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Abstract
One of the goals of population genetics is to understand how evolutionary forces shape
patterns of genetic variation over time. However, because populations evolve across
both time and space, most evolutionary processes also have an important spatial com-
ponent, acting through phenomena such as isolation by distance, local mate choice, or
uneven distribution of resources. This spatial dimension is often neglected, partly due
to the lack of tools specifically designed for building and evaluating complex spatio-
temporal population genetic models. To address this methodological gap, we present
a new framework for simulating spatially-explicit genomic data, implemented in a new
R package called slendr (www.slendr.net), which leverages a SLiM simulation back-end
script bundled with the package. With this framework, the users can programmatically
and visually encode spatial population ranges and their temporal dynamics (i.e., popula-
tion displacements, expansions, and contractions) either on real Earth landscapes or on
abstract custom maps, and schedule splits and gene-flow events between populations
using a straightforward declarative language. Additionally, slendr can simulate data from
traditional, non-spatial models, either with SLiM or using an alternative built-in coales-
cent msprime back end. Together with its R-idiomatic interface to the tskit library for
tree-sequence processing and analysis, slendr opens up the possibility of performing ef-
ficient, reproducible simulations of spatio-temporal genomic data entirely within the R
environment, leveraging its wealth of libraries for geospatial data analysis, statistics, and
visualization. Here, we present the design of the slendr R package and demonstrate its
features on several practical example workflows.
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Introduction 

Most evolutionary processes in nature have a spatial dimension. Indeed, since its beginnings, the field of 
population genetics has aspired to build interpretable models of spatial population dynamics (Guillot et al., 
2009; Barton et al., 2013). These include classic theoretical models such as Fisher’s wave-of-advance model 
(Fisher, 1937), Wright's isolation-by-distance model (Wright, 1943), Kimura’s stepping-stone model (Safner et 
al., 2011; Petkova et al., 2016; Ringbauer et al., 2018; Al-Asadi et al., 2019; Marcus et al., 2021), and Malecot’s 
lattice model (Malécot, 1951; Nagylaki, 1976; Rousset, 1997). The field also has a long history of modeling 
continuous spatial genetic variation (Levene, 1953; Slatkin, 1973; Barton, 1979; Beerli & Felsenstein, 2001; 
McRae, 2006; Duforet-Frebourg & Blum, 2014; Bradburd et al., 2018), inferring spatial covariates associated 
with genetic patterns (Hanks & Hooten, 2013) and detecting spatial barriers to migration (Safner et al., 2011; 
Petkova et al., 2016; Ringbauer et al., 2018; Al-Asadi et al., 2019; Marcus et al., 2021). However, these latter 
efforts are hampered by a lack of good theoretical predictions for continuous, two-dimensional models 
(Felsenstein, 1975; Barton et al., 2002), and simulations can provide a valuable tool in the absence of analytical 
theory. 

The dramatic increase in the number of published whole-genome sequences in the last 20 years (The 1000 
Genomes Project Consortium, 2010; Mallick et al., 2016; Palkopoulou et al., 2018; Feuerborn et al., 2021), and 
the advent of ancient genomics (Green et al., 2010; Rasmussen et al., 2010), have revealed previously unknown 
migration events in the history of several species, such as dogs (Bergström et al., 2020), horses (Librado et al., 
2021), elephantids (Meyer et al., 2017), and humans (Lazaridis et al., 2014; Fu et al., 2016). Since migration of 
populations involves spatial displacement, populations trace their ancestry to different geographic locations 
(Ralph & Coop, 2013; Osmond & Coop, 2021; Wohns et al., 2022). In the context of human history, processes 
including past migration, gene flow, and population turnovers have been shown to have had a major influence 
on the present-day distribution of genomic variation (Pickrell & Reich, 2014; Slatkin & Racimo, 2016). Properly 
anchoring these past demographic events in both time and space has been a focus for new modeling 
approaches (Racimo et al., 2020; Osmond & Coop, 2021; Wohns et al., 2022), and is a question of high interest 
not only in genetics (Bradburd & Ralph, 2019) but also in ecology (Frachetti et al., 2017; Loog et al., 2017; Delser 
et al., 2021; Crabtree et al., 2021). 

Despite the key role of geography in population genetics, tools specifically designed for describing and 
simulating complex spatio-temporal processes are still lacking. Spatial simulations are important not just for 
rigorous testing and evaluation of existing inference tools and facilitating the development of new inference 
methods (Liu et al., 2006; Currat & Excoffier, 2011; Delser et al., 2021; Osmond & Coop, 2021; Wohns et al., 
2022), but also for gaining intuition about the expected behavior of the processes influencing the patterns of 
genetic variation under various scenarios of spatial population dynamics (Felsenstein, 1975; Slatkin & Excoffier, 
2012). While powerful simulation approaches based on coalescent theory have been developed (Hudson, 2002; 
Ewing & Hermisson, 2010; Staab et al., 2015; Kelleher et al., 2016), these have little or no notion of spatiality 
due to fundamental obstacles to incorporating space into the coalescent framework (Barton et al., 2002, 2010, 
2013), although recent algorithmic advances are promising (Kelleher et al., 2014). The first pioneering attempt 
at simulating spatial population genetic data was the software package SPLATCHE (Currat et al., 2004, 2019). 
However, SPLATCHE’s simulation engine is limited to discrete demes based on the stepping-stone model, 
allows simulation of no more than two populations co-existing at a time, and is not suitable for simulating 
sequence data at a whole-genomic scale (Currat et al., 2019). The most advanced simulator with spatial 
capabilities is currently the forward population genetic simulation framework SLiM (Haller & Messer, 2017, 
2019). Highly popular in the population genetics community, SLiM contains a vast library of features for 
simulating individuals in continuous space (as opposed to older approaches based on discrete demes), 
including spatial interactions between individuals, neighborhood-based mate selection, and customisable 
offspring dispersal (Haller & Messer, 2019). Moreover, the recent implementation of tree-sequence recording 
in SLiM has opened up the possibility of efficient simulation of massive genome-scale and population-scale 
datasets (Haller et al., 2019). 
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Despite these advances in population genetic simulations, geospatial data analysis remains a complex field 
with a steep learning curve. Performing even basic manipulations of spatial cartographic objects, handling 
diverse data formats, and transforming data between different projections and coordinate reference systems 
(CRS) requires a non-trivial amount of domain-specific knowledge (Lovelace et al., 2019). Moreover, because 
the technicalities of geospatial computation are generally not within the scope of population genetic software, 
available tools do not provide dedicated functionality for building complex and dynamic spatial population 
models in a straightforward manner. Developing such models and simulating data from them currently requires 
hundreds of lines of custom code, which is error-prone and hinders reproducibility. Additionally, the lack of 
specific frameworks for analyzing and visualizing spatially-explicit genomic data further hinders the 
methodological and empirical progress in spatial population genetics. A flexible and easy-to-use simulation 
framework specifically designed for developing spatio-temporal population models and analyzing spatial 
genomic data would expand the horizons of the field, allowing researchers to evaluate the accuracy of novel 
spatial methods, to test detailed hypotheses about demography and selection, and to answer entirely new 
kinds of questions about the interactions between organisms across space and time. For instance, many 
conceptual models and visualizations of past migration events involve depictions of movements of large 
population ranges across a map as various environmental or cultural conditions change; however, there is 
currently no easy way to simulate these movements and generate realistic spatio-temporal genomic data. 

To address these issues, we have developed a new programming framework, called slendr, designed for 
simulating and analyzing spatially-explicit genomic data (available at www.slendr.net with extensive 
documentation and tutorials). The core component of this framework is an R package which leverages real 
Earth cartographic data (or, alternatively, an abstract user-defined spatial landscape) to programmatically and 
visually encode spatial population boundaries and their temporal dynamics across time and space, including 
expansions, migrations, population splits, and gene flow. Because of the challenges involved in testing and 
validating complex models, slendr encourages an interactive workflow in which each component of the model 
can be inspected and visualized as the model is incrementally constructed in a “bottom-up” fashion. Spatio-
temporal models programmed in slendr can then be executed using a SLiM back-end script which is bundled 
with the package and can be controlled by a dedicated R function without leaving the R environment. 
Additionally, traditional, random-mating, discrete-deme, non-spatial population models can also be simulated, 
either in forward time using the aforementioned SLiM script or using an alternative coalescent msprime 
(Baumdicker et al., 2022) back-end script which is also bundled with the R package and can provide a more 
efficient simulation engine for non-spatial models. Both simulation engines of slendr save genomic outputs in 
the form of an efficient tree-sequence data structure (Kelleher et al., 2018), and the slendr R package provides 
a set of functions for loading and processing tree-sequence output files and computing population statistics on 
them by seamlessly integrating the tskit tree-sequence analysis Python module into its R interface. Additional 
functionality includes conversion of individual trees to a standard R ape phylogenetic format (Paradis & Schliep, 
2019), and automatic transformation of spatial tree-sequence table data to the standardized sf format for 
geospatial data analysis in R (Pebesma, 2018). 

Overall, the slendr R package facilitates reproducibility by providing a unified framework for writing 
complete spatial simulation and analysis pipelines entirely in R, which we demonstrate with several concrete 
examples.  

Design of slendr 

From a software design perspective, the slendr R package represents a tight integration of three distinct 
parts. First, it implements an interactive and visually-focused R interface for encoding spatio-temporal 
population dynamics focused on building arbitrarily complex models from small individual components (i.e., 
simple R objects), designed to require only a minimum amount of code. Second, slendr includes two back-end 
simulation scripts implemented in SLiM (Haller & Messer, 2019) and msprime (Baumdicker et al., 2022). These 
scripts are bundled with slendr, are specifically tailored to interpret slendr demographic models, and produce 
tree-sequence files as output (Haller et al., 2019). Lastly, slendr provides an interface to the tskit tree-sequence 
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analysis library (Kelleher et al., 2018). Although this library is written in C and Python, slendr exposes its 
functionality to the R environment in an R-idiomatic way, blending it naturally with the popular “tidyverse” 
philosophy of data analysis (Wickham et al., 2019). 

Although these three parts operate at fundamentally different levels under the hood, this integrated 
approach allows all steps of a slendr workflow—from specifying spatio-temporal demographic models, to 
executing simulations and analyzing simulation results—to be performed without leaving the R environment 
(Figure 1). This allows the user to leverage R’s features for visualization and interactive data analysis at every 
step of the analytic pipeline, and facilitates reproducibility by eliminating the need to manually integrate 
disparate software tools and programming languages (Sandve et al., 2013). In this way, slendr follows the 
footsteps of the original design of the S (and later R) languages: to present a consistent and convenient data-
analysis–focused domain-specific front end to more efficient and faster tools written in other languages and 
frameworks (in this case SLiM and msprime) (Chambers, 2020). 

In the remainder of this section we outline the individual steps of a typical slendr simulation and analysis 
workflow, as well as describe the individual building blocks of the three main components of the slendr 
framework mentioned above. 

 

Figure 1 - Schematic overview of a hypothetical slendr simulation and analysis workflow. The colored 
rectangles on the left indicate individual steps of a hypothetical slendr workflow. Short code snippets in 
matching colors on the right show examples of slendr’s declarative interface used in each step, focusing 
only on a selected few relevant functions and their most important arguments (additional optional 
arguments are replaced by the “...” ellipsis symbol). The full function reference index can be found at 
http://www.slendr.net/reference. Note that regardless of whether a spatial or non-spatial slendr model 
is being defined and simulated, the workflow remains identical: the same functions are used for both 
types of models, and the spatial or non-spatial nature of a model is automatically detected by slendr. 
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Defining the world 
At the beginning of a slendr workflow, the user defines the parameters of the world that the simulation will 

occupy using the function world() (Figure 1). If the simulated world represents a region on Earth, the 
appropriate set of vectorised spatial features will be automatically downloaded from a public-domain 
cartographic database (www.naturalearthdata.com). The user can also specify a dedicated coordinate 
reference system (CRS) appropriate for the projection of the geographic region of interest in order to minimize 
the distortion of distances and shapes inherent to transforming geometries (in this case population ranges and 
landscape features) from the three-dimensional Earth surface to its two-dimensional representation on a map. 
Alternatively, the world can be represented by an abstract landscape, optionally with custom features such as 
islands, barriers, or corridors. If a non-spatial deme-based model is to be simulated, this step can be omitted 
and no changes to the downstream steps described below are needed. 

Creating populations and scheduling demographic events 
Populations in slendr are created with the population() function which creates a simple R object 

containing the parameters of the population that was created (Figure 1). In addition to specifying the name, 
time of appearance, and initial number of individuals for the new population, the user can also specify a world 
object and, if desired, a set of coordinates for the spatial range that the population will occupy. For 
convenience, the coordinates of all spatial objects in slendr (maps, geographic regions, population ranges) are 
always specified in the global geographical CRS (i.e., degrees of longitude and latitude) but are then 
automatically internally transformed into the chosen projected CRS (which uses units of meters) if it was 
specified when creating the world (Figure 1). This way, users can encode spatial coordinates in familiar units of 
longitude and latitude while slendr internally maintains the proper shapes and distances of spatial features by 
performing all spatial transformations in the projected CRS. 

All slendr spatial objects are internally represented using a data type implemented by the R package sf 
(Pebesma, 2018), which has emerged as the de facto standard for geospatial data analysis in R (Lovelace et al., 
2019). Despite the convenience of the sf framework, manipulation of geospatial objects in sf still requires 
writing a non-trivial amount of code dealing with low-level technical details (manipulating and transforming 
the coordinates of points, lines and polygons). Because most of these technical details are not relevant for 
specifying population genetic models, we designed a set of domain-specific functions for encoding spatial 
population dynamics which are expressed in terms of population genetics concepts rather than geometric 
transformations (Figure 1). For instance, the move() function accepts a slendr population object (i.e., 
internally an sf object, encapsulating the low-level geometric coordinates of the population), a trajectory given 
as a list of coordinates in longitude and latitude, and a timespan over which the population displacement 
should occur (Example 3 and Figure 4). Other kinds of dynamic spatial events (population range expansions 
and contractions, for example) are implemented in an analogous manner. Other demographic events, such as 
population size changes and gene flow, can be scheduled similarly with another set of straightforward 
functions (Figure 1). 

For spatial models, the user has the option to fine-tune the within-population individual dispersal and 
mating dynamics (described in detail in Example 2 and Figure 3) using a set of parameters such as the maximum 
mating distance between individuals, the dispersal distance of offspring from their parents (and the kernel 
function of this dispersal), or the parameter influencing the uniformity of the dispersal of individuals within 
their population’s spatial boundary. These can be assigned for each population separately or kept at their 
default values given in the compile_model() step (as we show in Example 2). The competition parameter 
determines the maximum neighborhood distance in which individuals in a SLiM simulation compete with each 
other for space. If this distance is small, then individuals with nearby neighbors have much lower fitness. If the 
distance is larger, then the effects of crowding are more diffuse. However, if this distance is larger than the 
dispersal distance (as in Example 2), populations tend to self-organize into an evenly-spaced grid of patches 
(Figure 3C). Using the competition parameter, within-population dynamics can thus be fine-tuned to represent 
various levels of individual clustering into sub-groups (Figure 3C). In addition to the competition parameter, a 
mating parameter determines the maximum distance to which an individual will look for a mate to produce 
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offspring.  Finally, a dispersal parameter determines how far an offspring can end up from its parent, and a 
related dispersal_fun argument characterizes the density function for this dispersal: "normal" (default), 
"uniform", "cauchy", "exponential", or "brownian"; more details are available in the slendr R package 
documentation at http://www.slendr.net/reference. We note that changes in all three spatial interaction and 
dispersal parameters can be also scheduled dynamically at specific times throughout the run of a model with 
a slendr function set_dispersal(). 

A standard feature of many population genetic frameworks is the specification of the times of various 
demographic events in terms of generations, either forwards in time starting from generation 1 (as is the case 
with SLiM) or backwards in time starting from time 0 “in the present'' (as is the case with coalescent 
frameworks such as msprime). This can be cumbersome in cases when the events or samples of interest are 
traditionally specified in times of “years before present” (such as dated ancient DNA samples), or in situations 
in which it would be desirable to simulate future outcomes, as in ecological predictive modeling. Moreover, 
because these standard times often need to be converted into generations by a factor specifying the length of 
the generation time of the species of interest, this can easily lead to frustrating bugs in simulation scripts. To 
ameliorate this situation, slendr allows the users to specify times in whichever time units they would prefer, in 
either the forward or backward direction. The time direction is automatically detected by slendr from the 
sequence of demographic events specified for a model (but can also be set explicitly), and the conversion of 
event times into generations is performed in the compilation step via the provided generation_time 
argument to compile_model() (described below). Similarly, times of the tree-sequence nodes in slendr’s 
outputs (which are specified by most simulation software in terms of generations backwards in time) are 
automatically converted by slendr back into the units of time used by the user during model specification.  

Because every slendr demographic event function returns a modified population object which can be 
further used as an input to other slendr functions, the R interface encourages a workflow in which complex 
models are composed incrementally from smaller components (Figure 1, Examples 1-3). Importantly, because 
each slendr function assures the consistency of the model by enforcing appropriate constraints during the 
model definition process (e.g., a population cannot be moved or participate in a gene-flow event at a time 
when it would not yet exist), this workflow facilitates the early discovery of bugs before the simulation (which 
can be extremely computationally costly) is even executed. This is further facilitated by a convenient set of 
plotting functions, such as plot_map() and plot_model(), which can visualize the spatio-temporal 
dynamics of the specified model (or its individual components) as the model is being incrementally developed.  

Model compilation 
Having defined all the individual components of a population model (i.e., created all the necessary 

population and gene-flow events), the user calls the function compile_model() to compile the model 
configuration to a single R object (Figure 1)—a step in which slendr performs additional checks for model 
consistency and correctness. Furthermore, this operation also transforms the model components from their R 
representation into a set of files on disk, written in a format interpretable by the built-in SLiM and msprime 
simulation back-end scripts which are used to execute slendr models in the next phase, as described below. 
The compiled model object can also be used as input for a built-in R-based interactive browser app built using 
the shiny R package (Chang et al., 2023) which allows the user to “play” the defined spatial model dynamics 
over time and explore the “admixture graph” implied by the model (Patterson et al., 2012) for additional 
verification of the model’s correctness. The functions plot_map() and plot_model() mentioned above 
also accept a compiled model object as their input and produce a static visualization of the model. 

Scheduling sampling events and simulation 
The slendr package comes bundled with two simulation back-end scripts which were tailored to interpret 

the configuration files produced by the compile_model() function and simulate the model, triggering all 
of the encoded population dynamics in the course of the simulation run. 

The first back-end script is written in SLiM’s programming language Eidos (Haller & Messer, 2019), and can 
execute both spatial and non-spatial slendr models in a Wright–Fisher setting by calling slendr’s slim() 
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function. The second back-end script is implemented using msprime (Baumdicker et al., 2022) and is designed 
to interpret the compiled slendr model in a non-spatial setting as a standard coalescent simulation by calling 
slendr’s msprime() function. Both simulation engines can interpret the same slendr model without a need 
to make any changes. For instance, a spatial model can be run with the msprime back end, in which case the 
spatial component of the model is simply ignored. Because coalescent simulations are generally much more 
computationally efficient than their forward-time counterparts, the msprime back end of slendr can be useful 
for R users who would like to run a large number of traditional, non-spatial simulation replicates efficiently 
without having to write custom Python msprime code or use its ms-like command-line interface (Hudson, 
2002). Importantly, the correctness of both slendr simulation engines is validated using a set of automatic 
statistical tests on non-spatial models which ensure that when a slendr model is run in both SLiM and msprime, 
the demographic events specified by the model (population splits, population size changes, and gene-flow 
events) result in equivalent site-frequency spectra and f-statistics (Patterson et al., 2012) between both back 
ends. 

Leveraging the ability to save simulation outputs as a tree sequence (Kelleher et al., 2019; Speidel et al., 
2019) from both SLiM (Haller et al., 2019) and msprime (Baumdicker et al., 2022), slendr embraces the tree 
sequence as its primary output format. This is powerful not only because the tree sequence represents an 
extremely efficient representation of even large-scale population genomic data, but also because it provides 
an elegant way to calculate many population genetic statistics of interest, a feature which we describe in more 
detail in the next section. To specify which simulated individuals should be recorded in the output tree 
sequence, slendr provides two alternative approaches. First, if no explicit sampling schedule is specified, all 
individuals living at the very end of a SLiM simulation run are explicitly sampled (i.e., “remembered”) in the 
tree sequence output, matching the default behavior of SLiM. If a slendr model is simulated with the msprime 
back end, the number of recorded individuals will be equal to the population size of each population at the 
start of the coalescent process looking backwards in time (i.e., in “the present”). Alternatively, slendr provides 
a flexible way to trigger sampling events via its schedule_sampling() function, which allows one to 
specify the time (and, optionally, the location) at which a sample comprising a given number of individuals 
from a given population should be taken and recorded in the tree sequence (Example 3). To improve readability 
and interpretation of slendr analysis code, every sampled individual can be referred to using its readable name 
during tree-sequence processing and computation of statistics (Examples 1, 2, and 4) rather than just by 
numeric identifiers as is the case with the default tree-sequence analysis workflow with tskit (Kelleher et al., 
2018). 

Data analysis 
The default output of a slendr simulation is a tree sequence. However, because processing and analysis of 

tree-sequence files requires a non-trivial knowledge of Python or C (Kelleher et al., 2018) which many R users 
might not have, slendr provides an R-idiomatic interface to the most commonly used tskit tree-sequence 
methods such as the allele frequency spectrum, Patterson’s f-statistics, and various summary statistics of 
population diversity (Patterson et al., 2012; Ralph et al., 2020). This way, users can design population genetic 
models in R, execute them from R using the built-in slim() or msprime() functions, and analyze the 
resulting tree sequence data without having to leave the R environment for downstream statistical analyses 
and plotting, and without the need to convert outputs to other bioinformatic or population genetic file formats. 
Although primarily designed for analysis of tree sequences generated from slendr models, the R-tskit interface 
can operate also on tree sequences without slendr-specific metadata. Therefore, users who would prefer to 
run simulations with standard msprime or SLiM scripts but are interested in analyzing their tree-sequence 
results in R will still find the slendr R package useful. The reference manual at http://www.slendr.net/reference 
contains a complete list of tskit tree-sequence methods that have been integrated into slendr’s R interface. If 
integration with traditional tools such as PLINK (Purcell et al., 2007) or ADMIXTOOLS (Patterson et al., 2012) is 
required, functions for exporting to VCF (Danecek et al., 2011) and EIGENSTRAT (Patterson et al., 2012) are 
also provided. 
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During a spatial simulation in SLiM, each sampled individual’s location on the simulated landscape is 
tracked and recorded in the tree sequence, encapsulating the full spatio-temporal genealogical history that has 
been simulated. When the tree-sequence output file is then loaded by slendr, slendr processes the spatial 
locations of nodes in the tree sequence (which represent chromosomes of past and present individuals), and 
transforms them back into the original coordinate system of the simulated world, adding additional annotation 
data such as readable names of sampled individuals, population assignments of each individual and node, etc. 
Furthermore, this information is exposed in an sf-compatible format, meaning that the spatio-temporal 
information about ancestral relationships between simulated samples can be processed, analyzed, and 
visualized using a wide range of R packages including sf, ggplot2, and dplyr (Pebesma, 2018; Wickham et al., 
2019). Additionally, individual trees in the tree sequence can be extracted by a slendr function, ts_phylo(), 
which converts tskit-formatted tree objects into the format defined by the R phylogenetics package ape, which 
has been the standard for phylogenetics in the R ecosystem for nearly two decades (Paradis & Schliep, 2019). 
This gives slendr users even more options to analyze tree-sequence results with a large array of standard 
phylogenetics tools available for the R environment (Paradis, 2011). 

Installation and software dependencies 
slendr is currently developed for macOS and Linux. It is available on the CRAN R package repository at 

https://CRAN.R-project.org/package=slendr, and can be installed from the interactive R console with the 
standard command install.packages("slendr"). Development versions of slendr which contain 
latest bug fixes and new experimental features can be installed from its GitHub repository using the R package 
devtools with the R command devtools::install_github("bodkan/slendr"). 

Two external software dependencies must be present on a user’s system to leverage the full functionality 
of slendr: a forward population genetic simulator SLiM (Haller & Messer, 2019) (which is required for running 
spatial simulations and non-spatial simulations in the forward-time setting) and a trio of Python modules 
msprime (Baumdicker et al., 2022), tskit (Kelleher et al., 2018) and pyslim (https://github.com/tskit-dev/pyslim) 
(which are needed to run slendr models as coalescent simulations and to analyze tree-sequence data). 

The SLiM software is available for all major operating systems and its installation instructions can be found 
at https://messerlab.org/slim/. Importantly, the current version of slendr requires the latest release of SLiM 
4.0. In order to use SLiM for simulations in slendr, the R session needs to be aware of the path to the directory 
containing the SLiM binary. Calling library(slendr) for the first time provides an informative message 
for the user on how this can be accomplished by modifying the $PATH variable by editing the ~/.Renviron 
file. 

Because some users might find the experience of setting up a dedicated Python environment with the 
necessary Python modules challenging (especially users who exclusively work with R), slendr provides an R 
function setup_env() which automatically downloads a completely separate Python distribution and 
installs the required versions of tskit, msprime, and pyslim Python modules in their correct required versions 
into a dedicated virtual environment without any need for user intervention. Moreover, this Python installation 
and virtual environment are isolated from other Python configurations that might be already present on the 
user's system, thus avoiding potential conflicts with the versions of Python and Python modules required by 
slendr. Once this isolated Python environment is created by setup_env(), users can activate it in future R 
sessions by calling a helper function init_env() after loading slendr via library(slendr). Therefore, 
although slendr uses Python modules for internal handling of tree-sequence data and coalescent simulation, 
direct interaction with Python is not necessary. 

Relationship of slendr to SLiM and msprime 
Given that slendr’s simulation engines are implemented in SLiM and msprime, it is worth elaborating on its 

relationship to these simulation frameworks, particularly in terms of the features supported by slendr. First, it 
is important to note that slendr is not simply a wrapper for SLiM and msprime in the strict sense of the word, 
since slendr does not provide an R equivalent of every function and method provided by SLiM and msprime. 
Instead, slendr aims to provide a user-friendly, R-idiomatic way to encode a particular class of “traditional” 
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Wright-Fisher population genetic models frequently used in evolutionary biology and population genetics, 
allowing users to employ such models with a minimal amount of coding. Most importantly, slendr models 
currently assume that populations evolve via random mating, and that the genomes of individuals evolve 
neutrally, with mutations overlaid on top of the simulated genealogies after each simulation run. This applies 
also to spatial slendr demographic models, with the caveat that interaction and dispersal distance parameters 
can—depending on the exact parametrization of each spatial slendr model—cause individuals to only mate 
locally, which can have interesting implications for the behavior of standard population genetic statistics (as 
shown in Example 2). 

The complete set of models supported by slendr is likely to slightly expand over time as new features are 
implemented. Details of new features, such as customized recombination maps and non-neutral mutation 
types, are being discussed with the community on the GitHub page of slendr 
(https://github.com/bodkan/slendr), and users are encouraged to provide feedback there. The four practical 
examples (Examples 1–4 below) have been designed to demonstrate the full range of slendr’s features at the 
time of writing. 

Finally, because slendr’s forward and coalescent simulation back ends are implemented as fairly standard 
SLiM and msprime scripts, the performance of slendr simulations and tree-sequence analyses can be assessed 
using already-existing benchmarks and guidelines provided by publications describing SLiM and msprime 
(Haller et al., 2019; Baumdicker et al., 2022; Haller & Messer, 2023). 

Practical examples 

In the following sections, we present the features of the slendr R package with several practical examples, 
each of which focuses on a different aspect of the slendr simulation framework. We start by showing how 
traditional, non-spatial, random-mating models can be specified with a minimum amount of R code (Example 
1). We then proceed with two examples of spatial models: first, a model showing how the degree of the spatial 
spread of a population can be adjusted by setting the within-population individual-based dispersal dynamics 
(Example 2); second, a model which schedules the movements of entire population ranges across a landscape 
(Example 3). These examples are intended to demonstrate slendr’s ability to define complex spatio-temporal 
models incrementally, building them from simpler components. We also emphasize how slendr model 
configuration and simulation steps naturally flow into data analysis, all within the R environment. In the final 
demonstration (Example 4), we tap into the rich information embedded in spatial tree sequences to visualize 
individual trees on a landscape, tracing the complex spatio-temporal ancestry of an individual on the simulated 
map. Extended versions of these and many other examples with complete reproducible code for simulation, 
analysis, and plotting can be found as standard R package vignettes at slendr’s website (www.slendr.net). 

Example 1: Traditional non-spatial model 
Regardless of whether a spatial or non-spatial model is defined and simulated, the slendr workflow remains 

the same. Therefore, before we explore spatial models, we begin by showing how a traditional, non-spatial 
population genetic model can be constructed with slendr and how users can compute population genetic 
statistics on simulated tree-sequence outputs using slendr’s R interface to the tskit tree-sequence analysis 
library (Kelleher et al., 2018)  (represented by functions with the ts_*() prefix, Figure 1).  

First, we define an abstract demographic model similar to that which is commonly used in teaching the 
principles behind the 𝑓!-ratio ancestry proportion estimator (Patterson et al., 2012). In slendr, we define the 
model with a straightforward sequence of population() calls that schedule the order of splits for several 
populations, taking care of parent–daughter population relationships by providing the appropriate population 
object as a parent argument when creating each daughter population (Figure 2A). We then schedule a single 
gene-flow event between the populations “b” and “x1” by calling the gene_flow() function. After compiling 
the model with compile_model(), we verify its correctness by visualizing the embedded population 
relationships with plot_model() (Figure 2B). Although only a single gene_flow() event is featured in 
this example, more complex gene-flow networks can be specified with slendr. Conveniently, strict consistency 
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checks validate each encoded gene-flow event before the computationally costly simulation is run. Examples 
of complex models with dozens or hundreds of gene-flow events can be found in the documentation available 
on the slendr website (www.slendr.net).  

As stated before, slendr provides two simulation back ends; here we use the coalescent msprime back end 
to simulate the model, since SLiM's spatial capabilities are not required for this simple non-spatial model. 
However, we note that the function slim() could be used in place of the msprime() call to perform the 
equivalent forward-time simulation just as easily. By default,  slendr automatically loads the simulated tree-
sequence object which can be immediately used for analysis. In this example, we compute the pairwise 
divergence between random samples of 100 individuals from each population with the function 
ts_divergence() (Figure 2C). Finally, we use the function ts_f4ratio() to compute the values of the  
𝑓!-ratio estimate of “b” ancestry in populations “x1” and “x2”, which differ in whether or not they experienced 
gene flow from “b” (Figure 2D). All other tree sequence analysis functions of slendr (Figure 1) can be accessed 
in the same way. We note that because slendr assigns symbolic, permanent names to individuals during 
sampling, the users can refer to them with these names during tree-sequence operations such as simplification 
and when computing tree-sequence statistics. 

 

Figure 2 - Example 1: specifying a non-spatial model and computing statistics on tree-sequence output. 
(A) A script which defines a model of a simple demographic history of six populations, simulates it with 
the msprime back end by calling the function msprime(), and performs analyses shown in B–D. (B) A 
visual overview of the compiled slendr model produced by plot_model() prior to simulation. (C) 
Visualization of the data frame produced by ts_divergence() on the output tree sequence 
simulated. (D) Ancestry proportions estimated with ts_f4ratio() directly from the tree sequence 
output. As expected from the model definition, the 𝑓!-ratio statistic estimates indicate ~10% ancestry 
from “b” in the population “x1”, but 0% ancestry in population “x2”; this agrees with the model overview 
shown in panel B. Full ggplot2 visualization code for the figures can be found in a vignette dedicated to 
this paper at www.slendr.net. The runtime for the simulation and analysis shown in A was ~5 minutes, as 
measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro chip, 32 GB RAM, and running 
macOS Ventura 13.1. 
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Example 2: Model with population dispersal dynamics 
In our second example, we move from a non-spatial, random-mating model to a model which is explicitly 

spatial. First, we create an abstract, circular world map using the function world(), producing a completely 
featureless landscape (see Example 3 for a more elaborate world map). We then create a series of eight 
populations which all occupy that map, as specified by the map argument to population(), but do not 
interact with each other. For simplicity, each population forms its own evolutionary lineage without additional 
splits or gene-flow events. Importantly, we set the competition parameter of each population to a value which 
forces the individuals to assume an increasing degree of spatial subdivision which, in turn, affects the amount 
of diversity expected in each population. Finally, we compile the model to a single object with 
compile_model() and run it with the slim() back end, simulating 16.000 diploid genomes of 10 
megabases each (Figure 3A). After the simulation finishes, we simplify the produced tree sequence, overlay 
mutations on the simulated genealogies, and use the slendr function ts_diversity() to compute the 
expected heterozygosity in a sample of 100 individuals from each population, inspecting how heterozygosity is 
affected by the emergent spatial arrangement of each population (Figure 3B, C). We note that some of the 
values of the spatial competition distance parameter used in this example are quite large, especially compared 
to the much shorter maximum distance of individual dispersal and mating. Although biologically rather 
unrealistic, the competition distances have been chosen to give rise to very different degrees of spatial 
subdivision and, consequently, to varying levels of population genetic diversity, with the intention to 
demonstrate the ease with which a wide range of model dynamics can be configured by the user. 

Example 3: A toy model of movements and expansions of human populations in West Eurasia over the last 
50,000 years 

In this example we further expand on the slendr functionality demonstrated in the first two examples, 
introducing programming of expansions and migrations of entire population ranges across a realistic 
landscape—perhaps the most distinctive feature of slendr. The model we implemented here is inspired by 
large-scale population migrations and turnover events inferred from ancient DNA analyses of human remains 
from across West Eurasia (Lazaridis et al., 2014; Allentoft et al., 2015; Haak et al., 2015), although we caution 
that it is an extremely simplified toy model intended only as an illustrative example. 

Similarly to Example 2, we begin by defining a world map for the simulation (Figure 4A), in this case using 
realistic Earth cartographic data provided by the Natural Earth project (www.naturalearthdata.com). Because 
we focus on the broad region of West Eurasia, we select the most appropriate coordinate reference system 
(CRS) for projecting this region on a two-dimensional map which is EPSG:3035. We then define a series of 
populations, specifying their approximate geographic ranges using simple polygons. We then use the functions 
move() and expand_range() to schedule when and where populations should migrate, and by what 
distance and how quickly their population ranges should expand across the landscape during simulation. We 
again use plot_model() to visualize the demographic history embedded in the slendr model as a non-
spatial tree-like structure with gene-flow edges (Figure 4B); here, we also use plot_map() to get a 
“compressed” overview of the spatio-temporal population range dynamics on the simulated map (Figure 4C). 
We note that unlike in the two previous examples, which were specified in forward time units, this example 
expresses the timing of demographic events in units of “years before present” which is more natural to this 
model. 

In the previous two code examples (Figure 2A, 3A) we used the default tree-sequence sampling of slendr, 
which implicitly records the genomes of all the diploid individuals alive at the end of a simulation. In this 
example, we instead use schedule_sampling() to specify a series of sampling events from each 
population every 1,000 years. We then execute the compiled model and the sampling schedule specified using 
the slim() back-end, which records only the scheduled set of sampled individuals in the tree-sequence 
output file. 
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Figure 3 - Example 2: a spatial model which involves the parametrization of within-population dispersal 
dynamics. (A) A complete script which defines eight populations as independent lineages or species, each 
with constant size and each defined with a different value of slendr’s spatial competition parameter, with 
analysis code to produce panels B–C. The simulation is run with slendr’s SLiM back end for 5000 
generations, after which a tree sequence recording the genealogical history of 2000×8 diploid individuals 
is loaded, simplified, and mutated. Heterozygosity is then computed for 100 individuals randomly sampled 
from each population at the end of simulation. (B) Distribution of heterozygosities of individuals observed 
in all eight populations. (C) A snapshot of the spatial distributions which emerged as a result of the 
competition parameter value set for each population. Full visualization code for the figures can be found 
in a vignette dedicated to this paper at www.slendr.net. The runtime for the simulation and analysis 
shown in A was ~12 minutes, as measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro 
chip, 32 GB RAM, and running macOS Ventura 13.1. 
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Figure 4 - Example 3: a demographic model on a real Earth landscape. (A) A slendr script which defines a 
toy spatio-temporal model of human prehistory in West Eurasia, with analysis code that produces panels 
B–C. For brevity, we do not specify the full set of coordinates for each spatial demographic event or 
population range polygon, instead indicating them as ”...”; the complete reproducible code can be found 
in a vignette dedicated to this paper at www.slendr.net. (B) Visual summary of the non-spatial component 
of the demographic model, produced by plot_model() with arrows indicating gene flow events. (C) A 
“compressed” view of spatio-temporal snapshots of population ranges throughout the course of the 
model prior to the simulation, produced by plot_map(). The runtime for the simulation shown in A 
was ~3 minutes, as measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro chip, 32 GB 
RAM, and running macOS Ventura 13.1. 

Example 4: Visualization of individual trees and spatio-temporal ancestral lineages across a landscape 
In our final example (Figure 5), we return to the abstract toy model of West Eurasian prehistory developed 

in Example 3. To leverage slendr’s power to simulate genomic data from complex spatial demographic models, 
slendr makes it easy to tap into the large library of geospatial data science packages available for R (Lovelace 
et al., 2019) by automatically converting simulated spatial locations to an sf-compatible tabular format 
(Pebesma, 2018), as we will see here. 

To demonstrate the richness of the spatio-temporal information recorded in the tree sequence, we use the 
full tree sequence produced by the code in Figure 4A and simplify it so that it contains only the history of a 
small subset of the thousands of individuals sampled during the spatio-temporal simulation (Figure 5A). We 
then extract the 20th tree in the tree sequence with slendr’s function ts_phylo(), which converts a tree 
from the tskit tree sequence into an R phylo format defined by the ape R package, a standard tool for 
phylogenetics in R (Paradis & Schliep, 2019). Such tree objects can be analyzed by any of the dozens of R 
packages which operate on ape’s phylo trees—for instance, in Figure 5B we show a visualization of this tree 
using the R package ggtree (Yu et al., 2017). Furthermore, because the tree was generated from a spatially-
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annotated tree sequence, the user can extract information about the location of each individual (or node) in 
the tree across space and time, as well as ancestral relationships between nodes in the tree, using 
ts_nodes() and ts_edges() respectively. Crucially, because these functions automatically convert 
locations into sf’s geospatial representation (including the appropriate CRS projection), the results can be 
immediately plotted on a map with ggplot2, which has built-in support for sf data (Figure 5C). 

 

Figure 5 - Example 4: accessing and visualizing spatio-temporal information encoded in trees and tree 
sequences simulated with the slendr. (A) A continuation of the script from Example 3, showing how a 
(potentially very large) tree sequence generated from a slendr model can be simplified to a subset of 
individuals with ts_simplify(). A single tree from the tree sequence is then extracted with 
ts_phylo(), the tables of spatio-temporal locations of nodes and branches of the tree are extracted 
by ts_nodes() and ts_edges(), and ancestry information for one individual across the entire tree 
sequence is extracted with ts_ancestors(), in order to produce the data plotted in B–D. (B) A 
visualization of the tree extracted by ts_phylo() using standard visualization features of the ggplot2 
and ggtree R packages. Dotted lines indicate shortened branches of ancient samples. (C) Visualization of 
the tree from panel B as a network across the original spatial simulation landscape, with each node 
indicating the location of a particular individual who lived at some point during the simulation. Labels with 
two numbers correspond to the locations of sampled individuals, each carrying two chromosomes which 
are represented by two nodes in the tree sequence. All node numbers correspond to those shown in the 
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tree in panel B. The plot was generated with ggplot2 using the sf-formatted data extracted by 
ts_nodes() and ts_edges(). (D) A visualization of the spatio-temporal ancestry of a single 
simulated European individual, “EUR_578”, using the information from the entire tree sequence. Each 
sub-panel shows the spatial ancestry distribution of one of the two chromosomes carried by this individual 
(the location of whom is indicated by a black dot), tracing its ancestry through different lineages all the 
way back to a population in Africa. For easier reference, the same black dots indicate the two 
chromosomes of this individual also in the tree in panel B. The ggplot2 code for the figures is omitted for 
brevity. Full reproducible code examples including the visualization code can be found in a vignette 
dedicated to this paper at www.slendr.net. The runtime for the code shown in A was ~1 second, as 
measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro chip and 32 GB RAM, running 
macOS Ventura Version 13.1. 

In addition to extracting and visualizing single trees representing a genealogy of a set of sampled genomes 
descending from a common ancestor (spatial or non-spatial), slendr also provides a way to extract the complete 
spatio-temporal ancestry of a single sample going back in time across the entire tree sequence, potentially 
spanning many trees with thousands of the sample’s ancestors. This can be accomplished with the function 
ts_ancestors() which, in an analogous way to ts_nodes() and ts_edges(), exposes the spatio-
temporal information in the tree sequence as an sf object which can be visualized on a map with ggplot2. In 
this example, we use ts_ancestors() to reconstruct the spatio-temporal ancestry distribution for a single 
simulated European individual (“EUR_578”, represented by the black dot in Figure 5D). Because this individual 
is diploid, we can trace the ancestry carried by its one chromosome through an expansion from Anatolia (Figure 
5D, right panel), while its other chromosome clearly traces its ancestry to a population which migrated to 
central Europe from an eastern population (Figure 5D, left panel).  

Note that by default, the tree sequence output of a slendr simulation only contains information about 
ancestors which are represented by coalescent nodes in some marginal tree—i.e., nodes which are a most 
recent common ancestor of some pair of sampled nodes. In this example, in Figure 5B and C we can see that 
the most immediate ancestor (node number 9) of one chromosome of the sampled individual “EUR_578” lived 
in the region of Anatolia, but the ancestor of its second chromosome lived in Europe (node number 8); but we 
do not know where all the ancestors along the edges between nodes 9-7 and 8-6, since they were simplified 
away. Similarly, Figure 5D shows the distributions of locations of most recent common ancestors, not all 
ancestors. The distribution of ancestors at a particular point in time could be obtained by adding an appropriate 
sampling event to slendr’s sampling schedule and then extracting ancestors from that time. 

Discussion 

The slendr R package provides a new programmable framework for simulating complex spatio-temporal 
genomic data. The package implements a set of features for defining spatial population range dynamics with a 
declarative and visually-focused R interface and uses a tailor-made SLiM script as an efficient population 
genetic simulation engine. Additionally, slendr provides a convenient new way to simulate and analyze large-
scale genomic data sets even from traditional, non-spatial demographic models using msprime entirely within 
the R environment. 

Owing to its declarative interface, which requires little code even for complex models, the slendr package 
is highly accessible even to researchers or students with little or no prior experience in programming. One of 
the major challenges for novice population geneticists is having to learn how to integrate multiple different 
software tools and programming frameworks. R (R Core Team, 2021) is often the first language that biology 
and bioinformatics students learn, since it offers a large number of libraries for data analysis, statistics, and 
plotting (Wickham & Grolemund, 2016). For these users, slendr provides the opportunity to explore population 
genetic concepts and simulate realistic population genomic data as soon as they learn the most basic principles 
of R (i.e., how to call R functions and work with data frames), without first having to learn Python for msprime 
simulations (Baumdicker et al., 2022), shell scripting for simulators from the ms family (Hudson, 2002; Staab et 
al., 2015), or Eidos for SLiM (Haller & Messer, 2019). 
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Tree sequences provide an efficient way to compute many commonly used population genetic statistics 
directly on the simulated genealogies (Ralph et al., 2020); because slendr uses the tree sequence as its default 
output format (Kelleher et al., 2018; Haller et al., 2019), in many cases users do not need to convert simulation 
outputs to external file formats such as VCF or EIGENSTRAT for analysis in other software. This way, slendr 
simulations can be readily used in model fitting and population genetic analyses in situations which have 
traditionally required converting simulated data to genotype files before analyzing them with population 
genetics tools such as PLINK (Purcell et al., 2007) or ADMIXTOOLS (Patterson et al., 2012). That said, export to 
VCF and EIGENSTRAT genotype file formats is supported with a single function call (ts_vcf() and 
ts_eigenstrat()) if needed. 

A key principle in the design of slendr has been reproducibility (Sandve et al., 2013): a complete slendr 
simulation and analysis workflow can be written as a single R script. Additionally, the compilation of any slendr 
model produces a self-contained “bundle directory” containing all model configuration files and simulation 
back-end scripts required to execute the model from the command-line. Although accessing this directory is 
not necessary for standard workflows because slendr operates entirely from R, these bundles can be checked 
into a git history and provided as supplementary files along with a publication, allowing independent 
replication even without relying on slendr itself. 

Moving forward, we expect that the slendr framework will become a useful tool to produce ground-truth 
data for comparing and benchmarking inference methods for modeling spatial genomic processes (Peter & 
Slatkin, 2013; Petkova et al., 2016; Marcus et al., 2021; Muktupavela et al., 2022), as well as for the 
development of new approaches to spatial problems in population genomics. There is great potential for 
deploying slendr in simulation-based inference methods, like Approximate Bayesian Computation (ABC) 
(Beaumont et al., 2002; Csilléry et al., 2010), thanks to its tight integration with the rest of the R modeling 
landscape. A major challenge in ABC is the significant amount of coding needed to program simulations of 
demographic history and integrate them with software for computing population genetic statistics. slendr can 
program complex models and compute relevant statistics using its tree-sequence interface with a relatively 
small amount of code, all within a single R workflow. Furthermore, although slendr does not currently include 
features for implicit, automated parallelism (an important aspect of computation-heavy modeling approaches 
such as ABC), users can rely on numerous R packages providing a wide range of parallelization techniques 
(Eddelbuettel, 2021). 

Nonetheless, inference of spatial dynamics from genetic data remains an open research problem with many 
potential pitfalls, and we strongly caution users to avoid overinterpretation. For instance, slendr models retain 
a notion of discretely delineated populations, but even a reasonable fit of such a model to real data does not 
erase the reality that such groupings are rarely, if ever, as stable and cleanly distinguished as in idealized 
models. Indeed, confounding the simple models used in population genetics with reality can be actively 
harmful (Coop, 2022; Khan et al., 2022). Furthermore, population genetic modeling in general is notoriously 
challenging due to the many parameters involved (Gravel et al., 2011; Pickrell & Pritchard, 2012; Kamm et al., 
2020). In this respect, advanced, explicitly spatial models of the kind unlocked by slendr present an even bigger 
challenge. For instance, how can we best do model comparison, and among what set of models? What would 
constitute a good “null hypothesis” when modeling potentially complex spatial population dynamics? 
Furthermore, even relatively simple models can be ill-posed or even nonidentifiable: many combinations of 
spatial parameters (such as individual dispersal or mating distances) may give rise to similar genetic patterns. 
As every demographic inference study makes assumptions about the process which generated the data, 
sometimes explicitly and sometimes implicitly, awareness of these assumptions and careful approach to 
modeling (Beaumont, 2010; Gerbault et al., 2014; Loog, 2021) are vital for correct interpretation of results. We 
hope that the ease with which slendr allows one to explore the impact of spatio-temporal parameters on 
population dynamics—and the fact that slendr forces the researcher to state those parameters explicitly—will 
help guide researchers in establishing guidelines for good practice, to delineate the limits of what can be 
learned and, consequently, avoid overinterpretation (or misinterpretation) of such parameters.   

In its current version (v0.5.0 as available on the CRAN repository), slendr’s spatial simulation maps are 
limited to landscapes that exhibit binary habitability—i.e., any given location either is or is not habitable by 
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individuals. A more ecologically realistic simulation could allow for varying degrees of habitability at different 
locations, which would affect the size of the simulated population. Future extensions of the slendr framework 
could include the incorporation of fine-scaled geographic maps storing individual habitability values for each 
pixel of the raster, allowing for dynamic changes of such maps over time. This would effectively make the size 
of the population an emergent consequence of the habitability metric aggregated across the map. This 
extension would require significant changes to the slendr back-end code, moving to modeling population 
densities per unit of landscape area using non-Wright–Fisher dynamics, but the necessary software building 
blocks are already supported by SLiM and examples of these types of simulations are discussed in the SLiM 
manual (Haller & Messer, 2023). A recently published Python module Geonomics provides an interface for 
simulating genetic data on arbitrary landscape rasters (Terasaki Hart et al., 2021). Implementing such 
functionality in slendr would have the advantage of using a much more efficient SLiM simulation engine and a 
greater ease of use due to slendr’s emphasis on visually-focused interactive model design in R. The main 
challenge would therefore lie in making sure that the additional complexity involved in making the slendr’s 
SLiM back end more flexible does not compromise the current simplicity of its declarative interface. The 
benefits of this extension would be numerous, including for genomic forecasting and predicting species ranges 
in the face of climate change and ecological breakdown (Fitzpatrick & Keller, 2015; Exposito-Alonso et al., 2019; 
Theodoridis et al., 2020), and for constructing models of species distribution dynamics in the ancient past 
(Wang et al., 2021). Implementation of this extension of slendr is still in the planning stages, in collaboration 
with the community on the project’s GitHub page. 

At the moment, slendr can only produce genome sequences from a single species (although with an 
arbitrary number and spatial arrangement of populations of the species) due to the restrictions imposed by its 
simulation back end. However, many types of genomic resources distributed across space and time are 
represented by fragmentary mixtures of genomes from multiple species. This includes ancient microbiomes 
from human remains (Rasmussen et al., 2015), sedimentary DNA from permafrost, caves, or lake and marine 
cores (Willerslev et al., 2003; Parducci et al., 2017; Armbrecht et al., 2019; Vernot et al., 2021), and 
environmental DNA from water, soil, or air samples (Taberlet et al., 2012; Stat et al., 2017; Lynggaard et al., 
2022). Recent developments in SLiM would allow slendr to perform multi-species simulations, which would 
facilitate ecological modeling of species distributions (Fordham et al., 2021) or of past epidemics (Duchene et 
al., 2020) from a fully genomic perspective. 

Finally, at the time of writing, slendr models are limited to neutral simulations, and this restriction applies 
even to simulations performed via its SLiM back end. In particular, slendr does not currently provide built-in 
support for specifying mutation types, genomic element types, recombination maps, or custom SLiM callbacks. 
Providing an R equivalent for SLiM’s complete functionality would be a daunting task of limited utility, and 
would substantially complicate slendr’s intuitive R syntax for encoding demographic models (Figure 1). An 
attractive alternative for supporting more advanced, customized models could be to retain the behavior of 
slendr described in this manuscript as the default, but provide the possibility of overriding different aspects of 
this behavior by injecting user-defined SLiM snippets at appropriate locations in slendr’s SLiM back-end code. 
We are exploring this possibility for future versions of the software. 

Ultimately, we hope that our new simulation framework will help generate new ideas about the insights 
that can be gleaned from the rich spatio-temporal information hidden within DNA sequences. Furthermore, 
we aspire to help budding researchers in population genetics get started with simulations and build their 
intuition about population genetic concepts by developing models using more traditional non-spatial methods 
and statistics, and we believe that slendr could be a useful tool for teaching population genetics to students. 
We hope that by easily generating and visualizing genomic models on real landscapes, we can spark new ways 
of thinking about how organisms evolve (Bradburd & Ralph, 2019) and enable clearer discussions about the 
fundamental interconnectedness of genomes across space and time (Mathieson & Scally, 2020). 
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