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Abstract
In this paper I report the discovery of neurons which showed a neural correlate with on-going fluctuations of Bitcoin and Ethereum prices at the time of the recording. I used thepublicly available dataset of Neuropixel recordings by the Allen Institute to correlate thefiring rate of single neurons with cryptocurrency price. Out of ~40.000 recorded singleneurons, ~70% showed a significant correlation with Bitcoin or Ethereum prices. Evenwhen using the conservative Bonferroni correction for multiple comparisons, ~35% ofneurons showed a significant correlation, which is well above the expected false pos-itive rate of 5%. These results were due to ”nonsense correlations”: when correlatingtwo signals which both evolve slowly over time, the chances of finding a significant cor-relation between the two are much higher than when comparing signals which lack thisproperty.
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Introduction
In a typical neuroscience experiment we record a group of neurons, find neurons which showa neural correlate of a behavioral variable of interest, and restrict further analyses to this neuronalsubset. The central assumption in this approach is that the neural correlate under scrutiny is notmerely a statistical anomaly but a neural code that the brain actually uses. Often this is true, butthere are cases in which this can lead to false conclusions. For example, when correlating neuralactivity with a behavioral variable which slowly evolves over time. Both neural activity and sucha variable show temporal auto-correlations and are therefore very likely to result in a ‘nonsensecorrelation’ (Harris, 2020b).This statistical pitfall can result in the drawing of erroneous conclusions, as was argued tobe the case when describing action-value coding neurons in the striatum (Elber-Dorozko andLoewenstein, 2018). It can also lead to amusing spurious findings: it was shown that a dailyaverage of population activity in the rat motor cortex correlated with day-to-day fluctuations ofstock prices. The temporal auto-correlation in the signals even allowed neural activity of theseneurons to be used to predict the stock value of the next day (Marzullo et al., 2016).Here, I aimed to illustrate this statistical pitfall at a large scale and investigated several of theproposed methods to circumvent the issue of nonsense correlations in the brain. I correlatedspiking activity from tens of thousands of neurons in the mouse brain with ongoing fluctuationsin the price of Bitcoin and Ethereum, the two most well-known cryptocurrencies. I found that

∼70% of neurons showed a significant correlation with cryptocurrency price at the time of therecording. This was not merely a multiple comparisons problem because when using the con-servative Bonferonni correction, still a large fraction of neurons showed a significant correlation.Two methods, proposed by Harris (2020a,b), were successful in reducing the false alarm rate toacceptable levels. When analysing signals which slowly evolve over time, one should be awareof these statistical pitfalls and use the proper control analyses to correct for them.
Methods

I used the publicly available Visual Coding - Neuropixels dataset (Siegle et al., 2021) providedby the Allen Institute as part of the Brain Observatory (Vries et al., 2020). Briefly, spiking activitywas recorded in posterior cortical and subcortical structures using high-density Neuropixel sili-con probes. The dataset contained spiking activity of 40,010 neurons recorded in 58 mice whichwere head-fixed and passively viewing visual stimuli.Single neuron activity was correlated with ongoing fluctuations in cryptocurrency price bybinning each neuron’s spike train in 60 second bins and calculating the spike rate in spikes per sec-ond per time bin. As a secondmethod of defining neuronal activity, pseudo trials were generatedby uniformly drawing 500 trial onset times from the entire length of the recording session. Sub-sequently, trials were defined as 300 ms windows after the onset times and spike counts wereobtained for these timewindows. The concurrent price of Bitcoin and Ethereumwas collected us-ing the Python library Historic-Crypto (https://pypi.org/project/Historic-Crypto/). Cryp-tocurrency prices were defined as the opening bid in 60 second bins starting at the exact starttime and date of the recording. Spike rates and cryptocurrency prices were correlated usingPearson correlation.The session permutation method was implemented by querying price vectors of equal du-ration from different points in time. To generate a null-distribution, I took 1000 price vectorsstarting at random time points between 2019 and 2020, and correlated these vectors with thespiking rate of each neuron using Pearson correlation. A p-value was defined as the fraction oftimes the Pearson correlation coefficient of the correlation between the neural activity and theprice vector at the time of the recording was higher than the correlation with the price vectorsfrom different times.To perform the linear shift method, a time window of 50 minutes in the middle of the ses-sion was defined in which firing rate was correlated with cryptocurrency price using Pearsoncorrelation. Subsequently, the window with the to-be-correlated metric is shifted throughoutthe session such that the neural activity is now correlated with the metric from a different part
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Figure 1 – Neural correlate of cryptocurrency price. (A) Example neurons from fourdifferent brain regions which showed a strong correlation with ongoing pricefluctuations of Bitcion (top) and Ethereum (bottom). Spike rate and cryptocurrencyprice was binned in 60 second bins. (B) Distribution of Pearson correlation coefficientswas centered at zero but showed a large fraction of neurons that were positively andnegatively correlated with cryptocurrency price. Correlation with a vector of randomnumbers was added as a control. (C) A high percentage of neurons showed a significantcorrelation with Bitcoin or Ethereum price (p < 0.05), in contrast only 4.9% of neuronswere correlated with the random vector, close to the Type I false positive rate of 5%(grey dotted line).
of the session. In this case, the null-distribution was generated by shifting the price window toearlier and later time points in the session in one minute steps while keeping the firing rate win-dow the same. The p-value was defined as the fraction of times the correlation of the originalprice vector was stronger than the price vectors from shifted time windows.Distinct temporal components were filtered out of the cryptocurrency price fluctuations us-ing a 4th order Butterworth filter. Three different filters were used: a high pass filter whichfiltered out anything below 0.3 cycles per hour (cph), a band stop filter which took out frequen-cies between 0.3 and 2 cph and a low pass filter which removed anything above 2 cph. Each ofthese filtered price traces were subsequently correlated to binned spike trains of all neurons asdescribed above.

Results
Many neurons showed a strong correlation in their firing rate with the price of Bitcoin orEthereum at the time of the recording (Figure 1A). All plots of neurons with a correlation coeffi-cient (r) of>0.85 can be found here: https://figshare.com/articles/figure/Crypto-coding_

neurons/14445480. The distribution of correlation coefficients between firing rate and cryp-tocurrency price over all neurons was very broad and included very strong correlations. To in-vestigate whether any property of these price fluctuations made them particularly susceptible tospurious correlations, a vector with random numbers (a uniform random draw between 100 and200) was correlated with the firing rate traces as a control; the random vector was only weaklycorrelated with firing rates (Figure 1B). For a remarkably large percentage of neurons, the cor-relation with cryptocurrency price was significant (Bitcoin: 70.5%, Ethereum: 68.8%) while thecorrelation with the random vector only resulted in 4.9% significantly correlated neurons whichwas around the expected Type I error rate of 5% (Figure 1C). These spurious correlations couldnot be controlled for by correcting for multiple testing. When using the conservative Bonferroni
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Figure 2 – Methods to correct for nonsense correlations. Shuffle: shuffling thecryptocurrency price traces to determine significance did not reduce the false positiverate to the desired level of 5%. Permutation: constructing a null-distribution ofcorrelations using 1000 price traces from other time points worked well to bring thefalse positive rate down to ∼5%. Linshift: using the linear shift method whereby awindow of time points is shifted through the session to generate a null-distribution alsoreduced the amount of significantly correlated neurons to the desired level.
correction, a large fraction of neurons still showed a significant correlation with crypto price(Bitcoin: 34.7%, Ethereum: 33.9%).Binning neuronal activity in 60 second bins generally does not happen in neuroscience. There-fore, I generated 500 pseudo trials with a duration of 300 ms, which is a commonly used timewindow, and obtained the spike counts of all neurons for these time windows. When correlatingthe spiking activity during these trials with the cryptocurrency price at that time, I still founda large fraction of significant neurons (Bitcoin: 60.1%, Ethereum: 59.2%; Bonferroni corrected:Bitcoin: 24.3%, Ethereum: 23.8%).I investigated whether these spurious correlations could be controlled for using differentmethods to determine whether neurons were significantly correlated to cryptocurrency price. Acommonly used method to determine significance is to shuffle one of the traces a large num-ber of times and calculate the correlation coefficient for every shuffling iteration. This null-distribution of correlation coefficients is subsequently used to determine significance; the p-value is defined as the fraction of times the correlation of the original signal was stronger thanthe shuffled traces. This approach still resulted in 41.5% of significantly correlated neurons (Fig-ure 2).Next, I used two methods proposed by Harris (2020b) which are specifically designed tocontrol for temporal auto-correlations: the session permutation and the linear shift method. Inthe session permutationmethod one uses the data fromother sessions, recorded under the sameconditions, to generate a null-distribution from which a p-value can be derived. This resulted in5.6% significant neurons which was close to the desired false positive rate of statistical testing.The linear shift method (Harris, 2020a) works by defining a time window in the middle ofthe session and correlating neural activity in this window with a metric of interest at that time,this window is then shifted throughout the session to generate a null-distribution. This methodof controlling for nonsense correlations was slightly more conservative than the permutationmethod and resulted in 4.2% of significantly correlated neurons. Using these methods, a falsediscovery rate (FDR) correction of p-values sufficed to almost completely eliminate any falsepositives (permutation: 0.07%, linear shift: 0%).What property of cryptocurrency price fluctuations was most important in eliciting thesestrong nonsense correlations? Cryptocurrency prices evolve over time at several different timescales (Figure 3A). Generally, there is a slow trend over timewith fast price fluctuations on top. Toinvestigate which of these components was the most important driver of nonsense correlations
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Figure 3 – Influence of different temporal components on nonsense correlations. (A)Example cryptocurrency price of Ethereum over a time of five hours. (B) The pricevector from A, filtered in three different ways: High pass (0.3 cycles per hour), Bandstop (0.3 - 2 cph) and Low pass (2 cph). (C) Filtering out the slow component of thecryptocurrency price fluctuations resulted in a large decrease in the percentage ofsignificantly correlated neurons. Band stop and Low pass filtered traces resulted inslightly more correlated neurons.

I filtered out the slow component (High pass), the medium component (Band stop) and the fastcomponent (Low pass; Figure 2B) and correlated each of these filtered traces with the neuralactivity. Filtering out the slowly evolving trends resulted in a large drop of significantly correlatedneurons while filtering out the medium and fast components resulted in a moderate increase ofneurons that were correlated to these traces (Figure 3B). This suggests that the slow trends incryptocurrency prices are the main driver of nonsense correlations.

Discussion
Why did such a large fraction of neurons show a significant correlation with crytocurrencyprice? We can rule out that neurons in the mouse brain actually encoded cryptocurrency price,as they did not have access to this information during the recording. Moreover, mice almost cer-tainly lack the capacity to read and interpret complex financial data. The most likely explanationis that firing rates and cryptocurrency prices slowly evolve over time and the time constant ofthese temporal auto-correlations happened to be similar. Because the two signals that are be-ing correlated to one another share this statistical property, the chances of finding a significantcorrelation between the two are much higher than the usual false positive rate of 5%. Specifi-cally, the slow trends in cryptocurrency prices resembled neuronal activity patterns because tak-ing out these slow trends strongly reduced nonsense correlations. Furthermore, the extremelylarge number of neurons in the dataset allowed for strong correlations to be observed purelyby chance. Because of the temporal auto-correlations in both signals, conventional methods likemultiple comparisons corrections failed to reduce the false positive rate to acceptable levels.When analysing signals that slowly evolve over time, like neural activity, one should take theutmost care to avoid the pitfall of ‘nonsense correlations’ (Harris, 2020b). Although this issueis widely discussed in other scientific fields, its importance is only recently gaining traction insystems neuroscience. This paper serves as a cautionary tale that the potential confound ofnonsense correlations is to be taken seriously. When not properly controlled for, it can lead tothemisleading conclusion that 70% of neurons in themouse brain encode cryptocurrency prices.

Data and code availability
The Visual Coding - Neuropixels dataset from the Allen Brain Institute: https://allensdk.

readthedocs.io/en/latest/visual_coding_neuropixels.html.The code used to analyse the dataset and generate the figures: https://github.com/guidomeijer/
crypto-correlations
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