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Abstract
Demographic processes that occur at the local level, such as positive density depen-dence in growth or dispersal, are known to shape population range expansion, notablyby linking carrying capacity to invasion speed. As a result of these processes, the ad-vance of an invasion front depends both on populations in the core of the invaded areaand on small populations at the edge. While the impact on velocity is easily tractablein homogeneous environment, information is lacking on how speed varies in heteroge-neous environment due to density dependence. In this study, we tested the existence ofa ’colonisation debt’, which corresponds to the impact of conditions previously encoun-tered by an invasion front on its future advances. Due to positive density dependence,invasions are expected to spread respectively slower and faster, along the gradients ofincreasing and decreasing carrying capacity, with stronger differences as the gradientslope increases. Using simulated invasions in a one-dimensional landscape with period-ically varying carrying capacity, we confirmed the existence of the colonisation debtwhen density-dependent growth or dispersal was included. Additional experimental in-vasions using a biological model known to exhibit positive density-dependent dispersalconfirmed the impact of the carrying capacity of the patch behind the invasion front onits progression, the mechanism behind the colonisation debt.
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Introduction
The demographic processes occurring among invasive populations are essential for under-standing andmodelling range expansion at large scales (Blackburn et al., 2015; Caplat et al., 2012;Gurevitch et al., 2011). Indeed, range expansion is the result of successive colonisation eventsbeyond the edge of the invaded area (Blackburn et al., 2011), whose failure causes the invasionto slow down or even come to a halt. (Keitt et al., 2001;Morel-Journel et al., 2022). The dynamicsof these new, initially small colonies may be influenced by various ecological mechanisms, includ-ing a positive density dependence of growth and dispersal. Positive density-dependent growth,commonly referred to as the Allee effect (Allee et al., 1949; Courchamp et al., 2008), correspondsto lower per capita growth rates at low densities because of biological mechanisms generally af-fecting survival or reproduction (Courchamp et al., 1999). Positive density-dependent dispersaldescribes the greater propensity of individuals to disperse from large populations than from smallones, often to avoid intraspecific competition at high densities (Altwegg et al., 2013). Previousstudies have shown that both types of density-dependence create a causal relationship betweenexpansion speed and the size of the populations in the core of the invaded area, behind the inva-sion front (Haond et al., 2021; Lewis and Kareiva, 1993; Roques et al., 2012; Stokes, 1976). Thelarger these populations, the greater the number of individuals reaching the front, thusmitigatingadverse effects of positive density-dependence in small populations.
The influence of positive density dependence may also depend on the amount of habitatavailable, which influences the carrying capacity, i.e. the maximum attainable individual density.Previous modelling and experimental evidence from Haond et al. (2021) and Morel-Journel et al.(2022) have shown that, in presence of positive density dependence, the carrying capacity ofthe invaded environment impacts invasion speed, potentially up to a stop of the invasion frontfor low carrying capacities. Conversely, invasion speed remains unaffected by carrying capacityin the absence of any density-dependence. These studies only considered constant carryingcapacities over space. Yet the amount of habitat is rarely spatially homogeneous, especially at thescale of an invasion. Other works have studied the impact of spatial heterogeneity on invasivespread (e.g Kinezaki et al., 2006; Schreiber and Lloyd-Smith, 2009; Shigesada et al., 1986; Vergniet al., 2012), some of them including positive density dependence (e.g Dewhirst and Lutscher,2009; Maciel and Lutscher, 2015; Pachepsky and Levine, 2011). However, heterogeneity wasconsidered in these studies through its impact on the growth rate of populations rather thanon their carrying capacity. Although carrying capacity could still change as a result, it was notexplicitly considered as a controlled parameter.Moreover, many of them considered binary cases,separating habitat from non-habitat (Dewhirst and Lutscher, 2009; Maciel and Lutscher, 2015;Pachepsky and Levine, 2011; Shigesada et al., 1986). Yet, the amount of habitat, which plays animportant role in defining the carrying capacity, often varies gradually rather than starkly overspace.
For this study, we consider gradients of carrying capacity, i.e. monotonic variations of carry-ing capacity over space. In this context, gradients are different from the environmental gradientsdefining for instance defining range limits, which rather correspond to a set of changes in habitatquality, often susceptible of affecting individual fitness and population growth rates. In this study,we focus on variations of carrying capacity, which does not limit by itself the ability of individu-als to survive or reproduce, but rather their maximal numbers. These gradients are considered‘upward’ if the invasion fronts move towards increasing carrying capacities, and ‘downward’ ifit moves towards decreasing carrying capacities, with the slope of the gradient characterizingthe average change in carrying capacity over space, in absolute value. According to previousstudies considering constant carrying capacities over space, colonisation with positive densitydependence is expected to be more difficult and slower at smaller carrying capacities, and thussmaller population sizes (Haond et al., 2021). Therefore, colonisation along a downward gradientis expected to slow down as carrying capacity decreases. However, information on the rate ofdecrease and its relationship to the gradient slope is lacking. While the carrying capacity of thepatch on the front is still expected to impact invasion speed, so are those of the patches behindthe front in that case. Indeed, density dependence links colonisation success to the dynamics
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of populations behind the invasion front. Thus, the front should advance faster in downwardgradients because of the large influx of dispersed individuals from larger populations behind.Conversely, the front should be impeded by the smaller size of the populations behind the frontin upward gradients. This impact is expected to be stronger as gradient slope, and thus the dif-ference in carrying capacities, increases.In this study, we hypothesize that this impact of the environmental conditions previously en-countered by an invasion front on its future advance may create a ‘colonisation debt’. This termechoes extinction debt, defined by Tilman et al. (1994) as the impact of previous demographicevents on the probability of a population going extinct. We hypothesize that only invaders af-fected by positive density dependence exhibit such a ‘memory’ of past carrying capacities, whilethe others should remain memoryless. When encountering a succession of downward and up-ward environmental gradients, the colonisation debt should create a lag in the relationship be-tween invasion speed and environmental quality. In a downward gradient, a patch of a givencarrying capacity should be crossed faster than if it were in an upward gradient, due to the in-fluence of the previous, larger patches. For a strong enough impact of the carrying capacitiesencountered earlier, the slowest and fastest rates should be reached after colonisation of thesmallest and largest habitat, respectively.Using mechanistic models and experiments, we tested the existence of the colonisation debtduring invasions in environments with heterogeneous carrying capacity. On the one hand, wesimulated invasions across a one-dimensional landscape with positive density dependence ongrowth, dispersal, or neither. As the impact of carrying capacity on invasion speed with posi-tive density-dependence has already been shown (Haond et al., 2021), we aimed at comparinghere landscapes with the same average carrying capacity but exhibiting different gradients. Todo so, we considered periodic successions of gradients of increasing and decreasing carryingcapacity, with identical mean but different slopes. On the other hand, we performed artificialinvasions in microcosm landscapes using Trichogramma chilonis, a biological model known to ex-hibit positive density-dependent dispersal in particular experimental conditions (Haond et al.,2021; Morel-Journel et al., 2016). Two types of landscapes, with different slopes, were used forthis experiment.
Methods

Simulations
A stochastic model was used to generate invasions in a one-dimensional landscape (see Ap-pendix A for details). The model was discrete in space, i.e. the landscape was represented as alinear chain of patches. It was also discrete in time, with each time step divided into a growthphase and a dispersal phase. Growth potentially included positive density-dependence, throughan Allee threshold ρ, i.e. a population size under which the mean population growth rate wasnegative. Hence, there was positive density-dependent growth if ρ > 0. Dispersal was local andstochastic, i.e. individuals travelled to the neighbouring patch with a probability d . This proba-bility could either be constant if dispersal was density-independent, or increase with individualdensity according to a Hill function of parameters α and τ , to include density-dependent disper-sal.This model was used to simulate invasions, using the R software (RCoreTeam, 2023). Thelandscapes considered were infinite on the right but finite on the left. Only the leftmost patchwas initially colonised, with a population size of Kmax . The landscape was divided into two parts.The first nb leftmost patches made up the ‘burn-in part’. These patches all had a carrying capacityof Kmax , so the invasion started in a homogeneous space and the invasion front was createdbefore the invasion entered the second part of the landscape. The dynamics in this burn-in partwere not analysed further, as this type of invasion in homogeneous landscapes has already beendocumented in previous studies (e.g Haond et al., 2021). The remaining patches made up the‘periodic part’ of the landscape. Their carrying capacity varied periodically between Kmax and

Kmin with a period length 2q (Fig. 1). Each period included one downward gradient followed byone upward gradient, eachwith q patches. The two gradients were symmetrical, and the carrying
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Figure 1 – Schematic representation of the variations in the carrying capacity in the land-scape considered for the simulations. The burn-in part is of finite length (correspondingto nb patches), but the periodic part continues infinitely to the right.
capacity Ki of patch i was defined as follows:

Ki =

{
Kmax − 1

q (i − j)(Kmax − Kmin) if i ∈]j , j + q]

Kmax − 1
q (2q − i + j)(Kmax − Kmin) if i ∈]j + q, j + 2q]

,
with j the closest patch to the left of i so that Kj = Kmax . The gradients were symmetrical, andtheir slope – the differences in carrying capacity between two neighbouring patches – increasedwhen q decreased. Since the value ofKmax andKmin were constant, the length of a gradient qwasinseparable from the slope, computed as (Kmax + Kmin) /q. Therefore, low values of q correspondto steeper gradients whereas high values of q correspond to shallower ones.. As a convention,patches were numbered in ascending order, starting from −nb for the leftmost patch. Therefore,the first patch of the periodic part was the patch 0. Previous results showed the link betweenthe average carrying capacity of the landscape and invasion speed because of positive-densitydependence (Haond et al., 2021). Considering such periodic landscapes allowed us to considerlandscapes that all had the same average carrying capacity in their periodic part for any value of
q, of value (Kmax + Kmin) /2.Simulations were performed for landscapes with Kmax = 450, Kmin = 45, nb = 10, and q aninteger between 1 and 10. They all lasted for tmax = 1000 generations – including the burn-in part– and assumed an intrinsic growth rate r = 0.2 and a dispersal rate without density dependence
dind = 0.1 (see Appendix A). Three scenarios were tested for each landscape: (i) a null scenario,without any positive density-dependence, (ii) with positive density-dependent growth with ρ =
15, and (iii) with positive density-dependent dispersal with α = 4 and τ = Kmax/2 = 225 (seeAppendix A). Each of the 3 scenarios ×10 landscape combinations was simulated 1000 times.The position of the invasion front P(t) at time t was recorded throughout the simulation, asthe number of the rightmost patch with more than five individuals after the dispersal phase. Thisthreshold was chosen to mitigate the effects of demographic and dispersal stochasticity on thefront. The starting time of the invasion proper ts was defined as the first generation at which theinvasion front reached the periodic part of the landscape, i.e. P(ts) ≥ 0.Invasion speed was computed at three scales: the whole landscape, the gradient and thepatch. The average speed of the front was defined at the landscape level, as the ratio betweenthe last position of the front and the duration of the invasion proper P(tmax)/(tmax − ts). Thegradient speed was defined at the scale of one (upward or downward) gradient, as the ratiobetween q and the number of generations the invasion front spent between the two extremitiesof the gradient. For a downward gradient, the extremities were patch a and patch a+q, such that
Ka = Kmax . For upward gradients, they were patch b and patch b + q, such that Kb = Kmin. Fora given simulation, the difference between the average upward and downward gradient speedswas also computed. A gradient was not considered if the invasion never reached its extremity.The instantaneous speed of the front was defined at the patch level, as the inverse of the numberof generations during which the invasion front remained stationary in the patch. To compareinstantaneous speeds for different q, the average instantaneous speed in the middle patch wascomputed for each simulation with an even value of q. Then, the carrying capacity of this middle
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Figure 2 – Number of eggs in the patches in the ‘steep’ (yellow) and ‘shallow’ (blue) land-scapes. The invasion are initiated by colonizing patch 1 for each replicate of the experi-ment.
patch was always K = (Kmax + Kmin) /2 = 247.5. As there was no middle patch when q was odd,these cases were not considered.To assess the impact of the periodic structure of the landscape, we also performed simu-lations with the same parameter values as indicated above, but for a a single gradient, eitherupward or downward. For these simulations, we computed the gradient speed, as well as theinstantaneous speed in the middle patch of the gradient (see Appendix B).
Microcosm experiments

Artificial invasions of microcosm stepping-stone landscapes were performed in addition tothe simulations (see Appendix C for details). The biological model used was a strain of the para-sitoid wasp Trichogramma chilonis, which is known to exhibit positive density-dependent disper-sal (Morel-Journel et al., 2016). As carrying capacity was previously shown to not affect invasionsspeed without positive density-dependence (Haond et al., 2021), we focused on this strain totest for the existence of the colonisation debt. In our experiment, the carrying capacity was ma-nipulated by changing the number of host eggs available for T. chilonis, which were used as aresource. Two landscapes defined for the simulations were recreated for the experiment (Fig. 2).The first one (called thereafter the ‘shallow’ landscape) was a downward gradient from 450 to45 eggs, similarly to the simulated landscape with q = 7. The second one (called thereafter the‘steep’ landscape) alternated between patches with 450 eggs and patches with 90 eggs, simi-larly to the simulated landscapes for q = 1. Patches with 90 eggs were used rather than with 45eggs to buffer the very strong demographic stochasticity displayed by T. chilonis. Indeed, popu-lations in patches with 45 eggs would have been too likely to go extinct because of stochasticityor over-competition (see Appendix C), without allowing for additional colonisation over the 18generations of the experiment. Likewise, we did not consider invasion in a single upward slopebecause starting invasions in such small patches would likely have lead to establishment failuresduring the experiment.As for simulations, the position of the frontwas recorded at every generation as the rightmostpatch with more than 5 individuals. The stop duration, i.e. the number of generations duringwhich the invasion front remained stationary in a given patch, was used to assess instantaneousspeed across the landscape. The stop duration was computed for every colonized patch butthe last one, and was a count of generations following a Poisson distribution. It was therefore
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Figure 3 – Example of instantaneous speed as a function of carrying capacity of the patchwhere the front is located, for q = 5 and either no density dependence (A, green), density-dependent growth (B, yellow) and dispersal (C, blue). Average values over all patcheswith the same carrying capacity are represented by crosses if the patch is in a downwardgradient, and as circles if the patch is in an upward gradient. Intervals contain 80% of thesimulated instantaneous speeds.
analysed using a generalized linear mixed model, with a log link function and the experimentalreplicate as a random effect. Three explanatory variables were considered: the type of landscape,the carrying capacity on the front, the carrying capacity of the patch preceding the front. Modelswith every combination of these parameters were compared according to AIC. Models within 2AIC points of the smallest value were compared using likelihood ratio tests, to define the mostparsimonious among the best ones.

Results
Simulation results
Average speed. The average invasion speed was substantially reduced by positive density depen-dence. Indeed, 90% of the simulated invasions without any positive density dependence had anaverage speed between 0.159 and 0.181 patches per generation, whereas they ranged from0.009 to 0.024 patches per generation and from 0.014 to 0.026 patches per generation for sim-ulations with density-dependent growth and dispersal, respectively. There was no major impactof the half-period size q on the average speed, likely because the average carrying capacity inthe landscapewas identical in every landscape. The variations in speed across upward and down-ward gradients averaged out in the long run, leading to similar landscape speeds for different qeven though gradient speeds themselves could differ. However, the variance tended to increasewith q for simulated invasions with density-dependent growth (standard deviation from 0.0019for q = 1 to 0.0083 for q = 10) and dispersal (standard deviation from0.0019 for q = 1 to 0.0064for q = 10). The variance was independent from q and overall greater for simulated invasionswithout density-dependence (standard deviation between 0.0076 and 0.0082).
Instantaneous speed. Instantaneous speeds for each value of q considered are presented in Fig.S5, while Fig. 3 presents the results for the simulations with q = 5, which is in the middle ofthe range of values considered. Like the average speed, the instantaneous speed was system-atically higher in simulations with no positive density dependence. Furthermore, the invasionspeed without any mechanism was largely independent of carrying capacity, remaining around0.215 gen−1 for each patch (Fig. 3A). In presence of density dependence, the instantaneousspeed varied not only with the carrying capacity of the patch, but also with the carrying ca-pacity of previous patches (Fig 3B, 3C). Indeed, with positive density dependence, separatinginstantaneous speeds according to whether the patch was in an upward or downward gradient
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Figure 4 – Difference between the downward and upward gradient speed (A) and in-stantaneous speed in the middle patch (B), for simulations without density dependence(green), density-dependent growth (yellow) and dispersal (blue), averaged over every gra-dient crossed by a simulated invasion. Positive values indicate faster invasions in down-ward gradients compared to the upward ones. Intervals contain 80% of the simulations.Results were slightly shifted on the x-axis for better readability.
revealed substantial differences. Firstly, speeds were consistently higher in downward gradients,for the same value of K . Secondly, the minimum instantaneous speed was not observed in thepatch with K = 45 (i.e. Kmin), but one (with density-dependent dispersal) or two patches (withdensity-dependent growth) further in upward gradients. This created a lag in the variation ofinstantaneous speed, compared to the variation in carrying capacity.
Impact of gradient slope. The impact of gradient slope (inversely proportional to the value of
q) was assessed by comparing invasion speeds in upward and in downward gradients, basedon gradient speeds (Fig 4A) and on instantaneous speed in the middle patch of the gradient(Fig 4B). Consistently with the results presented above, there was no significant difference inspeed between downward and upward gradients in the absence of positive density dependence.However, the difference in speed was generally positive with both types of density dependence,with faster speeds in the downward gradients. The difference in gradient speed was maximalaround q = 4 and decreased for larger values of q, i.e. for the shallower gradients (Fig 4A). Forsmaller values of q, the gradients were so short that the invasion front was always close to, andtherefore impacted by, patches with a large carrying capacity, even in the upward gradient. Thevery short gradient size was also likely the cause of the reversed patterns observed for q = 1 anddensity-dependent dispersal and for q = 2 and density-dependent growth. These correspondedto the lag described in the previous section: as the slowest speeds were respectively reached 1and 2 patches after the smallest patch, the downward gradient speed suffered from the influenceof the previous smallest patch. A similar pattern was observed for the instantaneous speed in themiddle patch, with differences decreasing as q increased (Fig 4B). As with the gradient speed, thelack of difference observed for q = 2 and density-dependent growth was also likely the result ofthe lag. The additional results for a single gradient (Appendix B) show faster downward gradientspeeds for any value of q, thus supporting our hypothesis that this lag stems from the downwardgradient preceding the upward one.
Experimental results

Our statistical analysis on stop duration confirms that the speed also depends on the carryingcapacity of the patch behind the front. Firstly, it should be noted that including the carrying
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Fixed variables AIC ∆AIC
Ki + Ki−1 442.391 0.000landscape + Ki + Ki−1 442.797 0.406
Ki−1 444.427 2.036Null 445.555 3.164landscape + Ki−1 445.824 3.433landscape 447.205 4.815
Ki 447.515 5.124landscape + Ki 449.189 6.798

Table 1 – AIC and ∆AIC (difference with the smallest AIC) of GLMMs defined for theexperiment. Every model includes the experimental block as a random variable. Fixedvariables included are the landscape type, the carrying capacity on the front (Ki ) andthe carrying capacity of the patch behind the front (Ki−1).∆AIC values lower than 2 arenoted in bold.
capacity of the previous patch (notedKi−1 in Table 1) reduced the AIC value of any of themodelsconsidered (Table 1), indicating that taking this factor into account always improved the model.Secondly, the two best models according to ∆AIC ≤ 2 were nested within each other, so theywere compared using likelihood ratio tests. The model including the carrying capacities on thefront and behind the front (Ki + Ki−1 in Table 1) was not significantly worse than the one with allvariables (χ2

df=1 = 1.5941, p = 0.2067), while beingmore parsimonious. This model was thereforeselected. According to it, the stop duration decreased with the carrying capacity of the patch(z = −1.969, p = 0.0490) and of the previous patch (z = −2.591, p = 0.0096). As instantaneousspeed (as defined to analyse the simulation results) was the inverse of the stop duration, theseresults confirm experimentally the positive impacts of the carrying capacities of the current andprevious patches on invasion speed.Besides, experimental results show a clear decrease in velocity for lower carrying capacitiesin shallow landscapes, but a much smaller decrease in steep landscapes. (Fig. 5). The differencein speed in the largest and smallest patches was therefore greater when the gradient was shal-lower. This is consistent with the simulation results, for which the difference between speedsin the largest and smallest patch were greater as the value of q increased (see Appendix D).
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However, the pattern observed in the simulations of steep gradients (q < 4) was not observedexperimentally.
Discussion

Main results
Simulation and experimental results provide evidence for the existence of a ‘memory’ of pastcarrying capacities impacting on the speed of invasion, which we refer to here as ‘colonisationdebt’, when there is a positive density dependence in per capita growth or dispersal. In thesecases, taking into account habitat on the front alone was not sufficient to predict the invasionrate. Our simulation results show that the carrying capacity encountered previously by the frontcould substantially affect colonisation success and speed. We notably showed that invasionswere faster overall in downward gradients than in upward gradients, as were instantaneousspeeds, i.e. measured at the scale of a single patch, for the same carrying capacity. As hypothe-sized, a lag between changes in K and changes in invasion rate was also observed for both typesof positive density dependence. Hence, the slowest invasion rate was reached a fixed number ofpatches after the lowest-quality patch encountered: one patch for density-dependent dispersaland two for density-dependent growth. This discrepancy can be explained by the functioning ofthe two density dependence mechanisms. With both mechanisms, the invasion managed to es-tablish in the colony, after the smallest patch because of the influx of dispersing individuals fromthe previous patches. With density-dependent dispersal, this population on the front was toosmall to produce dispersing individuals, which momentarily stopped the front one patch afterthe smallest one. With density-dependent growth, this population produced enough dispersingindividuals to be detected in the next patch (two patches after the smallest one), but not enoughto overcome the Allee effects. These individuals might not have been detected if populationsizes had been recorded after the growth phase rather than after the dispersal phase.Our experimental results using a species known to exhibit positive density-dependent dis-persal also show differences in invasion speed as a function of the carrying capacity on thefront, depending on the size of the patch behind the front. Indeed, invasion speed decreasedmore strongly with carrying capacity in the shallow landscapes than in the steep ones, which isconsistent with the simulation results.The impact of the gradient slope on invasion speed varied with the scale considered. At thescale of a single patch, the upward and downward speeds for the same carrying capacity onthe front became closer as the gradients became shallower (higher values of q). Indeed, thedifference between the carrying capacities of the patches behind the front in the two gradientsbecame smaller as q increased, thus making the effect of colonisation debt less visible. At thescale of the whole invasion, slope had little impact on the average invasion speed. However, thevariance in speed increased with q, indicating that the speed of invasions in shallower gradientswas less predictable.

Extent of the memory of past carrying capacities
Our results are consistent with a limited memory of invasions in time and space, with theimpact of the last few colonized patches predominating. The difference in carrying capacity be-tween these patches and the front was smaller when the gradients were shallower, as was theimpact on invasion rate. At the gradient level, this lead to more extreme slowest and fastestspeeds with increasing values of q. At the whole landscape level, this lead to less predictable av-erage invasion speeds. Indeed, crossing the areas with small carrying capacity patches becameincreasingly difficult for the invader as q increased, leading to more frequent stops of the inva-sion front during simulations. As dispersal was stochastic, so were these stops and their duration,generating additional variability in the overall invasion speed. This is consistent with modellingstudies using binary landscapes rather than gradients, which showed that a larger non-habitatgap was more likely to alter the spread of density-dependent invaders (Dewhirst and Lutscher,2009; Morel-Journel et al., 2018). Although this was not tested for this study, experimental in-vasion fronts have proved to be inherently stochastic and hardly predictable (Melbourne and
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Hastings, 2009). The speed of real invasions along shallow gradients might therefore be evenmore unpredictable.The influence of distant patches on the speed of the front is also expected to be modulatedby the dispersal abilities of individuals (Dewhirst and Lutscher, 2009). This is likely the case inour study, when dispersal is local and mostly driven by nearby patches, Not only should lowerdispersal distances limit this influence, but also the ability of invasion fronts to overcome areaswith low carrying capacities. Indeed, studies show that the pinning of invasion fronts is morelikely if the size of the gap in habitat is greater relative to the dispersal distance (Keitt et al., 2001;Morel-Journel et al., 2022). Our simulations do not exhibit actual pinning, but the very slowinstantaneous speeds observed near the smallest patch correspond to temporary front stopsover long time periods. The duration of those stops was greater in landscapes with shallowergradients, i.e. when large populations were further from the location of the stop. This suggeststhat even shallower gradients or smaller dispersal distances could generate pinning.Conversely, the influence of patches behind the front is expected to be even greater whenindividuals also disperse on long distances. Studies have shown that even rare long-distance dis-persal events have a disproportionate impact on invasion speed (Johnson et al., 2006; Nehrbasset al., 2007; Pergl et al., 2011), and they have been shown to mitigate the impact of habitatheterogeneity (Marco et al., 2011). Similarly, we might expect them to limit the strength of thecolonisation debt in our context of gradual environmental change. Indeed, stratified dispersal,i.e. the combination of short-distance and long-distance dispersal, should diversify the originsof the individuals dispersing to the front, and therefore the carrying capacity of the patches in-volved. It could be interesting to investigate the interaction between long-distance dispersal andthe colonisation debt, in order to quantify this interaction.
Link with pushed invasions

The colonisation debt only appearedwhen either growth or dispersal was density-dependent.Otherwise, invasion speed remained independent from the carrying capacity, on the front or inthe core of the invasion. Such links between a local mechanism and an invasion-wide patternwere previously documented, notably in the study of pushed waves (Roques et al., 2012; Stokes,1976). Pushed waves also stem from a link between the population dynamics of the core ofthe invaded area and the spreading speed. Besides, they are generally associated with positivedensity-dependent growth, i.e. Allee effects, although they can also be the result of positivedensity-dependent dispersal (Haond et al., 2021). Therefore, our results can be relevantly consid-ered in this framework. It should however be noted that other mechanisms have been shown togenerate pushed waves, among them shifts in environmental conditions (Bonnefon et al., 2014).While the spatial variations in carrying capacity considered in this study reflect variations in theamount of habitat available, landscapes are also heterogeneous in other environmental factorssusceptible to constrain species ranges. Garnier and Lewis (2016) notably showed that shiftingclimate envelopes could generate pushed waves without any mechanism of positive density-dependence. Conversely to our study, climate envelope limits the habitat that can be colonisedin space, so that a slow shift due to climate change constrains the colonisation of new habitats bythe species, regardless of density-dependencemechanisms. It could be interesting to test for thecolonisation debt in these pushed waves that exhibit none without a shifting climate envelope.
Interaction with genetic diversity

The colonisation debt identified in this study is strictly the result of demographic mecha-nisms. Indeed, the simulations carried out for this study did not take into account the geneticbackground of the individuals, and the strain used for the experiments has a very low geneticdiversity, being maintained in the laboratory through inbreeding. Yet, the colonisation debt canbe expected to interact with the genetic diversity during real invasions. On the one hand, lowgenetic diversity could be an additional hurdle to colonisation for invading populations movingalong an upward gradient of carrying capacity and having already suffered from a genetic bottle-neck. On the other hand, pushed waves, which are generated by the same mechanisms as thecolonisation debt, are also known to prevent the loss of genetic diversity that can be observed
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during spread (Bonnefon et al., 2014; Roques et al., 2012). We could therefore expect geneticdiversity to maintain at higher levels along downward gradients, thus limiting the apparition ofgenetic bottlenecks because of decreasing carrying capacity and population size.The density-dependence mechanisms themselves are susceptible to evolve along the inva-sion, and therefore affect the colonisation debt. On the one hand, increased genetic variancehas been shown to help invasive population to evolve towards a mitigation of positive density-dependent growth (Kanarek andWebb, 2010; Kanarek et al., 2015). The maintenance of geneticvariance in pushed invasions could therefore also facilitate a weakening of the mechanism onthe front. Similarly, studies indicate that positive density-dependent dispersal is expected to bereduced along invasions, by evolving towards density-independent dispersal (Erm and Phillips,2020; Travis et al., 2009), although recent results suggest that this evolutionmight not be system-atic (Dahirel et al., 2022). Dispersal from the populations behind the front underlying the coloni-sation debt might therefore also enable the invader to evolve out of the density-dependencemechanisms generating the colonisation debt.
Consideration for the management of invasions

Considering the colonisation debt could improve the management of actual invasions orother range shifts. Firstly, the variations in speed it generates in heterogeneous environmentsmight help identify density-dependent mechanisms among invasive populations. Our resultsshow that the correlation between carrying capacity and invasion speed expected accordingto Haond et al. (2021) might not be as clear if the amount of habitat varies over space, becauseof the lag generated by the colonisation debt. The occurrence of such discrepancies in naturemight be an indicator that the invasive population exhibits positive density-dependence. Sec-ondly, targeting populations behind the invasion front has already been identified as a way toprevent long-distance dispersal that could increase the spread of invaders (e.g. Johnson et al.,2006). Our results show that it could also reduce the colonisation capabilities of the populationson the front themselves, and potentially further reduce the speed of invasion. Reducing the suit-ability of the environment for an invader to hinder its spread might appear inefficient at first,because the invading populations still benefit from the last colonisation events, but it might alsohave a more durable impact on further colonisation events. These results suggest that targetingcore populations as well as the invasion front itself might prove more efficient to slow downinvasions.
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Appendix A - Stochastic model of population dynamics
The stochastic model presented herewas used byHaond et al. (2021) andMorel-Journel et al.(2022) to describe the dynamics of populations forming an invasion front. The model is discretein space, i.e. the landscape is represented as a linear chain of patches. It is also discrete in time,with non-overlapping generations and each time step (i.e. generation) including two successivephases: growth and dispersal.The growth phase describes the replacement of the parent generation by their offspring, asonly the offspring participates in the dispersal phase. At each generation, the number of offspringproduced is drawn from a Poisson distribution as follows:

Oi ,t ∼ Poisson (R (Ni ,t) g (Ni ,t)) ,
with (Ni ,t) the mean per-capita growth rate in patch i at time t without Allee effects and g(Ni ,t)the number of reproducing individuals in patch i at time t . The mean per-capita growth rate
R (Ni ,t) is defined according to a Ricker model:

R (Ni ,t) = e
r

(
1−Ni ,t

Ki

)
,

with Ni ,t the population size in patch i at time t , r the exponential growth rate and Ki the car-rying capacity in patch i . The number of reproducing individuals depends on the presence ofmating Allee effects. Without Allee effects, g(Ni ,t) = Ni ,t . With Allee effects, g(Ni ,t) is definedas follows:
g(Ni ,t) =

{
Ni ,t

Ni ,t

ρR(Ni ,t)
if Ni ,t ≤ ρR (Ni ,t)

Ni ,t if Ni ,t > ρR (Ni ,t)
,

with ρ the Allee threshold. This formulation separates the impacts of the Allee effects (when
Ni ,t ≤ ρR (Ni ,t)) from the impacts of negative density-dependence (when Ni ,t > ρR (Ni ,t)) onthe population growth rate (Fig S1).
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Figure S1 – Mean population growth rate (
R(Ni ,t)g(Ni ,t)

Ni ,t
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) as a function of population
size for r = 0.5, K = 100 and ρ = 20. The growth rate increases until Ni ,t = ρR (Ni ,t)because of the Allee effect, and then decreases because of negative density-dependentdispersal.

14 Thibaut Morel-Journel et al.

Peer Community Journal, Vol. 3 (2023), article e59 https://doi.org/10.24072/pcjournal.293

https://doi.org/10.1016/j.jtbi.2009.03.008
https://doi.org/10.1016/j.jtbi.2009.03.008
https://doi.org/10.1016/j.jtbi.2012.02.018
https://doi.org/10.1016/j.jtbi.2012.02.018
https://doi.org/10.24072/pcjournal.293


0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Oi,t

d
i,t

d ind = 0.1

2τ = 200

Figure S2 – Dispersal rate as a function of population size for dind = 0.1, τ = 100 and
α = 4.

Dispersal occurs after growth and only affects the offspring. It is isotropic and occurs onlybetween neighbouring patches. After dispersal, the number of offspring produced in patch idispersing to the left O l
i ,t , dispersing to the right Or

i ,t or remaining in their patch On
i ,t are drawnfrom a multinomial distribution:

(
O l

i ,t , O
n
i ,t O

r
i ,t

)
∼ Multinomial

(
Oi ,t ,1 ,

di ,t
2

, 1 − di ,t ,
di ,t
2

) ,
with di ,t the probability of dispersing either to the left or to the right.Without density-dependentdispersal, di ,t = dind , a constant.With density dependent dispersal, the probability varies accord-ing to a Hill function, as follows:

di ,t = dmax
Oi ,t

α

τα + Oi ,t
α ,

with τ the half saturation constant, α the shape parameter of the Hill function, and dmax =
limOi ,t→∞ di ,t (Fig S2). The value of dmax is defined so that di ,t = dind when Oi ,t = 2τ :

dmax = dind

(
1 +

1

2α

) .
Given the dispersal rules defined above, the population size in patch i at t + 1 after dispersal iscomputed as follows:

Ni ,t+1 = On
i ,t + Or

i−1,t + O l
i+1,t .

Appendix B - Simulations over a single gradient
To assess the impact of the successive gradients on our results, we also performed addi-tional simulations with a single gradient of length q, either upward or downward, preceded andfollowed by sets of 10 patches of sizeKmax (before the downward gradient and after the upwardone) and of size Kmin (before the upward gradient and after the downward one) (Fig. S3). Con-versely to the landscape considered in the main text, the average carrying capacity is thereforedifferent between the landscapes. These simulations were performed for the three scenariosdescribed in the main text: (i) without any positive density-dependence, (ii) with ρ = 15, and(iii) with α = 4 and τ = 225. Each combination of parameters was repeated 1000 times. Wecomputed downward and upward gradient speeds and instantaneous speed in the middle patchof the gradient as defined in the main text. Since each landscape included a single gradient,we could not compare speeds for a given simulation. To get the differences in speeds, we ran-domly matched simulations of upward and downward gradients generated with the same set ofparameters, and computed the difference between the two. Results were similar to those pre-sented in the main text for q ≥ 4 (Fig. S4). First, there was no difference in speed in the absence
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Figure S3 – Schematic representation of the two landscapes with a single gradient (left:downward, right: upward) considered of size q.
of positive density-dependence mechanisms. In simulations with positive-density dependence,the difference between upward and downward gradients as they became shallower. However,the variability in the simulation results was greater than for simulations with multiple gradients.Unlike the results presented in the main text, we did not observe discrepancies for the smallervalues of q. This suggests that the patterns observed for q < 4 in landscapes with multiplegradients do come from the impact of the previous gradient on the next one.

Appendix C - Experimental setup using Trichogramma chilonis
The organism used for the artificial invasions is the oophagous parasitoid wasp Trichogrammachilonis, which is commonly used as a biological control agent against various crop pests. Thisspecies is particularly suitable for microcosm experiments, due to their small size and short gen-eration time, e.g. 14 days for the strain used in this study. Besides, this strain is also known toexhibit density-dependent dispersal, as noted in previous studies (Haond et al., 2021; Morel-Journel et al., 2016). During the experiment, T. chilonis was reared on irradiated eggs of Ephestiakuehniella, which allow the normal emergence of the parasitoid while preventing the emergenceof host caterpillars. To ensure a constant resource availability over time, the E. kuehniella eggswere replaced at each new generation of T. chilonis.The experimental setups used for this study are artificial microcosm landscapes. These land-scapes are designed as linear chains of seven tubes, each representing a patch, connected bypipes representing the dispersal pathways. For the duration of the experiment, these landscapes
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Figure S4 – Difference between the downward and upward gradient speed (A) and in-stantaneous speed in the middle patch (B), for simulations without density dependence(green), density-dependent growth (yellow) and dispersal (blue). Positive values indicatefaster invasions in downward gradients compared to the upward ones. Intervals contain80% of the simulations. Results were slightly shifted on the x-axis for better readability.
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were placed in controlled conditions of temperature (20.5◦C), hydrometry (> 70%) and light pe-riod (16h). Landscape invasions were initiated with parasitized eggs introduced at one end of thelandscape, and lasted for 14 generations.A generation starts at the emergence of adults from the eggs. During the first 48 hours, adultsare free to disperse through the pipes, mate and lay eggs. Then, adults and pipes are removedand the larvae can develop during 12 days, until the next emergence. Generations are thereforenon-overlapping, as only the offspring is conserved. Population sizes are assessed on the 7th dayafter adult emergence, by counting the number of parasitized eggs in each patch. Indeed, theeggs turn black because of the chitinization of the T. chilonis pupae developing inside (Reay-Joneset al., 2006). Eggs are photographed for each generation and each replicate and population sizesare counted using the ImageJ software (Abramoff et al., 2004). The number of eggs provided toT. chilonis is a hard limit on the maximal population size. Indeed, superparasitism (i.e. parasitisingthe same egg multiple times) seldom results in more than one emergence of adult, with ratherlow survival rates and sex-ratio biases among the emerging individuals (Suzuki et al., 1984). Inaddition to demographic stochasticity that affect small populations in general, over-competitioncan also destabilize T. chilonis populations with low number of eggs.
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Appendix D - Instantaneous speeds for every value of q
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Figure S5 – Instantaneous speed as a function of carrying capacity, for q ∈ [1 : 10](rows) and either no mechanism (green, 1st column), Allee effects (yellow, 2nd column)or density-dependent dispersal (blue, 3rd column). Mean values over all patches with thesame carrying capacity are represented by crosses if the patch is in a downward gradient,and as circles if the patch is in an upward gradient. Intervals contain 80% of the simulatedinstantaneous speeds.
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