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Abstract

Over the past decade, summary statistics from genome-wide association studies (GWASs) have
been used to detect and quantify polygenic adaptation in humans. Several studies have reported
signatures of natural selection at sets of SNPs associated with complex traits, like height and body
mass index. However, more recent studies suggest that some of these signals may be caused by
biases from uncorrected population stratification in the GWAS data with which these tests are per-
formed. Moreover, past studies have predominantly relied on SNP effect size estimates obtained
from GWAS panels of European ancestries, which are known to be poor predictors of phenotypes in
non-European populations. Here, we collated GWAS data from multiple anthropometric and meta-
bolic traits that have been measured in more than one cohort around the world, including the UK
Biobank, FINRISK, Chinese NIPT, Biobank Japan, APCDR and PAGE. We then evaluated how ro-
bust signals of polygenic score overdispersion (which have been interpreted as suggesting poly-
genic adaptation) are to the choice of GWAS cohort used to identify associated variants and their
effect size estimates. We did so while using the same panel to obtain population allele frequencies
(The 1000 Genomes Project). We observe many discrepancies across tests performed on the same
phenotype and find that association studies performed using multiple different cohorts, like meta-
analyses and mega-analyses, tend to produce polygenic scores with strong overdispersion across
populations. This results in apparent signatures of polygenic adaptation which are not observed
when using effect size estimates from biobank-based GWASs of homogeneous ancestries. Indeed,
we were able to artificially create score overdispersion when taking the UK Biobank cohort and
simulating a meta-analysis on multiple subsets of the cohort. Finally, we show that the amount of
overdispersion in scores for educational attainment - a trait with strong social implications and high
potential for misinterpretation - is also strongly dependent on the specific GWAS used to build
them. This suggests that extreme caution should be taken in the execution and interpretation of
future tests of polygenic score overdispersion based on population differentiation, especially when
using summary statistics from a GWAS that combines multiple cohorts.
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Introduction

Most human phenotypes are polygenic: the genetic component of trait variation across indi-
viduals is caused by differences in genotypes at a large number of variants, each with a relatively
small contribution to a given trait (Fisher et al., ; Turelli, ). This applies to phenotypes
as diverse as a person’s height, their risk of schizophrenia or their risk of developing arthritis. The
study of differences in complex traits spans more than a century but only in the last two decades
has it become possible to systematically explore the underlying genetic architecture underlying
these differences (Sella and N Barton, ). The advent of genome-wide association studies
has led to the identification of thousands of variants that are associated with polygenic traits,
either due to true biological mechanisms or because of linkage with causal variants (Visscher
et al,, ).

However, most research into the genetic aetiology of complex traits is based on GWAS data
from populations of European ancestries (Popejoy and Fullerton, ). This bias in representa-
tion contributes to existing disparities in medical genetics and healthcare around the world (AR
Martin, Kanai, et al., ). The low portability of European GWAS results - and, in particular,
polygenic scores - to non-European populations is particularly concerning (AR Martin, Gignoux,
et al,, : AR Martin, Kanai, et al., ) (but see Ragsdale et al., ). For example, the
predictive accuracy of polygenic scores for height constructed using European effect size esti-
mates has been shown to decrease with decreasing European ancestry in admixed populations
(Bitarello and Mathieson, ). Recent studies have shown that ancestry deconvolution can
be used to improve accuracy (Marnetto et al., ; M Wang et al,, ), but important trait-
associated variants in non-European populations may be missed if they have low frequencies
or are absent in European populations. Moreover, effect size estimates for an associated vari-
ant derived from a European-ancestry GWAS may not accurately reflect the effect of the same
variant on the trait in other populations (Woijcik et al., ). This could be due to differences
in epistasis, differences in linkage disequilibrium between causal and ascertained variants, or
gene-by-environment interactions, to name a few causes (Guo et al., ). Additionally, nega-
tive selection and demographic history may cause differences in genetic architectures between
populations (Durvasula and Lohmueller, ).

During the last decade, GWAS summary statistics have also been used to look for evidence
of directional selection towards a trait to a new phenotypic optimum, via allele-frequency shifts
occurring across a large number of associated variants - a phenomenon known as polygenic adap-
tation (Hayward and Guy Sella, ; Pritchard et al., ). For example, several studies have
consistently found evidence for polygenic adaptation operating on height-associated variants in
Europe, mainly across a south-to-north gradient (Berg and Coop, ; Berg, Zhang, et al., ;
Mathieson et al,, ; Racimo et al., ; MR Robinson, Hemani, et al., ; Turchin et al.,

). To test for selection, these studies primarily relied on summary statistics from the GIANT
consortium dataset, which is a meta-analysis of anthropometric GWAS from multiple European
cohorts (Allen et al., ; Wood et al., ). They looked for overdispersion and/or directional
changes in the frequencies of trait-associated variants across populations, relative to a neutral
null model. To account for potential confounding due to population stratification, some have tried
to replicate this signal using family-based association studies (Allison et al., : MR Robinson,
Hemani, et al., ). Berg, Harpak, et al., and Sohail et al,, showed that this signal of
polygenic score overdispersion on height-associated variants in Europe (and possibly on other
trait-associated variants) is attenuated and in some cases no longer significant when using effect
size estimates from a GWAS performed on the UK Biobank - a large cohort composed primar-
ily of individuals of British ancestry (Bycroft et al., ). There is no single explanation yet for
these contradictory findings, but the most plausible one is that previous studies were impacted
by very subtle confounding due to uncorrected population stratification in GIANT, and that data
from family-based studies was not analyzed properly (Berg, Harpak, et al., ; Sohail et al.,

). Another recent study has shown that other sources of stratification (based on age, sex
and/or socioeconomic factors) might even lead to variation in the accuracy of polygenic scores
when analyzing individuals from the same ancestry group Mostafavi et al. ( ).
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It is as yet unclear how the choice of GWAS cohort affects tests of polygenic score overdis-
persion based on allele frequency differences between populations. Each cohort differs in ances-
tries of participants, inclusion criteria of individuals, SNP ascertainment scheme and association
method. Given the poor portability of polygenic scores across populations, is it also true that
GWASs performed on different cohorts will result in inconsistent signals of selection? Can we
narrow down on the reason for the inconsistencies in previous studies of polygenic adaptation
by looking at a larger number of cohorts? Here, we collated GWAS summary statistics from mul-
tiple complex traits that have been measured in more than one cohort around the world. We
then evaluated how robust signals of polygenic score overdispersion are to the choice of cohort
used to obtain effect size estimates. Across all comparisons, we used the same population ge-
nomic panel to obtain population allele frequency estimates: The 1000 Genomes Project phase
3 (The 1000 Genomes Project Consortium, ). We observe many discrepancies across tests
performed on the same phenotype and attempt to understand what may be causing these dis-
crepancies. We compare results for several traits and pay special attention to height, as it is the
most well-characterized and studied complex trait in the human genetics literature, as well as a
trait for which we have summary statistics from the largest number of GWAS cohorts. Finally, we
perform an analogous analysis on educational attainment - a trait that has also been highlighted
in recent studies of polygenic adaptation in humans (Racimo et al., : Stern et al.,, : Uric-
chioetal., ), and that is especially prone to be misinterpreted or misappropriated (Harmon,

: Novembre and Nicholas H Barton, ). We show that overdispersion signals for this
trait are also highly sensitive to the choice of GWAS cohort.

Methods
GWAS summary statistics.

We obtained GWAS summary statistics from five large-scale biobanks, a GWAS meta-analysis
and a mega-analysis (Figure 1). Since we aim to make comparisons among them, our interest is
focused on traits that were measured in at least two different cohorts. This resulted in a total of
30 traits being included in our analysis.

Below, we provide a brief summary of each of the GWASs we focused on. For an overview
of the type of arrays and association methods used in each of these, see Table

e UKBB: Summary statistics from the GWAS performed on all UK Biobank traits (Bycroft
etal., ). These were released by the Neale lab (round 2:

), after filtering for individuals with European ancestries. The UK Biobank
includes genetic and phenotypic data from participants from across the United Kingdom,
aged between 40 and 69. The traits measured include a wide range of lifestyle factors,
physical measurements, and other phenotypic information gained from blood, urine and
saliva samples. The Neale lab performed association testing in ~ 340,000 unrelated indi-
viduals.

e FINRISK: Summary statistics from GWASs carried out using the Natlonal FINRISK 1992-
2012 collection from Finland (

). The FINRISK study is coordinated
by the National Institute for Health and Welfare (THL) in Finland and its target population
is sampled from six different geographical areas in Northern Finland. The FINRISK cohort
was conducted as a cross-sectional population survey every 5 years from 1972 to assess
the risk factors of chronic diseases and health behavior in the working age population.
Blood samples were collected from 1992 to 2012. Anthropometric measures and other
lifestyle information were also collected. The number of samples used for the GWAS
results varies among the different traits (~25,000 to ~5,000) (Borodulin et al., ).

e PAGE: Summary statistics from a multi-ethnic GWAS mega-analysis performed by the
PAGE (Population Architecture using Genomics and Epidemiology) consortium (

). This is a project developed by the National Human Genome

Research Institute and the National Institute on Minority Health and Health Disparities

in the US, to characterize population-level disease risks in various populations from the
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Americas (Carlson, ; Matise et al., ). The association analysis was assembled
from four different cohorts: the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL), the Women's Health Initiative (WHI), the Multiethnic Cohort (MEC) and
the Icahn School of Medicine at Mount Sinai BioMe biobank in New York City (BioMe).
The authors performed GWAS on 26 clinical and behavioural phenotypes. The study in-
cludes samples from 49,839 non-European-descent individuals. Genotyped individuals
self-reported as Hispanic/Latino (n = 22,216), African American (n = 17,299), Asian (n
= 4,680), Native Hawaiian (n = 3,940), Native American (n = 652) or Other (n = 1,052).
The number of variants analyzed varies from 22 to 25 million for continuous phenotypes
and 11 to 28 million for case/control traits. Sample sizes ranged from 9,066 to 49,796
individuals (Woijcik et al., ).

e BBJ: Summary statistics from GWASs performed using the Biobank Japan Project, which
enrolled 200,000 patients from 12 medical institutions located throughout Japan be-
tween 2003-2008 ( ). The authors collected bio-
logical samples and other clinical information related to 47 diseases and self-reported
anthropometric measures. GWASs were then conducted on approximately 162,000 in-
dividuals to identify genetic variants associated with disease susceptibility and drug re-
sponses. Around 6 million variants were included for association testing (Hirata et al.,

: Kanai et al., : Nagai et al., ).

e Chinese NIPT: Summary statistics from an association study in China performed via non-
invasive prenatal testing (NIPT) on 141,431 pregnant women (https:/db.cngb.org/cmdb).
The participants were recruited from 31 administrative divisions across the country. The
study aimed to investigate genetic associations with maternal and infectious traits, as
well as two anthropometric traits: height and BMI (S Liu et al. ( )). The summary
statistics for BMI and height were obtained from GWASs performed on a filtered set of
~ 60, 000 individuals. The number of imputed variants used was around 2 million.

e APCDR: Summary statistics performed using the African Partnership for Chronic Dis-
ease Research cohort, which was assembled to conduct epidemiological and genomic
research of non-communicable diseases across sub-Saharan Africa (

). The dataset includes 4,956 sam-
ples from Uganda (Baganda, Banyarwanda, Burundi, and others). The authors performed
GWAS on 34 phenotypes, including anthropometric traits, blood factors, glycemic con-
trol, blood pressure, lipid tests, and liver function tests (Heckerman et al., ).

e GIANT: Summary statistics published by the Genetic Investigation of Anthropometric
Traits consortium (2012-2015 version, before including UK Biobank individuals) (Locke et
al., :Woodetal., )(

). GIANT is a meta-analysis of sum-
mary association statistics for various anthropometric traits, and includes information
from more than 250,000 individuals of European descent. The meta-analysis was per-
formed on 2.5 million autosomal SNPs, after imputation.

Population genomic panel.

We used the 1000 Genomes Project phase 3 release data (The 1000 Genomes Project Con-
sortium, ) to retrieve the allele frequencies of trait-associated variants in different popu-
lation panels sampled from around the world (Figure 1). We used these to compute polygenic
scores for each panel, using autosomal SNPs only. The dataset contains samples from 2,504 peo-
ple from 26 present-day population panels, whose abbreviations and descriptions are listed in
Table

Identifying trait-associated SNPs.

We used summary statistics for a set of 30 traits that were measured in at least two of the
previously-listed GWAS datasets. Table 7 shows the full list of the traits included in this analysis
and the number of variants and individuals per trait. For each trait, we excluded triallelic variants,
variants with a minor allele frequency lower than 0.01 across all samples and those classified as
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Figure 1 - Map containing the geographic provenance of the panels of each association
study we examined (large circles), as well as the 26 population panels from the 1000
Genomes Project (black squares). Small colored dots denote the provenance of the indi-
vidual GWAS cohorts that were used in GIANT and in PAGE.

Table 1 - Information on genotyping, imputation and association methods for each
GWAS analyzed in this study. LM+PCs = linear model with principal components as co-
variates. LMM = linear mixed model.

GWAS cohort No. individuals No. genotyped No. imputed Association GWAS array or Filters
SNPs SNPs method sequencing method
UKBB 360388 820967 10,800,000 LM+PCs UK Biobank Axiom Array INFO > 0.8
MAF > le—4
HWE P > 1le—10
GIANT 253288 [meta-analysis] 2,834,208 LM+PCs Affymetrix 500K platform, Removed low quality SNPs

lllumina genotyping arrays
and custom Perlegen arrays

BBJ 159,095 958,497 27,896,057 LM+PCs lllumina INFO > 0.4
HumanOmniExpressExome MAF > 1.0%
HWEP > le—6
Chinese NIPT 61,321 NA 2,130,000 LM+PCs Ultra low depth INFO > 0.4
shotgun sequencing HWEP > 1le—6
PAGE 49,781 1,748,250 39,723,562 LMM lllumina Multi-Ethnic INFO > 0.4
Genotyping Array (MEGA)
FINRISK 24,725 551,004 11,670,715 LM+PCs lllumina CoreExome INFO > 0.7
MAF > 1.0%
HWEP > 1le—6
APCDR 4,778 2,382,209 16,477,797 LMM lllumina Omni2.5 INFO > 0.3
MAF > 0.5%

low confident variants whenever this information was available in the summary statistics file.
We selected a set of trait-associated SNPs based on a P-value threshold, and the effect size
estimates of these variants were used to construct a set of polygenic scores. To only include ap-
proximately independent trait-associated variants in our scores, we use a published set of 1,703
non-overlapping and approximately independent linkage-disequilibrium (LD) blocks to divide the
genome (Berisa and Pickrell, ). We extracted the SNP within each block with the lowest as-
sociation P-value. To investigate the robustness of signals to different filtering schemes, we used
two P-value thresholds to extract significantly associated variants: 1) P < 1le—5 and 2) the stan-
dard genome-wide significant cutoff, P < 5e—8. Blocks that only contain variants that do not
meet the chosen threshold were filtered out. As an example, Figure 9.A shows the distribution
of effect size estimates of height-associated SNPs with P < 1e—5. In turn, Figure 9.B shows the
distribution of the product of the effect size estimates and the square root of the study’s sample
size (N). This serves as a fairer comparison among studies, as the standard error of the effect
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size estimate is approximately proportional to the inverse of v/N (see Casella and Berger, ;
Edge, ; Holland et al., ). In order to build an empirical genome-wide covariance matrix
(F-matrix) with non-associated SNPs, we extracted all SNPs with a P-value larger than 5e—8 and
then sampled every 20th of these SNPs across the autosomal genome.

We also used the LD score regression approach (Heckerman et al., ) to obtain an LD
score regression intercept, LD score regression ratio, and a SNP heritability estimate for each
GWAS that we looked at. The LD score intercept is an estimate of the contribution of population
stratification to test statistic inflation in a GWAS analysis. The LD score regression ratio measures
the proportion of the inflation in the mean y? statistic that the LD Score regression intercept
ascribes to causes other than polygenic heritability. Finally, an estimate of trait heritability can be
obtained from the LD score regression slope (B Bulik-Sullivan et al., : BK Bulik-Sullivan et al.,

). We note, however, that Berg, Harpak, et al. ( ) showed that some of the assumptions
of LD score regression - which allow one to separate estimates of stratification confounding from
heritability - may be violated in the presence of background selection. Thus, these estimates may
not accurately reflect the amount of stratification truly present in a GWAS.

Neutrality test for polygenic scores.

Polygenic risk scores are used to predict the genetic risk of a disease, or the genetic value
of a trait, by combining the additive effect of a large number of trait-associated loci across the
genome. For each trait, we obtained polygenic scores by computing the sum of allele frequencies
at each of the top trait-associated SNPs from each block, weighted by their effect size estimates
for that trait. The allele frequencies for these SNPs were retrieved from The 1000 Genomes
Project population panels using glactools (Renaud, ). We then built a polygenic score vector
for a given trait, Z, that contains the polygenic scores of all populations for that trait. Let p; €
[0, 1]M be the vector of derived allele frequencies at locus I, where p; ,, is the derived allele
frequency at locus | in population m, while «; is the effect size estimate of the derived allele
at locus I. Then, the vector of the polygenic scores, Z, has length M equal to the number of
populations (M = 26) and each element Z,, is the polygenic score for population m

L
(1) Zm = Zzalpl,m
=1

Here, L is the total number of trait-associated loci. For each polygenic score we built, we also
obtained 95% credible intervals, constructed using the method in Sohail et al. ( ), assum-
ing that the posterior distribution of the underlying population allele frequency is independent
across populations and SNPs, and that it follows a beta distribution.

Berg and Coop, introduced a model designed for comparing polygenic scores across
populations, in order to test for deviations from neutrality, which could perhaps be driven by
adaptive divergence between populations. The test works by looking for overdispersion from a
multivariate normal distribution, which would fit the distribution of scores if this was determined
purely by genetic drift.

Under neutral genetic drift, Berg and Coop, showed that the joint distribution of b4
across closely-related populations should be approximately multivariate normal under a purely
neutral model:

2) Z ~ MVN(ul, 2V4F)

where 1 is a vector of ones and:

L
(3) p=2% ap,
=1
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L
(4) Va=2) aip(l-p)

=1
and p, is the average allele frequency of locus / across all populations. The matrix F is a genome-
wide covariance matrix that captures the co-ancestry among each pair of populations (Berg and
Coop, ). Based on this null model, we can measure the Mahalanobis distance of the ob-
served distribution of Z from the distribution under neutral genetic drift by computing Qx

(Z-w)TFHZ—p)

5 =
(5) Qx 2V,

Under neutrality, the Qx statistic is expected to follow a chi-squared distribution with M -1
degrees of freedom, X%/I—l (Berg and Coop, ). A significantly large value of Qx indicates that

there is an excess of variance in Z that cannot be explained by drift alone.
P-values via randomization schemes.

To avoid relying on the assumption that Z follows a multivariate normal distribution under
neutrality, we also obtained P-values via two alternative methods (Berg and Coop, ; Berg,
Zhang, et al.,, :Racimo et al., ). The first one relies on obtaining neutral pseudo-samples
by randomizing the sign (but not the magnitude) of the effect size estimates of all trait-associated
SNPs, and then recomputing Qx. The second one involves obtaining pseudo-samples by sam-
pling random SNPs across the genome with the same allele frequency distribution in a particular
(target) population as the SNPs used to computed Qx. For each trait-associated SNP, we thus
sampled a new SNP from a subset of the non-associated SNPs whose frequencies lie in the range
[0.01 — p, p+ 0.01] where p is the derived allele frequency of the trait-associated SNP. Then, we
obtained a new P-value by computing the Qx statistic on each of the pseudo-samples i:

1+ 327 (@ > @F)
1+5

Here, Q}} is the Qx statistic computed on pseudo-sample /, Qf} is the Qx statistic computed on
the true set of trait-associated SNPs, /() is an indicator function and S is the number of pseudo-
samples used, which was set to 1,000. We tested the effect of using different population panels
as our 'target’ population for the frequency-matching scheme. Since we are utilizing seven GWAS
cohorts that are composed of Latin American individuals, Asian (Japanese and Chinese), sub-
Saharan African and European (Finnish and British) individuals, we decided to use population
panels from the 1000 Genomes that roughly matched the ancestry of the GWAS cohorts: CHB
for Chinese NIPT, JPT for BBJ, LWK for APCDR, FIN for FINRISK and GBR for UKBB. While
PAGE is a very heterogeneous cohort, we find that PUR is the panel with the lowest amount of
differentiation to PAGE, among all 1000G panels (Table 8), so we used PUR as the closest match
to PAGE.

(6) P =

Evaluating population structure.

To look for population stratification along different axes of population variation Sohail et al.,

, we first selected those variants that were present in the 1000 Genomes Project, the UKBB
height GWAS and another non-UKBB height GWAS used for comparison against UKBB. We fil-
tered out variants that had minor allele frequency < 5% in the 1000 Genomes Project, or that
were located in the MHC locus (chr6:28477797-33448354) or in the chromosome eight inver-
sion region (chr8:7643092-11528113). We then performed LD pruning on the resulting set of
variants (using the -indep-pairwise 200 100 0.2 option). The remaining SNPs were used to per-
form a PCA on a matrix of genotypes from all the 1000 Genomes Project individuals, from which
we obtained the first 20 PC loadings of population structure, using plink. Then, we performed
linear regression of the PC scores on the genotypes of each SNP that was previously removed
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due to the pruning procedure. Finally, we plotted the correlations between each of the PCs and
the effect size estimates from one of the two GWASs: UKBB or non-UKBB.

Assessing different association methods.

We were also interested in evaluating the effects of different types of association methods
on the significance of the Qx statistic. We used the UKBB cohort to perform different types of
association studies on height. Starting from 805,426 genotyped variants across the genome, we
restricted to SNPs with a minor allele frequency (MAF) > 5% globally, and performed associa-
tions on three different sets of individuals from the UKBB cohort: 1) self-reported white British
individuals ("British"), 2) self-reported "white" individuals, and 3) "all ethnicities", i.e. a UKBB set
including all self-reported ethnicity categories. We applied the following quality filters in each
of the resulting sets: 1) removed variants with P < 1e—10 from the Hardy-Weinberg equilibrium
test, 2) removed variants with MAF < 0.1% in the set, 3) removed variants with an INFO score
less than 0.8, 4) removed variants outside the autosomes, and 5) removed individuals that were
7 standard deviations away from the first six PCs in a PCA of the set (following the Neale lab’s
procedure for defining British ancestry after performing PCA on the UKBB dataset). We then
performed a GWAS via a linear model (LM) using PLINK v1.9 (Chang et al., ) and a GWAS
via a linear mixed model (LMM) using BOLT-LMM (Loh et al., ), on each of the three sets
(Table 2). We used sex, age, age?, sex*age, sex*age? and the first 20 PCs as covariates.

We also aimed to test whether a meta-analysis approach could lead to overdispersion of poly-
genic scores, and consequently, an inflated Qx statistic. Therefore, we created a set of artificial
meta-analyses on the entire UKBB cohort, approximately emulating the number of individual
sub-cohorts that were included in GIANT. We used both the "all ethnicities" and the "white
British" UKBB cohorts to compare the results of a meta-analysis on a homogeneous vs. a di-
verse cohort of individuals. For each of the two cohorts, we divided the corresponding set of
individuals into 75 subsets, using two different approaches. In one approach, we obtained 75
clusters from a K-means clustering of the first three principal components from a PCA of the
individuals. Under this approach, different cohorts have different sample sizes (though they do
not exactly match the cohort size distribution observed in GIANT). In the other approach, we
created 75 groups of equal size, randomly assigning individuals to each group, regardless of their
placement in the PCA.

We used PLINK 1.9 to perform a linear association model in each of the 75 clusters or groups.
As before, we used sex, age, age?, sex*age, sex*age? and the first 20 PCs as covariates. These
covariates were included in the analysis of each cohort before the meta-analysis. We explored
how PC correction affected the meta-analyses. As the first 20 PCs, we used either the compo-
nents from a PCA performed on each of the 75 sub-cohorts or the components from a PCA
performed on all individuals together, before they were split. We note that the latter PCA would
not be available to a researcher performing a meta-analysis in practice, but we carried it out
to check whether lack of power to correctly model population structure via the cohort-specific
PCAs was somehow misleading us. Afterwards, we integrated all summary statistics into a meta-
analysis, using two different methods (Table 2): an inverse variance method and a sample size-
based method, both implemented in METAL (Willer et al., ). This led to a total of 16 different
types of meta-analyses artificially performed on the UKBB data.

Educational attainment GWAS.

We also performed an assessment of robustness in the distribution of population-wide poly-
genic scores for educational attainment. In this case, together with effect size estimates from
the UK Biobank, we also obtained estimates from three studies carried out by the Social Science

Genetic Association Consortium (SSGAC) ( ):
e A meta-analysis of 126,559 individuals (42 discovery cohorts and 12 replication cohorts)
(Rietveld et al., )
e A meta-analysis of 293,723 individuals (64 cohorts) (Okbay et al., ).
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Table 2 - Description of types of methods used to obtain SNP associations from UKBB.

Code Cohort composition Description of association method
british linear-model Self-reported "British" individuals from UKBB linear model

implemented in PLINK 1.9
british mixed-model Self-reported "British" individuals from UKBB linear mixed model

implemented in BOLT-LMM
white linear-model Self-reported "White" individuals from UKBB linear model

implemented in PLINK 1.9
white mixed-model Self-reported "White" individuals from UKBB linear mixed model

implemented in BOLT-LMM
all ethnicities linear-model All self-reported ethnicities from UKBB linear model

implemented in PLINK 1.9
all ethnicities mixed-model All self-reported ethnicities from UKBB linear mixed model

implemented in BOLT-LMM

meta-analysis.inverseSE.random 75 sub-cohorts of equal size, composed of randomly inverse-variance-based meta-analysis
sampled individuals from UKBB (all ethnicities) implemented in METAL

meta-analysis.inverseSE.kmeans 75 sub-cohorts obtained from K-means clustering inverse-variance-based meta-analysis
using 1st 3 PCs of UKBB individuals (all ethnicities) implemented in METAL

meta-analysis.samplesize.random 75 sub-cohorts of equal size, composed of randomly sample-size-based meta-analysis
sampled individuals from UKBB (all ethnicities) implemented in METAL

meta-analysis.samplesize.kmeans 75 sub-cohorts obtained from K-means clustering sample-size-based meta-analysis
using 1st 3 PCs of UKBB individuals (all ethnicities) implemented in METAL

e A meta-analysis of 1,131,881 individuals (Lee et al., ) (71 cohorts in total). Note that
this study includes the samples from the Okbay et al., study and the UK Biobank
as well.

We took the summary statistics of each educational attainment GWAS “as is”, without mod-
eling sample overlap between cohorts.

Results

Robustness of signal of selection and population-level differences.

We obtained sets of trait-associated SNPs for GWASs performed on seven different cohorts:
UK Biobank, FINRISK, Chinese NIPT, Biobank Japan, APCDR and PAGE. Using the effect size
estimates from each GWAS, we calculated population-wide polygenic scores for each of the
26 population panels from the 1000 Genome Project (The 1000 Genomes Project Consortium,

), using allele frequencies from each population panel. We then tested for overdispersion
of these scores using the Qx statistic, which was designed to detect deviations from neutral
genetic drift affecting a set of trait-associated SNPs (Berg and Coop, ). We focused on 30
traits that were phenotyped in two or more cohorts, so that we could compare the P-value of
this statistic using effect size estimates from at least two different cohorts (see Methods).

We applied the Qx statistic to each of the 30 traits by selecting SNPs we deemed to be sig-
nificantly associated with each trait . We used two different P-value cutoffs to select these SNPs:
1) a lenient cutoff, P < 1e—5 and 2) the standard genome-wide significance cutoff P < 5e—8. To
verify that significant P-values of the Qx statistics were not due to violations of the chi-squared
distributional assumption, we also computed P-values using two randomization schemes: one is
based on randomizing the sign of the effect size estimates of the trait-associated SNPs (but not
their magnitude), while the other is based on using frequency-matched non-associated SNPs (see
Methods). In general, P-values obtained from the three schemes are broadly similar across the
various approaches used. However, we observe a few inconsistencies in the sign-randomization
scheme, when compared to the other two approaches (Figures and 11). The number of sig-
nificant SNPs for each of the traits under the two cutoffs is shown in Figures 12 and

We used two types of multiple-testing Bonferroni corrections: one that applies to us - cor-
recting for both the number of traits assessed and the number of cohorts on which each of those
traits were tested (we call this number m) - and another that would apply to a person that was
blind to the other cohorts - and so would only correct for the n traits tested within their available
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cohort (Figures 2, 10). We only find few traits with significant overdispersion in Qx. Under the
P < 1le—5 SNP-association cutoff, the only traits with significant overdispersion in at least one
cohort are height and white blood cells (WBC) (Figures 2, 10). Potassium levels in urine and mean
corpuscular hemoglobin (MCH) also result in significant values of Qx when using the P < 5e—8
SNP-association cutoff (Figures 11, 14).

. *- . . *-*. -*

} Chi—squared P-value
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Figure 2 - Each cell of this heatmap is the —/ogyo(P-value) of a Qx test using SNPs as-
sociated with different traits and effect size estimates obtained from different GWASs
(grey-coloured cells indicate that no data is available for the corresponding trait). Each
row corresponds to one of the six GWASs we are evaluating and the columns correspond
to the different traits for each GWAS that have SNPs with P < 1e—5. BMI, body mass
index; DBP, Diastolic blood pressure; HbAlc, glycated hemoglobin; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; MCH, mean corpuscular hemoglobin; MCHC,
mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RBC, red
blood cell count; SBP, systolic blood pressure; WBC, white blood cell count; WHR, waist-
to-hip ratio. Significance thresholds after Bonferroni correction: *** < 0.05/m, ** < 0.05/n,
* < 0.05, where n is the number of traits in each GWAS (row-dependent) and m is the
total number of tests calculated, across all GWASs.

Figure 3 shows polygenic scores computed for each of the 1000 Genomes populations for
height. In agreement with previous studies (Berg, Harpak, et al., : Sohail et al., ), we
observe that differences in polygenic height scores when using effect size estimates from the
UKBB are greatly attenuated relative to differences in scores built when using estimates from
GIANT. Extending this analysis across all datasets, we observe that PAGE polygenic scores are
also over-dispersed, though in different directions than GIANT scores (Figure 3). Additionally,
the observation that Europeans have very high polygenic scores when using GIANT effect size
estimates cannot be replicated using any of the other GWAS estimates. After multiple testing
correction (for both association P-value threshold schemes), we only obtain significant Qx P-
values when using summary statistics from PAGE and GIANT. The number of SNPs used for
polygenic scores are shown in Table 3. The LD score regression ratio is substantially higher for
PAGE and FINRISK than for the other cohorts (Tables 4, 9).

We also tested how the choice of the SNP association P-value threshold influenced the re-
sults. Sohail et al., showed that between-population differences in polygenic height scores
grow stronger when using more lenient SNP association P-value cutoffs. However, one then
runs the risk of including more variants that may be significantly associated due to uncorrected
population stratification. We see there is a smaller score overdispersion when using the genome-
wide significant SNPs, than when using the more lenient P-value cutoff (right column, Table
and Figure 15).

Finally, we computed polygenic scores on a single set of candidate SNPs ascertained in the
largest biobank (UKBB) but using effect size estimates from each of the other GWAS in turn.
Signals of overdispersion in height polygenic scores are greatly attenuated in each of the non-
UKBB GWAS, and are much more similar to the patterns observed in UKBB (Figure 14 and Figure
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Figure 3 - Polygenic scores for height using candidate SNPs with P < 1e—5. The 1000
Genomes Project populations colored by their super-population code. The corresponding
number of trait-associated SNPs and the Qx P-value for each GWAS are shown in Table

. Error bars denote 95% credible intervals, constructed using the method in Sohail et

al.,

frequency is independent across populations and SNPs.

, assuming that the posterior distribution of the underlying population allele

). This suggests an important reason for the observed overdispersion patterns in these other
GWAS is the choice of significant SNPs recovered from each study.

We also looked in closer detail at other traits with evidence for significant overdispersion via
the Qx test. White blood cell counts (WBC), for example, shows strong overdispersion when

using PAGE, but not when using the UKBB or BBJ effect size estimates (Figure

). We also

observe a similar pattern when looking at mean corpuscular hemoglobin (MCH) scores (Figure
). In the case of potassium levels in urine, larger between-population differences are found in

UKBB than in BBJ, when we use the stringent threshold (Figures

). In general, we observe that
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Table 3 - Height Qx scores and P-values, assuming a chi-squared distribution for the
scores. The number of trait-associated SNPs used to compute the scores are shown for
both cutoffs.

Lenient association threshold (P < 1e—5) Strict association threshold (P < 5e—8)
GWAS cohort | Num. trait associated SNPs | Qx Num. trait associated SNPs | Qx
UKBB 1140 45,57 (P =0.01) 810 39.72(P = 0.04)
GIANT 739 102.73 (P = 4e-3) | 468 69.18 (P = 8e-8)
BBJ 759 9.255 (P = 0.99) 431 35.00 (P =0.11)
Chinese NIPT | 164 12.82 (P = 0.99) 60 24.68(P = 0.54)
PAGE 528 77.31 (P = 5e-7) 84 49.52 (P = 4e-3)
FINRISK 209 36.43 (P =0.08) 47 41.48 (P =0.03)
APCDR 61 21.15(P=0.73) 0 NA

Table 4 - SNP-based heritability and LD Score regression ratio and intercept estimates
(with standard errors in parentheses) for height measured in different cohorts. LD scores
were computed for the super-population panels in the 1000 Genomes Project. The
APCDR heritability estimate is not shown because it was estimated to be negative, due
to the small sample size of the cohort.

Genome-wide significant  Observed scale LD regression LD regression .

GWAS cohort SNPs (P < 5e—8) heritability (SE) ~ ratio (SE) intercept (SE)  ~uPer Population
UKBB 30891 0.4205 (0.0183) 0.1184 (0.0098) 1.4384 (0.0362) EUR

GIANT 11625 0.3159 (0.0146) 0.1419 (0.0094) 1.2727(0.0181) EUR

BBJ 9976 0.4168(0.019) 0.1142(0.0128) 1.1829(0.0204) EAS

Chinese NIPT | 1573 0.329 (0.0201) 0.0746(0.0353) 1.0425(0.0201) EAS

PAGE 564 0.2578 (0.0237) 0.371(0.0336) 1.1762(0.016) AMR

FINRISK 415 0.4557 (0.0446) 0.3775(0.035)  1.1358(0.0126) EUR

APCDR 0 NA NA NA AFR

between-population differences in polygenic scores tend to be more similar between studies
when using the stricter SNP-association P-value threshold, than when using the more lenient
threshold.

Relationship between GWAS effect size estimates.

To better understand where the differences in overdispersion of Qx could stem from, we
performed pairwise comparisons of the effect size estimates from the different GWAS. Since
the UKBB GWAS is the GWAS with the largest number of individuals, we decided to compare
the estimates from each of the other studies to the UKBB estimates. Here, we only focused
on the 1,703 approximately-independent SNPs (the best tag SNP within each LD block). We
began by only using SNPs that were classified as significant in UKBB using the lenient cutoff
(P < 1e-5) (Figure 4). We observe that effect size estimates are correlated, as expected, but
the strength of this correlation varies strongly across comparisons. UKBB vs. GIANT shows the
highest correlation, while UKBB vs. APCDR shows the lowest. Those SNPs that also have a
significant P-value in the non-UKBB GWAS in each comparison (colored in red in Figure 4) show
a higher correlation than the rest of the SNPs: a pattern expected due to the winner’s curse,
and exacerbated by differences in sample sizes and LD patterns between GWAS cohorts (Berg,
Harpak, et al., ).

The same analysis was carried out with SNPs classified as significant in each of the non-
UKBB studies. The correlation of effect size estimates is generally lower (Figure 21), and a high
percentage of SNPs deemed to be significant in the non-UKBB GWAS have effect size estimates
approximately equal to zero in the UKBB GWAS (Figure 21). This pattern is stronger when we
do not filter the 1,703 approximately independent SNPs by a particular SNP-association P-value
cutoff (Figures 22 and 23).

We computed pairwise Pearson correlation coefficients between estimated effect sizes in
the UKBB GWAS and each of the other GWAS (Table 10 when using SNPs that are significant in
UKBB and Table 11 when using SNPs that are significant in the other GWAS). We observe that

Peer Community Journal, Vol. 1 (2021), article e22 https://doi.org/10.24072/pcjournal.35


https://doi.org/10.24072/pcjournal.35

Alba Refoyo-Martinez et al.

13

UKBB vs. GIANT

A
=0899, P <2.2e-16
°=0.798, P <2.2e-16
 =0.954, P <2.2e-16
0.31
3
175]
2 GIANT p-value
w 0.0 @ <= le-05
g ® > 1le-05
o
-0.31 /
0.3 00 03
UKBB Effect Size
c UKBB vs. PAGE
#=0389, P<2.2e-16
©-0317, P <22e-16 /
#=0897, P<22e-16
0.31
8
w
3 PAGE p-value
& 0.01 0 <= 1e-05
w
® > le-05
2
0.3
03 0.0 03
UKBB Effect Size
E UKBB vs. APCDR
' = 00114, P =0.000397
*=0.0114, P =0.000397
0.3
8 .
w
;.3' APCDR p-value
W o0 o <= 1e-05
§ ® > 1e05
<L
0.31

0.0 03
UKBB Effect Size

03

UKBB vs. FINRISK

B
=0.545 P <22e-16
?=0473, P <2216
2 -0937, P <2216
0.31
g
w
5
5 FINRISK p-value
v 0.04 @ <= le-05
n
g o > 1e-05
i
03!
03 0.0 0.3
UKBE Effect Size
D UKBB vs Chinese NIPT
*=0.391, P <22e-16
P =0.315 P <22e-16
?=0.745 P <2.2e-16
0.31 )
B
w
2
:-E Chinese NIPT p-value
% 0.01 o <= le-05
2 @ > le-05
£
=
Q
-0.31
03 00 03
UKBE Effect Size
F UKBB vs. BBJ
?=0.101, P <22e-16
 =0.0438, P =6.27e-10
£ =0.916, P <22-16
0.31
k1
E BBJ p-value
& 007 o == le-05
ﬁ ® > 1le-05
-0.31

-0.3 0.0 0.3
UKEB Effect Size

Figure 4 - Regression of UKBB effect size estimates against non-UKBB effect size esti-
mates, after filtering for SNPs with P < 1e—5 in the UKBB GWAS. The SNPs are colored
based on their P-value in the non-UKBB GWAS, as are the corresponding regression lines
(red: P < 1e—5; blue: P > 1e—5). The black regression line was obtained using all SNPs,
regardless of their P-value in the non-UKBB GWAS.

GWAS performed on individuals living geographically close to Britain have higher correlations
to UKBB estimates than those that are performed on distant individuals. For instance, GIANT
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and FINRISK (both European-based GWAS), show high correlation in effect size estimates with
UKBB (0.9958 and 0.790, respectively). In contrast, the GWAS carried out on an African cohort
- APCDR - shows an extremely low correlation in effect size estimates with UKBB (correlation
coefficient = 0.087). This cohort has by far the smallest sample size of all the cohorts we analyzed
(n = 4,778), which may explain the low correlation. We also observe higher correlations when
filtering for significantly associated SNPs using either of the two SNP significance thresholds
(P < le—5 and P < 5e—8) from the 1703 LD blocks.

The sample size of the GWAS might also affect the correlation in effect size estimates. We
can see in Figure that there is a positive relationship between the logig of the number of
samples included in the non-UKBB GWAS and the Pearson correlation coefficients between the
estimated effects in the non-UKBB GWAS and those estimated in the UKBB GWAS (which has
the largest sample size). We note, however, that the slope of a linear regression between these
variables is only significantly different from zero when ascertaining SNPs in the non-UKBB study,
and filtering for SNPs with P < 1e—5.

Most of our results stem from using LD block partitions derived from a European panel of
the 1000 Genomes Project (Berisa and Pickrell, ; The 1000 Genomes Project Consortium,

). To investigate the sensitivity of our results to the choice of LD blocks (particularly when
querying non-European GWASs), we also show results under an LD blocking scheme obtained
from a population panel that was close to the GWAS from which we obtained effect size esti-
mates (Berisa and Pickrell, ). For BBJ and Chinese NIPT, we use a set of 1,445 LD blocks con-
structed using LD patterns in the East Asian panels of the 1000 Genomes Project. For APCDR,
we use a set of 2,582 LD blocks constructed using LD patterns in the African panels of the 1000
Genomes Project (Table 12). In the case of PAGE, we do not have a Latin-American-specific LD
block partitioning scheme. However, when we use European LD blocks, we can detect a signifi-
cant residual population structure pattern in PAGE, but this pattern is no longer significant when
we use African LD blocks (Figure 25), so we show PAGE results using African LD blocks in Table

Evidence for population stratification.

Berg, Harpak, et al., looked for latent population stratification by studying the relation
between allele frequency differences in two populations and the difference in effect size esti-
mates in two GWAS. Presumably, if neither GWAS is affected by population stratification, there
should not be a correlation between these two variables. We plotted SNP differences in allele
frequency between northern European and East Asian, African, and southern European samples
(GBR, CHB, LWK and TSI subsets of 1000 Genomes, respectively) against the difference in height
effect size between a pair of GWAS. When comparing the UKBB and GIANT, we replicate the
signal of correlation in differences between northern and southern European from Berg, Harpak,

et al,, (P < le—5, see Figure 26). This pattern is also observed in the GBR vs. CHB and
GBR vs. LWK comparisons (Figures and 28, panel A and B). However, these differences are
not observed for any other pairwise GWAS comparisons (Figures 26, 29, 30 and 31). We can see

SNPs with large effect size differences tend to be low-frequency SNPs, as the standard error of
the effect size estimate for a SNP in a GWAS is a function of the SNP’s expected heterozygosity
(Holland et al., ).

We also followed Sohail et al., 's approach to look for GWAS stratification along different
PCA axes of population structure. We first performed a PCA on a matrix of genotypes from
all 1000 Genomes Project individuals. Then, we computed the correlation between the first
20 loadings of that PCA and the effect size estimates obtained from the UKBB height GWAS,
as well as the correlation between the same PC loadings and the effect size estimates from a
different (hon-UKBB) height GWAS, on the same set of sites (see Methods). We plotted each of
these PC-specific correlations and colored them by the correlation between the corresponding
PC and the allele frequency differences between two population panels: GBR vs. TSI (Figure

); and GBR vs. CHB (Figure 32). This allows us to compare patterns of stratification between
two GWASs (UKBB and non-UKBB) along particular axes of genetic variation. We observe large
correlations between axes of population structure and effect size estimates in GIANT and PAGE,
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and to a lesser degree in FINRISK, but not in the other GWAS we queried. Overall, this suggests

GIANT and PAGE might be more strongly confounded by stratification than the other GWASs
under study.
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Figure 5 - Pearson correlations between 20 PC loadings and height effect size estimates
from a non-UKBB GWASs, compared to the same correlation using effect size estimates
from the UKBB GWAS, for different choices of non-UKBB GWAS. The correlations were
computed using SNPs that are present in both the UKBB and non-UKBB GWAS cohorts,
and in the 1000 Genomes Project. The barplots are coloured by the correlation between
each loading and the allele frequency difference between GBR and TSI. A) GIANT vs.

UKBB. B) BBJ vs. UKBB. C) Chinese NIPT vs. UKBB. D) PAGE vs. UKBB. E) FINRISK vs.
UKBB. F) APCDR vs. UKBB.

Assessing different association methods.

We find strong differences in the amount of polygenic score overdispersion across GWASs,
but the GWASs we assessed were carried out using different association methods. We wanted
to evaluate the effect of different association methods on the overdispersion of polygenic scores,
while using the same underlying association cohort. We chose the UKBB cohort for this assess-
ment, as it is the largest cohort among the ones we tested. We first split the UKBB cohort into
three increasingly more expansive sets: 1) "British", 2) "White", and 3) "all ethnicities", based on a
self-identified ethnicity classification carried out by the UKBB consortium. We then performed
linear model (LM) and linear mixed model (LMM) association methods on each of the three sets
of individuals (Table 2, see Methods). We also wanted to see if we could replicate the strong
overdispersion in polygenic scores we saw in GIANT, by partitioning the entire UKBB cohort into
75 cohorts (approximately emulating the number of cohorts in GIANT), and then performing a

meta-analysis on the summary statistics obtained from individual GWASs performed separately
on each of these cohorts (Table 2, see Methods).
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The population-wide polygenic scores and the Qx scores obtained using effect size esti-
mates from each of these different methods are in Figures 6 and 7, respectively. We have more
power to detect height-associated SNPs when we used the mixed model, and the distribution
of polygenic scores differs quite markedly between the linear model and the mixed model ap-
proaches. For example, African polygenic scores tend to be higher when using the mixed model
approach. Regardless of whether one uses a linear or a mixed model, GWASs performed on a
more expansive category of people ("all-ethnicities") lead to increased overdispersion of poly-
genic scores than when using more restrictive categories ("British" or "White"). Additionally, our
artificial meta-analysis on the UKBB data resulted in even stronger overdispersion of the scores
and, consequently, an even more strongly inflated Qx statistic, regardless of the set used. How-
ever, polygenic scores dispersion is slightly attenuated when we use the "British" set. The most
extreme Qx-derived P-values across settings were those from the meta-analyses in the "all eth-
nicities" set (Figure 33). This increased overdispersion is particularly evident when looking at
the scores of European (FIN, CEU, GBR) and Latin American (PEL, CLM, MXL) populations in
the meta-analysis setting (Figure 6). The choice of method for PC correction against population
stratification does not lead to notably different results (Figure 34).

The case of educational attainment.

Previous studies have also found evidence for strong score overdispersion in variants associ-
ated with educational attainment (Racimo et al., : Uricchio et al., ) - a trait consisting in
the number of school years an individual has received. This trait has received considerable atten-
tion in both the media and the scientific literature, due to its potential for misappropriation and
misuse by far-right groups (Harmon, ; Novembre and Nicholas H Barton, ). Though
associated variants have been shown to be disproportionally located in genes involved in brain
development, this trait is also highly affected by the environment (Lee et al., ; Okbay et
al,, ), and potentially likely to be confounded by unaccounted factors, such as cultural and
socioeconomic background, and parental salary and education. Like height, the genetic value
of this trait has also been shown to be significantly similar among spouses, due to assortative
mating (Abdellaoui et al., ; Hugh-Jones et al,, ; MR Robinson, Kleinman, et al., ;
Yengo et al., ), which could, in turn, affect the interpretation of population genetic tests that
assume individuals are not segregating on the basis of trait preferences. The robustness of pre-
viously reported signals of overdispersion thus warrants some attention, and we therefore set
out to assess how consistent patterns of overdispersion were across available GWAS cohorts.

Though educational attainment is only available in one of the cohorts we had access to
(UKBB), there are also 3 publicly available GWAS on this trait that were carried out in individu-
als of European ancestry by the SSGAC consortium: Lee et al. ( ), Okbay et al. ( ), and
Rietveld et al. ( ). The SSGAC consortium used increasingly larger meta-analyses to test for
genetic associations with this trait (Lee et al., included both the Okbay et al., cohorts
and the UK Biobank cohort in its meta-analysis). To be able to replicate the results of Racimo et
al,, , we also computed polygenic scores on the Okbay et al., GWAS estimates using
the posterior-probability approach (PPA) used in that study, and compared them to the P-value
approach used throughout this manuscript.

As with height, we find strong inconsistencies in patterns of score dispersion, depending on
the P-value cutoff used to include SNPs in the polygenic score, and on which cohort we use
for deriving effect size estimates (Figure 8 and Table 5). For example, when using genome-wide
significant SNPs to build scores, the strongest pattern of overdispersion is found when utiliz-
ing estimates from Okbay et al., with the PPA method (Qx-derived P = 0.0037). When
including SNPs into the score via the more lenient SNP association P-value cutoff (1e—5), the
strongest pattern of ovedispersion is found when using estimates from Lee et al., (Qx-
derived P = 1.397e—5). Importantly though, the patterns of dispersion are different under these
two conditions: European polygenic scores are highest in the latter, but East Asian scores are
highest in the former. The UKBB score pattern when using genome-wide significant SNPs resem-
bles the Okbay et al., pattern (as noted in Racimo et al., ) but is very different from the
Lee et al.,, pattern, and is also different from scores derived from the same (UKBB) cohort
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Figure 6 - Polygenic scores for height in each of the 1000 Genomes population pan-
els, using effect size estimates from UKBB, obtained via different types of association
methods. The types of GWAS methods used are described in Table 2. Error bars denote
95% credible intervals, constructed using the method in Sohail et al., , assuming that
the posterior distribution of the underlying population allele frequency is independent
across populations and SNPs.

under the more lenient association P-value scheme. Even though evidence for population strat-
ification is weaker in these meta-analyses than in the height GWAS meta- and mega-analyses
(Figure 35), the axes of stratification still differ across studies, which might help to explain the
differences in score distributions.

Discussion

When looking at patterns of polygenic score overdispersion across populations, we observe
highly inconsistent signals depending on the GWAS cohort from which we obtained effect size
estimates. Because we are using the exact same population panels to obtain population allele
frequencies in all tests, the source of the inconsistencies must necessarily come from differences
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Figure 7 - Qx statistics and P-values for the trait height, obtained by using different types
of association methods on the UKBB data. The asterisk denotes a significance cutoff for
Qx of P < 0.05. "-log10(Chi squared P)" = -log10(P), obtained assuming a chi-squared
distribution for the Qx statistic. "-log10(randomized P)" = -log10(P-value), obtained us-
ing the effect sign-randomization scheme. All other P-values were obtained by sampling
random SNPs from the genome using the allele frequency matching scheme in different
populations, as described in the Methods section. The different types of GWAS methods
along the y-axis are described in Table 2.

Table 5 - Educational attainment Qx scores, assuming a chi-squared distribution for the
scores. The number of trait-associated SNPs used to compute the scores are shown for
both SNP P-value cutoffs.

Lenient association threshold (P < 1e—5)

Strict association threshold (P < 5e—8)

GWAS cohort Num. trait associated SNPs | Qx Num. trait associated SNPs | Qx

UKBB 746 40.087 (P =0.038) | 246 42.859 (P = 0.02)
Leeetal.2018 907 67.761 (P = 1.4e-5) | 416 51.62 (P = 0.002)
Okbayetal.2016 319 36.814 (P = 0.08) 74 35.175(P=0.1)
Rietveldetal.2013 | 54 35.444 (P=0.102) | 4 29.005 (P =0.311)

in the effect size estimates in the different GWAS, or be due to different SNPs passing the sig-
nificance threshold in different GWAS. These inconsistencies are not limited to tests involving
height-associated SNPs: they also appear in tests involving SNPs associated with other pheno-
types, like white blood cell count, mean corpuscular hemoglobin, potassium levels in urine, and
educational attainment.
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Figure 8 - Polygenic scores for educational attainment in each of the 1000 Genomes pop-
ulation panels, using effect size estimates from three SSGAC consortium GWAS studies
(Lee et al., ; Okbay et al., ; Rietveld et al., ) and the UKBB Neale lab effect
size estimates (round 2: ). A. Polygenic scores
for variants with P < 1e—5. B. Polygenic scores for variants with P < 5e—8. C. Variants

selection using a posterior-probability approach (PPA) on the Okbay et al.,

mary statistics,

emulating Racimo et al.,

sum-

. Error bars denote 95% credible intervals,

constructed using the method in Sohail et al.,
bution of the underlying population allele frequency is independent across populations

and SNPs.

, assuming that the posterior distri-

For those phenotypes for which we have effect size estimates from more than two different
sources, we find that the GWASs performed using multiple cohorts of diverse ancestries - Gl-
ANT and PAGE - show stronger overdispersion in genetic scores via the Qx statistic and stronger
evidence of population stratification (Figures 4 and 5). In biobank-based GWAS conducted using
panels with relatively homogeneous ancestries, the signals of selection are generally (but not al-
ways) more attenuated, and signals of stratification are much weaker. This suggests differences
in scores are perhaps not driven by a biological signal and are instead driven by population strat-
ification in GIANT and/or PAGE. An alternative explanation is that the overdispersion in PAGE
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or GIANT-derived scores is truly biological, and perhaps the GWAS performed in more homoge-
neous biobank studies are overcorrecting for population stratification, increasing the false neg-
ative rate of the Qx statistic. Moreover, our power to find signals of polygenic adaptation might
stem from SNPs with large contributions to phenotypic variance in non-European populations
(e.g. African populations) and thus we might only be able to see these signals when we include
individuals of African ancestry in a GWAS, as is done in PAGE.

Though plausible, alternative explanations seem less likely than stratification, but we cannot
discard them at the moment, at least until a more extensive simulation study can allow us to
compare these scenarios and their resulting score dispersion patterns. Another possible cause
for these inconsistencies could be differences in the number of SNPs or individuals included in
each GWAS, leading to differences in power to detect score overdispersion on trait-associated
variants. Indeed, in some of the smaller cohorts (FINRISK and APCDR) we observe little to no
evidence for strong deviations from neutrality in the distribution of genetic scores across popu-
lations.

We find that the type of test performed to obtain Qx P-values does not yield strong differ-
ences in such P-values, at least not of the magnitude observed when using effect size estimates
from different GWAS cohorts. Those phenotypes and GWAS cohorts for which we find signifi-
cant overdispersion via the chi-squared distributional assumption for the Qx statistic also tend
to be the ones for which we find significant overdispersion when not relying on it. This suggests
that this assumption - while not entirely accurate (Berg and Coop, ) - is still reasonably valid,
across all the phenotypes we looked at, assuming the effect size estimates are not affected by
stratification.

We were able to replicate the finding by Berg, Harpak, et al. ( ): there is a significant
relationship between the differences in allele frequencies between GBR and other worldwide
populations and the differences in effect size estimates between UKBB and GIANT. We note
that a similar relationship was found by Uricchio et al. ( ), who showed an increase in the
magnitude of allele frequency differences between GBR and TSI when ordering SNPs by their
P-value in GIANT - an increase not observed when ordering them by their P-value in UKBB.
We note, however, that this relationship is relatively absent in comparisons of UKBB and other
GWAS, again suggesting that population stratification in GIANT, rather than over-correction of
effect size estimates in UKBB, may be the culprit. In any case, Haworth et al. ( ), Novembre
and Nicholas H Barton ( ), Coop ( ) and Rosenberg, Edge, et al. ( ) encourage cau-
tion about the interpretation of signals of polygenic adaptation due to the presence of residual
stratification even in GWAS panels with no clear evidence for stratification, as these signals may
be subtle enough to escape notice, yet still affect this type of tests.

Furthermore, when we performed an artificial meta-analysis on the UKBB data, emulating
the methodology of GIANT, we observed more dispersion of polygenic scores among popula-
tions than when using a single GWAS cohort, echoing findings by Kerminen et al. ( )ata
more localized geographic scale. As we previously observed in the vanilla (single-cohort) UKBB
analysis, the less homogeneous the ancestries of the individuals in the cohort (“all ethnicities” vs.
“white British”), the more dispersion is observed, which in turn causes a more inflated Qx statistic.
Nevertheless, both meta-analyses (“all ethnicities” and “white British”) show higher Qx statistics
than their single-cohort counterparts, regardless of the meta-analysis method deployed. This is
also observed regardless of whether one uses cohort-specific PCs to correct for stratification in
the meta-analysis or global PCs from a PCA including all individuals. Overall, this adds weight
to the hypothesis that a failure of GWAS meta-analyses to control for population stratification
may affect polygenic score tests against a neutral null hypothesis. We note that several of the
component GWAS amalgamated in GIANT were not corrected via PCA or other standard meth-
ods of correction in common use today (Wood et al., ), so it is likely that we are being
over-conservative in our simulations.

It is important to keep in mind that each particular GWAS used imposes strong conditions
on the set of SNPs that are included in the Qx analysis. We expect SNPs associated with a
phenotype in a given cohort to explain more variance in the population from which that cohort
was obtained than in other populations, simply because the significant SNPs need to have high
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enough allele frequencies in the study cohort for them to be recovered in the first place. It is
unclear how this will affect false positive and false negative rates of tests of score overdispersion
performed in different cohorts. For example, if we see a score overdispersion signal when using
a GWAS from cohort 1 but not when using a GWAS from cohort 2, this could be due to a true
positive and a lack of power in cohort 2, or due to an artefact caused by cohort 1. It is also
possible that, if negative selection acts on some of the trait-related variation, it might affect
statistical power by constraining large-effect alleles to be kept at lower frequencies, thus making
large-effect alleles more population-specific.

Ultimately, the set of SNPs used in each analysis and their influence on the score depends
on a complex combination of factors including allele frequencies, linkage disequilibrium with
causal variants, statistical power for detection and effect size inflation due to the winner's curse,
together with the underlying evolutionary genetic process that "generates" the observed data.
While modeling the individual effect of each of these factors on the inflation of the Qx statistic
is beyond the scope of this study, we note that all of these factors may be influencing the dif-
ferences we observe among score sets. Indeed, when controlling for the set of SNPs included in
the score, we see an attenuation of differences between scores (Figures 16 and 17).

In future studies of polygenic adaptation, we recommend the use of large homogeneous data
sets and the verification of signals of polygenic score overdispersion in multiple GWAS cohorts
(e.g. M Chenetal. ( )). We also recommend caution even when finding that statistics testing
against neutrality are significant in multiple GWAS cohorts: it is still possible that all the GWAS
cohorts may be affected by subtle stratification or other confounding issues, possibly affecting
different axes of population structure in different ways. To try to avoid stratification issues, recent
studies have proposed to look for evidence for polygenic adaptation within the same panel that
was used to obtain SNP effect size estimates, i.e. avoiding comparisons between populations that
might be made up of individuals outside of the GWAS used to obtain effect size estimates (e.g. X
Liu et al. ( )). The argument favored by these studies is that, by ensuring that the population
on which the GWAS was performed and from which allele frequencies are obtained matches
exactly, one need not be confounded by differences in estimates between these populations (for
example, due to gene-by-environment interactions). However, Mostafavi et al. ( ) recently
showed that the accuracy of polygenic scores often depends on the age and sex composition
of the GWAS study participants, even when studying individuals of roughly similar ancestries
within a single cohort, due to heritability differences along these axes of variation. This implies
that ancestry-based stratification is not the only confounder that researchers should be aware
of when trying to detect polygenic adaptation.

Approaches based on tree sequence reconstructions along the genome (Hubisz and Siepel,

: Kelleher et al., : Rasmussen et al., ; Speidel et al., ) appear to be a fruitful
avenue of research towards the development of methods that can properly control for some of
these confounders. These methods can model local genealogical relationships among individuals,
which can in turn serve to track the segregation of trait-associated alleles backwards in time. For
example, Stern et al. ( ) recently showed that a method for detecting polygenic adaptation
based on tree sequences is highly robust to GWAS stratification, ascertainment bias in SNP
effects and negative selection, among other potential confounders. They were also able to show
that the signal of polygenic adaptation previously found at educational attainment-associated
variants may be due to indirect selection on other, correlated, traits.

Overall, we generally urge caution in the interpretation of signals of polygenic score overdis-
persion based on human GWAS data, at least until we have robust generative models that can
explain how stratification is creeping into these tests (Young et al., ). This is especially im-
portant when working with socially-charged traits like educational attainment, which are rife
for misuse and misinterpretation, and potentially affected by unaccounted socioeconomic and
cultural confounding factors. Due to the high risk of misappropriation of this type of results by

hate groups (Harmon, ), we also recommend that researchers make an effort to explain the
caveats and problems associated with these tests in their publications (Coop, : Novembre
and Nicholas H Barton, ; Rosenberg, Edge, et al., ), as well as the strong sensitivity of

their performance to the input datasets that we choose to feed into them.
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Figure 10 - Evidence for polygenic score overdispersion on trait-associated SNPs
(—log1o(P-value)), using the Qx test statistic. Each row in the heatmap corresponds to a
specific GWAS cohort and a specific type of scheme to determine the significance of the
Qx statistic. The columns correspond to the different traits for each GWAS cohort that
have SNPs with a P-value lower than 1e—5. "Freq-matched P-value" = P-value obtained
by sampling SNPs with matching frequencies to the trait-associated SNPs in a particu-
lar cohort. "Sign-randomized P-value" = P-value obtained by randomizing the signs of
the effect size estimates. "Chi-squared P-value" = P-value obtained by assuming the Qx
statistics has a chi-squared distribution.
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Figure 11 - Evidence for polygenic score overdispersion on trait-associated SNPs
(—log1o(P-value)), using the Qx test statistic. Each row in the heatmap corresponds to a
specific GWAS cohort and a specific type of scheme to determine the significance of the
Qx statistic. The columns correspond to the different traits for each GWAS cohort that
have SNPs with a P-value lower than 5e—8. "Freq-matched P-value" = P-value obtained
by sampling SNPs with matching frequencies to the trait-associated SNPs in a particu-
lar cohort. "Sign-randomized P-value" = P-value obtained by randomizing the signs of
the effect size estimates. "Chi-squared P-value" = P-value obtained by assuming the Qx
statistics has a chi-squared distribution.
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Figure 14 - Evidence for polygenic score overdispersion on trait-associated SNPs
(—log1o(P-value)), using the Qx test statistic. Each row in the heatmap corresponds to
one of the six GWAS cohorts we are evaluating and the columns correspond to the dif-
ferent traits for each GWAS cohort that have SNPs with a P-value lower than 5e—8. BMI,
body mass index; DBP, Diastolic blood pressure; HbA1lc, glycated hemoglobin; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; MCH, mean corpuscular hemoglobin;
MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume;
RBC, red blood cell count; SBP, systolic blood pressure; WBC, white blood cell count;
WHR, waist-to-hip ratio. Significance thresholds after Bonferroni corrections: *** de-
notes P < 0.05/m, ** denotes P < 0.05/n, * denotes P < 0.05 where n is the number
of traits measured in each GWAS (row-dependent) and m is the total number of tests
calculated, across all GWAS.

Peer Community Journal, Vol. 1 (2021), article e22 https://doi.org/10.24072/pcjournal.35


https://doi.org/10.24072/pcjournal.35

Alba Refoyo-Martinez et al. 27

2.
H =
* 2
D--'-‘-'—-.--'---‘-'--'--'--'--.-1-1-1--. ————————— ‘-‘—‘—"'e‘g
1 @
2
2
1 . )
3
0 .-!'O-G-.—'r-;-"‘-‘" --------------------- 3-4-4-%-a ;
1 e e ® 500 =
2
2.
! e gt ©
Of === mmmmmmmm e o hab b SRR SE LS bt T 4-5-55100
PR ) * 3 i o)
g-14
5]
B -21
O
v 2
3 2
O 1 ]
. e o ® o
ottt e T artof SLAY B a-d-s-a-5{8
1 fetaet Z
v
21 S
[ )
2 e ® 00
L )
H v
O === = e e e e e 2
¥ v s 48, m
1 LS e ® ® 5 0 a
2
2.
1{e 4 ® e @ * . m
=
Of==-===-==-=-==--- -."""' --------------- 3-8-%-4-413
1 v A
¢ 3 * e ®
-2
PRI BRI RVIXI NI XTI SRR
B A R A S S R Y L S 2

Population

@ AFR W AMR @ EAS I EUR A SAS

Figure 15 - Polygenic scores for height using candidate SNPs with P < 5e—8 in 1000
Genome populations colored by their super-population code. The corresponding number
of trait-associated SNPs and the Qx P-value for each GWAS are shown in the bottom
row of Table 3. Error bars denote 95% credible intervals, constructed using the method in
Sohail et al., 2019, assuming that the posterior distribution of the underlying population
allele frequency is independent across populations and SNPs.
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Figure 16 - Polygenic scores for height 1000 Genome populations colored by their super-
population code. Candidate SNPs were ascertained in the UKBB using the cutoff of P <
le—5. Error bars denote 95% credible intervals, constructed using the method in Sohail
et al.,, 2019, assuming that the posterior distribution of the underlying population allele

frequency is independent across populations and SNPs.
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Figure 17 - Polygenic scores for height 1000 Genome populations colored by their super-
population code. Candidate SNPs were ascertained in the UKBB using the cutoff of P <
5e—8. Error bars denote 95% credible intervals, constructed using the method in Sohail
et al.,, 2019, assuming that the posterior distribution of the underlying population allele
frequency is independent across populations and SNPs.
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Figure 18 - Polygenic scores for white blood cell counts using candidate SNPs with A.
P < 1le—5 and B. P < 5e—8 in the 1000 Genomes Project populations colored by their
super-population code. Error bars denote 95% credible intervals, constructed using the
method in Sohail et al., 2019, assuming that the posterior distribution of the underlying
population allele frequency is independent across populations and SNPs.
A B
1.0
0.5-*|'|I |||il
{ b4 cl | bttt c
o.a--——————————---i———f-i-——i—f—*———Ti—l—!—r—---————— =] ———————————————---—[———}-'-—t——T+—j—i—'————————-- =
-0.54 t t t P44 @ t i } @
} RN
1.0
1.0
g
g 05 i t ot
b t [ | i i
= 0.0---*------'-----*-i---f---{---*""' --'f'rl"['{++E -!"'l"-f--i-""i"i-l"'"i"""J-j""---l-*--*-r*-‘-E
§.o.s y tPEECH p i
O
-1.0
1.0 I
05*{"' i ll+ 4_; I'Inl'i ] i ; i g
CU) A T EPRA A Rt R Ay Ha ot T4 i T yle
o gty rregp bttty m LA L by m
-1.0
B ARG, AR RGP,
Population Population

@ AFR W AMR 9 EAS W EUR A\ SAS

@ AFR W AMR @ EAS W EUR A SAS

Figure 19 - Polygenic scores for mean corpuscular hemoglobin using candidate SNPs

with A. P < le-5and B. P < 5e-8in 1

000 Genome populations colored by their

super-population code. X trait-associated SNPs. Error bars denote 95% credible intervals,
constructed using the method in Sohail et al., 2019, assuming that the posterior distri-
bution of the underlying population allele frequency is independent across populations

and SNPs.
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Figure 20 - Polygenic scores for potassium level using candidate SNPs with A. P < 1e—5
and B. P < 5e—8 in 1000 Genome populations colored by their super-population code.
Error bars denote 95% credible intervals, constructed using the method in Sohail et al.,
2019, assuming that the posterior distribution of the underlying population allele fre-
quency is independent across populations and SNPs.
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Figure 21 - Regression of UKBB height effect size estimates against non-UKBB height
effect size estimates, after filtering for SNPs with P < 1e—5 in the non-UKBB GWAS.
The SNPs are colored based on their P-value in the UKBB, as are the corresponding
regression lines (red: P < 1le—5; blue: P > 1e—5). The black regression line was obtained
using all SNPs, regardless of their P-value in the UKBB GWAS.
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Figure 22 - Regression of non-UKBB height effect size estimates against UKBB height
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approximately-independent LD blocks. The SNPs are colored based on their P-value in
the non-UKBB GWAS, as are the corresponding regression lines (red: P < 1le—5; blue:
P > 1e-5). The black regression line was obtained using all SNPs, regardless of their
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Figure 23 - Regression of UKBB height effect size estimates against non-UKBB height
effect size estimates, after filtering for the SNPs with the lowest non-UKBB P-values
in 1,703 approximately-independent LD blocks. The SNPs are colored based on their
P-value in the UKBB GWAS, as are the corresponding regression lines (red: P < le—5;
blue: P > 1e—5). The black regression line was obtained using all SNPs, regardless of
their P-value in the UKBB GWAS.
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Figure 25 - Regression of effect size estimates obtained from PAGE and APCDR. In the
top panels (A and B), we used European LD blocks and in the lower panels (C and D)
we used African LD blocks. In the left panel (A and C) we ascertained significant SNPs
based on their P-values in the PAGE GWAS (P < 1e—5). In the right panel (B and D), we
ascertained significant SNPs based on their P-values in the APCDR GWAS (P < 1le-5).
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corresponding regression lines (red: P < 1e—5; blue: P > 1e—5). The black regression line
was obtained using all SNPs, regardless of their P-value in the non-ascertained GWAS.
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Figure 26 - Regression of GWAS height effect size differences against allele frequency
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We selected SNPs for this analysis that had P < 1e—5. SNPs are colored by their expected
heterozygosity (2p(1-p)) in the GBR population.
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Ascertained in UKBB

B

Ascertained in non-UKBB

0.104

o
o
@

GIANT Effect Size - UKBB Effect Size
: =
(=]
(=]

o
o
@

¥ = 0.00718, p = 0.0058

0.10+

0.05-

¥ = 0.0445, \p = 7.15e-09

0.05-
-0.10-
0.101
04 00 04 0.4 00 0.4
C D
= 0.000125, p = 0.707 # = 3.78e-05, p = 0.907

0.24
o - ®
) e o :
8 0.14 ) °
2 %
] - $
a : &
5

-5, a® o
é 0.071- Y o ®:% w o
) M
ke s
w . ®
o
. '

= 0.4

-0.24 '

] L
04 0.0 0.4 0.5 0.0 0.5

GBR Allele Frequency - CHB Allele Frequency

GBR Allele Frequency - CHB Allele Frequency

GBR

GBR- exp. het,
0.5

- exp. het,

0.5
0.4
0.3
0.2
0.1
0.0

0.4
0.3
0.2
0.1
0.0
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Figure 28 - Each panel in this figure shows the same regressions as Figure 26, except
that the difference in allele frequency is between the European and African populations
panels (GBR and LWK).SNPs are colored by their expected heterozygosity (2p(1-p)) in
the GBR population.
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Figure 29 - Regression of GWAS height effect size differences against allele frequency
differences between the northern and southern European populations (GBR and TSI).
A,B. We selected SNPs for this analysis that had P < 1e—5. SNPs are colored by their
expected heterozygosity (2p(1-p)) in the GBR population.
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Effect size differences vs. Eurasian allele frequency differences
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Figure 30 - Each panel in this figure shows the same regressions as Figure 29, except
that the difference in allele frequency is between the European and Asian population
panels (GBR and CHB). SNPs are colored by their expected heterozygosity (2p(1-p)) in
the GBR population.

Peer Community Journal, Vol. 1 (2021), article e22 https://doi.org/10.24072/pcjournal.35


https://doi.org/10.24072/pcjournal.35

42 Alba Refoyo-Martinez et al.

Effect size differences vs. Eurafrican allele frequency differences
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Figure 31 - Each panel in this figure shows the same regressions as Figure 29, except
that the difference in allele frequency is between the European and African population
panels (GBR and LWK). SNPs are colored by their expected heterozygosity (2p(1-p)) in
the GBR population.
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Figure 32 - Pearson correlations between 20 PC loadings and height effect size estimates
from a non-UKBB GWASs, compared to the same correlation using effect size estimates
from the UKBB GWAS, for different choices of non-UKBB GWAS. The correlations were
computed using SNPs that are present in both the UKBB and non-UKBB GWAS cohorts,
and in the 1000 Genomes Project. The barplots are coloured by the correlation between
each loading and the allele frequency difference between GBR and CHB. A) GIANT vs.
UKBB. B) BBJ vs. UKBB. C) Chinese NIPT vs. UKBB. D) PAGE vs. UKBB. E) FINRISK vs.
UKBB. F) APCDR vs. UKBB.
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Figure 33 - Qx statistics and P-values for the trait height, obtained by using different
types of meta-analysis methods on the UKBB data (inverse variance and sample size
based) and two PCA correction approaches (global vs. per-GWAS). The meta-analyses
were performed in "all ethnicities" as well as "White-British" set of individuals. The
asterisk denotes a significance cutoff for Qx of P < 0.05. "-log10(Chi squared P)"
= -log10(P-value), obtained assuming a chi-squared distribution for the Qx statistic. "-
log10(randomized P)" = -log10(P-value), obtained using the effect sign-randomization
scheme. All other P-values were obtained by sampling random SNPs from the genome
using the allele frequency matching scheme in different populations, as described in the
Methods section.
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Figure 34 - Polygenic scores for height in each of the 1000 Genomes population pan-
els, using effect size estimates from UKBB, obtained via different types of meta-analysis
methods (inverse variance and sample size based) and two PCA correction approaches
(global vs. per-GWAS). The meta-analyses were performed in the "all ethnicities" as well
as in the "White-British" set of UKBB individuals. Error bars denote 95% credible intervals,
constructed using the method in Sohail et al., 2019, assuming that the posterior distri-
bution of the underlying population allele frequency is independent across populations

and SNP

S.

Peer Community Journal, Vol. 1 (2021), article e22

https://doi.org/10.24072/pcjournal.35


https://doi.org/10.24072/pcjournal.35

46 Alba Refoyo-Martinez et al.

A B Lee et al.2018 pUkes B B Rietveld et al.2013 P Ukes
0.1 0.1 0.1 0.1
= =
g 0.0'D.=..:_;,1:|__=,_.=D=,_:|_E_ . B L e 0.0 =Ty
\a Q
-0.1 0.1 -0.1 -0.1
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 19
PC PC PC
c B Okbayetal2016 p  Ukes
p(PC, Aue)
0.1 01 .
0.25
= 0.00
é{ 0.0 A — ] 0.0-D=n=u=D.—=.EED.=.=D-——D 0.25
s -
0.1 0.1

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19
PC

PC

Figure 35 - Pearson correlations between 20 PC loadings and educational attainment ef-
fect size estimates from a non-UKBB GWAS, compared to the same correlation using ef-
fect size estimates from the UKBB GWAS, for different choices of the non-UKBB GWAS.
The correlations were computed using SNPs that are present in both the UKBB and non-
UKBB GWAS cohorts, and in the 1000 Genomes Project. The barplots are coloured by
the correlation between each loading and the allele frequency difference between GBR

and TSI. A) Lee et al. 2016 vs. UKBB. B) Rietveld et al. 2018 vs. UKBB. C) Okbay et al.
2016 vs. UKBB.
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Supplementary Tables.

Table 6 - Full population descriptions of 1000 Genomes Project panels used in our analysis.

Population code

Description

Super population

CHB
JPT

CHB
CDX
KHV

CEU

TSI
FIN
GBR
IBS
YRI
LWK
GWD
MSL
ESN
ASW
ACB
MXL
PUR
CM
PEL
GIB
PJL
BEB
STU
ITU

Han Chinese in Beijing, China

Japanese in Tokyo, Japan

Southern Han Chinese

Chinese Dai in Xishuangbanna, China
Kinh in Ho Chi Minh City, Vietnam

Utah Residents with Northern and
Western European Ancestries

Toscani in ltalia

Finnish in Finland

British in England and Scotland

Iberian Population in Spain

Yoruba in Ibadan, Nigeria

Luhya in Webuye, Kenya

Gambian in Western Divisions in the Gambia
Mende in Sierra Leone

Esan in Nigeria

Americans of African Ancestry in SW USA
African Caribbeans in Barbados

Mexican Ancestry from Los Angeles USA
Puerto Ricans from,Puerto Rico
Colombians from Medellin, Colombia
Peruvians from Lima, Peru

Gujarati Indian from Houston, Texas
Punjabi from Lahore, Pakistan

Bengali from Bangladesh

Sri Lankan Tamil from the UK

Indian Telugu from the UK

EAS
EAS
EAS
EAS
EAS

EUR

EUR
EUR
EUR
EUR
AFR
AFR
AFR
AFR
AFR
AFR
AFR
AMR
AMR
AMR
AMR
SAS
SAS
SAS
SAS
SAS
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Table 7 - Full list of all traits tested and the total number of individuals (N) is shown for
the GWAS in which this data was available. For GWAS summary statistics with variable
N across positions, we list the maximum N for that study.

Traits UKBB  BBJ FINRISK PAGE APCDR CE'FPeTse GIANT

Anthropometric BMI 359,983 158,284 24,722 49,335 - 60,652 231,410
Height 360,388 159,095 24,725 49,781 4,778 61,321 253,288
Waist circumference 360,564 - - 33,942 - - -

Waist hip ratio ) ) 24671 33904 - ) )

(WHR)
Blood pressure ?IijaBs;‘)"ic blood pressure 340,162 136,615 21,588 35433 - - -
(ss‘/gg)’“c blood pressure 340,159 136,597 21,591 35433 - - -
Inflammatory Platelet 361,141 108,208 6,404 29,328 - - -
Monocyte 349,856 62,076 - - - - -
(C(;Fz‘;E;Ctive protein i 75391 16,529 28537 - - -
Hemoglobin (HbA1c) 350,474 42,790 - 11,178 - - -

Mean corpuscular hemoglobin
concentration (MCHC)
Mean corpuscular hemoglobin

350,468 108,728 - 19,803 - - -

350,472 108,054 - - - - -

(MCH)

Mean corpuscular volume

(MCV) 350,473 108,256 - - - - -

Basophil count 349,856 62,076 - - - - -

Hematocrit count 350,475 108,757 - - - - -

White blood cell count

(WBC) 350,470 107,964 - 28,534 - - -

Red blood cell count

(RBC) 350,475 108,794 - - - - -

Lymphocyte count 349,856 62,076 - - - - -

Monocyte count 349,856 62,076 - - - - -

Neutrophil count 349,856 62,076 - - - - -
Kidney-related  Creatinine 350,812 142,097 6,376 - - - -
Liver-related Billirubin - 110,207 - - 4,778 - -
Metabolic Cholesterol 361,141 128,305 - 4,778 - -

High density lipoprotein 70,657 21,620 33063 4778 - :

(HDL)

(LI?SVL;je“S'ty lipoprotein 72,866 21,250 32221 4778 - .

Triglycerides - 105,597 21,619 33,096 4,778 - -

Glucose - 93,146 4,418 23,923 - - -
Electrolits Potassium 350,053 132,938 - - - - -

Sodium 350,061 127,304 - - - - -
Lifestyle Cigarettes per day 25,348 - - 15,862 - - -
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Table 8 - Pairwise Fst computed using SNPs present in PAGE, to estimate population
differentiation between PAGE and each of the 1000 Genomes Project panels.

Population panel Super-population Fst against PAGE

PUR AMR 0.013
CLM AMR 0.017
MXL AMR 0.023
ASW AFR 0.026
PJL SAS 0.029
BEB SAS 0.03

GIH SAS 0.033
ITU SAS 0.033
STU SAS 0.033
IBS EUR 0.034
TSI EUR 0.035
CEU EUR 0.036
FIN EUR 0.036
GBR EUR 0.036
ACB AFR 0.045
PEL AMR 0.054
LWK AFR 0.058
CHB EAS 0.062
JPT EAS 0.062
KHV EAS 0.062
GWD AFR 0.063
CHS EAS 0.064
YRI AFR 0.064
ESN AFR 0.065
MSL AFR 0.065
CDX EAS 0.066

Table 9 - SNP-based heritability and LD Score regression ratio and intercept estimates
(with standard errors in parentheses) for height measured in different cohorts. LD scores
were computed using the closest population in the 1000 Genomes Project to each GWAS
cohort (meta-analyses of multiple populations were not included here, but see Table 4).
The APCDR heritability estimate is not shown because it was estimated to be negative,
due to the small sample size of the cohort. For Chinese NIPT GWAS, we filtered out all
the sites with INFO scores less than 0.4.

GWAS cohort Genzmg\’\(’};df ;lgng‘)lcant Observed scale LD regression LD regression Population
s € heritability (SE)  ratio (SE) intercept (SE)

UKBB 30891 0.3911(0.0211) 0.1887(0.0099) 1.7056 (0.0371) GBR

BBJ 9976 0.4168 (0.019) 0.1142(0.0128) 1.1829(0.0204) JPT

Chinese NIPT | 1573 0.2594 (0.0298) 0.2878(0.0452) 1.1641(0.0257) CHB

FINRISK 415 0.4042 (0.0401) 0.3609 (0.0389) 1.1305(0.0141) FIN

APCDR 0 NA 14.8323 (9.7253) 1.0156 (0.0102) LWK

Table 10 - Pairwise Pearson correlation coefficient between height effect size estimates
from the UKBB GWAS and from another GWAS. The SNPs used were determined based
on their P-value in the UKBB. n = number of SNPs used to compute the correlation.

GIANT FINRISK  PAGE Chinese NIPT BBJ APCDR  SNP filtering scheme
Filtering based
on UKBB 0.867 0.531 0.339 0.510 0.219 0.061 SNP with lowest P-value
P-values (h=1703) (n=1703) (n=1703) (n=1703) (n=1703) (n=1703) in block
0.948 0.738 0.624 0.625 0.317 0.107 SNP with lowest P-value
(n=1059) (h=1124) (n=1139) (n=1064) (n=1097) (n=1100) in block, if P <le—5
0.958 0.790 0.615 0.654 0.359 0.087 SNP with lowest P-value
(n = 809) (n =870) (n=881) (n=814) (n=783) (n =856) in block, if P <5e—8
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Table 11 - Pairwise Pearson correlation coefficient between height effect size estimates
from the UKBB GWAS and from another GWAS. The SNPs used were determine based
on their P-value in the non-UKBB study. n = number of SNPs used to compute the cor-

relation.
GIANT FINRISK  PAGE Chinese NIPT BBJ APCDR  SNP filtering scheme
Filtering based
on non-UKBB | 0.698 0.167 0.128 0.335 0.018 0.121 SNP with lowest P-value
P-values (n=1703) (n=1703) (n=1703) (n=1703) (n=1703) (n=1703) in block

0.931 0.322 0.258

0.687

(n=738) (n=199) (n = 366) (n=157)

0.938 0.334 0.260

0.654

(n=570) (n=136) (n=257) (n=112)

0.561 0.138 SNP with lowest P-value

(n=709) (h=29) in block if P <1le—5
0.732 0.087 SNP with lowest P-value
(n=412) (h=15) in block if P <5e—8

Table 12 - Height Qx scores when using LD blocks derived from closely related pop-
ulations. In the case of BBJ and the Chinese biobank, we used the ASN-specific LD
blocks. In the case of APCDR, we used the AFR-specific blocks. In the case of PAGE,
we used the AFR-specific blocks. The left columns show scores obtained when we used
a P < 1le—5 threshold to include SNPs in the polygenic scores. The right columns show
scores obtained using the genome-wide significant threshold (P < 5e—8). The number
of trait-associated SNPs used to compute the scores are shown for both cutoffs.

Lenient P-value threshold (1e—5)

Strict P-value threshold (5e—38)

GWAS cohort | Num. trait-associated SNPs | Qx Num. trait-associated SNPs | Qx
BBJ 693 9.701 (P =0.99) 401 36.00 (P = 9e-2)
Chinese NIPT | 160 13.05 (P =0.98) 59 26.41 (P = 0.44)
PAGE 592 97.23 (P = 4e-10) | 94 65.86 (P = 3e-5)
APCDR 60 21.15(P =0.73) 0 NA
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