __ ) py. iflrepresentsa CNA locus,
T = qb, if I represents a SNV locus.
Forve R={v:}JL\{/},and b € {0,1}, the value of ¢° is

v" children(v)
For the cell nodes that are the leaves of the tree qf = ¢?2,.

2.7.1. Detection of SNVs for individual cells. Given a fixed CNA tree (denoted by t) and the read

counts data (y>NV denoted by y for simplicity), here the goal is to calculate the posterior distri-

bution of x5’,VV the mutation status of locus / at cell ¢, which we denote by x. ; for simplicity.

The joint probability distribution of x. ;, y and t can be written as:

(17) plxeryt) = > > plxent.y)
VER /e N (t\])

(18) = > > plxelt)pyt)p(t),
VER /e N (t\])

where R is the set of all loci nodes in the tree (including the root) excluding locus /. The joint
probability distribution is calculated as

(19) pxei=Ly )= > > pylt)e(t).

veP(c,t) t'eN](t\])
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The set P(c, t) denotes all nodes on the shortest path from cell ¢ to the root of the tree (including
the root and excluding the cell c node). An example of the path on an imaginary tree is depicted

in Fig. 12. The nodes coloured in green belong to P(c, t). Therefore, the posterior probability
distribution of x.; = 1 yields

=1,y.t) X, Sveniev P [t)p(t)

(20) P(Xc,/ _ 1’}/, t) _ p(XC,/ y ) _ €P(c,t) t'eNI(t\]) .
p(y. t) p(y. t)

Rewriting Equation (20) assuming uniform probability distribution for p(t’) yields:

plxcs=1ly. t)oc > > pylt),

veP(c,t) t'eN[(t\])

= > > IIII prerlt).

veP(c,t) t'eN|(t\l)I'ELc’EC

= > X 111 perlt) TI plyelt),

veP(et) 'eNJ(t\I) I'eL c’€C m'eC
I'#£1

=k > > II plelt),

veP(c,t) t'eN](t\l) c’€C

S I pedt) TT plyelt),

veP(c,t) t'eN](t\l) c'€Cy, c'eLy
where N denotes the set of all trait nodes, C denotes the set of all cell nodes, C, denotes the
cells that are a descendant of node v, and G, denotes the cells that are a not descendant of
node v. The product of the likelihood contributions for non-descendant nodes can be calculated
by taking the product of g2 for all cells, divided by the ones that are descendant of v:

Therefore:

0
(21) ples =1y ks > 2 S T plyedlt).

veP(c,t) q" t'eN|(t\I) c’eCy

Figure 12 - A schematic view of the underlying tree inferred from CNA and SNV loci
across multiple cells. Black and white nodes represent cells and loci, respectively. The

grey triangle represents a subtree rooted at a node. It includes all of the nodes and edges
in the subtree.

The likelihood contribution of descendant cells can be re-indexed by a binary vector b =
(b1, by, ..., bx), where b; € {0,1}, and b; = 1 if the child v is to be moved into a child of the
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node /. The value of k denotes the number of children of v. The i*th child of v which is on the
path from node v to cell c is called v*. This implies b+ = 1 (See Fig. 12). Therefore:

1 1 1 1 k
(22) > IT plyenlt) Z Z Y LY T el
t'eN!(t\I) c’eCy 1=0bp=0 bj_1=0b;11=0 b=0 ii;il*

Rewriting Equation (21) using Equation (22) yields:

0 1 1 1 1k
plxci=1ly, t) < K1 Y qvo*qig o> > > Il

VEP(C,Y.’) qv b1=0 by=0 bi_1=0 bj11=0 br=0 I:];<

q
= Kl Z VO qv* H qv, + qv,
veP(ct) v I

o K Z qe* HiZl(qV,' + qv;) 1
1 @® (0 +qL ) "
veP(ct) 1V Vjx Vjx

1 k
qV-*
(23) = Kigo- > B ) 11 + as,)-
verten WA +au.)

2.8. Computational complexity of the SNV calling algorithm

The computational complexity of Equation (23) is O(|C| - |L|) with |C| the number of cells
and |L| the number of loci. In order to reduce the complexity of calculating p(x.;, = 1|y, t) for
each locus and cell, P'(c, t) is defined to denote the nodes sitting on the path from root to cell
¢, excluding the root node and including the cell ¢ node. Then,

k

(24) a = [1(a% +av,).
i=1
Therefore,
a; ul ql q*parent( )
Klqo* Z S H(qo + ql) - Klqo* Z v 0 i .
Y VG'P(C,t) qe(qe{* + q‘%i*) i=1 : : Y VEP’(C,t) (qe + q\]}) qparent(v)

Calculating p(x.,; = 1]y, t) with a recursive approach reduces the complexity from O(|C||L|)
to O(|C| + |L|), where as in the last section L is the union of SNV and CNA loci.

3. Results

3.1. Sitka: scalable single cell phylogenetic tree inference

Fig. 1 shows the workflow of the sitka method. Sitka is based on a transformation of single
cell copy number matrices retaining only presence or absence of changes in copy number pro-
files between contiguous genomic bins. This transformation allows us to approximate a complex
evolutionary process (integer-valued copy numbers, prone to a high degree of homoplasy and
dense dependence structure across sites) using a probabilistic version of a perfect phylogeny (see
Fig. 2). We leverage the special structure created by the change point transformation to build a
special purpose MCMC kernel, which has better computational scalability per move compared
to classical phylogenetic kernels (Methods section 2.4.3).

We visualise the input data to sitka in a colour-coded matrix exemplified in Fig. 2-a. Each row
in the matrix corresponds to an individual cell that has been sequenced in a single-cell platform.
Each column in the matrix is a locus that is represented by a bin (a contiguous set of genomic
positions). We assume that the integer copy number of each bin has been estimated as a prepro-
cessing step, e.g., using a hidden Markov model (Zahn et al., 2017). In Fig. 2-a the copy number
state is encoded by the colour of each entry in the matrix.
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The output of sitka includes two types of directed rooted trees. Type | is the tree used for
MCMC sampling in the inference procedure, and type Il, which is derived from type |, is used in
visualisation (Fig. 11-a-c). The set of nodes in a type | tree is given by the union of the cells, the
CN change points (markers) under study, and a root node v*. The topology of a type | tree bears
the following phylogenetic interpretation: given a cell ¢ in the tree, ¢ is hypothesized to harbour
the markers in the shortest path between ¢ and the root node v*, and only those markers. We
enforce the constraint that all cells are leaf nodes, while markers can be either internal or leaf
nodes. Markers placed at the leaves are interpreted as outliers, for example measured CN change
points that are false positives.

To convert a type | tree to a type Il tree, we remove from the type | tree all marker nodes
that are leaf nodes, i.e., markers that are not present in any cells. We also collapse into a single
node, the list of connected marker nodes that have exactly one descendent (i.e., chains). Fig. 13
shows a small type | tree, its transformation to a type Il tree and the respective marker matrix. We
visualise the input matrix and the estimated tree simultaneously by sorting the individual cells
(rows of the matrix) such that they line up with the position of the corresponding leaves of the

tree.
a b c
Type | tree Type Il tree Latent marker matrix L |
—o cell 1 —eo cell 1
——o—o cell 2 ———o cell 2 . Marker
| : P t
— cell 3 —cell 3 B W Presen
] S Absent
root o— L ecell4 L ecell4 . . D
——o cell 5 L e cell5 P P
-~ AN 42}
Vertex type M M g _GE’ g
Cell Marker Root © © ©
E € E

Figure 13 - A small type | tree t (a), its transformation into a type Il tree (b), and the
corresponding marker matrix x = (x.;) (c). The red nodes in (a) correspond from top
to bottom to markers 2, 3, 1 in this order. Given a tree t, the latent marker matrix x is
a deterministic function x = x(t). Note that the clade comprising single-cells 3 and 4
has support in both markers 1 and 3. For clarity, we do not visualise type | trees, but
plot their transformation, i.e., type Il trees as follows. We remove from the type | tree all
marker nodes that have x.; = 0 for all single-cells c. Lists of connected edges that have
exactly one descendent (i.e., chains) are also collapsed into a single edge, e.g., the edge
corresponding to markers 2 and 3 are collapsed into one edge (since marker 2 has only
one descendent, namely single-cell 2).

Sitka uses change points as phylogenetic traits modelled using a relaxation of the perfect
phylogeny assumption. For a phylogenetic tree, the perfect phylogeny assumption holds if and
only if for all markers /, /| changes at most once from its ancestral state over the tree. Change
points arising from non-overlapping CNA events (i.e., such that the genomic locations affected
by the CN event do not intersect) preserve the perfect phylogeny assumption. Fig. 14 shows
examples of overlapping CNA events and their effect on markers. The two scenarios that can lead
to the violation of the perfect phylogeny assumption are (i) when a CNA gain event is followed
by an overlapping loss event or (ii) when a loss event is followed by an overlapping loss event,
and the second event removes either end-point of the first event. For both (i) and (ii), a violation
occurs only when the second overlapping event hits the same copy as the first event.

Imposing a perfect phylogeny on the observed change points is restrictive, as we expect
both violations of the assumptions (e.g., due to homoplasy), and measurement noise. To address
this we use an observation model (Methods section 2.4.1) which assigns positive probability to
arbitrary deviations from the perfect phylogeny assumption, while encouraging configurations
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Figure 14 - The effects of overlapping CNA events on the perfect phylogeny assumption.
A segment of a chromosome with five consecutive bins and their four corresponding
markers are shown. Each panel follows the CN states interlaced with markers for a cell
at the ancestral state (top), after a CNA event (middle), and after a second overlapping
CNA event (bottom). The numbers in the CNA squares show the integer CN state (e.g.,
the ancestral state has two copies of the 5-bins long segment). (a) Two overlapping CNA
gains maintain the perfect phylogeny assumption. If the infinite site assumption holds, it
is unlikely for the end-points of the two gain events to exactly match. The same argument
holds for a CNA loss followed by a CNA gain event. Note that in these cases, once a
change point is acquired, it is not lost. (b) If a loss event is followed by another loss
event in which either end-points of the first event is removed, the perfect phylogeny
assumption will be violated (e.g., marker 3 is lost after the second loss event). Note that
a violation does not occur if the loss events hit different copies of a segment. (c) Similarly,
if a gain event is followed by a loss event, only if the latter erases the end-points of the

former is the perfect phylogeny violated. Note how marker 2 and marker 3 are lost after
the second CNA event.

where few markers and cells are involved in violations. Subsequently we impose the perfect phy-
logeny assumption on a latent maker matrix defined as follows. Given a type | tree t, the latent
marker matrix x is a deterministic function x = x(t). We compute x : t — {0, 1}¢*L by setting
xc,; = 1 if the single-cell c is a descendent of the marker node / in tree t, and otherwise x. ; = 0.
We use y. ; to refer to the observed change point / in individual cell ¢ (Methods section 2.4.1).
Synthetic experiments show that sitka’s performance decreases roughly linearly as a function

of the rate of the key types of expected violation of the perfect phylogeny assumption (Fig. 8-a,b,
Methods section 2.5).
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3.2. Performance of sitka relative to alternative approaches

We compare the performance of sitka to alternative approaches (Section 2 of the supple-
mentary text) on three scWGS datasets introduced here (Fig. 11-a-c). The first dataset, SA535, is
generated for this project and contains 679 cells from three passages of a triple negative breast
cancer (TNBC) patient derived xenograft sample. Passages X1, X5, and X8 had 62, 369, and 231
cells post quality filtering (Methods section 2.1) respectively. We also include 17 mostly diploid
control cells. These cells are combined to generate the input to the analysis pipeline (Fig. 15).
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Figure 15 - Phylogenetic tree and CNA profile heatmap for the SA535 dataset. The rows
of the heatmap are sorted according to the placement of cells on the phylogenetic tree.
The columns of the heatmap are sorted by their genomic position.

The second dataset, labelled OVA (Laks et al., 2019), consists of cells from three samples
taken from a patient with high grade serous (HGS) ovarian cancer. The first sample, SA1090,
was from an ascites pre-treatment, while SA922 was from an ascites post-treatment. The third
sample, SA921, was taken from the ovary. See Fig. 16 for the tree and the CNA profile heatmap
for this dataset.
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Figure 16 - Phylogenetic tree and CNA profile heatmap for the OVA dataset. The nearly
diploid cells with the loss of heterozygosity on chromosome X are from SA1090. The cells
with an amplification on chromosome 22 are from SA922. The rest belong to SA921.

The final dataset, SA501 (Laks et al., 2019), is another TNBC xenograft tumour from 6 un-
treated passages, namely X2, X5, X6, X8, X11, and X15. After filtering, 515, 236, 328, 189, 836,
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and 308 cells remain in each passage respectively (for a total of 2,412 cells, see Fig. 17). Supple-
mentary Table 2 shows the attrition after each step of filtering cells per passage in each dataset.
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Figure 17 - Phylogenetic tree and CNA profile heatmap for the SA501 dataset. Note that
the diploid cells at the bottom of the heatmap are control cells that were included in the
experiment.

To evaluate inferred trees from sitka and other tree reconstruction methods, we use a good-
ness of fit performance metric, which compares the compatibility of observed CN change points
with a given phylogeny using Youden’s J index (Methods section 2.6, Fig. 11-d). Sitka has the
highest Youden'’s index across all three datasets. UPGMA and WPGMA perform similarly on SA501
and SA535. UPGMA performs slightly better than WPGMA on the OVA dataset. HDBSCAN has a close
but slightly smaller Youden’s index than UPGMA over the SA535 and OVA datasets, but per-
forms marginally better on SA501. NJ trails WPGMA on SA501 and the OVA datasets, and has the
lowest Youden’s index on SA535. MrBayes performs well on the smallest dataset, SA535, with
MrBayes-np2 and MrBayes-np8 performing similar to WPGMA, and MrBayesWithBinaryInput hav-
ing achieved the second highest Youden’s index. On the OVA data, MrBayesWithBinaryInput
and MrBayes-np2 trail behind medicc2 and MEDALT, while MEDALTWithBinaryInput has the
lowest Youden’s index among all methods on all datasets. MrBayesWithBinaryInput and
MrBayes-np2 trail behind NJ over the SA501 dataset. medicc2 and MEDALT without binary in-
put, ran with default settings, did not yield a result given our available computational budget,
with the former not finishing after several days, and the latter running out of memory (144 GB).
Following Eirew et al., 2015, we run MrBayes for 10,000,000 generations. MrBayes-np8 had
completed only 278,000 iterations running on SA501 after several days. The results in this com-
parison suggest that sitka performs better than the baseline methods. While due to limitation
to our available computational budget, we could not allocate more time to the benchmarked
methods, it is possible that given more runtime/computation budget, the other methods might
have converged to more accurate solutions. Running sitka on the real-world datasets took on
average 22.3, 46.6, and 12.9 hours for the OVA, SA501, and SA535 datasets respectively, on a
Linux workstation with 72 Intel Xeon Platinum 8272CL 2.60GHz CPU processors and 144 GB
of memory.

3.3. Single cell resolution phylogenetic inference in PDX

Here we analyse the foregoing three multi-sample datasets. To visualise the tree inference
results we arrange the inferred consensus tree t (Methods section 2.4.5) and the cell-by-bin
CN matrix side by side where the rows of the matrix correspond to the position of individual
cells on the tree and the markers are arranged by their genomic position (Fig. 1-h). Fig. 11-a-c
shows examples of the multi-channel visualisation where each marker is represented by a tuple
of three different data-types or channels, namely: (i) the latent markers induced by the consensus
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tree, x(t); (i) the matrix of marginal posterior probability that cell c is a descendent of marker
I, computed via the average m (Fig. 1-g, Methods section 2.4.5); and (iii) the sitka transformed
input data y. ;.

We use this view to assess potential discrepancies between the input data and the inferred
tree. In most cells and markers (as quantified in Fig. 18), the observed data is in close agreement
with the inferred tree. In the following we provide some examples of disagreements. Consider
first the ChrX in the OV2295 dataset (Fig. 11-a). ChrX has a long orange band (inferred marker
in channel (i)) not matched by a black band (observed marker in channel (iii)) suggesting that a
perfect phylogeny violation has occurred.

OVA SA501 SA535
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Figure 18 - The distribution of mismatch rate defined as the fraction of cells that have a
mismatch between the inferred and jitter-fixed value of a marker.

The pattern in this marker is consistent with the presence of an ancestral event followed by a
deletion. In Fig. 11-b, a set of diploid cells are attached to the root of the tree. These are control
cells included in the experiment and correspond to a region in the bottom of the matrix with no
inferred markers (orange bands) and almost no observed markers (black bands). In this dataset,
there are change points where the observed marker has a high density (black band), but the tree
is reconstructed with the marker absent (no matching orange band). Examples can be found in
Chr1, Chr7 and Chr16. One possible explanation could be that the end-points of each event
were detected as slightly shifted across cells. For instance, in Fig. 17 there are two bins with an
amplification (CN state equal to three) in Chrlp where cells that harbour a mutation in the first
bin appear not to have a mutation in the second bin, suggesting that the same event was called
in the first bin in some cells, and in the second bin in others. An alternative hypothesis is that
the cells in this dataset have a mutator phenotype that promotes CN mutations in these bins.

Fig. 18 shows the distribution of mismatch rates for each dataset, defined as the fraction of
times that the observed and inferred markers do not match, i.e., £ 3 cc 1lye # xc/] for 1 € L
(corresponding to the black and orange bands in Fig. 11-a). In OV2295, 41 markers (11%) have
a mismatch rate of over 50%, where marker chr15_67000001_67500000 has the highest mis-
match rate at 70%. In SA501, 30 markers (11%) have a mismatch rate of over 50%, 13 of which
(5%) have a mismatch rate of over 75%. SA535 has the lowest maximum mismatch rate at 49%
(marker 15_72000001_72500000). See Section 3 of the supplementary text for a discussion of
the tree shape statistics for these datasets.

3.4. Placement of SNVs using the CNA inferred tree

To determine the presence or absence of SNVs in cells using data with high levels of missing-
ness, we develop an extension of sitka, the sitka-snvmodel. Given single cell level variant read
counts, the model incorporates CN data to place SNVs on the sitka-inferred phylogenetic tree.
This backbone CN tree provides a principled way to pool statistical strength across groups of sin-
gle cells sequenced at low coverage, including data from the DLP+ platform (Zahn et al., 2017).
The output of the sitka-snvmodel is an extended tree that has marker nodes that comprise SNVs
in addition to the original CNAs.
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The SNVs are added to the existing CNA-based tree with the computational complexity of
O(|C|+|L|) per SNV. Fig. 8-c shows the result of SNV placement with the number of variant reads
in SA535, corresponding to the tree shown in Fig. 11-c. Figs. 19, 20, and 21 show the number
of variant reads and the matching SNV call probabilities for the SA535, OVA and SA501 datasets
respectively. Sitka and sitka-snvprovide a comprehensive genomic analysis tool for large scale
low-coverage scWGS.

Sample

Sample Number of variant allele
SA535x1xB00174 0 4 8
SA535X5XB00517 1 5 9
SA535X8XB00143 2 6 10

Sample

Sample SNV call probabilities
SA535X1XB00174 [T 1
SA535X5XB00517 08
SA535X8XB00143 0.6

Figure 19 - SNV variant reads data and SNV call probabilities for SA535 dataset beside
the underlying phylogenetic tree.

4. Discussion

Our method ignores certain pairwise dependencies induced by copy number change events
having two end-points (except in cases where one of the end points is the end of the chromo-
some, e.g., whole-chromosome-arm events). This artificial duplication of the events having two
input end-points can lead to the method being overconfident, i.e., outputting credible intervals
that are smaller than expected. This is partly a reason for focusing more on point estimates (con-
sensus trees) in this work, which we expect are less affected by this phenomenon (see Section
2.5.2).
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Sample

Sample Number of variant allele
sa21 Mo 4

SA922 15

SA1090 2

Sample

Sample SNV call probabilities
SA921
SA922 0.8
SA1090 06
0.4
0.2
0

Figure 20 - SNV variant reads data and SNV call probabilities for OVA dataset beside
the underlying phylogenetic tree..

In the present study we use data in which the genome of the single cells CNA profiles are
partitioned into bins of a fixed size (500Kb), each assigned a constant integer CN state. The
relatively large size is due to the low coverage inherent to the scWGS platform, but it implies
that the same bin may harbour multiple CNA events. Biological processes that result in complex
DNA rearrangements could further increase the probability of having two hits in one bin (Mishra
and Whetstine, 2016; Yi and Ju, 2018). Post hoc inspection is necessary to rule out large viola-
tions of our assumptions. This highlights the importance of our goodness-of-fit and visualisation
methods as they help detecting such violations.

We note that we lose information when applying the sitka transformation. This transforma-
tion is necessary for the computational feasibility of the likelihood. In absence of this relax-
ation, the computational complexity of each iteration of the MCMC algorithm may no longer
be bounded by O(|C| + |L|). Indeed, the approach to efficiently compute the likelihood depends
on binary latent variables with specific perfect phylogeny assumptions, and it is not clear how to
generalize this calculation to models that keep track of the evolution of more detailed CN state
information along the phylogeny.

Structural variations such as chromothripsis, that affect multiple segments of the genome
at the same time, make it difficult to determine the rate of CNA events and suggest that CNA
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Sample
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Sample SNV call probabilities
SA501X2XB00096 1
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Figure 21 - SNV variant reads data and SNV call probabilities for SA501 dataset beside
the underlying phylogenetic tree.

events may not be suitable molecular clocks to estimate branch lengths. One possible remedy is
to first infer the tree topology via markers based on CNA events and then conditioned on this
topology, add SNVs to the tree. The number of SNVs on each edge of the tree may be used to
inform branch lengths.

Our preprocessing pipeline excludes multiple cells from the analysis (see Supplementary Ta-
ble 2). We filter out a fraction of cells to remove contaminated cells, either doublets (DNA ma-
terial from two cells that is inadvertently merged) or mouse cells (in our real world datasets, we
study human tumours that were transplanted into mice), cells with too many erroneous sequenc-
ing artefacts, and cycling cells (in the process of replicating their DNA). Removing a portion of the
sequenced cells will decrease the statistical power to determine the subclonal structure of the
population—an important application of this work—, and may bias the sampling against clones
that have a higher division rate. We expect this will be an intrinsic limitation to any scWGS phy-
logenetic methods and this motivates the design of improved classification methods detecting
cell cycling from genomic and imaging data.
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We developed two main variants of our Bayesian models, one with error rate parameters
shared by all loci (global) and one with locus-specific (local) error rates. In our simulation exper-
iments, the global and local parameterizations performed similarly. Based on the similar perfor-
mance of these two models and the fact that the global parameterization is computationally
cheaper, we recommend the use of the global parameterization by default.

Evaluating the performance of a phylogenetic reconstruction method on real-world datasets
is difficult, mainly due to a paucity of ground truth. One promising area of research is the use
of CRISPR-Cas9 based lineage tracing (Quinn et al., 2021). In absence of ground truth data, we
developed a goodness-of-fit framework that to our knowledge enables a first of a kind bench-
marking of phylogenetic inference methods over real-world scWGS CNA datasets.

Phylogenetic tree reconstruction is a principled way to identify subpopulations in a hetero-
geneous single-cell population. This in turn enables the use of population genetics models that
track the abundance of subpopulations over multiple timepoints (Salehi et al., 2021) and to make
inferences about the evolutionary forces acting on each clone. Further study with timeseries
modelling will provide insight into therapeutic strategies promoting early intervention, drug com-
binations and evolution-aware approaches to clinical management.
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Supplementary Text: Cancer phylogenetic tree inference at scale from 1000s of single
cell genomes

1. Pre-processing

In this section we give an overview of the preprocessing steps for inferring Sitka trees. These
steps are summarised in Supplementary Fig. 1.

Copy number and cell meta-data

l

drop low-mapability bins

l

[cn_bin_filtered.c]

SV

[
drop low-quality,
contaminated,
and cycling cells

cn bin cell filte
red.csv

drop suspect cycling cells

cn _bin cell filte
red no jump.csv

Supplementary Figure 1 - Filtering the CNA data for tree inference.

1.1. HMMcopy pre-processing

Corrected CNA states from HMMCopy are stored in cn. csv.gz and this file is the input to our
preprocessing pipeline. For this work the data was stored in the cloud (Microsoft Azure) and
the scgenome API was used to access and download the data. Please see https://github.com/
shahcompbio/scgenome for documentation. The scgenome APl ensures that only cells with the
correct sample_ids are selected, removes control cells and cells that have fewer than 10,000
mapped reads.

1.2. Filtering low-mappability bins

Some copy number bins are located at parts of the genome where sequencing is difficult, for
example due to inaccessibility of the genome at that position. This is reflected in their mappability
score. We filter the CNA matrix to keep high-map-ability bins cn_bin_filtered.csv.gz. In this
work we use a cutoff threshold of map >=.99 that yields 4375/6206 or 0.705% of the bins. The
list of kept bins is identical across all datasets.
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1.3. Filtering low-quality cells

In this step, a second round of quality control is done. Cells with a quality score, as de-
fined in Laks et al., 2019, of over 0.75 or higher are kept, while the other ones which are
suspected to be contaminated (e.g., mouse cells) or cycling cells are removed. This results in
cn_bin_cell_filtered.csv.gz.

1.4. Filtering cells with excess CNA changes

Some cells show a “jumpy” CNA profile in which there are too many copy number changes.
It appears that these cells are either in early or late stages of division and were missed by the
S-phase classifier. The CNA profile of early replicating cells is patterned by seemingly scattered
focal amplifications while the late replicating cells show scattered focal deletions. Note that not
all parts of the genome duplicate at the same time upon cell division. Regions that start duplicat-
ing later will show as having focal deletions in cells captured at their later replicating stage; these
regions would have not started to duplicate by the time the sample was prepared for sequencing.
These scattered patterns Supplementary Fig. 2 do not directly reflect the evolutionary history
of the cells and are detrimental to phylogenetic tree inference.

jmmmmmm - Clade comprising likely late-replicating cells Sporadic localised deletions on chromosome 4 (top) and
chromosomes 7 and 8 (bottom) are
~ likely a sign of late-replicating cells.
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Supplementary Figure 2 - An example of replicating cells. Note the scattered localised
deletions. This heatmap is from a HER2+ PDX line. These late replicating cells form a
finger like clade in the tree. The top inset shows chromosome 4 while the bottom inset
spans chromosomes 7 and 8.

Here we rank cells by the number of changes in their copy number states (a
change is measured between consecutive bins) and pick the 90% percentile. The file
cn_bin_cell_filtered_no_jump.csv.gz contains the integer copy number state with the fi-
nal list of cells and genomic bins. An example input matrix is shown in Fig. 1-a where the integer
copy numbers are coloured coded in a heatmap. Attrition rate due to filtering of cells is shown
in Supplementary Table 2.

2. Baseline methods

Here we give a brief description of the baseline methods to which we compare sitka.
UPGMA Sokal, 1958, WPGMA Sokal, 1958 and Neighbour Joining (NJ) Saitou and Nei, 1987 are all
distance-based phylogenetic inference methods, that is, they use the input data to first compute
a similarity matrix between single-cells and then proceed to construct an agglomerative cluster-
ing in an iterative process. HDBSCAN Campello et al., 2013 on the other hand is a heuristic
that, roughly speaking, computes the minimum spanning tree from a low dimensional represen-
tation of the CN matrix. MEDALT Wang et al., 2021 is another distance based method that uses
the Chu-Liu’s algorithm to compute a directed minimum spanning tree from the matrix of mini-
mum edit distance. Medicc2 Kaufmann et al., 2022 uses a finite state transducer to model copy
number evolution over time, taking into account allele specific and whole genome duplication
events. MrBayes Huelsenbeck and Ronquist, 2001 is a Bayesian phylogenetics framework that
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implements multiple evolutionary models and uses MCMC to approximate the posterior distri-
bution of trees and model parameters.

3. Tree shape statistics

All three trees from the three real data experiments are imbalanced Bortolussi et al., 2006
relative to a Yule model (Supplementary Fig. 3-a). Unbalanced tree topologies appear and are ex-

a3 b SA501 SA535
o2 109 1.01 ,_M
L'y 054 0.5 SIS
g2 001 0.01
= © 0.5+ -0.5
O ®
Z QO -1.0- T T T -1.0- T T T T T T T T T
E SA501 SA535  OVA X2 X5 X6 X8 X11 X15 X1 X5 X8
Dataset Timepoint
C3 SA501 SA535 OVA
T T 10+
L.c 0'5 A\*/A_\/\
c__B 8 0'0_ ‘_____‘___..._-A ‘____._k—“"‘
gc =
5 8 -0.54
=z 8 -1.0- T T T T T T T T T T T T
E X2 X5 X6 X8  X11  X15 X1 X5 X8 SA1090 SA922 SA921
Timepoint
Balance index —— Sackin (Yule) -#- Colless (Yule) Beta

Supplementary Figure 3 - (a) Tree imbalance index where zero indicates that the tree is
consistent with one simulated from a Yule model (completely balanced) and positive val-
ues indicate deviation from the Yule model (more imbalanced). For ease of plotting, each
balance index is normalised by the absolute value of the maximum estimated statistic
among all samples. Cumulatively adding more timepoints (b), or for the maximal subtree
comprising cells of a specific timepoint (c).

pected in adapting populations Neher and Hallatschek, 2013. In SA535 and OV/2295 the sample
subtrees become more balanced over time and post-relapse respectively. In contrast, SA501 ex-
hibits a decrease in balancedness, except timepoint X11, where a marked increase in imbalance
is observed (Supplementary Fig. 3-b,c).

sitka inferred trees are not dichotomous therefore we first resolve multichotomies into di-
chotomies. As there are multiple ways to resolve multichotomies, we do this 100 times, resolving
multichotomies uniformly at random. We then compute the balance statistics on each resulting
dichotomous tree and report the average in Supplementary Fig. 3-a-c. We report three balance
statistics, namely Sackin, Colless, and Beta Paradis, 2011.

The Sackin Coronado et al., 2020 and Colless Coronado et al., 2020 statistics are both mea-
sures of imbalance of a rooted phylogenetic tree. The former is the sum of the depth of the
leaves, while the latter is the sum of the absolute values of the difference between the number
of descendent leaves of the left and the right child of each internal node. The Yule Coronado et
al., 2020 model is a probabilistic model for bifurcating phylogenetic trees. Under this stochastic
model, a phylogenetic tree with N leaves is generated by an iterative process: given rooted tree
with 2 leaves, pick a leaf node uniformly randomly, and attach two new leaf nodes to it until the
tree has N nodes.

We measure the change in the balance of the tree over time in two ways: (i) starting with
the first timepoint and progressively adding more timepoints Supplementary Fig. 3-b), (ii) in in-
dividual timepoints Supplementary Fig. 3-c). In the former, we start with the maximal subtree
Tmax(XtO) for cells in the first timepoint (Xy,), then compute the maximal subtree that contains the

Peer Community Journal, Vol. 3 (2023), article €63

https://doi.org/10.24072/pcjournal.292


https://doi.org/10.24072/pcjournal.292

Sohrab Salehi et al.

41
Dataset parameter value
Real datasets engine PT
Real datasets globalParameterization true
Real datasets fprBound 0.1
Real datasets fnrBound 0.5
Real datasets nChains 1
Real datasets nScans 1000
Real datasets nPassesPerScan 1
Real datasets thinning 1
Real datasets burnin fraction 0.5
590 engine PT
590 globalParameterization true
590 fprBound 05
590 fnrBound 0.5
590 nChains 1
590 nScans 20000
590 nPassesPerScan 1
590 thinning 1
590 burnin fraction 0.5
510 globalParameterization true, false
5130 globalParameterization true
510,5130 engine PT
510,5130 fprBound 0.1
$10,5130 fnrBound 0.5
510,5130 nChains 8
510,5130 nScans 5000
$10,5130 nPassesPerScan 10
$10,5130 thinning 1
S510,5130 burnin fraction 0.5

Supplemental Table 1 - Inference settings used for each dataset.

first two timepoints mmax((Xz,, Xt )), and continue until all timepoints are included. We report the
imbalance statistic for each subtree constructed in this process. In the latter, for each timepoint
X:, we find the maximal subtree mmax(X:) that contains all cells from timepoint X;, and report the
imbalance index for it.
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