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Abstract
Inferring the strength of species interactions from demographic data is a challengingtask. The Integrated Population Modelling (IPM) approach, bringing together popula-tion counts, capture-recapture, and individual-level fecundity data into a unified modelframework, has been extended from single species to the community level. This allowsto specify IPMs for multiple species with interactions specified as links between vitalrates and stage-specific densities. However, there is no evaluation of such models wheninteractions are actually absent—while any interaction inference method runs the risk ofproducing false positives. We investigate here whether multispecies IPMs could outputinteractions where there are in fact none, building on an existing predator-prey IPM.Weshow that interspecific density-dependence estimates are centered on zero when simu-lated to be zero, and therefore their estimation is unbiased. Their coverage probability,quantifying how many times credible intervals include zero, is also satisfactory. We fur-ther confirm that adding random temporal variation to multispecies density-dependentlink functions does not alter these results. This study therefore reaffirms the potentialof multispecies IPMs to infer correctly how biotic interactions influence demography,although future studies should investigate model misspecifications.
1Institute of Mathematics of Bordeaux, University of Bordeaux, CNRS, Bordeaux INP, Talence, France

http://www.centre-mersenne.org/
mailto:matthieu.paquet@sete.cnrs.fr
mailto:frederic.barraquand@u-bordeaux.fr
https://doi.org/10.24072/pci.ecology.100522
https://doi.org/10.24072/pci.ecology.100522
https://orcid.org/0000-0003-1182-2299
https://orcid.org/0000-0002-4759-0269
https://doi.org/10.24072/pcjournal.337


Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.1 General description of the multispecies IPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Alternative scenarios and parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3 Prior specification and model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Data and code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Conflict of interest disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18A Results for the scenarios with species interactions . . . . . . . . . . . . . . . . . . . . . . . . . 18B Results for the scenarios with 100 juveniles of each species marked each year for10 years, and 20 juveniles of each species marked for 30 years, without centeringabundances in the link functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22C Sensitivity of parameter estimation to the choice of initial values . . . . . . . . . . . . . 27

1. Introduction
Estimating ecological interactions between and within species through models of their jointpopulation dynamics is a task which requires large amounts of data. Indeed, with potentially asmany as q2 interaction parameters for q model compartments (combination of species and ageclasses), the number of parameters to estimate can climb very rapidly. Therefore, ecological sta-tistics searches for improvedways to infer such population-level interaction strengths. A recentlydeveloped technique consists in combining data sources in multispecies Integrated PopulationModels (IPMs) including interspecific interactions (Barraquand and Gimenez, 2019; Péron andKoons, 2012; Quéroué et al., 2021). Because Integrated Population Models (IPMs, Besbeas etal., 2002) combine data on demographic rates (e.g., capture-recapture, breeding data) with dataon population size (typically from counts), they allow: (a) estimating both demographic rates andpopulation size (and hence their inter-dependencies) in a joint analysis, (b) an improved precisionof parameter estimates, compared to separate analyses of component datasets, since the infor-mation contained in several datasets combine into estimated parameters (e.g., count data andcapture recapture data both contain information on survival rates), and in some cases (c) to esti-mate parameters for which there is no dedicated data stream, that can only be estimated throughinverse estimation of a demographic model (Abadi et al., 2010; Kéry and Schaub, 2011). This lastproperty is particularly useful to estimate population-level species interaction strengths, sincepopulation-level interactions are always indirectly inferred. Although inverse estimation can intheory be performed using a single data source such as population counts, such inverse estima-tion is a difficult task fraught with identifiability issues. Asking whether multispecies IPMs per-formed better than classical inverse estimation from count data alone, Barraquand and Gimenez(2019) have shown that better estimates of interaction parameters could be obtained by com-bining data sources. Additionally, an empirical study in a bird predator-prey system (Quéroué etal., 2021) was able to detect the expected bottom-up demographic linkages from prey to preda-tor but not the expected top-down relationships, suggesting that those may be too weak to bedetected.In these multispecies IPM studies estimating interspecific interactions, between-species link-ages have always been considered to be present in the simulations or in the underlying reality(based on background knowledge). Other choices are possible: some multispecies IPMs do not
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assume interspecific interactions to be present a priori (Lahoz-Monfort et al., 2017), but theydo not estimate them either and focus instead on environmental effects. However, multispeciesIPMs with interspecific interactions could also be used in situations where it is not clear whetherpopulation-level interactions between species are possible. This is all the more true that interac-tions are specified as links between vital rates and stage-specific densities, and while some ofthese relationships may be known a priori, others may not. The issue was raised but not tackledby Barraquand and Gimenez (2019): a natural follow-up is therefore to ask what happens when-ever we try to estimate interactions that are actually absent, to make sure that multispecies IPMsdo not yield false positives.Let us note that when estimating or predicting interspecific interactions in general—not justwith multispecies IPMs—whether methods could output false positives is a key concern (e.g.,withmultivariate autoregressivemodels, Barraquand et al. 2021;Mutshinda et al. 2009; dynamicbayesian networks, Sander et al. 2017; or other machine learning tools, Strydom et al. 2021). Thefact that all interaction inference methods run the risk of creating false positives of interspecificinteractions at exaggerated rates only reinforces the need to evaluate it in multispecies IPMs.An additional concern is temporal stochasticity in the functions linking vital rates of a givenstage of species i to the densities of a given stage of species j . In the simulation-based studyof Barraquand and Gimenez (2019), it was assumed that such stochasticity was absent, whileempirical studies (Péron and Koons, 2012; Quéroué et al., 2021) assumed its presence in order topartition variation in vital rates due to species densities vs other factors changing over time. Wetherefore still need to understandwhether theoretical performances hold in thismore empiricallyrealistic context, where environmental factors can perturb demographic rates, and those are notsolely deterministic functions of species densities.To sum up, we follow-up here on the multispecies IPM study of Barraquand and Gimenez(2019) by asking whether (1) inter-species interactions are truly estimated to be zero whenspecies have in fact independent dynamics and (2) how species interaction strengths estimatescan be affected by the absence and presence of environmental stochasticity (randomyear effectson demographic rates).
2. Methods

2.1. General description of the multispecies IPM
The deterministic skeleton can be described as a density-dependentmatrix populationmodel

(1) nt+1 = A(nt)nt .

Eq. 1 describes in discrete-time the dynamics of abundances of two species and two stages perspecies, with projection matrix

A(nt) =




0 1
2 fV ,t

(
nAV ,t

)
ϕJ
V ,t

(
nAP,t

)
0 0

ϕA
V ,t ϕA

V ,t 0 0

0 0 0 1
2 fP,t

(
nJV ,t

)
ϕJ
P,t

(
nAP,t

)

0 0 ϕA
P,t ϕA

P,t




and abundance vector
nt =




nJV ,t

nAV ,t

nJP,t

nAP,t




where nJV ,t , n
A
V ,t , n

J
P,t and nAP,t are respectively the abundances of juvenile prey (denoted V as‘victim’), adult prey, juvenile predators and adult predators, at time t . The fecundities fV ,t , fP,tare the expected number of juvenile prey and predator produced by an adult female prey andpredator, respectively. Survival probabilities between t and t + 1 are denoted with ϕ, so that

ϕJ
V ,t ,ϕ

A
V ,t ,ϕ

J
P,t and ϕA

P,t are the survival probabilities of the juvenile prey, adult prey, juvenilepredator and adult predator.
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2.1.1. Count data. To simulate and account for demographic stochasticity, we modelled yearly(st)age specific abundances nt using Binomial and Poisson distributions as in Barraquand andGimenez (2019) eqs. (2)–(5).Regarding the observation process for count data, the 2019 model assumed a negligible ob-servation error (σ2 = 10−5). The reason was that in absence of replicated counts at each timeunit, observation error variance is notoriously difficult to disentangle from process error variance(Auger-Méthé et al., 2016; Knape, 2008). While in some cases it could be possible to remove ob-servation error altogether, because total population sizes of each species (summed numbers ofjuveniles and adults) are the observed count variables (as in most IPMs), they need to appear inthe model as drawn from some probability distribution—they need to be a stochastic node in theMCMC representation. It was therefore decided to keep the formulation of themodel in its state-space version, but forcing it to observe true population size almost with certainty (negligible pro-cess error variance). However, we uncovered in the present work that stage-specific abundancescould not be estimated properly. Because correctly reproducing stage-specific abundanceswhenfitting a stage-structured model is desirable, and that there is in most wildlife surveys some mea-sure of observation error on counts, we assumed in the present article a non-negligible, positiveobservation error variance. As we do not have replicated counts at any given time, we do notattempt to estimate observation error variance, and assume that it is known and classically seton the logarithmic scale (i.e., the coefficient of variation of observed population size is constant).For predator counts (denoted P ) we have
(2) yP,t |nt ∼ LN

(
log(nJP,t + nAP,t),σ

2
obs

)

and similarly for prey counts
(3) yV ,t |nt ∼ LN

(
log(nJV ,t + nAV ,t),σ

2
obs

)
,

with LN the log-Normal distribution and its associated standard deviation on the log-scale
σobs = 0.1. Because CVobs =

√
eσ2

obs − 1, this corresponds to CVobs ≈ 10%. Other choices ofobservation model are possible but this one is standard for abundance values that are not toosmall (Besbeas et al., 2002; Dennis et al., 2006).

2.1.2. Survival data. To increase computational efficiency (particularly true for the scenarioswith more individuals captured and a shorter time series), we simulated and fitted the capture-mark-recapture data in the m-array format, using a multinomial likelihood (Burnham, 1987). Thedata is in the form of two (T − 1) × T matrices MJ and MA, one for each age class generically
denoted (a) ∈ {A, J}. We have M(a) = (m

(a)
t,j ), where m

(a)
t,j is the number of individuals cap-

tured, marked and released in year t that were resighted in year j + 1, with M(a) = (m
(a)
t,j ), with

m
(a)
t,j = 0, ∀j < t . T is the total number of years of capture-recapture history.m(a)

t,t is the numberof individuals of released at age class (a) at time t that were re-sighted the following year, and
the last columnm

(a)
t,T is, by convention, the number of individuals released at age class (a) at time

t that were never re-sighted. We then have:
(4) m

(a)
t,• = (m

(a)
t,t ,m

(a)
t,t+1, ... ,m

(a)
t,T ) ∼ Multinomial (R(a)

t , (θ
(a)
t,t , ... , θ

(a)
t,T )

)

with R
(a)
t =

∑T
k=t m

(a)
t,k the number of individuals of age class (a) released at time t .

It is important to note that for the matrix of released juveniles MJ , RJ
t corresponds to thenumber of juveniles newly marked at time t . However, RA

t corresponds to the number of newlymarked adults (lets denote it RA
m,t ), but also of all previously marked juveniles and adults thatwere released at time t . That is,

(5) RA
1 = RA

m,1,
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but
(6) RA

t+1 = RA
m,t +

t∑

k=1

mJ
k,t +mA

k,t

︸ ︷︷ ︸previously marked

.

Therefore, unless individuals are not released when marked (e.g., killed, or taken to be releasedoutside of the study population), one needs to provide data and model the number of releasedadults re-sighted, even if no individuals are first marked as adults. As no individuals are markedas adults here, RA
m,t = 0, and so that Equations 5 and 6 can be simplified accordingly.Note also that in such case were no adults are newly marked, no data on RA

t is needed tosimulate and fitMA. Since RA
1 = 0, we have:

(7) mA
1,• = 0,

(8) mA
2,• ∼ Multinomial (mJ

1,1 +mA
1,1, (θ

A
1,t , ... , θ

A
1,T )

)
,

(9) mA
3,• ∼ Multinomial

(
2∑

k=1

mJ
k,2 +mA

k,2, (θ
A
2,t , ... , θ

A
2,T )

)
,

and so on.For juveniles, diagonal elements of the θJ matrix write:
θJt,t = ϕJ

t p,

with ϕJ
t the first year (i.e. juvenile) survival probability from year t to year t + 1 (for the speciesconsidered), and p the recapture (or re-sighting) probability set as constant among years and ageclasses, and for t < j < T

θJt,j = ϕJ
t




j∏

k=t+1

ϕA
k


 (1 − p)j−tp,

with ϕA
t the adult survival probability from year t to year t + 1 (for the species considered).

θJt,j is the probability of being marked and released as juvenile in year t and recaptured in year
j + 1 as an adult, if j > t . The last element pertains to individuals never recaptured

θJt,T = 1 −
T−1∑

k=t

θJt,k .

Similarly for θA, the above mentioned equations are identical to the exception that ϕJ isreplaced by ϕA, which leads to:
θAt,t = ϕA

t p

for the diagonal elements of the θA matrix, and for t < j < T :
θAt,j =




j∏

k=t

ϕA
k


 (1 − p)j−tp.

The last element again pertains to individuals never recaptured
θAt,T = 1 −

T−1∑

k=t

θAt,k .

2.1.3. Fecundity data. Fecundity was modelled using a Poisson regression:
(10) Ft ∼ Poisson(ftRt)

with Ft the total number of offspring counted, Rt the number of surveyed broods/litters, and ftthe expected number of offspring (male + female) per adult female each year t .
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2.2. Alternative scenarios and parameter values
2.2.1. Density dependence and random temporal variation on demographic rates. Intra- and inter-
species density dependence of survival rates ϕ

(a)
i ,t (with i ∈ {V ,P} and (a) ∈ {J,A}) and fe-cundities fi ,t were modelled on the logit and log scale, respectively. We initially used the sameequations as the 2019 model, which are:

(11) logit(ϕJ
P,t) = α1 + α2n

A
P,t

where the number of adult predators negatively affects juvenile predator survival (negative in-traspecific density dependence),
(12) logit(ϕJ

V ,t) = α3 + α4n
A
P,t

where the number of adult predators negatively affects juvenile prey survival (predation),
logit(ϕA

P,t) = αϕA
P

(13)
logit(ϕA

V ,t) = αϕA
V

(14)
(no density dependence on adult survival)
(15) log(fP,t) = α5 + α6n

J
V ,t

where the number of juvenile prey individuals positively affects predator fecundity, and
(16) log(fV ,t) = α7 + α8n

A
V ,t

where the number of adult prey individuals negatively affect prey fecundity (negative intraspe-cific density dependence). Associated results can be found in Supplementary Information Ta-ble S1 and Figures S5 to S8.However, to limit posterior correlation between intercept and slope parameters and improvetheir estimation, we centered the abundances in the density dependent functions. While cen-tering is typically done and most efficient on mean values, mean abundances varied here froma simulation to the next due to stochasticity. Therefore, intercept parameter values would haveto be redefined for each simulation to maintain equivalent mean demographic rate values andasymptotic stage specific abundance equilibria for all simulation. To avoid these complications,we centered by subtracting the corresponding fixed point equilibria estimated in Barraquand andGimenez (2019) as ∗
nAP = 21, ∗

nJV = 101 and ∗
nAV = 152. The new α intercept parameters obey thefollowing centered formulas:

logit(ϕJ
P,t) = α1 + α2(n

A
P,t − ∗

nAP)(17)
logit(ϕJ

V ,t) = α3 + α4(n
A
P,t − ∗

nAP)(18)
logit(ϕA

P,t) = αϕA
P

(19)
logit(ϕA

V ,t) = αϕA
V

(20)
log(fP,t) = α5 + α6(n

J
V ,t − ∗

nJV )(21)
log(fV ,t) = α7 + α8(n

A
V ,t − ∗

nAV ).(22)
To maintain equivalent dynamics to parameter set 1 of the 2019 model, we calculated theintercepts α1, α3, α5 and α7 as their original values plus the original slope multiplied by theestimated fixed point equilibrium of the n responsible for density dependence. For example, wenow use whenever simulating α3 = 0.5− 0.025× 21 = −0.025 and α5 = 0+0.004× 101 = 0.404(Table 1).In addition, we introduced scenarios with inter-annual random variation in the intercepts ofdensity-dependent links, such that
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logit(ϕJ
P,t) = α1 + α2(n

A
P,t − ∗

nAP) + σϕJ
P
ϵϕJ

P
(23)

logit(ϕJ
V ,t) = α3 + α4(n

A
P,t − ∗

nAP) + σϕJ
V

ϵϕJ
V

(24)
logit(ϕA

P,t) = αϕA
P
+ σϕA

P
ϵϕA

P
(25)

logit(ϕA
V ,t) = αϕA

V
+ σϕA

V
ϵϕA

P
(26)
with ϵ ∼ N (0, 1) i.i.d. and

log(fP,t) ∼ N (α5 + α6(n
J
V ,t − ∗

nJV ),σ
2
fP
)(27)

log(fV ,t) ∼ N (α7 + α8(n
A
V ,t − ∗

nAV ),σ
2
fV
).(28)

Although mathematically identical, we used a parameterisation of the form µ+ ϵσ, ϵ ∼ N (0,σ2)(sometimes called non-centered) for survival estimates and a centered parameterisation(N (µ,σ2)) for fecundity estimates as it was found to be optimal for the mixing of the MCMCchains. As we were primarily interested in the ability of multispecies IPMs to estimate speciesinteractions when these were in fact absent, inter species density dependence parameter valuesfor α2 and α4 were either set to zero for the simulations, or at the same value as the 2019 model.Parameter values used to simulate data and their interpretation can be found in Table 1.
Table 1 – Model parameters with their values. Values of α4 and α6 in the scenarios withtrue presence of species interactions are presented in parentheses. Temporal standarddeviations (SD) are only present in the scenarios with random temporal variation. Forinterpretation, note that αi and temporal SD parameters are within exponentialfunctions. For instance, α5 = 0.404 corresponds to a mean fecundity of e0.404 ≈ 1.5.

Parameter Value Interpretation
α1 0.29 juvenile predator survival – intercept
α2 -0.01 juvenile predator survival – slope
α3 -0.025 juvenile prey survival – intercept
α4 0 (−0.025) juvenile prey survival – slope – inter species density dependence
α5 0.404 predator fecundity – intercept
α6 0 (0.004) predator fecundity – slope – inter species density dependence
α7 1.24 prey fecundity – intercept
α8 -0.005 prey fecundity – slope
p 0.7 recapture probability

αϕA
P

logit(0.7) adult predator survival – intercept
αϕA

V
logit(0.6) adult prey survival – intercept

σobs 0.1 observation error
σfP 0.1 temporal SD of predator fecundity
σfV 0.1 temporal SD of prey fecundity
σϕJ

P
0.1 temporal SD of juvenile predator survival

σϕA
P

0.1 temporal SD deviation of adult predator survival
σϕJ

V
0.1 temporal SD deviation of juvenile prey survival

σϕA
V

0.1 temporal SD deviation of adult prey survival

2.2.2. Initial values and monitoring setup. For all simulation scenarios in the main text, we usedthe initial population size vector 


nJV ,1

nAV ,1

nJP,1

nAP,1


 =




100
100
20
20


 ,
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a study period ofT = 30 years, the yearly number of monitored prey and predator broods/littersrespectively RV
t = 50 and RP

t = 20, and the yearly number of marked juveniles was 100 for bothspecies. Results using the monitoring setups of Barraquand and Gimenez (2019) with either 100marked juveniles per species per year for T = 10 years, or 20 marked juveniles per species peryear for T = 30 years (and the non-centered density-dependencies) are also presented in theSupplementary Information B.We consider two alternative situationswithout interspecific interactions: with orwithout ran-dom temporal noise. To comparemodel performances in the no-interactions setting to caseswithinterspecific interactions, we also simulated and fitted data in presence of species interactionsusing the same αi values as Barraquand and Gimenez (2019) under the four above-mentionedscenarios (i.e., with/without interactions × with/without stochasticity on interactions; see Sup-plementary Table 2 and Figures S1 and S3 in addition to main text results). For each of thesefour combinations of parameter sets, we simulated 100 datasets using the Nimble package (deValpine et al., 2022, 2017, version 0.12.2) in R (R Core Team, 2022, version 4.2.1).
2.3. Prior specification and model fitting

Multispecies IPMs were implemented in a Bayesian framework, hence the need to specifypriors. When fitting the models to simulated data, we used N (100, 10) and N (20, 10) priors forthe initial stage-specific prey and predator population sizes (truncated to be positive). Thesepriors also differed from the 2019 model where they were all set to N (25, 10−5).Priors for standard deviations were chosen as σ ∼ Exp(1), which corresponds to priors withmaximum entropy on the log and logit scales (e.g., McElreath, 2020). Prior probabilities of re-capture were drawn as p ∼ Unif(0, 1) and vital rate/interaction parameters were given weaklyinformative priors αk ∼ N (0, 1) (k ∈ {1, ..., 8}).Data were both simulated and fitted using the Nimble R package (de Valpine et al., 2022,2017; R Core Team, 2022, version 0.12.2). To improve their mixing and minimize their posteriorcorrelations, intercepts, slopes and temporal SD were block sampled using automated factorslice samplers (Ponisio et al., 2020; Tibbits et al., 2014). For each simulated dataset, we fittedthe same multispecies IPM that was used to generate the data (e.g., no random temporal noiseestimated on data without temporal noise), except in that species interactions were estimatedeven in absence of such interactions. Two MCMC chains were run for 60200 iterations and wesampled the last 60000 iterations every 60th iteration leading to 2000 posterior samples savedper dataset. Real parameter values were used as initial values to minimise time to convergence(see Appendix Section C for an evaluation of the influence of initial values on parameter estima-tion). We assess convergence and mixing of the chains for all αi by calculating the potential scalereduction factor (R̂ , Brooks and Gelman 1998; Gelman and Rubin 1992) and effective samplesize (neff .) using the "gelman.diag()" and the "effectiveSize()" functions of the coda package (Plum-mer et al., 2006, version 0.19-4). We only used outputs frommodels for which all αi had R̂ < 1.1and neff . > 50, that is, 100/100 models for the scenario without random temporal variation and
94/100models for the scenario with random temporal variation. The computer code is providedat https://github.com/MatthieuPaquet/multi_species.

3. Results
Overall, estimates of density dependence curves were unbiased, regarding interspecific den-sity dependence (either absent, Figures 1 and 3, or present, Figures S1 and S3) as well as intraspe-cific density dependence. This was true without and with temporal stochasticity (Figures 1 to 4).This absence of bias extends to the alternative data designs with smaller sample sizes con-sidered in Barraquand and Gimenez (2019) (shown in Supplementary Information in Figures S5to S8). Estimated αi parameters also did not show sign of bias in any scenario (Table 2 and Ta-ble S1).
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Figure 1 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario without randomtime variation. Purple: simulated relationships, light green: posterior mean relationshipsfor all 100 fitted models, dark green: average of the posterior mean relationships. Trueinter species density-dependencies (right panels) were set to be absent.
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Figure 2 – Example of posterior mean (blue-green line) and 95% Credible Intervals (greypolygons) of density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities estimated by one of the 100models run in the scenario without random time variation. Purple lines indicate thesimulated (true) relationships. Points represent estimated mean demographic parametereach year plotted against estimated yearly abundance values, and vertical andhorizontal error bars their respective 95% Credible Intervals.
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Figure 3 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario with random timevariation. Purple: simulated relationships, light green: posterior mean relationships forthe 94 fitted models that appear to converge satisfactorily, dark green: average of theposterior mean relationships. True inter species density-dependencies (right panels)were set to be absent.
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Figure 4 – Example of posterior mean (blue-green line) and 95% Credible Intervals (greypolygons) of density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities estimated by one of the 100models run in the scenario with random time variation. Purple lines indicate thesimulated (true) relationships. Points represent estimated mean demographic parametereach year plotted against estimated yearly abundance values, and vertical andhorizontal error bars their respective 95% Credible Intervals.

We did not detect more false positive species interactions than expected by chance wheninvestigating the coverage probability of the species interaction parameters at 95% (i.e., the pro-portion of simulations where 95%CrI of estimated parameter includes the true parameter value).In the scenario with 100 juveniles marked each year for 30 years and no interspecific densitydependence nor temporal random variation, this probability was 0.95 for α4 and 0.92 for α6 (cfTable 2, see Figure 2 for an example of estimated mean and pointwise 95% CrI density depen-dent curves). Coverage probabilities were also satisfactory when interspecific interactions weresimulated to be nonzero (0.94 and 0.93). Species interactions parameters were still estimablewith no noticeable bias in the presence of random time variation (Figures 3 and 4), in whichcase the coverage probabilities of the species interaction parameters α4 and α6 at 95% were0.99 and 0.98 respectively in absence of interspecific interactions (Table 2). In the presence ofinterspecific interactions, coverage values were both 0.96. Moreover, the addition of random
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time variation did not noticeably alter the precision of the species interaction parameters, bothin absence and presence of species interactions (Figure S3, Table 2).
Table 2 – Summary table of parameter estimates. Value refers to the true values used tosimulate the data and values of the interspecific density dependent parameters arehighlighted in bold. Estimate (95% quantiles) are the mean and the 95% quantiles of theposterior mean estimates. Coverage 95% is the proportion of 95% Credible Intervalsthat included the true parameter values.

Scenario Param. Value Estimate (95% quantiles) Coverage 95%30 years α1 0.29 0.304 (0.166; 0.482) 0.97100 ind. marked/year α2 -0.01 -0.013 (-0.032; 0.005) 0.95No temporal noise α3 -0.025 -0.033 (-0.144; 0.083) 0.99No interspecies DD α4 0 0.001 (-0.017; 0.019) 0.95
α5 0.404 0.413 (0.199; 0.635) 0.93
α6 0 0 (-0.008; 0.007) 0.92
α7 1.24 1.243 (1.198; 1.287) 0.97
α8 -0.005 -0.005 (-0.006; -0.004) 0.9630 years α1 0.29 0.281 (0.124; 0.428) 0.947100 ind. marked/year α2 -0.01 -0.013 (-0.038; 0.003) 0.947Temporal noise α3 -0.025 -0.02 (-0.173; 0.122) 0.947No interspecies DD α4 0 0.001 (-0.012; 0.017) 0.989
α5 0.404 0.399 (0.236; 0.532) 0.968
α6 0 0 (-0.005; 0.004) 0.979
α7 1.24 1.244 (1.17; 1.319) 0.968
α8 -0.005 -0.005 (-0.007; -0.004) 0.96830 years α1 0.29 0.282 (0.122; 0.427) 0.97100 ind. marked/year α2 -0.01 -0.011 (-0.027; 0.004) 0.98No temporal noise α3 -0.025 -0.019 (-0.156; 0.125) 0.99Interspecies DD α4 -0.025 -0.026 (-0.042; -0.009) 0.94
α5 0.404 0.395 (0.264; 0.502) 0.94
α6 0.004 0.004 (-0.001; 0.01) 0.93
α7 1.24 1.241 (1.195; 1.281) 0.95
α8 -0.005 -0.005 (-0.006; -0.004) 0.9630 years α1 0.29 0.29 (0.143; 0.459) 0.967100 ind. marked/year α2 -0.01 -0.01 (-0.026; 0.007) 0.989Temporal noise α3 -0.025 -0.014 (-0.176; 0.145) 0.967Interspecies DD α4 -0.025 -0.025 (-0.041; -0.007) 0.957
α5 0.404 0.403 (0.276; 0.523) 0.957
α6 0.004 0.004 (-0.001; 0.009) 0.957
α7 1.24 1.237 (1.179; 1.311) 0.913
α8 -0.005 -0.005 (-0.008; -0.004) 0.924

4. Discussion
Building on the multispecies integrated predator-prey model of Barraquand and Gimenez(2019), we investigated here whether multispecies IPMs could output interactions where thereare in fact none. We did so by modelling functions relating vital rates to stage-specific speciesdensities, whose slope parameters are used to model species interactions. We found that whenthose slopes were simulated as zero, the estimates were centered on zero and therefore unbi-ased. Therewas also a good coverage probability of interaction parameters (close to 0.95 for 95%CrIs). We also found that adding temporal variability to these multispecies density-dependentlink functions did not alter these results. This confirms that multispecies IPMs are a promisingway to estimate species interactions, and in particular, that they could be used to infer whethertwo species interact or not when such information is missing.
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These results are encouraging, though some readers might find our sample sizes relativelylarge (see Appendix B for slightly lower sample sizes). In a previous version of this work, we in-advertently omitted the θA CMR array in the code, which transformed the model into a capture-removal model (i.e., individuals were re-captured only once and then removed from the popu-lation, as in hunting or fishing data). In this configuration, the lower amount of data on survivaland detection provided proper estimation of all quantities for the main text data design but notthose of Appendix B forwhich convergencewas not always reached.With live capture-recapturedata, all data designs (main text and Appendix B) now provide satisfactory convergence and es-timation. Moreover, in field population studies, additional types of data available are likely toimprove the estimation of species interactions and we give three examples below. First, whenage classes can be determined during the count observation process, including such informationexplicitly in the model (see e.g., Paquet et al., 2019; Weegman et al., 2016) will increase iden-tifiability and/or precision of survival parameters and age specific abundances, and thereforewill likely improve the estimation of density dependence parameters as well. This stage-specificabundance information may also allow, in some cases where counts are provided with little error,to remove the observation process, which we cannot do in our current model formulation be-cause the observed population size sums adult and juvenile densities, and this sum has to arisefrom a probability distribution (Equations (2) and (3)). Second, integrating dead prey recoverydata is likely to give extra information on the strength of predator-prey interactions. Dead recov-eries are classically implemented in capture-mark-recovery models (North and Morgan, 1979;Seber, 1972) which in some cases can be combined with CMR data (Barker, 1999) and counts(Reynolds et al., 2009). Since the probability to find a dead prey is likely affected by predationrates in the population (e.g., in some systems prey eaten will not be recovered, in others deadrecoveries may present signs of predation), taking the predation process into account in the deadrecoveries data-generationmechanism could improve the estimation of the strength of predator-prey interactions. Finally, the spatial structure of the data should contain additional informationthat may help to estimate parameters. The extension to spatially explicit IPMs (Chandler andClark, 2014; Zhao, 2020) for interacting populations represents a promising way forward for theestimation of species interactions.
We commented above on the amount of data and possible additional data types. However,the efficiency of multispecies IPMs in estimating species interactions may also depend on theparameter set, and thus on the ecological features of the populations studied. For example, theparameters considered here correspond well to vertebrate predator-prey systems with a stableequilibrium in absence of environmental perturbations. Faster life histories, different stage orage structure, and multiple factors contributing to altering the quantity of information encap-sulated in the various data streams may alter the sample sizes required for efficient inferences.When applying these models to new systems with different life history parameters and density-dependent structures (e.g., predators also eating adult prey), simulated datasets with plausibleecological features for the empirical system considered (and similar data designs), will help con-firm that parameter values can be recovered without bias and with sufficient precision. Toolssuch as JAGS (Plummer, 2003) or Nimble (de Valpine et al., 2017) make it particularly handy toboth simulate and fit data with complex dynamic models.
Finally, while using the same model to simulate and fit the data is a necessary first step to (i)assess the identifiability ofmodel parameters (and assess the amount and type of data needed forpractical identifiability), (ii) evaluate the coverage of parameter estimates, and (iii) check for biasin the estimates that can still occur, notably because of limited sample sizes (Paquet et al., 2021),an important next stepwill be to evaluate the sensitivity of multi-species IPM estimates tomodelmis-specifications (Plard et al., 2021). For example, different functions than the log and logit linkschosen here may be used to fit or to simulate intra- and inter-specific density-dependencies.Hence, we encourage future work to try fitting a broader range of plausible models that differfrom the model used to simulate the data (or conversely, to simulate from more mechanisticmodels) in order to assess such sensitivity.
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Supplementary Information
A. Results for the scenarios with species interactions
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Figure S1 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario without randomtime variation in presence of true inter species density-dependencies. Purple: simulatedrelationships, light green: posterior mean relationships for the 100 fitted models thatappear to converge satisfactorily, dark green: average of the posterior meanrelationships.

18 Matthieu Paquet & Frédéric Barraquand

Peer Community Journal, Vol. 3 (2023), article e105 https://doi.org/10.24072/pcjournal.337

https://doi.org/10.24072/pcjournal.337


0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adult P abundance

Ju
ve

ni
le

 P
 s

ur
vi

va
l

INTRA−DDA

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adult P abundance

Ju
ve

ni
le

 V
 s

ur
vi

va
l

INTER−DDB

0 50 100 150 200 250

0
2

4
6

8
10

Adult V abundance

V
 fe

cu
nd

ity

C

0 50 100 150

0
1

2
3

4
5

 Juv V abundance

P
 fe

cu
nd

ity
D

actual
estimated
95% CrI

Without environmental stochasticity

Figure S2 – Example of posterior mean (blue-green line) and 95% Credible Intervals(grey polygons) of density-dependencies for juvenile survival rates (A for predator andB for prey) as well as prey (C) and predator (D) fecundities estimated by one of the 100models run in the scenario without random time variation in presence of true interspecies density-dependencies. Purple lines indicate the simulated (true) relationships.Points represent estimated mean demographic parameter each year plotted againstestimated yearly abundance values, and vertical and horizontal error bars theirrespective 95% Credible Intervals.
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Figure S3 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario with random timevariation in presence of true inter species density-dependencies. Purple: simulatedrelationships, light green: posterior mean relationships for the 92 fitted models thatappear to converge satisfactorily, dark green: average of the posterior meanrelationships.
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Figure S4 – Example of posterior mean (blue-green line) and 95% Credible Intervals(grey polygons) of density-dependencies for juvenile survival rates (A for predator andB for prey) as well as prey (C) and predator (D) fecundities estimated by one of the 100models run in the scenario with random time variation in presence of true inter speciesdensity-dependencies. Purple lines indicate the simulated (true) relationships. Pointsrepresent estimated mean demographic parameter each year plotted against estimatedyearly abundance values, and vertical and horizontal error bars their respective 95%Credible Intervals.
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B. Results for the scenarios with 100 juveniles of each species marked each year for 10 years,and 20 juveniles of each species marked for 30 years, without centering abundances in thelink functions
The results presented below follow the data design of Barraquand and Gimenez (2019).

Table S1 – Value refers to the true values used to simulate the data and values of theinterspecific density dependent parameters are highlighted in bold. Estimate (95%quantiles) are the mean and the 95% quantiles of the posterior mean estimates.Coverage 95% is the proportion of 95% Credible Intervals that included the trueparameter values.
Scenario Param. Value Estimate (95% quantiles) Coverage 95%10 years α1 0.5 0.458 (-0.545; 1.293) 0.98100 ind. marked/year α2 -0.01 -0.008 (-0.041; 0.031) 0.99No temporal noise α3 -0.025 -0.045 (-0.78; 0.563) 0.99

α4 0 0.001 (-0.026; 0.033) 0.98
α5 0.404 0.286 (-0.577; 1.098) 0.949
α6 0 0.001 (-0.005; 0.008) 0.96
α7 2 1.998 (1.773; 2.227) 0.98
α8 -0.005 -0.005 (-0.006; -0.004) 0.9710 years α1 0.5 0.278 (-0.361; 0.874) 0.99100 ind. marked/year α2 -0.01 -0.001 (-0.028; 0.029) 0.99Temporal noise α3 -0.025 -0.023 (-0.594; 0.614) 1
α4 0 0 (-0.025; 0.023) 1
α5 0.404 0.323 (-0.379; 0.918) 0.99
α6 0 0.001 (-0.004; 0.006) 1
α7 2 1.911 (1.467; 2.323) 0.948
α8 -0.005 -0.004 (-0.007; -0.002) 0.92730 years α1 0.5 0.56 (-0.155; 1.278) 0.9920 ind. marked/year α2 -0.01 -0.013 (-0.045; 0.021) 0.99No temporal noise α3 -0.025 -0.031 (-0.529; 0.436) 0.97
α4 0 0.001 (-0.024; 0.023) 0.97
α5 0.404 0.329 (-0.305; 1.009) 0.97
α6 0 0.001 (-0.005; 0.006) 0.98
α7 2 2.009 (1.832; 2.194) 0.96
α8 -0.005 -0.005 (-0.006; -0.004) 0.9730 years α1 0.5 0.527 (-0.275; 1.206) 0.96820 ind. marked/year α2 -0.01 -0.011 (-0.041; 0.019) 0.968Temporal noise α3 -0.025 -0.007 (-0.528; 0.533) 0.979
α4 0 0 (-0.02; 0.017) 0.989
α5 0.404 0.316 (-0.191; 0.823) 0.968
α6 0 0.001 (-0.004; 0.004) 0.968
α7 2 1.954 (1.702; 2.247) 0.957
α8 -0.005 -0.005 (-0.006; -0.003) 0.957
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Figure S5 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario with 100 juvenilesper species marked each year for 10 years without random time variation in absence oftrue inter species density-dependencies. Purple: simulated relationships, light green:posterior mean relationships for the 99 fitted models that appear to convergesatisfactorily, dark green: average of the posterior mean relationships.
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Figure S6 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario with 100 juvenilesper species marked each year for 10 years with random time variation in absence oftrue inter species density-dependencies. Purple: simulated relationships, light green:posterior mean relationships for the 96 fitted models that appear to convergesatisfactorily, dark green: average of the posterior mean relationships.
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Figure S7 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario with 20 juvenilesper species marked each year for 30 years without random time variation in absence oftrue inter species density-dependencies. Purple: simulated relationships, light green:posterior mean relationships for the 100 fitted models that appear to convergesatisfactorily, dark green: average of the posterior mean relationships.
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Figure S8 – Density-dependencies for juvenile survival rates (A for predator and B forprey) as well as prey (C) and predator (D) fecundities in the scenario with 20 juvenilesper species marked each year for 30 years with random time variation in absence oftrue inter species density-dependencies. Purple: simulated relationships, light green:posterior mean relationships for the 94 fitted models that appear to convergesatisfactorily, dark green: average of the posterior mean relationships.
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C. Sensitivity of parameter estimation to the choice of initial values
To assess whether the accuracy of the estimation of density dependent parameters was con-ditioned by the fact that we used true parameter values as initial values, we also ran the MCMCusing values that substantially deviated from the true value and expected posterior distributions.For this study, we used data (and the corresponding model) without temporal random noise andwithout true interspecific interactions. We chose one simulated dataset for which the true val-ues of α2, α4, α6 and α8 fell well within the 95% credible intervals of the posterior samples whenusing the true value as initial value (see script https://github.com/MatthieuPaquet/multi_

species/blob/main/script_initial_values.R for more details on the procedure). We thensimulated 100 sets of initial values that deviated from the true values by 4 standard deviationsestimated from the posterior samples when the true values were used as initial values (hereafter
SDα̂i

). For the parameters for which negative density dependence was expected, we simulatedthe 100 initial values as αinit
i ∼ N (αi − 4SDα̂i

,SDα̂i
) whereas for α8, which was a potentiallypositive prey → predator link (and would have been assumed positive in an empirical analysis),we used αinit

8 ∼ N (α8 + 4SDα̂8 ,SDα̂8). We used true parameter values as initial values for allother model parameters. Preliminary runs showed that convergence was reached very quickly(typically after a couple of iterations) with efficient mixing. We then ran 2 chains for 1200 it-erations and discarded the first 200 as burn-in and did not use thinning. For comparison wealso run 2 MCMC chains once, under the same settings, using the true values as initial values(see script https://github.com/MatthieuPaquet/multi_species/blob/main/script_MCMC_
simulatedinitial_values_out_of_posterior.R). The results showed no sign of influence ofthe initial value chosen on the parameter estimates (Figure S9).
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Figure S9 – Estimation of density dependent parameter values (α2 in panel A, α4 inpanel B, α6 in panel C and α8 in panel D) in relation to the initial values chosen to startthe MCMC chains. Dots show the posterior means and vertical lines the 95% credibleintervals. Purple horizontal lines highlight the value used to simulate the data. Red dotsand intervals show the case where the true values are used as initial values.
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