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Abstract
Many trophically transmitted parasiteswith complex life cyclesmanipulate their intermediate
host’s antipredatory defenses in ways facilitating their transmission to final host by predation.
Some parasites also protect the intermediate host from predation when noninfective during
its ontogeny. The acanthocephalan Pomphorynchus laevis, a fish intestinal helminth, infecting
freshwater gammarid amphipods as intermediate hosts, is using such a strategy of protection-
then-exposure to predation by the definitive host. However, the whole time-course of this
sequence of behavioral switch is not yet known, and only one antipredator behavior has been
studied to date. Here we show that the protective part of this manipulation begins quite late
during the parasite ontogeny, suggesting that the advantages overpass the costs induced by
this protective manipulation only at this stage. We confirmed that the refuge use behavior is
showing a switch in the few days following the stagemature for the definitive host (switching
from overuse to underuse). However, such a switch was not observed for the gammarids ac-
tivity rate, a behavior also known to make the host less conspicuous to predators when weak.
While we predicted a low activity during early development stages, then a switch to high ac-
tivity, we observed general decrease in activity during the parasite ontogeny. The possible
causes for this discrepancy between behaviors are discussed. All these behavioral changes
were observed mostly when animals were tested in water scented by potential predators
(here brown trout), suggesting condition-dependent manipulation.
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Introduction 

Heteroxenous parasites require successive hosts to complete their life cycle (Poulin, 2007). A successful 
transfer from one host to another is critical to the fitness of such parasites, and numerous parasite species 
rely on trophical transmission to achieve this goal. In this process, downstream infected host(s) – the 
intermediate host(s) – must be consumed by the upstream host – the definitive host – where the parasite 
reproduce. Parasite-induced phenotypic alterations (PIPA) may facilitate the completion of the parasite’s 
life cycle (Moore, 2002; Poulin, 2010). Alterations of host behavior are particularly frequent in trophically-
transmitted parasites, with infected hosts showing behaviors increasing their chances to be predated by 
their parasite’s final host e.g. (Bethel & Holmes, 1977; Moore, 1983; Lagrue et al., 2007), reviewed, for 
example, in Poulin (2010). These parasites generally alter the antipredator behaviors of their intermediate 
hosts (Svensson et al., 2022), and some parasites are even able to reverse their intermediate host’s fear of 
predator cues (Berdoy et al., 2000; Perrot-Minnot et al., 2007). These host behavioral changes favoring 
parasite transmission are adaptive for parasites but detrimental to the host. They are therefore seen as an 
extended phenotype of parasites and are referred to as parasitic manipulation (Hughes et al., 2012). 

The understanding of the adaptive significance of PIPA was reinforced by studies highlighting variations 
in manipulations depending on the ontogeny of the parasite. Parker et al. (2009) predicted that the 
trophically-transmitted parasites showing the strongest selective advantage would be those able to protect 
from predation when not infective to the definitive host and then switch to an increase of exposure to 
predation when infectious. This phenomenon might have been selected because trophic transmission 
occurring before the parasite has reached the infective stage would result in zero fitness (Parker et al., 
2009). Ideally, then, an optimal temporal sequence of manipulation could consist of a ‘protect-then-
expose’ strategy against predation. Accordingly, reinforced antipredatory behaviors were observed during 
the early stages of the ontogeny in a number of parasite species (e.g. Hammerschmidt et al., 2009; Médoc 
& Beisel, 2011; Bailly et al., 2018) and direct testing for predation rate of uninfected versus infected hosts 
confirmed the existence of this switch in predation rates (Dianne et al., 2011; Weinreich et al., 2013). This 
phenomenon has been studied in detail in a few model organisms only. An iconic model is the tapeworm 
Schistocephalus solidus, where infection in its copepod first intermediate host firstly reduces the host 
activity and recovery time after a disturbance mimicking a predator attack (Hammerschmidt et al., 2009), 
resulting in a decrease in predation (Weinreich et al., 2013). This manipulation occurs rapidly after the 
establishment of the infection within the copepod body (Benesh, 2019). After infectivity for the next host 
is reached, the behavioral pattern reverses, infected copepods becoming more active and conspicuous to 
predators (Hammerschmidt et al., 2009). In this system, the intensity of host manipulation varied mainly 
according to parasite populations, and responded to selection on parasites, confirming that this trait can 
be a parasite extended phenotype (Hafer, 2018; Hafer-Hahmann, 2019), rather than a trait of the host also 
favoring the parasite fitness (Jensen et al. 2023).  

Another well-studied parasite-host system for switching in behavioral parasitic manipulation is the 
acanthocephalan Pomphorhynchus laevis infecting the amphipod Gammarus pulex. Here, the infection by 
the non-infective stage (the acanthella) protects the host from predation by increasing the rate of refuge 
use in the amphipod (Dianne et al., 2011), a trait protecting gammarids from predation by fish (Abjornsson 
et al., 2004). A switch then occurs few days after the parasite reached the cystacanth stage (infective for 
the next host), exposing the infected host to fish predation (Dianne et al., 2011). In this system, no selection 
was made on parasites to confirm this extended phenotype, but the intensity of manipulation depends on 
the parasite strains (Franceschi, Bollache, et al., 2010) or populations (Franceschi, Cornet, et al., 2010; 
Labaude et al., 2015), suggesting that manipulation is a parasite trait. However, here, a number of data are 
still lacking to further understand the ‘protect-then-expose’ strategy. For example, it is not known if P. 
laevis invests in host protection early in its ontogeny, knowing that the development of the acanthella 
stage necessitates quite a long time, i.e. between 2 and 3 months depending on temperature (Labaude et 
al., 2020). No data are available on the course of behavioral changes during the whole duration of the 
acanthellae stage. Indeed, measures of refuge use or predation rates were made at the end of this 
acanthella stage, few days before the parasite reached the infective stage (Dianne et al., 2011, 2014). 
However, a long time spent in a host would necessitate a long investment in protection. Dianne et al. (2014) 
identified a cost of the protective manipulation in terms of host food intake. Such a cost, if imposed on a 
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long time, could impact the survival of the host, therefore limiting a long protective manipulation during 
parasite ontogeny. The life-cycle of Schistocephalus solidus, much shorter (around two weeks before being 
infective in the copepod host), probably allows early investment in the protective manipulation 
(Hammerschmidt et al., 2009). In addition, it is known that manipulation of gammarids by P. laevis is 
multidimentional, i.e. that multiple traits are changed in the hosts by the parasite infection (Perrot-Minnot 
et al., 2014; Fayard et al., 2020). However, we still do not know if multiple antipredatory traits are changed 
during protective manipulation. The activity rate, for example, known to be reduced as an antipredator 

defense in gammarids (Williams & Moore, 1985; Bollache et al., 2006) should be reduced during the 
acanthella stage, and then switch to an increase at the cystacanth stage, but this has never 
been tested. Finally, while Dianne et al. (2011) found that acanthellae induced an increased use of refuges 

only in the presence of predator cues (fish scent), Dianne et al. (2014) found contradictorily that this 
protective manipulation in P. laevis was observed both in presence or absence of predatory cues, 
suggesting that the protective manipulation is not condition-dependent. However, again, no data is 
available on the entire ontogeny of the acanthella.  

In this study, we analyzed the behavioral changes induced by P. laevis in G. pulex, for the first time 
during the whole ontogeny of parasites. Two anti-predatory behaviors, namely the intensity of host refuge 
use and the host activity, were measured after experimental infections (as recommended by Poulin & 
Maure, 2015) and under two conditions: with or without predation cues. Three main questions were 
addressed: (i) is the protective manipulation present during early acanthella stages of parasite’s larval 
development? (ii) is this manipulation condition(predator)-dependent during the whole larval ontogeny? 
(iii) are these two different anti-predatory behaviors affected in the same way by P. laevis during its 
ontogeny?  

Material and Methods 

Animals and experimental infections 
Collection, maintenance and infection procedure were as described in Franceschi et al. (2008). In brief, 

uninfected G. pulex amphipods were collected in February 2012 from a small tributary of the Suzon River, 
Burgundy, eastern France (47°23’56.19’’N, 4°50’31.13’’E). Only male gammarids were kept for the 
experiment to avoid any interference of the female reproductive cycle on the outcome of parasite infection 
(Franceschi et al. 2008). They were acclimated in the laboratory for 3 weeks before experimental infections 
under a 12:12 light:dark cycle and fed during the experiment with conditioned elm leaves (Ulmus laevis). 
Adult P. laevis parasites were removed from the intestine of naturally infected chub (Squalius cephalus) 
caught in February 2012 in the Vouge River, France (47°09’34.36’’N, 5°09’02.50’’E) and characterized 
molecularly as described in Franceschi et al. (2008). Parasite eggs were collected from six females of P. 
laevis sampled from four different fish. Male gammarids were allowed to feed for 48 h on a 1 cm2 piece of 
elm leaf, on which about 200 eggs were deposited. A total of 190 G. pulex males were exposed to parasite 
eggs. After exposure, gammarids were maintained in isolation in cups (6 cm diameter) filled with c.a. 50 
mL of aerated water. Dead elm leaves were provided as food ad libitum and water was changed every 
week. Twenty control, unexposed, gammarids were handled and maintained under the same conditions as 
the exposed gammarids. 

Behavioral measurements and survival 
Survival was controlled every day post-exposure, and dead gammarids were dissected within the 24 

hours post-death in order to control for parasite presence. Due to small size of acanthella, we were unable 
to detect this presence before 21 days in the 14 G. pulex that died (personal observations). Since we were 
unable to assign hosts to the infected or uninfected categories, the comparisons of refuge use and survival 
were made after the 21th day post-infection. The experiment was stopped after 83 days post-exposure. 

We measured the rate of refuge use every week. Gammarids were introduced individually into a 10.5 
× 16 cm rectangular box filled with 330 mL of either control or fish-scented water, with each gammarid 
kept in the same water type during the whole experiment. Ten of the 20 unexposed control gammarids 
were tested under fish-scented water, 10 in control water. To produce predator cues, six young brown 
trouts (Salmo trutta), each ~ 20 cm long, were kept in the laboratory at 15 ± 1 °C under a 12:12 light:dark 
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cycle, in a tank filled with 80 L of tap water previously dechlorinated, oxygenated and UV-treated. Trouts 
were acclimated for 2 weeks prior to the experiments and fed with a mix of frozen chironomid larvae and 
alive gammarids in order to strengthen the predation signal (Wudkevich et al., 1997). The water from a 
similar tank, treated as previously described but without trout scent, was used as a control water for 
behavioral experiments. Individuals were randomly assigned to these water treatments. An opaque refuge, 
consisting of half a terracotta saucer (8.5 diameter) in which a 1 cm2 opening was made, was placed at one 
end of each aquarium, covering approximately 18% of the total aquarium area. Refuge use was recorded 
after an acclimation period of 30 min. The gammarid’s position in the box was then checked every 5 min 
over a period of 120 min. A score of 1 was given if the gammarid was inside the refuge and a score of 0 if 
it was found outside. For each gammarid, the total score of refuge use therefore ranged between 0 
(gammarid always outside the refuge) and 24 (gammarid always inside the refuge). After behavioral 
measure, the gammarid returned to its cup, where new aerated water (without fish scent) and food were 
provided.  

The activity of gammarids was recorded the day after the refuge use measurement, using a ViewPoint 
device and software (©Viewpoint Life Sciences, Inc. – 2010, France). Gammarids were placed individually 
in Petri dishes (diameter 8.5 cm, height 1 cm) filled with either control water or scented water, this water 
treatment being the same as for refuge use measurements for each gammarid. After 2 min of acclimation, 
gammarid activity was recorded with an infrared camera for 5 min (continuous recording), as the 
proportion of time spent inactive. Inactivity was defined as movements at a speed below 10 mm s-1. This 
speed threshold was determined based on preliminary tests, showing that below 10 mm s-1 discrimination 
is not possible between gammarids moving at very low speed (crawling) and gammarids moving their 
pleopods for respiration. The 20 control unexposed gammarids were not measured for this trait. 

The infection procedure allowed synchronized development of acanthellae. Around 55 days post-
exposure, the presence of P. laevis acanthellae was unambiguously detectable through the host cuticle 
(translucent light-orange and shapeless larval stages). Therefore, at that time, all gammarids were assigned 
to exposed-infected or exposed-uninfected categories (either dead gammarids showed an infection after 
dissection, or the infection became detectable in living gammarids). It means that behavioral tests were 
made in blind for the infection status before 55 days post-exposure. The cystacanth stage was reached ten 
days later (appearing through the cuticle as small bright orange opaque balls). 

Statistical analysis 
The survival of gammarids was analyzed using Cox regressions, where the effects of infection status (in 

a first analysis: unexposed vs exposed-uninfected vs exposed-infected individuals; in a second analysis:  
uninfected vs infected), water type (scented vs control) and their interaction were analyzed using the 
‘survival’ R package (V 3.2). Similar procedures were used in infected individuals only to test the effect of 
the number of parasites on survival. 

Scores for refuge use and activity rate were analyzed as repeated measures using the ‘nparLD’ R 
software package (V 2.1), with the F2 LD F1 model. This function enables nonparametric analyses of right-
censored longitudinal data, allowing the decrease in sample size along time, due to individuals’ death 
(Noguchi et al., 2012). The effects of water type (scented vs control), infection status (uninfected vs 
infected) and their interaction were investigated along time, considered here as an ordinal variable. 
ANOVA-type statistics (AT Statistics), as recommended for small sample sizes (n < 8) were performed 
(Noguchi et al., 2012), the statistical analysis of time-series with nparLD being based on rank-order of the 

observed data (see Noguchi et al., 2012 for details). We also report Cliff’s  with their 95% confidence 
intervals (Cliff, 1993) as measures of non parametric effect size for the difference in refuge scores or activity 
rate between infected vs uninfected gammarids at each time step, for each water type. This parameter 
measures the frequency of values in a given distribution that are larger than the values in another 

distribution. The values of  ≥ 0.11 are considered as small, those ≥ 0.28 as medium, and those ≥ 0.43 as 
large (Kraemer & Kupfer, 2006).   

All statistical analyses were performed using R version 4.1.0 software (R Foundation for Statistical 
Computing, Vienna, Austria).  
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Results 

We were able to detect unambiguously infections through the cuticle of the hosts at the late acanthella 
stage around the 55th day post-exposure. Before this stage, parasite infections were only detectable after 
dissection of dead individuals from day 21. Out of the 176 surviving individuals exposed to parasite eggs, 
132 were finally infected (75%). Among them, 60 (45.5%) were infected by only one parasite, 39 (29.5%) 
were infected by two parasites and 33 (25.0%) were infected by more than two parasites. 

The experiment was stopped after 83 days post-infection and all surviving animals were dissected to 
confirm their infection status and count the parasites. Exposed-uninfected animals did not differ 
significantly from control unexposed gammarids in either survival or shelter use (supplementary 
informations). Therefore, in order to increase the power of the behavioral analyses at the end of the 
experiment, we merged unexposed and exposed-uninfected animals to create the uninfected or not 
infected category (terminology used thereafter). 

The analysis of survival did not fulfill the conditions of proportional hazards throughout the whole 

period (2 = 20.9775; 3 d.f.; p = 0.0001). We therefore ran two analyses according to the two main stages 
of the larval developmental cycle, first during the acanthellae stage, then after the cystacanth stage has 
been reached. Analyses of the survival during these two periods fulfilled the conditions of proportional 

hazards (2 = 2.67542; 3 d.f.; p = 0.44 and 2 = 3.9257; 3 d.f.; p = 0.27, respectively).  
Animals survived equally through the acanthella stage regardless of their infection status, but the 

uninfected individuals survived better than the infected ones after the parasites reached the cystacanth 
stage (Table 1, Figure 1). The water condition had no significant effect on survival (Table1). 

Table 1 - Effect of water type, infection status by Pomphorhynchus laevis, and their interaction on 
the survival of Gammarus pulex individuals, during the acanthella stage development (a) and after 
the cystacanth stage has been reached (b). 

Source d.f. z p-value 

(a)    
Water type 1 1.840     0.0658  
Infection 1 1.039   0.2988 
Water type*infection 1 -1.486      0.1374   
(b)    
Water type 1 1.433 0.1517 
Infection 1 -2.562  0.0104  
Water type*infection 1 -1.141     0.2540   

 

 

Figure 1 - Cumulative survival of Gammarus pulex after experimental exposure to Pomphorhynchus 
laevis according to their infection status, during the acanthella stage development (a) and after the 
cystacanth stage has been reached (b). Animals were maintained in water that was (or not) signed 
with fish scent. After cystacanth stage was reached, infected G.pulex suffer higher mortality. 

20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Days after experimental exposure

C
u
m

u
la

ti
v
e

 s
u

rv
iv

a
l

60 65 70 75 80

0.0

0.2

0.4

0.6

0.8

1.0

infected

not infected

control water

scented water

infected

not infected

control water

scented water

a b

Thierry Rigaud et al. 5

Peer Community Journal, Vol. 3 (2023), article e109 https://doi.org/10.24072/pcjournal.346

https://doi.org/10.24072/pcjournal.346


Among the infected individuals, to analyze the effect of the infection intensity on survival, the number 
of parasites was categorized as “1 parasite” or “more than 1 parasite”. The number of individuals infected 
by one parasite were 29 in control water and 31 in scented water, while 37 individuals with more than one 
parasite were found in control water and 35 in scented water. Neither the parasite intensity nor the water 
type influenced significantly the survival (z = -1.556, p = 0.120 and z = 1.051, p = 0.293, respectively). The 
interaction was also non significant (z = 1.149, p =0.251). 

The refuge use by gammarids varied considerably with time (Figure 2, Table 2), being most of the time 
moderate at the beginning of our survey, becoming progressively more intensive until reaching high values 
around 30 to 40 days.  

Table 2 - Results of the model from the nparLD analysis, testing for the effects of water type (scented 
vs. control), infection status (infected with P. laevis vs. uninfected) and date of measurement on the 
scores of refuge use by G. pulex individuals. 

 AT statistics df P-value 

Water type 7.8568   1 0.0051 
Infection 0.9645   1 0.3261 
date 12.9330 5.7522 < 0.00001 
Water type * Infection 0.4299   1 0.5120 
Water type * date 2.9745   5.7522 0.0075 
Infection * date 11.1301   5.7522 < 0.00001 
Water type * Infection * date 7.5111   5.7522 0.6030 

 
This phenomenon was found regardless of the infection status and the water type, but was found to 

be more rapid under scented water than control water (Figure 2), the interaction between water type and 
date being statistically significant (Table 2). The interaction between date and infection was also highly 
significant (Table 2). This reflects the observation that, after the cystacanth stage being reached, the refuge 
score became weaker for infected individuals, while during the acanthella stage, the tendency was that 
infected individuals used more refuges than uninfected ones (Figure 2).  

This observation is reinforced by the analysis of the effect sizes, but here differences appeared between 
scented and control water. Indeed, at acanthella stage, under non-scented water, the difference in refuge 
scores between infected and uninfected animals was always close to zero, indicating negligible effect of 

the infection (Figure 3). Under scented water, however, the values of  were often between -0.11 and -0.4, 
i.e. a range where effect sizes are considered as small to medium (Vargha & Delaney, 2000; Kraemer & 
Kupfer, 2006).  Nevertheless, only one value was significantly different from zero (95% C.I. did not overlap 
with zero), at day 55, i.e. at the late acanthella stage. After the cystacanth stage was reached, and here 
whatever the type of water, the effect size reversed, becoming positive, and can be considered as large, 

with values of  exceeding 0.4 (Figure 3). 
The effect of infection intensity was explored in infected animals only for the two dates where the 

analysis above suggested reversed effects of the infection, and where sample size was high enough to 
guarantee reasonable power, i.e. at days 55 and 69 post-exposure. At day 55, no effect of parasite number 
was seen on refuge use, nor on day 69. Indeed, after categorization as “1 parasite” and “more than 1 
parasite”, Wilcoxon tests were not significant (z = -0.8144, p = 0.4097 and z = -1.3688, p = 0.1675, 
respectively). The same result was found if parasite number was treated as a discrete numerical variable 
since the correlations between parasite number and refuge use scores were non-significant for the two 

dates (Spearman’s  = 0.0595, p = 0.6379, n = 65 and Spearman’s  = 0.2333, p = 0.1229, n = 45, 
respectively). 
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Figure 2 - Scores of refuge use by gammarids, according to their infection status by Pomphorhynchus 
laevis, between day 21 and day 83 post-experimental exposure to parasite eggs. Gammarids were 
tested in control water (a), or water signed with fish scent (b). Scores range from 0 (individuals always 
outside the refuge) to 24 (individuals always inside the refuge). Thick lines are the medians, boxes 

are the upper and lower quartiles, whiskers are the upper and lower 1.5*interquartile range, and 
dots represent outliers. The vertical black line denotes the transition between acanthella and 
cystacanth stages. Sample sizes are given in italics below each plot. Refuge use increase during 
acanthealla stages (this phenomenon was stronger under signed water) and then decreased after 
cyctacanth stage is reached.  
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Figure 3 - Effect sizes of refuge use of Gammarus pulex infected with Pomphorhynchus laevis 
compared to uninfected individuals, according to the date when the tests were made, separated by 

the water type in which they were tested. Points represent Cliff ’s  and error bars represent 95% 
confidence intervals. Positive values mean that the uninfected individuals used the refuge more than 
infected individuals, and negative values mean a lower use. The white, blue, yellow and red colors 
corresponded to areas where the effect size are considered as trivial, small, medium and large, 

respectively, using the comparisons between Cliff ’s  and Cohen’s d effect size made by (Kraemer & 
Kupfer, 2006). These areas must be seen as indicative. The dotted line denotes the transition between 
acanthella and cystacanth stages. 
 

The analysis of levels of activity revealed an effect of water type close to statistical significance, with 
significantly more time spent inactive in infected gammarids compared to uninfected ones, but also a highly 
significant increased inactivity with time (Figure 4, Table 3). None of the interactions were significant (Table 
3). 

Table 3 - Results of the model from the nparLD analysis, testing for the effects of water type (scented 
vs. control), infection status (infected with P. laevis vs. uninfected) and date of measurement on the 
activity rate of G. pulex individuals. 

 AT statistics df P-value 

Water type 3.3850 1 0.0658 
Infection 6.1807 1 0.0129 
date 17.5550 4.8886 < 0.00001 
Water type * Infection 2.5109 1 0.1131 
Water type * date 1.1737 4.8886 0.3193 
Infection * date 1.1683 4.8886 0.3221 
Water type * Infection * date 1.1111 4.8886 0.3517 
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Figure 4 - Proportion of time spent inactive in gammarids, according to their infection status by 
Pomphorhynchus laevis, between day 21 and day 69 post experimental exposure to parasite eggs. 
Gammarids were tested for 5 minutes in control water (a), or water signed with fish scent (b). Thick 

lines are the medians, boxes are the upper and lower quartiles, whiskers are the upper and lower 
1.5*interquartile range, and dots represent outliers. The vertical black line denotes the transition 
between acanthella and cystacanth stages. Sample sizes are given in italics below each plot. Infection 
increased the gammarid’s inactivity whatever the water type and the developmental stage. 

Analysis of effect sizes (Figure 5) confirmed but visually refined the analysis, with infected individuals 
being significantly more inactive than uninfected animals in the scented water. 
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Figure 5 - Effect sizes of time spent inactive in Gammarus pulex infected with Pomphorhynchus laevis 
compared to uninfected individuals, according to the dates when the tests were made and the water 

type. Points are Cliff’s  and error bars represent 95% confidence intervals. Negative values mean 
that the infected individuals are more inactive than uninfected animals. The white, blue, yellow and 
red colors corresponded to areas where the effect size are considered as trivial, small, medium and 
large, respectively (see Figure 3). The dotted line denotes the transition between acanthella and 
cystacanth stages. 

Discussion 

Our longitudinal survey of antipredatory behaviors in Gammarus pulex infected by Pomphorhynchus 
laevis, made in repeated measures, first confirmed previous observations that a shift occurred in refuge 
use between acanthella and cystacanth stages, i.e. between parasite stages non-infective and infective for 
the next host in the cycle (Dianne et al., 2011, 2014). This shift was nevertheless not observed for the 
activity rate, another behavior involved in predation avoidance (Andersson et al., 1986; Bollache et al., 
2006). In addition, our study brings new information on this anti-predatory behavior.  

First, confirming observations of Dianne et al. (2011), we found a difference in the ‘protective’ 
behavioral patterns of refuge use and activity rate according to the presence or absence of predatory cues. 
Indeed, while almost no difference between infected and uninfected animals was found when tests were 
made in control water, G. pulex infected by acanthellae use more the refuges at the end of their parasite 
development and are more inactive than uninfected ones in fish-scented water. Fish scent is definitely a 
source of stress for gammarids: it generally increases anti-predatory behavior when gammarids perceive 
predatory cues (e.g. they are repulsed by the chemical cues originating from fish (Perrot-Minnot et al., 
2007) and reduce their activity (Andersson et al., 1986; Bollache et al., 2006). The infection by acanthellae 
would therefore strengthen this behavior. In another acanthocephalan parasite, Polymorphus minutus, the 
protective behavior has been observed in absence of predatory cues (Bailly et al., 2018). This parasite 
nevertheless shows a different nature of behavioral changes, probably in link with the difference in life 
cycle (P. minutus is using birds as definitive hosts), with probable different mechanisms involved (Tain et 
al., 2006; Perrot‐Minnot et al., 2016).  

The second information is that protective behaviors associated with the infection were significant – in 
scented water – at variable times during parasite ontogeny, depending on the behavior considered. This 
means that reinforcing the host's antipredatory behavior outweighs the potential costs (Parker et al., 2009) 
differently depending on the behavior. The reduced activity rate in infected animals, on the one hand, 
appeared quite early during acanthella growth (see a longer discussion on this trait in the next paragraph). 
The increase of refuge use, on the other hand, was found when acanthellae are growing old and was only 
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significant at 55 days. Costs imposed by this behavioral change, as the one identified by Dianne et al. (2014), 
if imposed during a long time, may impact the survival of the host and may therefore limit in time the 
expression of protective manipulation during parasite ontogeny. In addition, for long-developing parasites, 
energy spent during growth may not be available for parasite manipulation (Poulin, 1994). It results that 
the moment when the expression of protection is the most optimal is when growth is complete, because 
energy then becomes available again. Therefore, the strategy of investing this energy in anti-predator 
behavior to safeguard past investments in growth can be selected. Interestingly, here, we observed that 
the time at which the protective component of manipulation is significant in P. laevis is when acanthella 
growth is complete, an observation compatible with such a strategy. Mechanistically, such a time course 
may be explained by chemicals secreted by parasites, that have the potential to be involved in host 
behavioral change (Berger et al., 2021, and references therein). However, we observed some variation (in 
scented water) on the differences between infected and uninfected gammarids: the effect size fluctuates 
between negligible values to medium values. This variation may be due to the fact that even uninfected 
gammarids did not use refuges constantly through time, a phenomenon that may interfere with the 
parasite’s consequences on host behavior. Indeed, from day 21 to day 55, there was a general trend of G. 
pulex using refuge more intensively as time is passing, and this independently from their infection status. 
After four behavioral measurements, all gammarids spent most of their time under the refuge, and this 
phenomenon is more intense in scented water. Gammarids, like other crustaceans are sensitive to stress, 
and one response to stress is to increase the intensity of anti-predatory behaviors (Fossat et al., 2014; 
Perrot-Minnot et al., 2017). Regular handling of shrimps increase their stress and modify the animal’s 
behavior (Takahashi, 2022). Therefore, we may infer that our experimental procedure was a source of 
stress for gammarids. Indeed, individuals were isolated for several weeks (gammarids are gregarious 
animals and isolation have consequences on their behavior, e.g. (Labaude et al., 2017) and were regularly 
handled to take them out of their isolation box and transfer them to a new environment (the aquarium or 
petri dish for behavioral tests). The observation that this phenomenon is more rapid under predatory cues 
is not surprising since predators are a major source of stress. Whatever its mechanistic basis, this general 
increase in refuge use interferes with our ability to observe behavioral differences between gammarids 
infected or not by acanthellae, because it becomes less easy to find a difference in refuge use when this 
usage is already intense. After the parasite reached the cystacanth stage, we observed the shift in refuge 
use, and infected G. pulex are using the refuge less intensively than uninfected animals, as repeatedly 
observed in cases of infection with P. laevis (Franceschi, Bollache, et al., 2010; Dianne et al., 2011; Bauer & 
Rigaud, 2015; Fayard et al., 2020). The effect size of this exposure manipulation appeared higher than the 
one of protective manipulation in the present experiment, which was not the case in Dianne et al. (2011). 
However, in this later study, only one time point at acanthella and cystacanth stages each were measured, 
and the acanthella time-point was the one closest to cystacanth stage. If we compare only the absolute 
values of effect size at 55 and 69 days in our study, in the scented water, we will find no clear difference. 
However, by considering the whole ontogeny, it seems that the effect size of manipulation is greater at 
cystacanth stage than acanthella stage. Poulin (2010) noted that the relationship between the intensity of 
behavioral manipulation and the increase of predation rate (supposed to be due to manipulation) was not 
always straightforward, so we cannot really conclude about the efficiency of protection and exposure in 
our parasite-host system. However, since increase in mortality was mainly observed after the cystacanth 
stage being reached (as also observed by Labaude et al., 2020), it would make sense that the exposure 
manipulation is stronger than the protective manipulation because the selective pressure of reaching the 
definitive host is strong at that stage. 

The third information of our study is that, as predicted, a second antipredatory behavior, namely the 
decreased activity rate, was also strengthened by infection during acanthella stage. Here again the 
differences in activity rate between infected and uninfected hosts were found mostly under predatory 
threat. This behavioural change appeared earlier in ontogeny than refuge use, suggesting that, if this 
change in behavior is adaptive for parasite, the costs of reducing activity are lower than increasing refuge 
use (Parker et al., 2009). Indeed, in gammarids, a reduced activity is associated with limited metabolic 
expenditures rather than with costs (e.g. Normant et al., 2007), while increased refuge use induce costs on 
food intake (Dianne et al. 2014). However, and contrary to predictions, no shift in behavioral modification 
was observed for this behavior between acanthella and cystacanth stages, as the one observed for refuge 
use, the infected gammarids even being less active at cystacanth stages than at acanthella stages. Two 
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alternative and exclusive hypotheses may be proposed for this observation. The first one is that the 
decreased activity rate in infected animals is a non-adaptive pathogenic byproduct of the infection, as 
sometimes suggested for some behavioral changes induced by parasites (Levri, 1999; Cézilly et al., 2010). 
Under this hypothesis, the progressive decrease according to time could just be interpreted as the long 
time spent by parasite in the host, decreasing progressively its mobility capacity. This could even be 
considered as a host strategy since here the interests of the parasite and the host are aligned during 
acanthella stage (reduced activity reduce predation risk, which is advantageous for both the parasite and 
the host, and save energy, which is advantageous for the host). Such hypotheses nevertheless explain 
neither why such a byproduct of the infection is not observed during acanthella stage in control water, nor 
the fact that the host and parasite interests became unaligned after the cystacanth stage is reached. 
Indeed, here, the reduced risk of predation due to low activity is advantageous for the host, but not for the 
parasite. The second hypothesis would be to consider that decreasing activity is adaptive for the parasite 
at both stages of development. During acanthella stage, this low activity rate would make the gammarid 
less conspicuous towards predators, as classically interpreted (Williams & Moore, 1985; Bollache et al., 
2006). Notably, high rate of activity allows gammarids to initiate swimming and consequently enter the 
river current (drift) where predators are present (Williams & Moore, 1985; Schaffer et al., 2013). During 
the cystacanth stage, the animal’s tendency to search light (Franceschi et al., 2008) and avoid refuges (this 
study, Dianne et al., 2011) would already bring them into the river drift (McCahon et al., 1991; Lagrue et 
al., 2007). A low level of activity would therefore accentuate the predation exposure by reducing the 
swimming capacity of gammarids, which could be easily transported passively by the current of the river. 
Indeed, Lagrue et al. (2007) observed that the presence of G. pulex in the river drift is increased by 25-30 
times when infected by P. laevis, the very same proportion of gammarids being found in the stomach of 
Bullhead predators. We could have here an example of parasite’s manipulation of a single host behavior 
that could be beneficial at all parasite stages, a characteristic that could have facilitated its selection.  

To conclude, the first component of the ‘protective’ behavioral manipulation by the acanthocephalan 
Pomphorhynchus laevis in its host Gammarus pulex, namely the increased refuge use, was significant in 
late acanthella stage, only when predator cues were present in the environment. This antipredator 
behavior enhancement was not significant early in the P. laevis ontogeny, perhaps because of costs due to 
the long development time of parasites. The refuge use then became weaker when the cystacanth stage 
was reached, illustrating the ‘exposure’ component of this parasitic manipulation. Another anti-predator 
behavior, the decrease in activity rate, was also expressed more strongly after the parasite infection, but 
showed no reversal during parasite ontogeny as observed for use of refuges. Differences in the intensity 
and direction of these two behavioral changes may be due to differences in their benefits relative to the 
developmental stage of the parasite: reduced host activity may be beneficial for transmission of the 
parasite to all parasite stages, while high and low refuge use are beneficial to the acanthella and cystacanth 
stages, respectively. 
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