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Abstract
To index or compare sequences efficiently, often k-mers, i.e., substrings of fixed lengthk, are used. For efficient indexing or storage, k-mers are often encoded as integers, e.g.,applying some bijective mapping between all possible σk k-mers and the interval [0, σk
−1], where σ is the alphabet size. In many applications, e.g., when the reading directionof a DNA-sequence is ambiguous, canonical k-mers are considered, i.e., the lexicograph-ically smaller of a given k-mer and its reverse (or reverse complement) is chosen as arepresentative. In naive encodings, canonical k-mers are not evenly distributed withinthe interval [0, σk −1]. We present a minimal encoding of canonical k-mers on alphabetsof arbitrary size, i.e., a mapping to the interval [0, σk/2−1]. The approach is introducedfor canonicalization under reversal and extended to canonicalization under reverse com-plementation. We further present a space and time efficient bit-based implementationfor the DNA alphabet.
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1. Introduction
The increasing amount of available genome sequence data enables large-scale analyses. Acommon way to handle long and many genomes is using k-mers, i.e., substrings of fixed length k ,to efficiently index or compare sequences.Many k-mer-based methods hash k-mers to integer values in order to store them in a table,or to assign them to different tables or threads.For a specific subset S of observed k-mers among all possible k-mers, minimal perfect hashfunctions (MPHFs) can be used. Here, a data structure comprising the given set S is used tobijectively map an individual k-mer to an integer (hash value) in the interval [0, |S |−1], see e.g.,(Crusoe et al., 2015; Limasset et al., 2017; Patro et al., 2014; Pibiri, 2022; Pibiri et al., 2022; Pibiriand Trani, 2023).In contrast, here, we consider a general encoding of any k-mer from the universal set of k-mers that is independent of any data set but may be restricted by certain properties as describedbelow.For the four letter DNA alphabet, each character can be encoded using two bits. Reading theresulting bit sequences as integer values corresponds to an encoding for the set of all 4k k-merswhich are mapped to an interval of size 4k .In many situations, e.g., when genomes are not given as complete sequences but rather inform of contigs or reads, the reading direction of a given DNA sequence is unknown. To makea method independent from whether a sequence itself of its reverse (Watson Crick) comple-ment is observed, both a k-mer and its reverse complement are assumed equivalent and one ofthem is chosen as a canonical representative of both, e.g., the lexicographically smaller one. Forodd length k-mers, two k-mers pair to one canonical k-mer each. Thus, there are half as manycanonical k-mers as there are k-mers. For even length k-mers, (Watson Crick) palindromes haveto be considered, which are canonical by definition and do not pair, thus increasing the number ofcanonical k-mers. In any case, the (lexicographically) canonical k-mers are not evenly distributed– neither within the lexicographic ordering of k-mers nor in the interval of k-mer hash valuesspanned by a simple 2-bit encoding. See Figure 1 for an illustration.
The canonical k-mers correspond to only a subset of all hash values. In view of the fact that(for odd k ) exactly half of all k-mers are canonical, only 2k−1 bits instead of 2k bits are necessaryand sufficient to span the integer values from 0 to n − 1 where n is the number of canonical k-mers. One approach to obtain a 2k − 1-bit encoding is to define a k-mer being canonical not
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Figure 1 – Distribution of (lexicographically) canonical k-mers among all k-mers. Each k-mer for k = 5 is represented as a block, ordered lexicographically from left to right, rowby row. The four blocks at the corners are exemplarily labeled. A block is drawn black ifthe k-mer is canonical, and gray otherwise.

with respect to their lexicographic relation but rather based on their 2-bit encoding. To the bestof our knowledge, such an approach has not been published yet, but has been proposed by thecommunity (D.W., 2017): Encode characters by two bits in such a way that a character and itscomplement have different parity each (even or odd number of ones), e.g., A 7→ 00, C 7→ 01,
G 7→ 11, T 7→ 10. Then, the encoding of an odd length k-mer always has a different parity as itsreverse complement. Hence, one parity can be chosen as canonical, and one bit, e.g. the first bit,can be omitted as it could be deduced by counting the ones in the shortened bit sequence. Thisapproach, however, is only applicable for odd values of k , and there is no evident extension toeven length k-mers.

While all above considerations are based on the DNA alphabet of size four, also alphabetsof other sizes are worth to study. An alphabet size σ that is not a power of two does not allowfor simple bit-based encoding. A generalization to a ranking-based approach offers an elegantinteger encoding: Interpret a character as a digit between 0 and σ − 1, and a k-mer as a numberin a base-σ numeral system. Then, a standard mapping to decimal values corresponds to anencoding to [0,σk −1].
We stress that, on the one hand, we are not aware of any case where the issues outlinedabove lead to serious limitations in practice. Exact encodings are usually not necessary in prac-tice, randomized hashing is applied (aappleby, 2016; Marçais and Kingsford, 2011; Wood andSalzberg, 2014) and even-length k-mers are often omitted anyway to avoid palindromes. Onthe other hand, we observe an interesting theoretical phenomenon: while encoding, enumerat-ing etc. k-mers is straight-forward and also the definition of being canonical is simple, in con-trast, encoding canonical k-mers appears to be complex. We want to contribute to the basicresearch in this field by filling this gap in the theory of k-mers. We propose a general, mini-mal encoding for canonical k-mers – general in the sense that it applies for arbitrary k (evenor odd) and on alphabets of arbitrary size σ, and minimal in the sense that it bijectively mapsall n k-mers to the interval [0, n − 1]. The approach is introduced for canonicalization under
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reversal and extended to canonicalization under reverse complementation. For alphabet sizefour, we show the relation to bit-space and provide an algorithm to encode all k-mers of agiven sequence s in time O(k + |s|). A simple implementation is available on GitLab: https:
//gitlab.ub.uni-bielefeld.de/gi/MinEncCanKmer

2. Preliminaries
We consider as alphabet a finite, non-empty, ordered set {a0, ... , aσ−1} with a0 < · · · < aσ−1and define the rank of character ai ∈ A as rank(ai ) = i . A string s is a sequence of characters.Its length is denoted by |s|, the character at position i by s[i ], and the substring from position ithrough j by s[i ..j ], where 1 ≤ i ≤ j ≤ |s|. Let ϵ denote the empty string. The concatenation of astring or character s and another string or character t is denoted by s · t . The reverse of string sis s−1 = s[|s|] · · · s[1].Strings of fixed length k are called k-mer. We define a k-mer x being canonical if it is lexico-graphically smaller than or equal to x−1.Let Kσ

k be the set of all k-mers over an alphabet of size σ. The number of k-mers is |Kσ
k | = σk .For the number of canonical k-mers, first note that a palindrome, i.e., a sequence x = x−1, iscanonical by definition. Each non-palindromic k-mer pairs with its reverse such that the numberof canonical non-palindromic k-mers is half of the number of non-palindromic k-mers. The num-ber of palindromes is σ⌈ k

2
⌉, so the number of non-palindromic k-mers is σk − σ⌈ k

2
⌉, half of whichare canonical. In summary, the size of the set Cσ

k of canonical k-mers is:
|Cσ

k | = 1

2

(
σk − σ⌈k/2⌉

)
+ σ⌈k/2⌉ =

1

2

(
σk + σ⌈k/2⌉

)
.

In order to efficiently handle k-mers, they can be mapped to integers.
Definition 2.1. An encoding on U is an injective total function that maps elements from U tointeger values. It is minimal if it bijectively maps to the range [0, |U| − 1].
Please note the following:

• In other contexts, encodings can be defined to map on words over specific alphabets.Here we assume mappings to single integers.
• Weuse the term encoding for both, a numeral representing a k-mer, also called code word,as well as the mapping process itself.
• While formally, the notion of a minimal encoding is equivalent to a minimal perfect hashfunction (MPHF), they are commonly used in different settings: the first on an entire uni-verse of elements, e.g., all possible k-mers, and the latter on a given subset of elements,e.g., all k-mers observed in a data set. Here, we address minimal encodings of k-mers.

A commonly used minimal encoding of k-mers is rank based. Each character is encoded byits rank, which is interpreted as a digit. The resulting sequence of digits can then be convertedfrom the base-σ numeral system, denoted by (· · · )σ , to decimal values.

enc(x) :=
(
rank (x [1]) · · · rank (x [k]))

σ
=

k∑

i=1

rank (x [i ]) · σk−i

The resulting values range from enc(a0 · · · a0) = 0 to enc(aσ−1 · · · aσ−1) =
∑k

i=1 (σ − 1) · σk−i

= (σ − 1) ·∑k−1
j=0 σj = (σ − 1)1−σk

1−σ = σk − 1, i.e., from 0 to |Kσ
k | − 1.When instead canonical k-mers are encoded using this approach, only part of the co-domainis actually used. In particular, the image does not correspond to an interval of integers. Thefollowing section introduces a minimal encoding of canonical k-mers, i.e., it has as co-domainthe integer interval [0, |Cσ

k | − 1].
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Table 1 – Example on the encoding of specifying pairs.

specifying pair rank encoding
l r R Rl Rr

a0 a1 0 1 0
a0 a2 1 1 1
a0 a3 2 1 2
a1 a2 3 1 3
a1 a3 4 2 0
a2 a3 5 2 1

T3 − R 0 1 2 3
0 6 5 4
1 3 2
2 1
3

R 0 1 2 3
0 0 1 2
1 3 4
2 5
3

The six combinations of characters for alphabet size σ = 4 are listed in lexicographicorder and numbered using function R . This value is then decomposed to obtain the lex-icographically smallest six combinations of digits that do not have a zero in its first po-sition. The tables on the right demonstrate the relation between the triangular numbers
T = [1, 3, 6, ...] (sequence A000217 in the On-Line Encyclopedia of Integer Sequences),highlighted in bold face, and the rank R . In the modified matrix Tσ−1 −R(l , r), the valuesnext to the diagonal correspond to the triangular numbers Tσ−1, ... ,T1. From those, theoff-diagonal values can then be easily deduced.

3. Encoding canonical k-mers
In the following, wewill first introduce a preliminary encoding enc ′

c of canonical k-mers, whichis not minimal. In a second step, gaps in the image of enc ′
c will be removed to derive a minimalencoding encc . Finally, an expedient characteristic of encc with regard to palindromes will behighlighted.

3.1. Preliminary encoding
The encoding is based on the observation that there are fewer canonical k-mers than thereare k-mers in general, i.e. |Cσ

k | < |Kσ
k |. A mapping is only required if k-mer x is canonical, i.e.,

x is lexicographically smaller than or equal to x−1. This in turn can be seen when comparingits first to its last character, and if they are equal, its second to its second last etc., i.e., x [i ] to
x−1[i ] = x [k − i +1] for i = 1, ... , ⌈k/2⌉ until a pair x [ι̂] < x [k − ι̂+1] is found, specifying x beingcanonical. If instead equality holds for all pairs, x is palindromic and thus canonical by definition.A given k-mer will be encoded from the outside inwards, i.e. for increasing i , while differentencoding schemes are used. For sake of convenience, the encoding is given as digits in base-σspace.

Unspecific pairs.: If x [i ] = x [k − i + 1], one character implies the other such that only oneof the two characters needs to be encoded. Instead of actually encoding x [i ], digit zerois used to indicate the pair being unspecific, and x [k − i + 1] is encoded by its rank.Specifying pair.: If x is not palindromic, let ι̂ be the smallest value such that x [ι̂] < x [k −
ι̂ + 1]. This pair determines x being canonical. Only a limited number of combinationsof characters needs to be encoded. The left character has to be encoded with a digitgreater than zero to tell it apart from the unspecific case. The right character is encodedwith a digit from zero to σ − 1. The combination of digits has to be continuous to avoidgaps in the co-domain. For instance, for an alphabet of size 4, six different combinationsof characters are encoded by the lexicographically lowest six pairs of digits from (1, 0) to
(2, 1). Function R is used to determine the rank of a character pair in the list of all possiblecombinations, see Table 1 (left) for an example. Values for R(l , r) can be determinedusing the triangular numbers T = [1, 3, 6, 10, 15, ...] (sequence A000217 in the On-LineEncyclopedia of Integer Sequences) as demonstrated in Table 1 (right). The value of Ris then decomposed into the encoding Rl of the left character and Rr of right character
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using integer division and modulo, respectively.
R =

l

2
(2σ − 3 − l) + r − 1, Rl = ⌊R/σ⌋ + 1, Rr = R mod σ.

Remainder.: All remaining characters for ι̂ < i < k − ι̂ + 1 (if any) are simply encoded bytheir rank.
Our preliminary encoding of canonical k-mers is summarized in the following function enc ′

cshownbelow. It is formulated recursivelywhere in the i-th step of the recursion, substring x [i , k−
i + 1] is processed. The encoding of a palindromic k-mer solely consists of unspecific pairs untilreaching the middle of the k-mer, which is either the empty string (even k ) or a single character(odd k ), the latter of which is encoded by its rank. For unspecific pairs and the remainder, theorder of digits in the encoding corresponds to the order of characters in the given sequence. Incontrast, for a reason explained later, the two digits encoding a specifying pair are placed nextto each other at positions ι̂ and ι̂ + 1 as shown in Example 1.

enc ′
c(x) :=





With l = rank(x [1]) and r = rank(x [|x |]) :
// Middle position of palindrome
ϵ if x = ϵ
r if |x | = 1

// Unspecific pair
0 enc ′

c(x [2, |x | − 1])︸ ︷︷ ︸recurse
r if l = r

// Specifying pair
Rl Rr enc(x [2, |x | − 1])︸ ︷︷ ︸remainder

if l < r

Example 3.1. Let k = 6 and σ = 4. The k-mer x shown below contains one unspecific pair. Thespecifying case is highlighted in bold and the remainder is underlined. R(0, 1) = 0 such that Rl = 1and Rr = 0 (see Table 1).
x = a0 a0 a0 a0 a1 a0

enc ′
c(x) = ( 0 1 0 0 0 0 )σ

3.2. Transformation to a minimal encoding
In enc ′

c , for a specifying pair, not all combinations of digits are used. Thus, the image of enc ′
cis not an interval. For a given enc ′

c(x), however, knowing the position ι̂ of the specifying pair(if x is non-palindromic), we can calculate missing(ι̂), the number of all smaller elements of theco-domain that are not an encoding of any canonical k-mer. By subtracting this number fromthe decimal value of enc ′
c(x), we obtain a continuous range of encodings from 0 to |Cσ

k | − 1 andthus a minimal encoding.
encc(x) :=

(
enc ′

c (x)
)

σ − missing(ι̂)

To determine the value of missing(ι̂), we need to count the number of digit sequences that(i) are not a valid encoding by enc ′
c and (ii) have a value smaller than enc ′

c(x). For palindromes,no such sequences exist, i.e., missing(ι̂) = 0. Otherwise, regarding (i), a sequence of digits canbe identified invalid by reading from left to right and observing neither a zero that would resultfrom encoding an unspecific pair, nor any of the valid (σ2) different combinations resulting fromencoding a specifying pair. There are (σ2) such invalid combinations of digits a, b with 0 < a < b.
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Regarding (ii), observe that in enc ′
c(x), to the left of position ι̂ there are only zeros. We have toconsider those sequences starting with further zeros, i.e., positions of invalid pairs j , j + 1 thatare to the right of ι̂, ι̂+1. Further observe that any such pair has to be left of the middle positionof the k-mer, i.e., j ≤ ⌊k

2 ⌋. For each such pair j , j + 1, the remaining m := k − (j + 1) positionscan take any value such that σm many invalid sequences have to be subtracted each.
missing(ι̂) =

k−ι̂−2∑

m=⌈k/2⌉−1

σm ·
(

σ

2

)

=

(
σ

2

)( k−ι̂−2∑

m=0

σm −
⌈k/2⌉−2∑

m=0

σm
)

=
σ(σ − 1)

2

(
σk−ι̂−1 − 1

σ − 1
− σ⌈k/2⌉−1 − 1

σ − 1

)

=
σk−ι̂ − σ⌈k/2⌉

2

Example 3.2. Consider an alphabet of size σ = 4, k-mer length 6, and k-mer x = a0 a0 a0 a0 a1 a0from Example 3.1. In this case, missing(ι̂) counts all elements of the co-domain that are not in theimage and have a value smaller than enc ′
c(x) = ( 0 1 0 0 0 0 )4 = 256. Those are all sequences of theform

{
0 0

}×





1 0
2 0
2 1
3 0
3 1
3 2





×





0
1
2
3





×





0
1
2
3




,

i.e., they begin with two zeros, followed by a pair of digits that does not encode a specifying pair,followed by any two remaining digits. The number of these combinations is 6·4·4 = 96, i.e., encc(x) =
enc ′

c(x) − missing(2) = 256 − 96 = 160. The next lowest valid case is: encc(a3 a3 a2 a3 a3 a3) =
( 0 0 2 1 3 3 )4 − missing(3) = 159 − 0 = 159.
Theorem 3.3. Function encc is a minimal encoding for Cσ

k .
Proof. First observe that missing(ι̂) < σk−ι̂, and thus position ι̂ in enc ′

c(x) will not be affected bysubtracting missing(ι̂) and, in particular, the number of leading zeros is the same in enc ′
c(x) and

encc(x). Further observe that the number of leading zeros is equal to ι̂ − 1, and thus allows us toderive enc ′
c(x) from encc(x) by addingmissing(ι̂). Hence, there is a bijection between the imagesof encc and enc ′

c .A careful inspection of enc ′
c shows that it iswell defined on any canonical k-mer and enc ′

c(x) ̸=
enc ′

c(y) for any x ̸= y : the number of leading zeros of enc ′
c(x) together with the correspondingdigits at its end determine the unspecific pairs. Either the following two digits determine thespecifying pair and the remaining digits determine the remaining characters, or the middle posi-tion is reached in case of a palindrome.It remains to be shown that the |Cσ

k | many different canonical k-mers are mapped to valuesnot larger than |Cσ
k | − 1. To this end, consider a value larger than |Cσ

k | − 1 to be decoded. Inbase-σ space, this value would take at least ⌊logσ |Cσ
k |⌋ + 1 > k digits. Since valid encodings areof length k (including leading zeros), this is a contradiction. □

This encoding can easily be extended to include non-canonical k-mers such that they are en-coded as their canonical counterpart. To this end, the specifying cases have to be complementedwith those pairs that specify a string being non-canonical, i.e., R(a, b) := R(b, a) for b < a. Then,instead of the remainder, its reverse has to be encoded.
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3.3. Palindromes
Palindromes do not pair to one canonical k-mer but are usually expected to be observed insequence data approximately as often as non-palindromic k-mers that do pair to one canonical

k-mer. Thus, palindromes might require special consideration in some applications, e.g., in statis-tical analyses, or for an even distribution of observed k-mers into buckets for parallel processing.The above encoding allows a simple differentiation of palindromes from other k-mers. It isdesigned in such a way that palindromes are mapped to the lowest 1/2 ·σ⌈k/2⌉ values, which canbe seen as follows. If and only if x is a palindrome, enc ′
c(x) has ⌊k/2⌋ leading zeros. Otherwise,the number of leading zeros is smaller. As mentioned in the proof of Theorem 3.3, the number ofleading zeros is the same for encc(x). Thus, the encoding of palindromes has more leading zerosthan any other encoding.

Example 3.4. Consider an alphabet of size σ = 4 and k-mer length 2. In this case,missing(ι̂) is alwayszero such that enc = enc ′. All k-mers in order of their encoding are shown below.
encoding k-mer(s)

0 0 a0a0
0 1 a1a1
0 2 a2a2
0 3 a3a3
1 0 a0a1 = (a1a0)

−1

1 1 a0a2 = (a2a0)
−1

1 2 a0a3 = (a3a0)
−1

1 3 a1a2 = (a2a1)
−1

2 0 a1a3 = (a3a1)
−1

2 1 a2a3 = (a3a2)
−1




palindromes

This characteristic of encc , mapping palindromes to the smallest values, will also be exploitedin the following section, where palindromes play a particular role.
4. Canonicalization under reverse complementation

In certain applications, in particular when handling genomic sequences, instead of only revert-ing a sequence, its reverse (Watson-Crick) complement is considered. For an even-size alphabet
{a0, ... , aσ−1}, the reverse complement of a string s is s := s[|s|] · · · s[1], where ai := aσ−1−i . Forinstance, for the DNA alphabet {A,C ,G ,T}, A := T ,C := G ,G := C ,T := A. An extensionto alphabets of odd size, where a⌈σ/2⌉ := a⌈σ/2⌉ would be possible, but those technicalities are
omitted here for the sake of comprehensibility. Let Cσ

k be the set of all canonical k-mers over analphabet of even size σ under reverse complementation.For an odd-length k-mer, taking its reverse complement always changes the character at itsmiddle position. Thus, x is always different from x , i.e., there are no palindromes, and the numberof canonical k-mers is half the number of k-mers.
|Cσ

k | =




1
2σk if k is odd, and
1
2

(
σk + σk/2

) if k is even.
The encoding enc ′

c(x) from Section 3.1 can be applied analogously here – just r = rank(x [|x |])has to be replaced by r = rank(x [|x |]), which we will denote enc r ′c (x) in the following. If k is odd,there are no palindromes, but the middle position of a k-mer might specify it being canonical.So, the very first case in the definition of enc r ′c (x) will only apply to one half of the alphabet.Hence, the lowest σ/2 · σ⌊k/2⌋ = 1/2 · σ⌈k/2⌉ values are never taken (see also Section 3.3). Theirnumber has to be included inmissing(ι̂) such that the image is shifted from [1/2σ⌈k/2⌉, |Cσ
k | − 1]to [0, |Cσ

k | − 1].
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enc rc (x) := (enc r ′c (x))σ − missing r (ι̂)

where missing r (ι̂) =

{
missing(ι̂) + 1

2σ⌈k/2⌉ if k is odd, and
missing(ι̂) if k is even.

Example 4.1. Let k = 5 and σ = 4. The k-mer y shown below contains two unspecific pairs. It isspecified being canonical by its middle position, ι̂ = 3, highlighted in bold.
y = a0 a0 a1 a3 a3

enc r ′c (y) = ( 0 0 2 0 0 )σ = 32

There is no k-mer with a smaller encoding, because this would require a middle position encoded witha value lower than 2, i.e. character a2 or a3, which contradict canonicity. We have missing(3) = 0,
1
2σ⌈k/2⌉ = 1

24
3 = 32, and thusmissing r (3) = 32 and enc rc (y) = 32 − 32 = 0.

Corollary 4.2. Function enc rc is a minimal encoding for Cσ
k .

To allow non-canonical k-mers as input to be encoded as their canonical counterpart, insteadof the specifying pair and the remainder, their reverse complements have to be encoded.
5. Efficient bit-based implementation for the DNA-alphabet

Here, we consider the commonly usedDNA alphabet {A,C ,G ,T}withA := T ,C := G ,G :=
C ,T := A. For the sake of convenience, we consider k being odd such that palindromes can beleft aside in the following explanations and the number of canonical k-mers is 1

24
k = 22k−1.

5.1. Space efficiency
The four different rank values can be binary encoded by two bits each: rank(A) = 0 =

(00)2, rank(C ) = 1 = (01)2, rank(G ) = 2 = (10)2 and rank(T ) = 3 = (11)2. Since both thestandard rank based encoding enc and the encoding for canonical k-mers enc rc result in k digits,any encoding is of length 2k bit. However, the encodings of enc rc only span the integer range
from 0 to |C 4

k | = 22k−1 such that only log2(2
2k−1) = 2k − 1 bits are necessary. This means, thefirst bit of any enc rc (x) will always be zero and can thus be omitted to store any canonical k-merusing 2k − 1 bits.

5.2. Time efficiency
When all overlapping k-mers of a given (long) string s have to be encoded, we want to avoidprocessing each single character k times: for all k-mers it is contained in. Here, we provide analgorithm to compute the encoding of a k-mer s[i ..i +k −1] from the encoding of the previouslyread k-mer s[i − 1..i + k] in constant time, i.e., with a run time complexity independent of k ,assuming k-mers fit into a constant number of computer words.For the standard rank based encoding enc in 2-bit representation, such a rolling hash functioncan easily be formulated: drop the two bits corresponding to s[i − 1], shift enc(s[i − 1..i + k]) bytwo bits to the left, and insert enc(s[i +k −1]) corresponding to the new last character from theright.For the minimal encoding enc rc , a shift/update approach is not applicable, because, withina k-mer x , the encoding of a character x [i ] depends on its mate x [k − i + 1], and this pairingchanges with each shift. Instead, since enc r ′c encodes many characters simply by their rank, wemaintain a standard encoding (in 2-bit representation) of the current k-mer x as well as x usingthe constant-time shift/update function described above andmodify (a copy of) enc(x) to obtain

enc r ′c (x) using a constant number of atomic operations and finally subtract missing(ι̂).Let p denote the length of the longest common prefix of x and x , i.e., the number of unspe-cific pairs in x . Note that p < k/2. This value can be computed in constant time by performing an
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exclusive-or operation on enc(x) and enc(x). Since the binary encoding of a character is the nega-tion of its complement, unspecific pairs will result in a prefix of zeros, the length of which can beobtained in constant time by the operation count leading zeros (clz), which (or an equivalent op-eration of which) belongs to the repertoire of atomic CPU instructions on modern architectures.An integer division by two yields p.
Recall that from left to right, the encoding is composed of the following four elements:

(1) a prefix of 2p zero-bits for the characters to the left of the specifying case,(2) four bits for the specifying pair(or two bits for a specifying middle character),(3) the encoded remainder (characters within the specifying pair, if any),(4) the encoded characters to the right of the specifying case (if any).
In the given standard 2-bit encoding of a k-mer, all elements can be localized with respectto p. Elements 3 and 4 can be extracted using bit masks and a constant number of and oper-ations. Element 3 has to shifted by 2 bits, and element 4 has to be complemented, which canbe done using an xor 1 operation. Bits for element 2 can be replaced according to enc rc with aconstant number of operations. It remains element 1, i.e., replacing a prefix of length 2p bit by asequence of zeros. This can also be performed in constant time by using an and operation with acorresponding bit mask of 2p zeros followed by ones. All necessary bit masks for ⌊k/2⌋ putativevalues of p can be precomputed.

Example 5.1. Consider k = 6 and the following k-mer z , where the specifying pair is highlighted inbold and the remainder is underlined. R(rank(C ), rank(C )) = R(1, 2) = 3 such that Rl = 1 and
Rr = 3 (see Table 1).

z = T A C G G C T A

enc(z) = (11 00 01 10 10 01 11 00)2
enc(z) = (11 00 10 01 01 10 11 00)2

xor ⇒(00 00︸ ︷︷ ︸
clz = 4
p = 2

11 11 11 11 00 00)2

enc(z) = (11 00 01 10 10 01 11 00)2elements 3 and 4 ⇒ (11 00 01 01 10 10 00 11)2element 2 ⇒ (11 00 01 11 10 10 00 11)2element 1 ⇒ (00 00 01 11 10 10 00 11)2

= 1955 = enc r ′c (z)

enc rc (z) = enc r ′c (z) − missing(3)

= 1955 − 384 = 1571

The above argumentation can easily be extended to even-length k-mers and yields the fol-lowing lemma.
Lemma 5.2. For a k-mer x , given the encodings enc(x) and enc(x), the encoding enc rc (x) can becomputed in constant time, assuming 2k bits fit into a constant number of computer words.

Once the first k-mer of a string and its reverse complement have been 2-bit encoded, thisand all successive k-mers can be encoded by enc rc in time linear in the sequence length andindependent from k .
Corollary 5.3. All k-mers of a sequence s can be encoded by the minimal encoding encc inO(k + |s|)time, assuming 2k bits fit into a constant number of computer words.
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An exemplary implementation of this approach can be found under https://gitlab.ub.
uni-bielefeld.de/gi/MinEncCanKmer.

Conclusions
We proposed a general minimal encoding for canonical k-mers of arbitrary (even or odd)length on alphabets of arbitrary size. The approach applies to both cases: considering reversestrings or reverse complements.Canonical k-mers are not evenly distributed within a standard rank based encoding. In par-ticular, k-mers on the DNA alphabet are not evenly distributed within a standard 2-bit encoding.The presented encoding maps all n canonical k-mers to a continuous interval of integers from 0through n − 1 (it is minimal). Furthermore, our encoding has the additional property that palin-dromic k-mers, which are statistically observedmore often than other canonical k-mers and thusrequire special consideration, are mapped to a specific range of integers.For the prevailing case of k-mers on the DNA alphabet, our approach allows to encode all k-mers of a sequence s inO(k+|s|) time using a shift/update approach and efficient bit operations.
In contrast to non-surjective hash functions, a minimal encoding renders the possibility ofusing array-based data structures for efficiently storing canonical k-mers. Further, since the en-coding (of odd length k-mers) requires one bit fewer than a standard 2-bit encoding, it can be ofuse to save space when canonical k-mers are not stored in individual computer words (of evenlength), e.g. in (Zentgraf and Rahmann, 2022).Even though substantial contributions on the practical side are not evident, this work con-tributes with basic research in the field of k-mers by closing obvious theoretical gaps.Another line of researchwould be efficiently encoding homopolymer compressed k-mers, whichare k-mers in which runs of the same characters are replaced by a single copy of the characterseach. This restricts the set of k-mers under consideration to 4 · 3k−1 and thus, again, raising thequestion for a minimal encoding.
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