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Abstract

Ancient proteins from fossilized or semi-fossilized remains can yield phylogenetic infor-
mation at broad temporal horizons, in some cases even millions of years into the past.
In recent years, peptides extracted from archaic hominins and long-extinct mega-fauna
have enabled unprecedented insights into their evolutionary history. In contrast to the
field of ancient DNA - where several computational methods exist to process and an-
alyze sequencing data - few tools exist for handling ancient protein sequence data. In-
stead, most studies rely on loosely combined custom scripts, which makes it difficult
to reproduce results or share methodologies across research groups. Here, we present
PaleoProPhyler: a new fully reproducible pipeline for aligning ancient peptide data and
subsequently performing phylogenetic analyses. The pipeline can not only process var-
ious forms of proteomic data, but also easily harness genetic data in different formats
(CRAM, BAM, VCF) and translate it, allowing the user to create reference panels for
phyloproteomic analyses. We describe the various steps of the pipeline and its many
functionalities, and provide some examples of how to use it. PaleoProPhyler allows re-
searchers with little bioinformatics experience to efficiently analyze palaeoproteomic
sequences, so as to derive insights from this valuable source of evolutionary data.
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1. Introduction

Recent advances in protein extraction and mass spectrometry (Lanigan et al., 2020; Nogueira
et al,, 2021; Porto et al., 2011; Rither et al., 2022) have made it possible to isolate ancient pep-
tides from organisms that lived thousands or even millions of years ago. Certain ancient proteins
have a lower degradation rate and can be preserved for longer than ancient DNA (Cappellini
et al., 2014; Demarchi et al., 2016; Hendy, 2021; Warinner et al., 2022). These ancient proteins
can be utilized by Peptide Mass Fingerprinting (PMF) methods (Ostrom et al., 2000), including
ZooMS (Buckley et al., 2009), for genus or species identification (Buckley et al., 2010) and to
single out fossil material of interest for further analyses including DNA sequencing (Brown et
al., 2016, 2022), radiocarbon dating (Deviése et al., 2017) and shotgun proteomics (Brown et al.,
2016; Welker et al., 2016). Shotgun proteomics in particular, utilizing tandem mass spectrometry,
has enabled the reconstruction of the amino acid sequences of those proteins, which sometimes
number in the hundreds (Cappellini et al., 2012; Warinner et al., 2014). These sequences contain
evolutionary information and thus have the potential to resolve important scientific questions
about the deep past, which are not approachable via other methods. Tooth enamel proteins and
bone collagen in particular have been successfully extracted from multiple extinct species, in or-
der to resolve their relationships to other species (Buckley, 2015; Buckley et al., 2019; Cappellini
et al.,, 2019; Chen et al., 2019; Nielsen-Mars et al., 2009; Rybczynski et al., 2013; Welker et al.,
2020, 2019, 2017).

Ancient proteomic studies typically use combinations of custom scripts and repurposed soft-
ware, which require extensive in-house knowledge and phylogenetic expertise, and are not easily
reproducible. Barriers to newcomers in the field include difficulties in properly aligning the frac-
tured peptides with present-day sequences, translating available genomic data for comparison,
and porting proteomic data into standard phylogenetic packages. The creation of automated
pipelines like PALEOMIX (Schubert et al., 2014) and EAGER (Peltzer et al., 2016) have facilitated
the streamlining and reproducibility of ancient DNA analyses, which has been particularly help-
ful for emerging research groups around the world. This has undoubtedly contributed to the
growth of the field (Lan and Lindqvist, 2018). Yet, the field of palaeoproteomics still lacks a “de-
mocratizing” tool that is approachable to researchers of different backgrounds and expertises.

Another important issue in phyloproteomics is the relative scarcity of proteomic datasets
(Brandt et al., 2022; Mdller et al., 2020). There are currently tens of thousands of publicly avail-
able whole genome sequences, covering hundreds of species (Byrska-Bishop et al., 2021; Koepfli
et al., 2015; Lewin et al., 2018; Prado-Martinez et al., 2013; Zhang et al., 2014). The amount of
publicly available proteome sequences is much smaller. NCBI's list of sequenced genomes Na-
tional Center for Biotechnology Information (NCBI), 2004 includes 78,420 species, out of which
30,530 are eukaryotes and 11,345 labeled as ‘Animal’. For comparison, Uniprot’s reference pro-
teomes list (Uniprot consortium, 2021) contains a total of 23,805 entries of which 2,400 are
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eukaryotes and around 950 are labeled as ‘Metazoa’. For most vertebrate species, lab-generated
protein data does not exist and phyloproteomic research is reliant on sequences translated in
silico from genomic data. These, more often than not, are not sufficiently validated or curated
(Bagheri et al., 2020). Ensembl’s curated database of fully annotated genomes, and thus available
proteomes, numbers only around 270 species (Martin, 2023). As a result, assembling a proper
reference dataset for phyloproteomics can be challenging. Given how important rigorous taxon
sampling is in performing proper phylogenetic reconstruction (Heath et al., 2008; Rosenberg
and Kumar, 2003), having a complete and reliable reference dataset is crucial. In the case of pro-
teins, the typically short sequence length and the low amounts of sequence diversity - due to
the strong influence of purifying selection - means that absence of knowledge about a single
amino acid polymorphism (SAP) can strongly affect downstream inferences (Chen et al., 2019;
Demarchi et al., 2022; Opperdoes, 2003; Presslee et al., 2019).

2. Methods

To address all of the above issues, we present “PaleoProPhyler”: a fully reproducible and eas-
ily deployable pipeline for assisting researchers in phyloproteomic analyses of ancient peptides.
“PaleoProPhyler” is based on the workflows developed in earlier ancient protein studies (Cap-
pellini et al., 2019; Welker et al., 2020, 2019), with some additional functionalities. It allows
for the search and access of available reference proteomes, bulk translation of CRAM, BAM or
VCEF files into amino acid sequences in FASTA format, and various forms of phylogenetic tree
reconstruction.

To maximize reproducibility, accessibility and scalability, we have built our pipeline using
Snakemake (Mdlder et al., 2021) and Conda (Inc., 2020). The Snakemake format provides the
workflow with tools for automation and computational optimization, while Conda enables the
pipeline to operate on different platforms, granting it ease of access and portability. The pipeline
is divided into three distinct but interacting modules (Modules 1,2 and 3), each of which is com-
posed of a Snakemake script and a Conda environment (Figure 1).

Module 1 is designed to provide the user with a baseline (curated) reference dataset as well
as the resources required to perform the in silico translation of proteins from mapped whole
genomes. The input of module 1 is a user-provided list of proteins and a list of organisms. The
user also has the option of choosing a particular reference build. Utilizing the Ensembl API (Yates
etal., 2015), the module will return 3 different resources for each requested protein and for each
requested organism. These are : a) the reference protein sequence of that organism in FASTA
format (Lipman and Pearson, 1985), b) the location (position and strand) of the gene that corre-
sponds to that protein and c) the start and end of each exon and intron of that gene / isoform.
The downloaded FASTA sequences are available individually but are also assembled into species-
and protein-specific datasets. They can be immediately used as a reference dataset for either
downstream phylogenetic analyses or as an input database for mass spectrometry software, like
MaxQuant (Cox and Mann, 2008), Pfind (Chi et al., 2018), PEAKS (Ma et al., 2003) and others
(Demichev et al., 2018; Kong et al., 2017; Perkins et al., 1999; Solntsev et al., 2018). The gene
location information and the exon / intron tables can be utilized automatically by Module 2. For
each requested protein, the module will select the Ensembl canonical isoform by default. Should
the user desire a specific isoform or all protein coding isoforms of a protein, they have the ability
to specify that as an option in the provided protein list.

Module 2 is designed to utilize the resources generated by Module 1 and to extract, splice
and translate genes from whole genome data, into the proteins of interest. This module can
handle some of the most commonly used genomic data file formats, including the BAM (Li et
al., 2009), CRAM (Bonfield, 2022) and VCF (Danecek et al., 2011) formats. The easiest way to
run Module 2 is to first run Module 1 for a set of proteins and a selected organism. This will
generate all the necessary files and resources required for the protein translation. The selected
organism will be used as a reference for the translation process. All genomic data to be translated
must be mapped onto the same reference organism. The user can then run Module 2 simply
by providing the organism’s name (and optionally a reference version), as well as a list of the
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samples to be translated. The user can also translate samples from a VCF file, but they will need
to provide a reference genome in FASTA format, to complement the variation-only information
of the VCF file. The translated protein sequences are available individually but are also assembled
into individual- and protein-specific datasets.

Module 3 is designed to perform a phylogenetic analysis, with some modifications needed
when working with palaeo-proteomic data. The input of this module is a FASTA file, contain-
ing all of the protein sequences from both the reference dataset and the ancient sample(s) to
be analyzed. The dataset is automatically split into protein specific sub-datasets, each of which
will be aligned and checked for Single Amino acid Polymorphisms (SAPs). The alignment is a
two step process which includes first isolating and aligning the modern/reference dataset and
then aligning the ancient samples onto the modern ones using Mafft (Katoh and Standley, 2013).
Isobaric amino acids that cannot be distinguished from each other by some mass spectrome-
ters are corrected to ensure the downstream phylogenetic analysis can proceed without issues.
Specifically, any time an Isoleucine (l) or a Leucine (L) is identified in the alignment, all of the
modern sequences are checked for that position. If all of them share one of the 2 amino acids,
then the ancient samples are also switched to that amino acid. If both | and L appear on some
present-day samples, both present-day and ancient samples are switched to an L. The user also
has the option to provide an additional file named ‘MASKED'. Using this optional file, the user
can mask a present-day sample such that it has the same missing sites as an ancient sample.
Finally a small report is generated for each ancient sample in the dataset, and a maximum likeli-
hood phylogenetic tree is generated for each protein sub-dataset through PhyML (Guindon et al.,
2010). All protein alignments are then also merged together into a concatenated dataset. The
concatenated dataset is used to generate a maximume-likelihood species tree (Felsenstein, 1981)
through PhyML and a Bayesian species tree (Mau and Newton, 1997; Rannala and Yang, 1996)
through MrBayes (Huelsenbeck and Ronquist, 2001) or RevBayes (Héhna et al., 2016). The tree
generation is parallelized using Mpirun (Message Passing Interface Forum, 2021).

The modules are intended to work with each other, but can also be used independently. An
in depth explanation of each step of each module, as well as the code being run in the back-
ground, is provided on the software’s Github page (Patramanis et al., 2023) as well as in the
supplementary material.

( Module 1 : Module 2 § Module 3
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Figure 1 - Overview of the Pipeline

3. Applications

As proof of principle, we deploy this pipeline in the reconstruction of ancient hominid history
using the publicly available enamel proteomes of Homo antecessor and Gigantopithecus blacki, in
combination with translated genomes from hundreds of present-day and ancient hominid sam-
ples. In the process, we have generated the most complete and up to date, molecular hominid
phyloproteomic tree (Figure 2). The process of generating the reference dataset and its phylo-
proteomic tree using PaleoProPhyler is covered in detail in the step-by-step Github Tutorial. The
dataset used as input for the creation of the phylogenetic tree is available at Zenodo (Patramanis
et al., 2022)
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Figure 2 - Phyloproteomic tree generated using PaleoProPhyler's Module 3. The tree
was constructed using 9 protein sequences obtained from enamel and includes more
than 100 hominid individuals translated from genomic data, two individuals from pub-
lished palaeoproteomic datasets as well as sequence data from a Macaca and a Hylobates
individual, which are used to root the tree.
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4. Protein Reference Dataset

In order to facilitate future analyses of ancient protein data, we also generated a publicly-
available palaeoproteomic hominid reference dataset, using Modules 1 and 2. We translated
176 publicly available whole genomes from all 4 extant Hominid genera (Byrska-Bishop et al.,
2021; Nater et al., 2017; Prado-Martinez et al., 2013). Details on the preparation of the trans-
lated samples can be found in the supplementary materials. We also translated multiple ancient
genomes from VCF files, including those of several Neanderthals and one Denisovan (Mafessoni
et al., 2020; Prifer et al., 2017). Since the dataset is tailored for palaeoproteomic tree sequence
reconstruction, we chose to translate proteins that have previously been reported as present in
either teeth or bone tissue. We compiled a list of 1.696 proteins from previous studies (Acil et al.,
2005; Alves et al., 2011; Castiblanco et al., 2015; Jagr et al., 2012; Park et al., 2009; Salmon et
al., 2016) and successfully translated 1.543 of them. For each protein, we translated the canon-
ical isoform as well as all alternative isoforms, leading to a total of 10.058 protein sequences
for each individual in the dataset. Details on the creation of the protein list can be found in the
supplementary materials. The palaeoproteomic hominid reference dataset is publicly available
online at Zenodo, under the name 'Hominid Palaeoproteomic Reference Dataset’ (Patramanis
et al., 2022)

5. Closing remarks

The workflows presented here aim to facilitate phylogenetic reconstruction using ancient
protein data to a wider audience, as well as to streamline these processes and enable greater
reproducibility in the field. Although we highly encourage the use of the tools and methods
utilized by our workflows, we still caution against the over interpretation of palaeoproteomic
results. Deriving species relationships from ancient proteins is still a relatively new endeavor and
as a result, our understanding of this data, their quantity and quality requirements, robustness
and accuracy are all largely unexplored. We believe that palaeoproteomic data should therefore
be used in combination with other sources of information in order to make accurate evolutionary
inferences.
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9. Data Availability

The Protein Reference Dataset is available on Zenodo:
10.5281/zenodo.7728060 (Patramanis et al., 2022)

PaleoProPhyler is publicly available on Github and Zenodo:
10.5281/zenodo.10122365 (Patramanis et al., 2023)

The tool requires a Linux OS (Operating System) and the installation of Conda. The github
repository contains a tutorial for using the workflow presented here, with the proteins
recovered from the Homo antecessor and Gigantopithecus blacki as examples. We welcome code
contributions, feature requests, and bug reports via Github. The software is released under a
CC-BY license.
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