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Abstract
Over the past decade, summary statistics from genome-wide association studies (GWASs) havebeen used to detect and quantify polygenic adaptation in humans. Several studies have reportedsignatures of natural selection at sets of SNPs associated with complex traits, like height and bodymass index. However, more recent studies suggest that some of these signals may be caused bybiases from uncorrected population stratification in the GWAS data with which these tests are per-formed. Moreover, past studies have predominantly relied on SNP effect size estimates obtainedfromGWAS panels of European ancestries, which are known to be poor predictors of phenotypes innon-European populations. Here, we collated GWAS data from multiple anthropometric and meta-bolic traits that have been measured in more than one cohort around the world, including the UKBiobank, FINRISK, Chinese NIPT, Biobank Japan, APCDR and PAGE. We then evaluated how ro-bust signals of polygenic score overdispersion (which have been interpreted as suggesting poly-genic adaptation) are to the choice of GWAS cohort used to identify associated variants and theireffect size estimates. We did so while using the same panel to obtain population allele frequencies(The 1000 Genomes Project). We observe many discrepancies across tests performed on the samephenotype and find that association studies performed using multiple different cohorts, like meta-analyses and mega-analyses, tend to produce polygenic scores with strong overdispersion acrosspopulations. This results in apparent signatures of polygenic adaptation which are not observedwhen using effect size estimates from biobank-based GWASs of homogeneous ancestries. Indeed,we were able to artificially create score overdispersion when taking the UK Biobank cohort andsimulating a meta-analysis on multiple subsets of the cohort. Finally, we show that the amount ofoverdispersion in scores for educational attainment - a trait with strong social implications and highpotential for misinterpretation - is also strongly dependent on the specific GWAS used to buildthem. This suggests that extreme caution should be taken in the execution and interpretation offuture tests of polygenic score overdispersion based on population differentiation, especially whenusing summary statistics from a GWAS that combines multiple cohorts.
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Introduction
Most human phenotypes are polygenic: the genetic component of trait variation across indi-viduals is caused by differences in genotypes at a large number of variants, each with a relativelysmall contribution to a given trait (Fisher et al., 1918; Turelli, 2017). This applies to phenotypesas diverse as a person’s height, their risk of schizophrenia or their risk of developing arthritis. Thestudy of differences in complex traits spans more than a century but only in the last two decadeshas it become possible to systematically explore the underlying genetic architecture underlyingthese differences (Sella and N Barton, 2019). The advent of genome-wide association studieshas led to the identification of thousands of variants that are associated with polygenic traits,either due to true biological mechanisms or because of linkage with causal variants (Visscheret al., 2012).
However, most research into the genetic aetiology of complex traits is based on GWAS datafrom populations of European ancestries (Popejoy and Fullerton, 2016). This bias in representa-tion contributes to existing disparities in medical genetics and healthcare around the world (ARMartin, Kanai, et al., 2019). The low portability of European GWAS results - and, in particular,polygenic scores - to non-European populations is particularly concerning (AR Martin, Gignoux,et al., 2017; AR Martin, Kanai, et al., 2019) (but see Ragsdale et al., 2020). For example, thepredictive accuracy of polygenic scores for height constructed using European effect size esti-mates has been shown to decrease with decreasing European ancestry in admixed populations(Bitarello and Mathieson, 2020). Recent studies have shown that ancestry deconvolution canbe used to improve accuracy (Marnetto et al., 2020; M Wang et al., 2020), but important trait-associated variants in non-European populations may be missed if they have low frequenciesor are absent in European populations. Moreover, effect size estimates for an associated vari-ant derived from a European-ancestry GWAS may not accurately reflect the effect of the samevariant on the trait in other populations (Wojcik et al., 2019). This could be due to differencesin epistasis, differences in linkage disequilibrium between causal and ascertained variants, orgene-by-environment interactions, to name a few causes (Guo et al., 2018). Additionally, nega-tive selection and demographic history may cause differences in genetic architectures betweenpopulations (Durvasula and Lohmueller, 2019).
During the last decade, GWAS summary statistics have also been used to look for evidenceof directional selection towards a trait to a new phenotypic optimum, via allele-frequency shiftsoccurring across a large number of associated variants - a phenomenon known as polygenic adap-tation (Hayward and Guy Sella, 2019; Pritchard et al., 2010). For example, several studies haveconsistently found evidence for polygenic adaptation operating on height-associated variants inEurope, mainly across a south-to-north gradient (Berg and Coop, 2014; Berg, Zhang, et al., 2017;Mathieson et al., 2015; Racimo et al., 2018; MR Robinson, Hemani, et al., 2015; Turchin et al.,2012). To test for selection, these studies primarily relied on summary statistics from the GIANTconsortium dataset, which is a meta-analysis of anthropometric GWAS from multiple Europeancohorts (Allen et al., 2010;Wood et al., 2014). They looked for overdispersion and/or directionalchanges in the frequencies of trait-associated variants across populations, relative to a neutralnull model. To account for potential confounding due to population stratification, somehave triedto replicate this signal using family-based association studies (Allison et al., 1999; MR Robinson,Hemani, et al., 2015). Berg, Harpak, et al., 2019 and Sohail et al., 2019 showed that this signal ofpolygenic score overdispersion on height-associated variants in Europe (and possibly on othertrait-associated variants) is attenuated and in some cases no longer significant when using effectsize estimates from a GWAS performed on the UK Biobank - a large cohort composed primar-ily of individuals of British ancestry (Bycroft et al., 2018). There is no single explanation yet forthese contradictory findings, but the most plausible one is that previous studies were impactedby very subtle confounding due to uncorrected population stratification in GIANT, and that datafrom family-based studies was not analyzed properly (Berg, Harpak, et al., 2019; Sohail et al.,2019). Another recent study has shown that other sources of stratification (based on age, sexand/or socioeconomic factors) might even lead to variation in the accuracy of polygenic scoreswhen analyzing individuals from the same ancestry group Mostafavi et al. (2020).
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It is as yet unclear how the choice of GWAS cohort affects tests of polygenic score overdis-persion based on allele frequency differences between populations. Each cohort differs in ances-tries of participants, inclusion criteria of individuals, SNP ascertainment scheme and associationmethod. Given the poor portability of polygenic scores across populations, is it also true thatGWASs performed on different cohorts will result in inconsistent signals of selection? Can wenarrow down on the reason for the inconsistencies in previous studies of polygenic adaptationby looking at a larger number of cohorts? Here, we collated GWAS summary statistics from mul-tiple complex traits that have been measured in more than one cohort around the world. Wethen evaluated how robust signals of polygenic score overdispersion are to the choice of cohortused to obtain effect size estimates. Across all comparisons, we used the same population ge-nomic panel to obtain population allele frequency estimates: The 1000 Genomes Project phase3 (The 1000 Genomes Project Consortium, 2015). We observe many discrepancies across testsperformed on the same phenotype and attempt to understand what may be causing these dis-crepancies. We compare results for several traits and pay special attention to height, as it is themost well-characterized and studied complex trait in the human genetics literature, as well as atrait for whichwe have summary statistics from the largest number of GWAS cohorts. Finally, weperform an analogous analysis on educational attainment - a trait that has also been highlightedin recent studies of polygenic adaptation in humans (Racimo et al., 2018; Stern et al., 2021; Uric-chio et al., 2019), and that is especially prone to be misinterpreted or misappropriated (Harmon,2018; Novembre and Nicholas H Barton, 2018). We show that overdispersion signals for thistrait are also highly sensitive to the choice of GWAS cohort.
Methods

GWAS summary statistics.
WeobtainedGWAS summary statistics fromfive large-scale biobanks, aGWASmeta-analysisand a mega-analysis (Figure 1). Since we aim to make comparisons among them, our interest isfocused on traits that were measured in at least two different cohorts. This resulted in a total of30 traits being included in our analysis.Below, we provide a brief summary of each of the GWASs we focused on. For an overviewof the type of arrays and association methods used in each of these, see Table 1.
• UKBB: Summary statistics from the GWAS performed on all UK Biobank traits (Bycroftet al., 2018). These were released by the Neale lab (round 2: http://www.nealelab.is/

uk-biobank/), after filtering for individuals with European ancestries. The UK Biobankincludes genetic and phenotypic data from participants from across the United Kingdom,aged between 40 and 69. The traits measured include a wide range of lifestyle factors,physical measurements, and other phenotypic information gained from blood, urine andsaliva samples. The Neale lab performed association testing in∼ 340,000 unrelated indi-viduals.
• FINRISK: Summary statistics from GWASs carried out using the National FINRISK 1992-2012 collection fromFinland (https://thl.fi/en/web/thl-biobank ; http://personal.

broadinstitute.org/armartin/sumstats/finland/). The FINRISK study is coordinatedby theNational Institute for Health andWelfare (THL) in Finland and its target populationis sampled from six different geographical areas in Northern Finland. The FINRISK cohortwas conducted as a cross-sectional population survey every 5 years from 1972 to assessthe risk factors of chronic diseases and health behavior in the working age population.Blood samples were collected from 1992 to 2012. Anthropometric measures and otherlifestyle information were also collected. The number of samples used for the GWASresults varies among the different traits (∼25,000 to ∼5,000) (Borodulin et al., 2018).
• PAGE: Summary statistics from a multi-ethnic GWAS mega-analysis performed by thePAGE (Population Architecture using Genomics and Epidemiology) consortium (http:

//www.pagestudy.org/). This is a project developed by the National Human GenomeResearch Institute and the National Institute on Minority Health and Health Disparitiesin the US, to characterize population-level disease risks in various populations from the
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Americas (Carlson, 2016; Matise et al., 2011). The association analysis was assembledfrom four different cohorts: the Hispanic Community Health Study/Study of Latinos(HCHS/SOL), the Women’s Health Initiative (WHI), the Multiethnic Cohort (MEC) andthe Icahn School of Medicine at Mount Sinai BioMe biobank in New York City (BioMe).The authors performed GWAS on 26 clinical and behavioural phenotypes. The study in-cludes samples from 49,839 non-European-descent individuals. Genotyped individualsself-reported as Hispanic/Latino (n = 22,216), African American (n = 17,299), Asian (n= 4,680), Native Hawaiian (n = 3,940), Native American (n = 652) or Other (n = 1,052).The number of variants analyzed varies from 22 to 25 million for continuous phenotypesand 11 to 28 million for case/control traits. Sample sizes ranged from 9,066 to 49,796individuals (Wojcik et al., 2019).
• BBJ: Summary statistics from GWASs performed using the Biobank Japan Project, whichenrolled 200,000 patients from 12 medical institutions located throughout Japan be-tween 2003-2008 (http://jenger.riken.jp/en/result). The authors collected bio-logical samples and other clinical information related to 47 diseases and self-reportedanthropometric measures. GWASs were then conducted on approximately 162,000 in-dividuals to identify genetic variants associated with disease susceptibility and drug re-sponses. Around 6 million variants were included for association testing (Hirata et al.,2017; Kanai et al., 2018; Nagai et al., 2017).
• Chinese NIPT: Summary statistics from an association study in China performed via non-invasive prenatal testing (NIPT) on 141,431 pregnant women (https://db.cngb.org/cmdb).The participants were recruited from 31 administrative divisions across the country. Thestudy aimed to investigate genetic associations with maternal and infectious traits, aswell as two anthropometric traits: height and BMI (S Liu et al. (2018)). The summarystatistics for BMI and height were obtained from GWASs performed on a filtered set of
∼ 60, 000 individuals. The number of imputed variants used was around 2 million.
• APCDR: Summary statistics performed using the African Partnership for Chronic Dis-ease Research cohort, which was assembled to conduct epidemiological and genomicresearch of non-communicable diseases across sub-Saharan Africa (https://personal.

broadinstitute.org/armartin/sumstats/apcdr/). The dataset includes 4,956 sam-ples from Uganda (Baganda, Banyarwanda, Burundi, and others). The authors performedGWAS on 34 phenotypes, including anthropometric traits, blood factors, glycemic con-trol, blood pressure, lipid tests, and liver function tests (Heckerman et al., 2016).
• GIANT: Summary statistics published by the Genetic Investigation of AnthropometricTraits consortium (2012-2015 version, before includingUKBiobank individuals) (Locke etal., 2015;Wood et al., 2014) (https://portals.broadinstitute.org/collaboration/

giant/index.php/GIANT_consortium_data_files). GIANT is a meta-analysis of sum-mary association statistics for various anthropometric traits, and includes informationfrom more than 250,000 individuals of European descent. The meta-analysis was per-formed on 2.5 million autosomal SNPs, after imputation.
Population genomic panel.

We used the 1000 Genomes Project phase 3 release data (The 1000 Genomes Project Con-sortium, 2015) to retrieve the allele frequencies of trait-associated variants in different popu-lation panels sampled from around the world (Figure 1). We used these to compute polygenicscores for each panel, using autosomal SNPs only. The dataset contains samples from 2,504 peo-ple from 26 present-day population panels, whose abbreviations and descriptions are listed inTable 6.
Identifying trait-associated SNPs.

We used summary statistics for a set of 30 traits that were measured in at least two of thepreviously-listed GWAS datasets. Table 7 shows the full list of the traits included in this analysisand the number of variants and individuals per trait. For each trait, we excluded triallelic variants,variants with a minor allele frequency lower than 0.01 across all samples and those classified as
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Figure 1 – Map containing the geographic provenance of the panels of each associationstudy we examined (large circles), as well as the 26 population panels from the 1000Genomes Project (black squares). Small colored dots denote the provenance of the indi-vidual GWAS cohorts that were used in GIANT and in PAGE.
Table 1 – Information on genotyping, imputation and association methods for eachGWAS analyzed in this study. LM+PCs = linear model with principal components as co-variates. LMM = linear mixed model.

GWAS cohort No. individuals No. genotypedSNPs No. imputedSNPs Associationmethod GWAS array orsequencing method Filters
UKBB 360388 820967 10,800,000 LM+PCs UK Biobank Axiom Array INFO > 0.8MAF > 1e−4HWE P > 1e−10GIANT 253288 [meta-analysis] 2,834,208 LM+PCs Affymetrix 500K platform,Illumina genotyping arraysand custom Perlegen arrays

Removed low quality SNPs

BBJ 159,095 958,497 27,896,057 LM+PCs IlluminaHumanOmniExpressExome INFO ≥ 0.4MAF > 1.0%HWE P ≥ 1e−6Chinese NIPT 61,321 NA 2,130,000 LM+PCs Ultra low depthshotgun sequencing INFO > 0.4HWE P > 1e−6PAGE 49,781 1,748,250 39,723,562 LMM Illumina Multi-EthnicGenotyping Array (MEGA) INFO > 0.4
FINRISK 24,725 551,004 11,670,715 LM+PCs Illumina CoreExome INFO > 0.7MAF > 1.0%HWE P > 1e−6APCDR 4,778 2,382,209 16,477,797 LMM Illumina Omni2.5 INFO ≥ 0.3MAF > 0.5%

low confident variants whenever this information was available in the summary statistics file.We selected a set of trait-associated SNPs based on a P-value threshold, and the effect sizeestimates of these variants were used to construct a set of polygenic scores. To only include ap-proximately independent trait-associated variants in our scores, we use a published set of 1,703non-overlapping and approximately independent linkage-disequilibrium (LD) blocks to divide thegenome (Berisa and Pickrell, 2016). We extracted the SNP within each block with the lowest as-sociation P-value. To investigate the robustness of signals to different filtering schemes, we usedtwo P-value thresholds to extract significantly associated variants: 1) P < 1e−5 and 2) the stan-dard genome-wide significant cutoff, P < 5e−8. Blocks that only contain variants that do notmeet the chosen threshold were filtered out. As an example, Figure 9.A shows the distributionof effect size estimates of height-associated SNPs with P < 1e−5. In turn, Figure 9.B shows thedistribution of the product of the effect size estimates and the square root of the study’s samplesize (N). This serves as a fairer comparison among studies, as the standard error of the effect
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size estimate is approximately proportional to the inverse of √N (see Casella and Berger, 2002;Edge, 2019; Holland et al., 2016). In order to build an empirical genome-wide covariance matrix(F-matrix) with non-associated SNPs, we extracted all SNPs with a P-value larger than 5e−8 andthen sampled every 20th of these SNPs across the autosomal genome.We also used the LD score regression approach (Heckerman et al., 2016) to obtain an LDscore regression intercept, LD score regression ratio, and a SNP heritability estimate for eachGWAS that we looked at. The LD score intercept is an estimate of the contribution of populationstratification to test statistic inflation in aGWAS analysis. The LD score regression ratiomeasuresthe proportion of the inflation in the mean χ2 statistic that the LD Score regression interceptascribes to causes other than polygenic heritability. Finally, an estimate of trait heritability can beobtained from the LD score regression slope (B Bulik-Sullivan et al., 2015; BK Bulik-Sullivan et al.,2015). We note, however, that Berg, Harpak, et al. (2019) showed that some of the assumptionsof LD score regression -which allow one to separate estimates of stratification confounding fromheritability - may be violated in the presence of background selection. Thus, these estimates maynot accurately reflect the amount of stratification truly present in a GWAS.
Neutrality test for polygenic scores.

Polygenic risk scores are used to predict the genetic risk of a disease, or the genetic valueof a trait, by combining the additive effect of a large number of trait-associated loci across thegenome. For each trait, we obtained polygenic scores by computing the sum of allele frequenciesat each of the top trait-associated SNPs from each block, weighted by their effect size estimatesfor that trait. The allele frequencies for these SNPs were retrieved from The 1000 GenomesProject population panels using glactools (Renaud, 2017). We then built a polygenic score vectorfor a given trait, ~Z , that contains the polygenic scores of all populations for that trait. Let ~pl ∈
[0, 1]M be the vector of derived allele frequencies at locus l, where pl ,m is the derived allelefrequency at locus l in population m, while αl is the effect size estimate of the derived alleleat locus l. Then, the vector of the polygenic scores, ~Z , has length M equal to the number ofpopulations (M = 26) and each element Zm is the polygenic score for population m

(1) Zm =
L∑

l=1
2αlpl ,m

Here, L is the total number of trait-associated loci. For each polygenic score we built, we alsoobtained 95% credible intervals, constructed using the method in Sohail et al. (2019), assum-ing that the posterior distribution of the underlying population allele frequency is independentacross populations and SNPs, and that it follows a beta distribution.Berg and Coop, 2014 introduced a model designed for comparing polygenic scores acrosspopulations, in order to test for deviations from neutrality, which could perhaps be driven byadaptive divergence between populations. The test works by looking for overdispersion from amultivariate normal distribution, which would fit the distribution of scores if this was determinedpurely by genetic drift.Under neutral genetic drift, Berg and Coop, 2014 showed that the joint distribution of ~Zacross closely-related populations should be approximately multivariate normal under a purelyneutral model:
(2) ~Z ∼ MVN(µ~1, 2VAF)

where ~1 is a vector of ones and:
(3) µ = 2

L∑

l=1
αlpl ,
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(4) VA = 2
L∑

l=1
α2

l pl(1− pl)

and pl is the average allele frequency of locus l across all populations. The matrix F is a genome-wide covariance matrix that captures the co-ancestry among each pair of populations (Berg andCoop, 2014). Based on this null model, we can measure the Mahalanobis distance of the ob-served distribution of ~Z from the distribution under neutral genetic drift by computing QX

(5) QX = (~Z − µ)TF−1(~Z − µ)
2VAUnder neutrality, the QX statistic is expected to follow a chi-squared distribution with M -1degrees of freedom, χ2

M−1 (Berg and Coop, 2014). A significantly large value of QX indicates that
there is an excess of variance in ~Z that cannot be explained by drift alone.
P-values via randomization schemes.

To avoid relying on the assumption that ~Z follows a multivariate normal distribution underneutrality, we also obtained P-values via two alternative methods (Berg and Coop, 2014; Berg,Zhang, et al., 2017; Racimo et al., 2018). The first one relies on obtaining neutral pseudo-samplesby randomizing the sign (but not themagnitude) of the effect size estimates of all trait-associatedSNPs, and then recomputing QX . The second one involves obtaining pseudo-samples by sam-pling random SNPs across the genome with the same allele frequency distribution in a particular(target) population as the SNPs used to computed QX . For each trait-associated SNP, we thussampled a new SNP from a subset of the non-associated SNPswhose frequencies lie in the range
[0.01− p, p + 0.01] where p is the derived allele frequency of the trait-associated SNP. Then, weobtained a new P-value by computing the QX statistic on each of the pseudo-samples i :

(6) P = 1 + ∑S
i I(Qi

X > QA
X )

1 + S
Here, Qi

X is the QX statistic computed on pseudo-sample i , QA
X is the QX statistic computed onthe true set of trait-associated SNPs, I() is an indicator function and S is the number of pseudo-samples used, which was set to 1,000. We tested the effect of using different population panelsas our ’target’ population for the frequency-matching scheme. Sincewe are utilizing sevenGWAScohorts that are composed of Latin American individuals, Asian (Japanese and Chinese), sub-Saharan African and European (Finnish and British) individuals, we decided to use populationpanels from the 1000 Genomes that roughly matched the ancestry of the GWAS cohorts: CHBfor Chinese NIPT, JPT for BBJ, LWK for APCDR, FIN for FINRISK and GBR for UKBB. WhilePAGE is a very heterogeneous cohort, we find that PUR is the panel with the lowest amount ofdifferentiation to PAGE, among all 1000G panels (Table 8), so we used PUR as the closest matchto PAGE.

Evaluating population structure.
To look for population stratification along different axes of population variation Sohail et al.,2019, we first selected those variants that were present in the 1000Genomes Project, the UKBBheight GWAS and another non-UKBB height GWAS used for comparison against UKBB. We fil-tered out variants that had minor allele frequency < 5% in the 1000 Genomes Project, or thatwere located in the MHC locus (chr6:28477797-33448354) or in the chromosome eight inver-sion region (chr8:7643092-11528113). We then performed LD pruning on the resulting set ofvariants (using the –indep-pairwise 200 100 0.2 option). The remaining SNPs were used to per-form a PCA on a matrix of genotypes from all the 1000 Genomes Project individuals, fromwhichwe obtained the first 20 PC loadings of population structure, using plink. Then, we performedlinear regression of the PC scores on the genotypes of each SNP that was previously removed

Alba Refoyo-Martínez et al. 7

Peer Community Journal, Vol. 1 (2021), article e22 https://doi.org/10.24072/pcjournal.35

https://doi.org/10.24072/pcjournal.35


due to the pruning procedure. Finally, we plotted the correlations between each of the PCs andthe effect size estimates from one of the two GWASs: UKBB or non-UKBB.
Assessing different association methods.

We were also interested in evaluating the effects of different types of association methodson the significance of the QX statistic. We used the UKBB cohort to perform different types ofassociation studies on height. Starting from 805,426 genotyped variants across the genome, werestricted to SNPs with a minor allele frequency (MAF) > 5% globally, and performed associa-tions on three different sets of individuals from the UKBB cohort: 1) self-reported white Britishindividuals ("British"), 2) self-reported "white" individuals, and 3) "all ethnicities", i.e. a UKBB setincluding all self-reported ethnicity categories. We applied the following quality filters in eachof the resulting sets: 1) removed variants with P < 1e−10 from the Hardy-Weinberg equilibriumtest, 2) removed variants with MAF < 0.1% in the set, 3) removed variants with an INFO scoreless than 0.8, 4) removed variants outside the autosomes, and 5) removed individuals that were7 standard deviations away from the first six PCs in a PCA of the set (following the Neale lab’sprocedure for defining British ancestry after performing PCA on the UKBB dataset). We thenperformed a GWAS via a linear model (LM) using PLINK v1.9 (Chang et al., 2015) and a GWASvia a linear mixed model (LMM) using BOLT-LMM (Loh et al., 2018), on each of the three sets(Table 2). We used sex, age, age2, sex*age, sex*age2 and the first 20 PCs as covariates.We also aimed to test whether ameta-analysis approach could lead to overdispersion of poly-genic scores, and consequently, an inflated QX statistic. Therefore, we created a set of artificialmeta-analyses on the entire UKBB cohort, approximately emulating the number of individualsub-cohorts that were included in GIANT. We used both the "all ethnicities" and the "whiteBritish" UKBB cohorts to compare the results of a meta-analysis on a homogeneous vs. a di-verse cohort of individuals. For each of the two cohorts, we divided the corresponding set ofindividuals into 75 subsets, using two different approaches. In one approach, we obtained 75clusters from a K-means clustering of the first three principal components from a PCA of theindividuals. Under this approach, different cohorts have different sample sizes (though they donot exactly match the cohort size distribution observed in GIANT). In the other approach, wecreated 75 groups of equal size, randomly assigning individuals to each group, regardless of theirplacement in the PCA.We used PLINK 1.9 to perform a linear association model in each of the 75 clusters or groups.As before, we used sex, age, age2, sex*age, sex*age2 and the first 20 PCs as covariates. Thesecovariates were included in the analysis of each cohort before the meta-analysis. We exploredhow PC correction affected the meta-analyses. As the first 20 PCs, we used either the compo-nents from a PCA performed on each of the 75 sub-cohorts or the components from a PCAperformed on all individuals together, before they were split. We note that the latter PCA wouldnot be available to a researcher performing a meta-analysis in practice, but we carried it outto check whether lack of power to correctly model population structure via the cohort-specificPCAs was somehowmisleading us. Afterwards, we integrated all summary statistics into a meta-analysis, using two different methods (Table 2): an inverse variance method and a sample size-basedmethod, both implemented inMETAL (Willer et al., 2010). This led to a total of 16 differenttypes of meta-analyses artificially performed on the UKBB data.
Educational attainment GWAS.

We also performed an assessment of robustness in the distribution of population-wide poly-genic scores for educational attainment. In this case, together with effect size estimates fromthe UK Biobank, we also obtained estimates from three studies carried out by the Social ScienceGenetic Association Consortium (SSGAC) (ttps://www.thessgac.org):
• Ameta-analysis of 126,559 individuals (42 discovery cohorts and 12 replication cohorts)(Rietveld et al., 2013)
• A meta-analysis of 293,723 individuals (64 cohorts) (Okbay et al., 2016).
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Table 2 – Description of types of methods used to obtain SNP associations from UKBB.
Code Cohort composition Description of association method
british linear-model Self-reported "British" individuals from UKBB linear modelimplemented in PLINK 1.9british mixed-model Self-reported "British" individuals from UKBB linear mixed modelimplemented in BOLT-LMMwhite linear-model Self-reported "White" individuals from UKBB linear modelimplemented in PLINK 1.9white mixed-model Self-reported "White" individuals from UKBB linear mixed modelimplemented in BOLT-LMMall ethnicities linear-model All self-reported ethnicities from UKBB linear modelimplemented in PLINK 1.9all ethnicities mixed-model All self-reported ethnicities from UKBB linear mixed modelimplemented in BOLT-LMM
meta-analysis.inverseSE.random 75 sub-cohorts of equal size, composed of randomlysampled individuals from UKBB (all ethnicities) inverse-variance-based meta-analysisimplemented in METALmeta-analysis.inverseSE.kmeans 75 sub-cohorts obtained from K-means clusteringusing 1st 3 PCs of UKBB individuals (all ethnicities) inverse-variance-based meta-analysisimplemented in METALmeta-analysis.samplesize.random 75 sub-cohorts of equal size, composed of randomlysampled individuals from UKBB (all ethnicities) sample-size-based meta-analysisimplemented in METALmeta-analysis.samplesize.kmeans 75 sub-cohorts obtained from K-means clusteringusing 1st 3 PCs of UKBB individuals (all ethnicities) sample-size-based meta-analysisimplemented in METAL

• Ameta-analysis of 1,131,881 individuals (Lee et al., 2018) (71 cohorts in total). Note thatthis study includes the samples from the Okbay et al., 2016 study and the UK Biobankas well.
We took the summary statistics of each educational attainment GWAS “as is”, without mod-eling sample overlap between cohorts.

Results
Robustness of signal of selection and population-level differences.

We obtained sets of trait-associated SNPs for GWASs performed on seven different cohorts:UK Biobank, FINRISK, Chinese NIPT, Biobank Japan, APCDR and PAGE. Using the effect sizeestimates from each GWAS, we calculated population-wide polygenic scores for each of the26 population panels from the 1000 Genome Project (The 1000 Genomes Project Consortium,2015), using allele frequencies from each population panel. We then tested for overdispersionof these scores using the QX statistic, which was designed to detect deviations from neutralgenetic drift affecting a set of trait-associated SNPs (Berg and Coop, 2014). We focused on 30traits that were phenotyped in two or more cohorts, so that we could compare the P-value ofthis statistic using effect size estimates from at least two different cohorts (see Methods).We applied the QX statistic to each of the 30 traits by selecting SNPs we deemed to be sig-nificantly associated with each trait . We used two different P-value cutoffs to select these SNPs:1) a lenient cutoff, P < 1e−5 and 2) the standard genome-wide significance cutoff P < 5e−8. Toverify that significant P-values of the QX statistics were not due to violations of the chi-squareddistributional assumption, we also computed P-values using two randomization schemes: one isbased on randomizing the sign of the effect size estimates of the trait-associated SNPs (but nottheirmagnitude), while the other is based on using frequency-matched non-associated SNPs (seeMethods). In general, P-values obtained from the three schemes are broadly similar across thevarious approaches used. However, we observe a few inconsistencies in the sign-randomizationscheme, when compared to the other two approaches (Figures 10 and 11). The number of sig-nificant SNPs for each of the traits under the two cutoffs is shown in Figures 12 and 13.We used two types of multiple-testing Bonferroni corrections: one that applies to us - cor-recting for both the number of traits assessed and the number of cohorts on which each of thosetraits were tested (we call this number m) - and another that would apply to a person that wasblind to the other cohorts - and so would only correct for the n traits tested within their available
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cohort (Figures 2, 10). We only find few traits with significant overdispersion in QX . Under the
P < 1e−5 SNP-association cutoff, the only traits with significant overdispersion in at least onecohort are height andwhite blood cells (WBC) (Figures 2, 10). Potassium levels in urine andmeancorpuscular hemoglobin (MCH) also result in significant values of QX when using the P < 5e−8SNP-association cutoff (Figures 11, 14).

Figure 2 – Each cell of this heatmap is the −log10(P-value) of a QX test using SNPs as-sociated with different traits and effect size estimates obtained from different GWASs(grey-coloured cells indicate that no data is available for the corresponding trait). Eachrow corresponds to one of the six GWASswe are evaluating and the columns correspondto the different traits for each GWAS that have SNPs with P < 1e−5. BMI, body massindex; DBP, Diastolic blood pressure; HbA1c, glycated hemoglobin; HDL, high-densitylipoprotein; LDL, low-density lipoprotein; MCH, mean corpuscular hemoglobin; MCHC,mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; RBC, redblood cell count; SBP, systolic blood pressure; WBC, white blood cell count; WHR, waist-to-hip ratio. Significance thresholds after Bonferroni correction: *** < 0.05/m, ** < 0.05/n,* < 0.05, where n is the number of traits in each GWAS (row-dependent) and m is thetotal number of tests calculated, across all GWASs.
Figure 3 shows polygenic scores computed for each of the 1000 Genomes populations forheight. In agreement with previous studies (Berg, Harpak, et al., 2019; Sohail et al., 2019), weobserve that differences in polygenic height scores when using effect size estimates from theUKBB are greatly attenuated relative to differences in scores built when using estimates fromGIANT. Extending this analysis across all datasets, we observe that PAGE polygenic scores arealso over-dispersed, though in different directions than GIANT scores (Figure 3). Additionally,the observation that Europeans have very high polygenic scores when using GIANT effect sizeestimates cannot be replicated using any of the other GWAS estimates. After multiple testingcorrection (for both association P-value threshold schemes), we only obtain significant QX P-values when using summary statistics from PAGE and GIANT. The number of SNPs used forpolygenic scores are shown in Table 3. The LD score regression ratio is substantially higher forPAGE and FINRISK than for the other cohorts (Tables 4, 9).We also tested how the choice of the SNP association P-value threshold influenced the re-sults. Sohail et al., 2019 showed that between-population differences in polygenic height scoresgrow stronger when using more lenient SNP association P-value cutoffs. However, one thenruns the risk of including more variants that may be significantly associated due to uncorrectedpopulation stratification.We see there is a smaller score overdispersion when using the genome-wide significant SNPs, than when using the more lenient P-value cutoff (right column, Table 3and Figure 15).Finally, we computed polygenic scores on a single set of candidate SNPs ascertained in thelargest biobank (UKBB) but using effect size estimates from each of the other GWAS in turn.Signals of overdispersion in height polygenic scores are greatly attenuated in each of the non-UKBBGWAS, and aremuchmore similar to the patterns observed in UKBB (Figure 16 and Figure

10 Alba Refoyo-Martínez et al.

Peer Community Journal, Vol. 1 (2021), article e22 https://doi.org/10.24072/pcjournal.35

https://doi.org/10.24072/pcjournal.35


Figure 3 – Polygenic scores for height using candidate SNPs with P < 1e−5. The 1000Genomes Project populations colored by their super-population code. The correspondingnumber of trait-associated SNPs and the QX P-value for each GWAS are shown in Table3. Error bars denote 95% credible intervals, constructed using the method in Sohail etal., 2019, assuming that the posterior distribution of the underlying population allelefrequency is independent across populations and SNPs.

17). This suggests an important reason for the observed overdispersion patterns in these otherGWAS is the choice of significant SNPs recovered from each study.We also looked in closer detail at other traits with evidence for significant overdispersion viathe QX test. White blood cell counts (WBC), for example, shows strong overdispersion whenusing PAGE, but not when using the UKBB or BBJ effect size estimates (Figure 18). We alsoobserve a similar pattern when looking at mean corpuscular hemoglobin (MCH) scores (Figure19). In the case of potassium levels in urine, larger between-population differences are found inUKBB than in BBJ, when we use the stringent threshold (Figures 20). In general, we observe that
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Table 3 – Height QX scores and P-values, assuming a chi-squared distribution for thescores. The number of trait-associated SNPs used to compute the scores are shown forboth cutoffs.
Lenient association threshold (P < 1e−5) Strict association threshold (P < 5e−8)GWAS cohort Num. trait associated SNPs QX Num. trait associated SNPs QXUKBB 1140 45.57 (P = 0.01) 810 39.72(P = 0.04)GIANT 739 102.73 (P = 4e-3) 468 69.18 (P = 8e-8)BBJ 759 9.255 (P = 0.99) 431 35.00 (P = 0.11)Chinese NIPT 164 12.82 (P = 0.99) 60 24.68(P = 0.54)PAGE 528 77.31 (P = 5e-7) 84 49.52 (P = 4e-3)FINRISK 209 36.43 (P = 0.08) 47 41.48 (P = 0.03)APCDR 61 21.15 (P = 0.73) 0 NA

Table 4 – SNP-based heritability and LD Score regression ratio and intercept estimates(with standard errors in parentheses) for height measured in different cohorts. LD scoreswere computed for the super-population panels in the 1000 Genomes Project. TheAPCDR heritability estimate is not shown because it was estimated to be negative, dueto the small sample size of the cohort.
GWAS cohort Genome-wide significantSNPs (P < 5e−8) Observed scaleheritability (SE) LD regressionratio (SE) LD regressionintercept (SE) Super Population
UKBB 30891 0.4205 (0.0183) 0.1184 (0.0098) 1.4384 (0.0362) EURGIANT 11625 0.3159 (0.0146) 0.1419 (0.0094) 1.2727 (0.0181) EURBBJ 9976 0.4168 (0.019) 0.1142 (0.0128) 1.1829 (0.0204) EASChinese NIPT 1573 0.329 (0.0201) 0.0746 (0.0353) 1.0425 (0.0201) EASPAGE 564 0.2578 (0.0237) 0.371 (0.0336) 1.1762 (0.016) AMRFINRISK 415 0.4557 (0.0446) 0.3775 (0.035) 1.1358 (0.0126) EURAPCDR 0 NA NA NA AFR

between-population differences in polygenic scores tend to be more similar between studieswhen using the stricter SNP-association P-value threshold, than when using the more lenientthreshold.
Relationship between GWAS effect size estimates.

To better understand where the differences in overdispersion of QX could stem from, weperformed pairwise comparisons of the effect size estimates from the different GWAS. Sincethe UKBB GWAS is the GWAS with the largest number of individuals, we decided to comparethe estimates from each of the other studies to the UKBB estimates. Here, we only focusedon the 1,703 approximately-independent SNPs (the best tag SNP within each LD block). Webegan by only using SNPs that were classified as significant in UKBB using the lenient cutoff(P < 1e−5) (Figure 4). We observe that effect size estimates are correlated, as expected, butthe strength of this correlation varies strongly across comparisons. UKBB vs. GIANT shows thehighest correlation, while UKBB vs. APCDR shows the lowest. Those SNPs that also have asignificant P-value in the non-UKBB GWAS in each comparison (colored in red in Figure 4) showa higher correlation than the rest of the SNPs: a pattern expected due to the winner’s curse,and exacerbated by differences in sample sizes and LD patterns between GWAS cohorts (Berg,Harpak, et al., 2019).The same analysis was carried out with SNPs classified as significant in each of the non-UKBB studies. The correlation of effect size estimates is generally lower (Figure 21), and a highpercentage of SNPs deemed to be significant in the non-UKBB GWAS have effect size estimatesapproximately equal to zero in the UKBB GWAS (Figure 21). This pattern is stronger when wedo not filter the 1,703 approximately independent SNPs by a particular SNP-association P-valuecutoff (Figures 22 and 23).We computed pairwise Pearson correlation coefficients between estimated effect sizes inthe UKBB GWAS and each of the other GWAS (Table 10 when using SNPs that are significant inUKBB and Table 11 when using SNPs that are significant in the other GWAS). We observe that
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Figure 4 – Regression of UKBB effect size estimates against non-UKBB effect size esti-mates, after filtering for SNPs with P < 1e−5 in the UKBB GWAS. The SNPs are coloredbased on their P-value in the non-UKBBGWAS, as are the corresponding regression lines(red: P < 1e−5; blue: P > 1e−5). The black regression line was obtained using all SNPs,regardless of their P-value in the non-UKBB GWAS.
GWAS performed on individuals living geographically close to Britain have higher correlationsto UKBB estimates than those that are performed on distant individuals. For instance, GIANT
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and FINRISK (both European-based GWAS), show high correlation in effect size estimates withUKBB (0.9958 and 0.790, respectively). In contrast, the GWAS carried out on an African cohort- APCDR - shows an extremely low correlation in effect size estimates with UKBB (correlationcoefficient = 0.087). This cohort has by far the smallest sample size of all the cohorts we analyzed(n = 4,778), which may explain the low correlation. We also observe higher correlations whenfiltering for significantly associated SNPs using either of the two SNP significance thresholds(P < 1e−5 and P < 5e−8) from the 1703 LD blocks.The sample size of the GWAS might also affect the correlation in effect size estimates. Wecan see in Figure 24 that there is a positive relationship between the log10 of the number ofsamples included in the non-UKBB GWAS and the Pearson correlation coefficients between theestimated effects in the non-UKBB GWAS and those estimated in the UKBB GWAS (which hasthe largest sample size). We note, however, that the slope of a linear regression between thesevariables is only significantly different from zero when ascertaining SNPs in the non-UKBB study,and filtering for SNPs with P < 1e−5.Most of our results stem from using LD block partitions derived from a European panel ofthe 1000 Genomes Project (Berisa and Pickrell, 2016; The 1000 Genomes Project Consortium,2012). To investigate the sensitivity of our results to the choice of LD blocks (particularly whenquerying non-European GWASs), we also show results under an LD blocking scheme obtainedfrom a population panel that was close to the GWAS from which we obtained effect size esti-mates (Berisa and Pickrell, 2016). For BBJ and ChineseNIPT, we use a set of 1,445 LD blocks con-structed using LD patterns in the East Asian panels of the 1000 Genomes Project. For APCDR,we use a set of 2,582 LD blocks constructed using LD patterns in the African panels of the 1000Genomes Project (Table 12). In the case of PAGE, we do not have a Latin-American-specific LDblock partitioning scheme. However, when we use European LD blocks, we can detect a signifi-cant residual population structure pattern in PAGE, but this pattern is no longer significant whenwe use African LD blocks (Figure 25), so we show PAGE results using African LD blocks in Table12-
Evidence for population stratification.

Berg, Harpak, et al., 2019 looked for latent population stratification by studying the relationbetween allele frequency differences in two populations and the difference in effect size esti-mates in two GWAS. Presumably, if neither GWAS is affected by population stratification, thereshould not be a correlation between these two variables. We plotted SNP differences in allelefrequency between northern European and East Asian, African, and southern European samples(GBR, CHB, LWK and TSI subsets of 1000Genomes, respectively) against the difference in heighteffect size between a pair of GWAS. When comparing the UKBB and GIANT, we replicate thesignal of correlation in differences between northern and southern European from Berg, Harpak,et al., 2019 (P < 1e−5, see Figure 26). This pattern is also observed in the GBR vs. CHB andGBR vs. LWK comparisons (Figures 27 and 28, panel A and B). However, these differences arenot observed for any other pairwise GWAS comparisons (Figures 26, 29, 30 and 31). We can seeSNPs with large effect size differences tend to be low-frequency SNPs, as the standard error ofthe effect size estimate for a SNP in a GWAS is a function of the SNP’s expected heterozygosity(Holland et al., 2016).We also followed Sohail et al., 2019’s approach to look for GWAS stratification along differentPCA axes of population structure. We first performed a PCA on a matrix of genotypes fromall 1000 Genomes Project individuals. Then, we computed the correlation between the first20 loadings of that PCA and the effect size estimates obtained from the UKBB height GWAS,as well as the correlation between the same PC loadings and the effect size estimates from adifferent (non-UKBB) height GWAS, on the same set of sites (see Methods). We plotted each ofthese PC-specific correlations and colored them by the correlation between the correspondingPC and the allele frequency differences between two population panels: GBR vs. TSI (Figure5); and GBR vs. CHB (Figure 32). This allows us to compare patterns of stratification betweentwo GWASs (UKBB and non-UKBB) along particular axes of genetic variation. We observe largecorrelations between axes of population structure and effect size estimates in GIANT and PAGE,
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and to a lesser degree in FINRISK, but not in the other GWAS we queried. Overall, this suggestsGIANT and PAGE might be more strongly confounded by stratification than the other GWASsunder study.

Figure 5 – Pearson correlations between 20 PC loadings and height effect size estimatesfrom a non-UKBB GWASs, compared to the same correlation using effect size estimatesfrom the UKBB GWAS, for different choices of non-UKBB GWAS. The correlations werecomputed using SNPs that are present in both the UKBB and non-UKBB GWAS cohorts,and in the 1000 Genomes Project. The barplots are coloured by the correlation betweeneach loading and the allele frequency difference between GBR and TSI. A) GIANT vs.UKBB. B) BBJ vs. UKBB. C) Chinese NIPT vs. UKBB. D) PAGE vs. UKBB. E) FINRISK vs.UKBB. F) APCDR vs. UKBB.

Assessing different association methods.
We find strong differences in the amount of polygenic score overdispersion across GWASs,but the GWASs we assessed were carried out using different association methods. We wantedto evaluate the effect of different associationmethods on the overdispersion of polygenic scores,while using the same underlying association cohort. We chose the UKBB cohort for this assess-ment, as it is the largest cohort among the ones we tested. We first split the UKBB cohort intothree increasingly more expansive sets: 1) "British", 2) "White", and 3) "all ethnicities", based on aself-identified ethnicity classification carried out by the UKBB consortium. We then performedlinear model (LM) and linear mixed model (LMM) association methods on each of the three setsof individuals (Table 2, see Methods). We also wanted to see if we could replicate the strongoverdispersion in polygenic scores we saw in GIANT, by partitioning the entire UKBB cohort into75 cohorts (approximately emulating the number of cohorts in GIANT), and then performing ameta-analysis on the summary statistics obtained from individual GWASs performed separatelyon each of these cohorts (Table 2, see Methods).
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The population-wide polygenic scores and the QX scores obtained using effect size esti-mates from each of these different methods are in Figures 6 and 7, respectively. We have morepower to detect height-associated SNPs when we used the mixed model, and the distributionof polygenic scores differs quite markedly between the linear model and the mixed model ap-proaches. For example, African polygenic scores tend to be higher when using the mixed modelapproach. Regardless of whether one uses a linear or a mixed model, GWASs performed on amore expansive category of people ("all-ethnicities") lead to increased overdispersion of poly-genic scores than when using more restrictive categories ("British" or "White"). Additionally, ourartificial meta-analysis on the UKBB data resulted in even stronger overdispersion of the scoresand, consequently, an even more strongly inflated QX statistic, regardless of the set used. How-ever, polygenic scores dispersion is slightly attenuated when we use the "British" set. The mostextreme QX -derived P-values across settings were those from the meta-analyses in the "all eth-nicities" set (Figure 33). This increased overdispersion is particularly evident when looking atthe scores of European (FIN, CEU, GBR) and Latin American (PEL, CLM, MXL) populations inthe meta-analysis setting (Figure 6). The choice of method for PC correction against populationstratification does not lead to notably different results (Figure 34).
The case of educational attainment.

Previous studies have also found evidence for strong score overdispersion in variants associ-ated with educational attainment (Racimo et al., 2018; Uricchio et al., 2019) - a trait consisting inthe number of school years an individual has received. This trait has received considerable atten-tion in both the media and the scientific literature, due to its potential for misappropriation andmisuse by far-right groups (Harmon, 2018; Novembre and Nicholas H Barton, 2018). Thoughassociated variants have been shown to be disproportionally located in genes involved in braindevelopment, this trait is also highly affected by the environment (Lee et al., 2018; Okbay etal., 2016), and potentially likely to be confounded by unaccounted factors, such as cultural andsocioeconomic background, and parental salary and education. Like height, the genetic valueof this trait has also been shown to be significantly similar among spouses, due to assortativemating (Abdellaoui et al., 2015; Hugh-Jones et al., 2016; MR Robinson, Kleinman, et al., 2017;Yengo et al., 2018), which could, in turn, affect the interpretation of population genetic tests thatassume individuals are not segregating on the basis of trait preferences. The robustness of pre-viously reported signals of overdispersion thus warrants some attention, and we therefore setout to assess how consistent patterns of overdispersion were across available GWAS cohorts.Though educational attainment is only available in one of the cohorts we had access to(UKBB), there are also 3 publicly available GWAS on this trait that were carried out in individu-als of European ancestry by the SSGAC consortium: Lee et al. (2018), Okbay et al. (2016), andRietveld et al. (2013). The SSGAC consortium used increasingly larger meta-analyses to test forgenetic associations with this trait (Lee et al., 2018 included both the Okbay et al., 2016 cohortsand the UK Biobank cohort in its meta-analysis). To be able to replicate the results of Racimo etal., 2018, we also computed polygenic scores on the Okbay et al., 2016 GWAS estimates usingthe posterior-probability approach (PPA) used in that study, and compared them to the P-valueapproach used throughout this manuscript.As with height, we find strong inconsistencies in patterns of score dispersion, depending onthe P-value cutoff used to include SNPs in the polygenic score, and on which cohort we usefor deriving effect size estimates (Figure 8 and Table 5). For example, when using genome-widesignificant SNPs to build scores, the strongest pattern of overdispersion is found when utiliz-ing estimates from Okbay et al., 2016 with the PPA method (QX -derived P = 0.0037). Whenincluding SNPs into the score via the more lenient SNP association P-value cutoff (1e−5), thestrongest pattern of ovedispersion is found when using estimates from Lee et al., 2018 (QX -derived P = 1.397e−5). Importantly though, the patterns of dispersion are different under thesetwo conditions: European polygenic scores are highest in the latter, but East Asian scores arehighest in the former. The UKBB score pattern when using genome-wide significant SNPs resem-bles the Okbay et al., 2016 pattern (as noted in Racimo et al., 2018) but is very different from theLee et al., 2018 pattern, and is also different from scores derived from the same (UKBB) cohort
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Figure 6 – Polygenic scores for height in each of the 1000 Genomes population pan-els, using effect size estimates from UKBB, obtained via different types of associationmethods. The types of GWAS methods used are described in Table 2. Error bars denote
95% credible intervals, constructed using the method in Sohail et al., 2019, assuming thatthe posterior distribution of the underlying population allele frequency is independentacross populations and SNPs.

under the more lenient association P-value scheme. Even though evidence for population strat-ification is weaker in these meta-analyses than in the height GWAS meta- and mega-analyses(Figure 35), the axes of stratification still differ across studies, which might help to explain thedifferences in score distributions.
Discussion

When looking at patterns of polygenic score overdispersion across populations, we observehighly inconsistent signals depending on the GWAS cohort from which we obtained effect sizeestimates. Because we are using the exact same population panels to obtain population allelefrequencies in all tests, the source of the inconsistencies must necessarily come from differences
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Figure 7 –QX statistics and P-values for the trait height, obtained by using different typesof association methods on the UKBB data. The asterisk denotes a significance cutoff for
QX of P < 0.05. "-log10(Chi squared P)" = -log10(P), obtained assuming a chi-squareddistribution for the QX statistic. "-log10(randomized P)" = -log10(P-value), obtained us-ing the effect sign-randomization scheme. All other P-values were obtained by samplingrandom SNPs from the genome using the allele frequency matching scheme in differentpopulations, as described in theMethods section. The different types of GWASmethodsalong the y-axis are described in Table 2.

Table 5 – Educational attainment QX scores, assuming a chi-squared distribution for thescores. The number of trait-associated SNPs used to compute the scores are shown forboth SNP P-value cutoffs.
Lenient association threshold (P < 1e−5) Strict association threshold (P < 5e−8)GWAS cohort Num. trait associated SNPs QX Num. trait associated SNPs QXUKBB 746 40.087 (P = 0.038) 246 42.859 (P = 0.02)Leeetal.2018 907 67.761 (P = 1.4e-5) 416 51.62 (P = 0.002)Okbayetal.2016 319 36.814 (P = 0.08) 74 35.175 (P = 0.1)Rietveldetal.2013 54 35.444 (P = 0.102) 4 29.005 (P = 0.311)

in the effect size estimates in the different GWAS, or be due to different SNPs passing the sig-nificance threshold in different GWAS. These inconsistencies are not limited to tests involvingheight-associated SNPs: they also appear in tests involving SNPs associated with other pheno-types, like white blood cell count, mean corpuscular hemoglobin, potassium levels in urine, andeducational attainment.
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Figure 8 – Polygenic scores for educational attainment in each of the 1000Genomes pop-ulation panels, using effect size estimates from three SSGAC consortium GWAS studies(Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013) and the UKBB Neale lab effectsize estimates (round 2: http://www.nealelab.is/uk-biobank/). A. Polygenic scoresfor variants with P < 1e−5. B. Polygenic scores for variants with P < 5e−8. C. Variantsselection using a posterior-probability approach (PPA) on the Okbay et al., 2016 sum-mary statistics, emulating Racimo et al., 2018. Error bars denote 95% credible intervals,constructed using the method in Sohail et al., 2019, assuming that the posterior distri-bution of the underlying population allele frequency is independent across populationsand SNPs.

For those phenotypes for which we have effect size estimates from more than two differentsources, we find that the GWASs performed using multiple cohorts of diverse ancestries - GI-ANT and PAGE - show stronger overdispersion in genetic scores via theQX statistic and strongerevidence of population stratification (Figures 4 and 5). In biobank-based GWAS conducted usingpanels with relatively homogeneous ancestries, the signals of selection are generally (but not al-ways) more attenuated, and signals of stratification are much weaker. This suggests differencesin scores are perhaps not driven by a biological signal and are instead driven by population strat-ification in GIANT and/or PAGE. An alternative explanation is that the overdispersion in PAGE
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or GIANT-derived scores is truly biological, and perhaps the GWAS performed in more homoge-neous biobank studies are overcorrecting for population stratification, increasing the false neg-ative rate of the QX statistic. Moreover, our power to find signals of polygenic adaptation mightstem from SNPs with large contributions to phenotypic variance in non-European populations(e.g. African populations) and thus we might only be able to see these signals when we includeindividuals of African ancestry in a GWAS, as is done in PAGE.Though plausible, alternative explanations seem less likely than stratification, but we cannotdiscard them at the moment, at least until a more extensive simulation study can allow us tocompare these scenarios and their resulting score dispersion patterns. Another possible causefor these inconsistencies could be differences in the number of SNPs or individuals included ineach GWAS, leading to differences in power to detect score overdispersion on trait-associatedvariants. Indeed, in some of the smaller cohorts (FINRISK and APCDR) we observe little to noevidence for strong deviations from neutrality in the distribution of genetic scores across popu-lations.We find that the type of test performed to obtain QX P-values does not yield strong differ-ences in such P-values, at least not of the magnitude observed when using effect size estimatesfrom different GWAS cohorts. Those phenotypes and GWAS cohorts for which we find signifi-cant overdispersion via the chi-squared distributional assumption for the QX statistic also tendto be the ones for which we find significant overdispersion when not relying on it. This suggeststhat this assumption - while not entirely accurate (Berg and Coop, 2014) - is still reasonably valid,across all the phenotypes we looked at, assuming the effect size estimates are not affected bystratification.We were able to replicate the finding by Berg, Harpak, et al. (2019): there is a significantrelationship between the differences in allele frequencies between GBR and other worldwidepopulations and the differences in effect size estimates between UKBB and GIANT. We notethat a similar relationship was found by Uricchio et al. (2019), who showed an increase in themagnitude of allele frequency differences between GBR and TSI when ordering SNPs by theirP-value in GIANT - an increase not observed when ordering them by their P-value in UKBB.We note, however, that this relationship is relatively absent in comparisons of UKBB and otherGWAS, again suggesting that population stratification in GIANT, rather than over-correction ofeffect size estimates in UKBB, may be the culprit. In any case, Haworth et al. (2019), Novembreand Nicholas H Barton (2018), Coop (2019) and Rosenberg, Edge, et al. (2019) encourage cau-tion about the interpretation of signals of polygenic adaptation due to the presence of residualstratification even in GWAS panels with no clear evidence for stratification, as these signals maybe subtle enough to escape notice, yet still affect this type of tests.Furthermore, when we performed an artificial meta-analysis on the UKBB data, emulatingthe methodology of GIANT, we observed more dispersion of polygenic scores among popula-tions than when using a single GWAS cohort, echoing findings by Kerminen et al. (2019) at amore localized geographic scale. As we previously observed in the vanilla (single-cohort) UKBBanalysis, the less homogeneous the ancestries of the individuals in the cohort (“all ethnicities” vs.“white British”), themore dispersion is observed, which in turn causes amore inflatedQX statistic.Nevertheless, both meta-analyses (“all ethnicities” and “white British”) show higher QX statisticsthan their single-cohort counterparts, regardless of the meta-analysis method deployed. This isalso observed regardless of whether one uses cohort-specific PCs to correct for stratification inthe meta-analysis or global PCs from a PCA including all individuals. Overall, this adds weightto the hypothesis that a failure of GWAS meta-analyses to control for population stratificationmay affect polygenic score tests against a neutral null hypothesis. We note that several of thecomponent GWAS amalgamated in GIANT were not corrected via PCA or other standard meth-ods of correction in common use today (Wood et al., 2014), so it is likely that we are beingover-conservative in our simulations.It is important to keep in mind that each particular GWAS used imposes strong conditionson the set of SNPs that are included in the QX analysis. We expect SNPs associated with aphenotype in a given cohort to explain more variance in the population from which that cohortwas obtained than in other populations, simply because the significant SNPs need to have high
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enough allele frequencies in the study cohort for them to be recovered in the first place. It isunclear how this will affect false positive and false negative rates of tests of score overdispersionperformed in different cohorts. For example, if we see a score overdispersion signal when usinga GWAS from cohort 1 but not when using a GWAS from cohort 2, this could be due to a truepositive and a lack of power in cohort 2, or due to an artefact caused by cohort 1. It is alsopossible that, if negative selection acts on some of the trait-related variation, it might affectstatistical power by constraining large-effect alleles to be kept at lower frequencies, thus makinglarge-effect alleles more population-specific.Ultimately, the set of SNPs used in each analysis and their influence on the score dependson a complex combination of factors including allele frequencies, linkage disequilibrium withcausal variants, statistical power for detection and effect size inflation due to the winner’s curse,together with the underlying evolutionary genetic process that "generates" the observed data.While modeling the individual effect of each of these factors on the inflation of the QX statisticis beyond the scope of this study, we note that all of these factors may be influencing the dif-ferences we observe among score sets. Indeed, when controlling for the set of SNPs included inthe score, we see an attenuation of differences between scores (Figures 16 and 17).In future studies of polygenic adaptation, we recommend the use of large homogeneous datasets and the verification of signals of polygenic score overdispersion in multiple GWAS cohorts(e.g. M Chen et al. (2019)). We also recommend caution even when finding that statistics testingagainst neutrality are significant in multiple GWAS cohorts: it is still possible that all the GWAScohorts may be affected by subtle stratification or other confounding issues, possibly affectingdifferent axes of population structure in differentways. To try to avoid stratification issues, recentstudies have proposed to look for evidence for polygenic adaptation within the same panel thatwas used to obtain SNP effect size estimates, i.e. avoiding comparisons between populations thatmight be made up of individuals outside of the GWAS used to obtain effect size estimates (e.g. XLiu et al. (2018)). The argument favored by these studies is that, by ensuring that the populationon which the GWAS was performed and from which allele frequencies are obtained matchesexactly, one need not be confounded by differences in estimates between these populations (forexample, due to gene-by-environment interactions). However, Mostafavi et al. (2020) recentlyshowed that the accuracy of polygenic scores often depends on the age and sex compositionof the GWAS study participants, even when studying individuals of roughly similar ancestrieswithin a single cohort, due to heritability differences along these axes of variation. This impliesthat ancestry-based stratification is not the only confounder that researchers should be awareof when trying to detect polygenic adaptation.Approaches based on tree sequence reconstructions along the genome (Hubisz and Siepel,2020; Kelleher et al., 2016; Rasmussen et al., 2014; Speidel et al., 2019) appear to be a fruitfulavenue of research towards the development of methods that can properly control for some ofthese confounders. Thesemethods canmodel local genealogical relationships among individuals,which can in turn serve to track the segregation of trait-associated alleles backwards in time. Forexample, Stern et al. (2021) recently showed that a method for detecting polygenic adaptationbased on tree sequences is highly robust to GWAS stratification, ascertainment bias in SNPeffects and negative selection, among other potential confounders. They were also able to showthat the signal of polygenic adaptation previously found at educational attainment-associatedvariants may be due to indirect selection on other, correlated, traits.Overall, we generally urge caution in the interpretation of signals of polygenic score overdis-persion based on human GWAS data, at least until we have robust generative models that canexplain how stratification is creeping into these tests (Young et al., 2019). This is especially im-portant when working with socially-charged traits like educational attainment, which are rifefor misuse and misinterpretation, and potentially affected by unaccounted socioeconomic andcultural confounding factors. Due to the high risk of misappropriation of this type of results byhate groups (Harmon, 2018), we also recommend that researchers make an effort to explain thecaveats and problems associated with these tests in their publications (Coop, 2019; Novembreand Nicholas H Barton, 2018; Rosenberg, Edge, et al., 2019), as well as the strong sensitivity oftheir performance to the input datasets that we choose to feed into them.
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Supplementary Figures.

Figure 9 – A. Distribution of effect size estimates (with respect to the derived allele) forapproximately independent height-associated SNPswith P <1e−5. B. Distribution of theproduct of the effect size estimates and the square root of the sample size of the studyfrom which they were obtained, for the same set of SNPs as in panel A.
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Figure 10 – Evidence for polygenic score overdispersion on trait-associated SNPs(−log10(P-value)), using the QX test statistic. Each row in the heatmap corresponds to aspecific GWAS cohort and a specific type of scheme to determine the significance of the
QX statistic. The columns correspond to the different traits for each GWAS cohort thathave SNPs with a P-value lower than 1e−5. "Freq-matched P-value" = P-value obtainedby sampling SNPs with matching frequencies to the trait-associated SNPs in a particu-lar cohort. "Sign-randomized P-value" = P-value obtained by randomizing the signs ofthe effect size estimates. "Chi-squared P-value" = P-value obtained by assuming the QXstatistics has a chi-squared distribution.
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Figure 11 – Evidence for polygenic score overdispersion on trait-associated SNPs(−log10(P-value)), using the QX test statistic. Each row in the heatmap corresponds to aspecific GWAS cohort and a specific type of scheme to determine the significance of the
QX statistic. The columns correspond to the different traits for each GWAS cohort thathave SNPs with a P-value lower than 5e−8. "Freq-matched P-value" = P-value obtainedby sampling SNPs with matching frequencies to the trait-associated SNPs in a particu-lar cohort. "Sign-randomized P-value" = P-value obtained by randomizing the signs ofthe effect size estimates. "Chi-squared P-value" = P-value obtained by assuming the QXstatistics has a chi-squared distribution.
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Figure 12 – Number of significant SNPs used to compute the QX statistics for each cellof Figure 2. P < 1e−5.

Figure 13 – Number of significant SNPs for each trait in each GWAS with P < 5e−8.

Alba Refoyo-Martínez et al. 25

Peer Community Journal, Vol. 1 (2021), article e22 https://doi.org/10.24072/pcjournal.35

https://doi.org/10.24072/pcjournal.35


Figure 14 – Evidence for polygenic score overdispersion on trait-associated SNPs(−log10(P-value)), using the QX test statistic. Each row in the heatmap corresponds toone of the six GWAS cohorts we are evaluating and the columns correspond to the dif-ferent traits for each GWAS cohort that have SNPs with a P-value lower than 5e−8. BMI,bodymass index; DBP, Diastolic blood pressure; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MCH, mean corpuscular hemoglobin;MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume;RBC, red blood cell count; SBP, systolic blood pressure; WBC, white blood cell count;WHR, waist-to-hip ratio. Significance thresholds after Bonferroni corrections: *** de-notes P < 0.05/m, ** denotes P < 0.05/n, * denotes P < 0.05 where n is the numberof traits measured in each GWAS (row-dependent) and m is the total number of testscalculated, across all GWAS.
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Figure 15 – Polygenic scores for height using candidate SNPs with P < 5e−8 in 1000Genome populations colored by their super-population code. The corresponding numberof trait-associated SNPs and the QX P-value for each GWAS are shown in the bottomrow of Table 3. Error bars denote 95% credible intervals, constructed using the method inSohail et al., 2019, assuming that the posterior distribution of the underlying populationallele frequency is independent across populations and SNPs.
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Figure 16 – Polygenic scores for height 1000Genome populations colored by their super-population code. Candidate SNPs were ascertained in the UKBB using the cutoff of P <
1e−5. Error bars denote 95% credible intervals, constructed using the method in Sohailet al., 2019, assuming that the posterior distribution of the underlying population allelefrequency is independent across populations and SNPs.
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Figure 17 – Polygenic scores for height 1000Genome populations colored by their super-population code. Candidate SNPs were ascertained in the UKBB using the cutoff of P <
5e−8. Error bars denote 95% credible intervals, constructed using the method in Sohailet al., 2019, assuming that the posterior distribution of the underlying population allelefrequency is independent across populations and SNPs.
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Figure 18 – Polygenic scores for white blood cell counts using candidate SNPs with A.
P < 1e−5 and B. P < 5e−8 in the 1000 Genomes Project populations colored by theirsuper-population code. Error bars denote 95% credible intervals, constructed using themethod in Sohail et al., 2019, assuming that the posterior distribution of the underlyingpopulation allele frequency is independent across populations and SNPs.

Figure 19 – Polygenic scores for mean corpuscular hemoglobin using candidate SNPswith A. P < 1e−5 and B. P < 5e−8 in 1000 Genome populations colored by theirsuper-population code. X trait-associated SNPs. Error bars denote 95% credible intervals,constructed using the method in Sohail et al., 2019, assuming that the posterior distri-bution of the underlying population allele frequency is independent across populationsand SNPs.
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Figure 20 – Polygenic scores for potassium level using candidate SNPs with A. P < 1e−5and B. P < 5e−8 in 1000 Genome populations colored by their super-population code.Error bars denote 95% credible intervals, constructed using the method in Sohail et al.,2019, assuming that the posterior distribution of the underlying population allele fre-quency is independent across populations and SNPs.
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Figure 21 – Regression of UKBB height effect size estimates against non-UKBB heighteffect size estimates, after filtering for SNPs with P < 1e−5 in the non-UKBB GWAS.The SNPs are colored based on their P-value in the UKBB, as are the correspondingregression lines (red: P < 1e−5; blue: P > 1e−5). The black regression line was obtainedusing all SNPs, regardless of their P-value in the UKBB GWAS.
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Figure 22 – Regression of non-UKBB height effect size estimates against UKBB heighteffect size estimates, after filtering for the SNPs with the lowest UKBB P-values in 1,703approximately-independent LD blocks. The SNPs are colored based on their P-value inthe non-UKBB GWAS, as are the corresponding regression lines (red: P < 1e−5; blue:
P > 1e−5). The black regression line was obtained using all SNPs, regardless of theirP-value in the non-UKBB GWAS.
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Figure 23 – Regression of UKBB height effect size estimates against non-UKBB heighteffect size estimates, after filtering for the SNPs with the lowest non-UKBB P-valuesin 1,703 approximately-independent LD blocks. The SNPs are colored based on theirP-value in the UKBB GWAS, as are the corresponding regression lines (red: P < 1e−5;blue: P > 1e−5). The black regression line was obtained using all SNPs, regardless oftheir P-value in the UKBB GWAS.
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Figure 24–Correlation between the number of individuals in aGWAS and the correlationof effect size estimates between two different GWAS. In all panels, we compare UKBBagainst one of the other studies. A and B. Coefficients obtained when we include theSNPs from the 1,703 LD blocks. C and D. Coefficients obtained when we filter out thoseSNPs with a P-value above the threshold (P > 1e−5).
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Figure 25 – Regression of effect size estimates obtained from PAGE and APCDR. In thetop panels (A and B), we used European LD blocks and in the lower panels (C and D)we used African LD blocks. In the left panel (A and C) we ascertained significant SNPsbased on their P-values in the PAGE GWAS (P < 1e−5). In the right panel (B and D), weascertained significant SNPs based on their P-values in the APCDR GWAS (P < 1e−5).The SNPs are colored based on their P-value in the non-ascertained GWAS, as are thecorresponding regression lines (red: P < 1e−5; blue: P > 1e−5). The black regression linewas obtained using all SNPs, regardless of their P-value in the non-ascertained GWAS.
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Figure 26 – Regression of GWAS height effect size differences against allele frequencydifferences between northern and southern European population panels (GBR and TSI).We selected SNPs for this analysis that had P< 1e−5. SNPs are colored by their expectedheterozygosity (2p(1-p)) in the GBR population.
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Figure 27 – Each panel in this figure shows the same regressions as Figure 26, exceptthat the difference in allele frequency is between a European andAsian population panels(GBR and CHB). SNPs are colored by their expected heterozygosity (2p(1-p)) in the GBRpopulation.
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Figure 28 – Each panel in this figure shows the same regressions as Figure 26, exceptthat the difference in allele frequency is between the European and African populationspanels (GBR and LWK).SNPs are colored by their expected heterozygosity (2p(1-p)) inthe GBR population.
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Figure 29 – Regression of GWAS height effect size differences against allele frequencydifferences between the northern and southern European populations (GBR and TSI).A,B. We selected SNPs for this analysis that had P < 1e−5. SNPs are colored by theirexpected heterozygosity (2p(1-p)) in the GBR population.
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Figure 30 – Each panel in this figure shows the same regressions as Figure 29, exceptthat the difference in allele frequency is between the European and Asian populationpanels (GBR and CHB). SNPs are colored by their expected heterozygosity (2p(1-p)) inthe GBR population.
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Figure 31 – Each panel in this figure shows the same regressions as Figure 29, exceptthat the difference in allele frequency is between the European and African populationpanels (GBR and LWK). SNPs are colored by their expected heterozygosity (2p(1-p)) inthe GBR population.
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Figure 32 –Pearson correlations between 20PC loadings and height effect size estimatesfrom a non-UKBB GWASs, compared to the same correlation using effect size estimatesfrom the UKBB GWAS, for different choices of non-UKBB GWAS. The correlations werecomputed using SNPs that are present in both the UKBB and non-UKBB GWAS cohorts,and in the 1000 Genomes Project. The barplots are coloured by the correlation betweeneach loading and the allele frequency difference between GBR and CHB. A) GIANT vs.UKBB. B) BBJ vs. UKBB. C) Chinese NIPT vs. UKBB. D) PAGE vs. UKBB. E) FINRISK vs.UKBB. F) APCDR vs. UKBB.
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Figure 33 – QX statistics and P-values for the trait height, obtained by using differenttypes of meta-analysis methods on the UKBB data (inverse variance and sample sizebased) and two PCA correction approaches (global vs. per-GWAS). The meta-analyseswere performed in "all ethnicities" as well as "White-British" set of individuals. Theasterisk denotes a significance cutoff for QX of P < 0.05. "-log10(Chi squared P)"= -log10(P-value), obtained assuming a chi-squared distribution for the QX statistic. "-log10(randomized P)" = -log10(P-value), obtained using the effect sign-randomizationscheme. All other P-values were obtained by sampling random SNPs from the genomeusing the allele frequency matching scheme in different populations, as described in theMethods section.
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Figure 34 – Polygenic scores for height in each of the 1000 Genomes population pan-els, using effect size estimates from UKBB, obtained via different types of meta-analysismethods (inverse variance and sample size based) and two PCA correction approaches(global vs. per-GWAS). The meta-analyses were performed in the "all ethnicities" as wellas in the "White-British" set of UKBB individuals. Error bars denote 95% credible intervals,constructed using the method in Sohail et al., 2019, assuming that the posterior distri-bution of the underlying population allele frequency is independent across populationsand SNPs.
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Figure 35 – Pearson correlations between 20 PC loadings and educational attainment ef-fect size estimates from a non-UKBB GWAS, compared to the same correlation using ef-fect size estimates from the UKBB GWAS, for different choices of the non-UKBB GWAS.The correlations were computed using SNPs that are present in both the UKBB and non-UKBB GWAS cohorts, and in the 1000 Genomes Project. The barplots are coloured bythe correlation between each loading and the allele frequency difference between GBRand TSI. A) Lee et al. 2016 vs. UKBB. B) Rietveld et al. 2018 vs. UKBB. C) Okbay et al.2016 vs. UKBB.
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Supplementary Tables.

Table 6 – Full population descriptions of 1000 Genomes Project panels used in our analysis.
Population code Description Super populationCHB Han Chinese in Beijing, China EASJPT Japanese in Tokyo, Japan EASCHB Southern Han Chinese EASCDX Chinese Dai in Xishuangbanna, China EASKHV Kinh in Ho Chi Minh City, Vietnam EAS
CEU Utah Residents with Northern andWestern European Ancestries EUR
TSI Toscani in Italia EURFIN Finnish in Finland EURGBR British in England and Scotland EURIBS Iberian Population in Spain EURYRI Yoruba in Ibadan, Nigeria AFRLWK Luhya in Webuye, Kenya AFRGWD Gambian in Western Divisions in the Gambia AFRMSL Mende in Sierra Leone AFRESN Esan in Nigeria AFRASW Americans of African Ancestry in SW USA AFRACB African Caribbeans in Barbados AFRMXL Mexican Ancestry from Los Angeles USA AMRPUR Puerto Ricans from,Puerto Rico AMRCLM Colombians from Medellin, Colombia AMRPEL Peruvians from Lima, Peru AMRGIB Gujarati Indian from Houston, Texas SASPJL Punjabi from Lahore, Pakistan SASBEB Bengali from Bangladesh SASSTU Sri Lankan Tamil from the UK SASITU Indian Telugu from the UK SAS
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Table 7 – Full list of all traits tested and the total number of individuals (N) is shown forthe GWAS in which this data was available. For GWAS summary statistics with variableN across positions, we list the maximum N for that study.
Traits UKBB BBJ FINRISK PAGE APCDR ChineseNIPT GIANT
Anthropometric BMI 359,983 158,284 24,722 49,335 - 60,652 231,410Height 360,388 159,095 24,725 49,781 4,778 61,321 253,288Waist circumference 360,564 - - 33,942 - - -Waist hip ratio(WHR) - - 24,671 33,904 - - -
Blood pressure diastolic blood pressure(DBP) 340,162 136,615 21,588 35,433 - - -

Systolic blood pressure(SBP) 340,159 136,597 21,591 35,433 - - -
Inflammatory Platelet 361,141 108,208 6,404 29,328 - - -Monocyte 349,856 62,076 - - - - -C-reactive protein(CRP) - 75,391 16,529 28,537 - - -

Hemoglobin (HbA1c) 350,474 42,790 - 11,178 - - -Mean corpuscular hemoglobinconcentration (MCHC) 350,468 108,728 - 19,803 - - -
Mean corpuscular hemoglobin(MCH) 350,472 108,054 - - - - -
Mean corpuscular volume(MCV) 350,473 108,256 - - - - -
Basophil count 349,856 62,076 - - - - -Hematocrit count 350,475 108,757 - - - - -White blood cell count(WBC) 350,470 107,964 - 28,534 - - -
Red blood cell count(RBC) 350,475 108,794 - - - - -
Lymphocyte count 349,856 62,076 - - - - -Monocyte count 349,856 62,076 - - - - -Neutrophil count 349,856 62,076 - - - - -Kidney-related Creatinine 350,812 142,097 6,376 - - - -Liver-related Billirubin - 110,207 - - 4,778 - -Metabolic Cholesterol 361,141 128,305 - 4,778 - -High density lipoprotein(HDL) - 70,657 21,620 33,063 4,778 - -
Low density lipoprotein(LDL) - 72,866 21,250 32,221 4,778 - -
Triglycerides - 105,597 21,619 33,096 4,778 - -Glucose - 93,146 4,418 23,923 - - -Electrolits Potassium 350,053 132,938 - - - - -Sodium 350,061 127,304 - - - - -Lifestyle Cigarettes per day 25,348 - - 15,862 - - -
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Table 8 – Pairwise Fst computed using SNPs present in PAGE, to estimate populationdifferentiation between PAGE and each of the 1000 Genomes Project panels.
Population panel Super-population Fst against PAGEPUR AMR 0.013CLM AMR 0.017MXL AMR 0.023ASW AFR 0.026PJL SAS 0.029BEB SAS 0.03GIH SAS 0.033ITU SAS 0.033STU SAS 0.033IBS EUR 0.034TSI EUR 0.035CEU EUR 0.036FIN EUR 0.036GBR EUR 0.036ACB AFR 0.045PEL AMR 0.054LWK AFR 0.058CHB EAS 0.062JPT EAS 0.062KHV EAS 0.062GWD AFR 0.063CHS EAS 0.064YRI AFR 0.064ESN AFR 0.065MSL AFR 0.065CDX EAS 0.066

Table 9 – SNP-based heritability and LD Score regression ratio and intercept estimates(with standard errors in parentheses) for height measured in different cohorts. LD scoreswere computed using the closest population in the 1000Genomes Project to eachGWAScohort (meta-analyses of multiple populations were not included here, but see Table 4).The APCDR heritability estimate is not shown because it was estimated to be negative,due to the small sample size of the cohort. For Chinese NIPT GWAS, we filtered out allthe sites with INFO scores less than 0.4.
GWAS cohort Genome-wide significantSNPs (P < 5e−8) Observed scaleheritability (SE) LD regressionratio (SE) LD regressionintercept (SE) Population
UKBB 30891 0.3911 (0.0211) 0.1887 (0.0099) 1.7056 (0.0371) GBRBBJ 9976 0.4168 (0.019) 0.1142 (0.0128) 1.1829 (0.0204) JPTChinese NIPT 1573 0.2594 (0.0298) 0.2878 (0.0452) 1.1641 (0.0257) CHBFINRISK 415 0.4042 (0.0401) 0.3609 (0.0389) 1.1305 (0.0141) FINAPCDR 0 NA 14.8323 (9.7253) 1.0156 (0.0102) LWK

Table 10 – Pairwise Pearson correlation coefficient between height effect size estimatesfrom the UKBB GWAS and from another GWAS. The SNPs used were determined basedon their P-value in the UKBB. n = number of SNPs used to compute the correlation.
GIANT FINRISK PAGE Chinese NIPT BBJ APCDR SNP filtering schemeFiltering basedon UKBBP-values 0.867
(n = 1703)

0.531
(n = 1703)

0.339
(n = 1703)

0.510
(n = 1703)

0.219
(n = 1703)

0.061
(n = 1703)

SNP with lowest P-valuein block0.948
(n = 1059)

0.738
(n = 1124)

0.624
(n = 1139)

0.625
(n = 1064)

0.317
(n = 1097)

0.107
(n = 1100)

SNP with lowest P-valuein block, if P <1e−50.958
(n = 809)

0.790
(n = 870)

0.615
(n = 881)

0.654
(n = 814)

0.359
(n = 783)

0.087
(n = 856)

SNP with lowest P-valuein block, if P <5e−8
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Table 11 – Pairwise Pearson correlation coefficient between height effect size estimatesfrom the UKBB GWAS and from another GWAS. The SNPs used were determine basedon their P-value in the non-UKBB study. n = number of SNPs used to compute the cor-relation.
GIANT FINRISK PAGE Chinese NIPT BBJ APCDR SNP filtering schemeFiltering basedon non-UKBBP-values 0.698
(n = 1703)

0.167
(n = 1703)

0.128
(n = 1703)

0.335
(n = 1703)

0.018
(n = 1703)

0.121
(n = 1703)

SNP with lowest P-valuein block0.931
(n = 738)

0.322
(n = 199)

0.258
(n = 366)

0.687
(n = 157)

0.561
(n = 709)

0.138
(n = 29)

SNP with lowest P-valuein block if P <1e−50.938
(n = 570)

0.334
(n = 136)

0.260
(n = 257)

0.654
(n = 112)

0.732
(n = 412)

0.087
(n = 15)

SNP with lowest P-valuein block if P <5e−8

Table 12 – Height QX scores when using LD blocks derived from closely related pop-ulations. In the case of BBJ and the Chinese biobank, we used the ASN-specific LDblocks. In the case of APCDR, we used the AFR-specific blocks. In the case of PAGE,we used the AFR-specific blocks. The left columns show scores obtained when we useda P < 1e−5 threshold to include SNPs in the polygenic scores. The right columns showscores obtained using the genome-wide significant threshold (P < 5e−8). The numberof trait-associated SNPs used to compute the scores are shown for both cutoffs.
Lenient P-value threshold (1e−5) Strict P-value threshold (5e−8)GWAS cohort Num. trait-associated SNPs Qx Num. trait-associated SNPs QxBBJ 693 9.701 (P = 0.99) 401 36.00 (P = 9e-2)Chinese NIPT 160 13.05 (P = 0.98) 59 26.41 (P = 0.44)PAGE 592 97.23 (P = 4e-10) 94 65.86 (P = 3e-5)APCDR 60 21.15 (P = 0.73) 0 NA
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