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Abstract
Dispersal, and in particular the frequency of long-distance dispersal (LDD) events, has strongimplications for population dynamics with possibly the acceleration of the colonisation front,and for evolution with possibly the conservation of genetic diversity along the colonised do-main. However, accurately inferring LDD is challenging as it requires both large-scale data anda methodology that encompasses the redistribution of individuals in time and space. Here, wepropose a mechanistic-statistical framework to estimate dispersal from one-dimensional inva-sions. The mechanistic model takes into account population growth and grasps the diversity indispersal processes by using either diffusion, leading to a reaction-diffusion (R.D.) formalism,or kernels, leading to an integro-differential (I.D.) formalism. The latter considers different dis-persal kernels (e.g. Gaussian, Exponential, and Exponential-power) differing in their frequencyof LDD events. The statistical model relies on dedicated observation laws that describe twotypes of samples, clumped or not. As such, we take into account the variability in both habi-tat suitability and occupancy perception. We first check the identifiability of the parametersand the confidence in the selection of the dispersal process. We observed good identifiabilityfor all parameters (correlation coefficient >0.9 between true and fitted values). The dispersalprocess that is the most confidently identified is Exponential-Power (i.e. fat-tailed) kernel. Wethen applied our framework to data describing an annual invasion of the poplar rust diseasealong the Durance River valley over nearly 200 km. This spatio-temporal survey consisted of12 study sites examined at seven time points. We confidently estimated that the dispersal ofpoplar rust is best described by an Exponential-power kernel with a mean dispersal distanceof 1.94 km and an exponent parameter of 0.24 characterising a fat-tailed kernel with frequentLDD events. By considering the whole range of possible dispersal processes our method formsa robust inference framework. It can be employed for a variety of organisms, provided they aremonitored in time and space along a one-dimension invasion.
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Introduction
Dispersal is key in ecology and evolutionary biology (Clobert et al., 2004). From an appliedpoint of view, the knowledge of dispersal is of prime interest for designing ecological-basedmanagement strategies in a wide diversity of contexts ranging from the conservation of endan-gered species (e.g., Macdonald and Johnson, 2001) to the mitigation of emerging epidemics (Dy-biec et al., 2009; Fabre et al., 2021). From a theoretical point of view, the pattern and strengthof dispersal sharply impact eco-evolutionary dynamics (i.e. the reciprocal interactions betweenecological and evolutionary processes) (Miller et al., 2020). The features of dispersal have many
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implications for population dynamics (e.g. speed of invasion, metapopulation turnover; Kot etal., 1996; Soubeyrand et al., 2015), genetic structure (e.g. gene diversity, population differentia-tion; Edmonds et al., 2004; Fayard et al., 2009; Petit, 2011) and local adaptation (Gandon andMichalakis, 2002; Hallatschek and Fisher, 2014). Mathematically, the movement of dispersers(individuals, spores or propagules for example) can be described by a so-called location disper-sal kernel (Nathan et al., 2012) that represents the statistical distribution of the locations of thepropagules of interest after dispersal from a source point. Since the pioneer works of Mollison(1977), much more attention has been paid to the “fatness” of the tail of the dispersal kernel(Klein et al., 2006). Short-tailed kernels (also referred to as “thin-tailed”) generate an invasionfront of constant velocity, whereas long-tailed kernels (also referred to as “fat-tailed”) can causean accelerating front of colonisation (Clark et al., 2001; Ferrandino, 1993; Hallatschek and Fisher,2014; Kot et al., 1996; Mundt et al., 2009). Long-tailed kernels, characterised by more frequentlong-distance dispersal (LDD) events than an exponential kernel that shares the same mean dis-persal distance, can also cause a reshuffling of alleles along the colonisation gradient, whichprevents the erosion of genetic diversity (Fayard et al., 2009; Nichols and Hewitt, 1994; Petit,2004) or leads to patchy population structures (Bialozyt et al., 2006; Ibrahim et al., 1996).
Despite being a major issue in biology, properly characterising the dispersal kernels is a chal-lenging task for many species, especially when dispersing individuals are numerous, small (andthus difficult to track) and move far away (Nathan, 2001). In that quest, mechanistic-statisticalmodels enable a proper inference of dispersal using spatio-temporal datasets (Hefley et al., 2017;Nembot Fomba et al., 2021; Roques et al., 2011; Soubeyrand et al., 2009a; Soubeyrand andRoques, 2014;Wikle, 2003a) while allowing for the parsimonious representation of both growthand dispersal processes in heterogenous environments (Papaïx et al., 2022). They require de-tailed knowledge of the biology of the species of interest to properly model the invasion process.They combine a mechanistic model describing the invasion process and a probabilistic model de-scribing the observation process while enabling a proper inference using spatio-temporal data.Classically, the dynamics of large populations are well described by deterministic differentialequations. Invasions have often been modelled through reaction-diffusion equations (Murray,2002; Okubo and Levin, 2002; Shigesada and Kawasaki, 1997). In this setting, individuals areassumed to move randomly following trajectories modelled using a Brownian motion or a moregeneral stochastic diffusion process. Despite their long standing history, the incorporation ofreaction-diffusion equations into mechanistic-statistical approaches to estimate parameters ofinterest from spatio-temporal data essentially dates back to the early 2000s (e.g. Louvrier et al.,2020; Nembot Fomba et al., 2021; Soubeyrand and Roques, 2014; Wikle, 2003a). By contrastto reaction-diffusion equations, integro-differential equations encode trajectories modelled byjump diffusion processes and rely on dispersal kernels, individuals being redistributed accord-ing to the considered kernel (Fife, 1996; Hutson et al., 2003; Kolmogorov et al., 1937). Thisapproach allows to consider a large variety of dispersal functions, typically with either a shortor a long tail (i.e. putative LDD events). As such it is more likely to model accurately the trueorganism’s dispersal process. In the presence of long-distance dispersal, the biological interpre-tation of the estimated diffusion parameters with an R.D. equation would be misleading. How-ever, integro-differential equations are numerically more demanding to simulate than reaction-diffusion equations. As far as we know, integro-differential equations have rarely been embed-ded into mechanistic-statistical approaches to infer dispersal processes in ecology (but see Szy-mańska et al., 2021 for a recently proposed application of a non-local model to cell proliferation).
Data acquisition is another challenge faced by biologists in the field, all the more that dataconfined to relatively small spatial scales can blur the precise estimates of the shape of thekernel’s tail (Ferrandino, 1996; Kuparinen et al., 2007; Rieux et al., 2014). To gather as muchinformation as possible, it is mandatory to collect data over a wide range of putative popula-tion sizes (from absence to near saturation) along the region of interest. Sharing the samplingeffort between raw and refined samples to browse through the propagation front may improvethe inference of spatial ecological processes (Gotway and Young, 2002). This way of sampling
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is all the more interesting as the probabilistic model describing the observation process in themechanistic-statistical approach can handle such multiple datasets (Wikle, 2003b). However, in-ference based on multi-type data remains a challenging statistical issue as the observation vari-ables describing each data type follow different distribution laws (Chagneau et al., 2011) and canbe correlated or, more generally, dependent because they are governed by the same underlyingdynamics (Bourgeois et al., 2012; Georgescu et al., 2014; Soubeyrand et al., 2018). This requiresa careful definition of the conditional links between the observed variables and the model pa-rameters (the so-called observation laws) in order to identify and examine complementarity andpossible redundancy between data types.
In this article, we aim to provide a sound and unified inferential framework to estimate disper-sal from ecological invasion data using both reaction-diffusion and integro-differential equations.We first define the two classes of mechanistic invasion models, establish the observation lawscorresponding to raw and refined samplings, and propose a maximum-likelihood method to esti-mate their parameters within the same inferential framework. Then, to confirm that each modelparameter can indeed be efficiently estimated given the amount of data at hand (see Soubeyrandand Roques, 2014), we perform a simulation study to check model parameters’ identifiabilitygiven the sampling design. We also aim to assess the confidence level in the choice of the disper-sal function as derived by model selection. Last, the inferential framework is applied to originalecological data describing the annual invasion of a tree pathogen (Melampsora larici-populina, afungal species responsible for the poplar rust disease) along the riparian stands of wild poplarsbordering the Durance River valley in the French Alps (Xhaard et al., 2012).

1. Modelling one-dimensional invasion and observation processes
1.1. A class of deterministic and mechanistic invasion models

We model the dynamics of a population density u(t, x) at any time t and point x during aninvasion using two types of spatially heterogeneous deterministic models allowing to representa wide range of dispersal processes. Specifically, we considered a reaction-diffusion model (R.D.)and an integro-differential model (I.D.):
R.D.





∂tu(t, x) = D∂xxu(t, x) + r(x)u(t, x)
(
1 − u(t,x)

K

)
,

u(0, x) = u0(x),

I.D.




∂tu(t, x) =
∫ R

−R J(x − y)[u(t, y) − u(t, x)] dy + r(x)u(t, x)
(
1 − u(t,x)

K

)
,

u(0, x) = u0(x).

where t varies in [0,T ] (i.e. the study period) and x varies in [−R,R] (i.e. the study domain). Bothequations exhibit the same structure composed of a diffusion/dispersal component and a reac-tion component. The reaction component, r(x)u(t, x) (1 − u(t,x)
K

) in both equations, is parame-
terised by a spatial growth rate r(x) that takes into account macro-scale variations of the factorsregulating the population density andK the carrying capacity of the environment. It models pop-ulation growth. The diffusion/dispersal component models population movements either by adiffusion process (D∂xxu in R.D.) parameterised by the diffusion coefficient D or by a dispersalkernel (J in I.D.). To cover a large spectrum of possible dispersal processes, we use the followingparametric form for the kernel J :
(1) J :=

τ

2αΓ
(
1
τ

)e−| z
α |τ

,

with mean dispersal distance λ := α
Γ( 2

τ )
Γ( 1

τ )
. Varying the value of τ leads to the kernels classically

used in dispersal studies. Specifically, J can be a Gaussian kernel (τ = 2,λ = α/
√

π), an exponen-
tial kernel (τ = 1,λ = α) or a fat-tail kernel (τ < 1,λ = αΓ

(
2
τ

)
/Γ
(
1
τ

)). Explicit formulas for the
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solution u(t, x) of these reaction-diffusion/dispersal equations being out of reach, we computea numerical approximation of u, which serves as a surrogate for the real solution. Details of thenumerical scheme used to compute can be found in Appendix A.
1.2. A conditional stochastic model to handle micro-scale fluctuations

Among the factors driving population dynamics, some are structured at large spatial scales(macro-scale) and others at local scales (micro-scale). It is worth considering both scales whenstudying biological invasions. In the model just introduced, the term r(x) describes factors im-pacting population growth rate at the macro-scale along the whole spatial domain considered.Accordingly, the function u(t, x) is a mean-field approximation of the true population densityat macro-scale. Furthermore, the population density can fluctuate due to micro-scale variationsof other factors regulating population densities locally (e.g. because of variations in the micro-climate and the host susceptibility). Such local fluctuations are accounted for by a conditionalprobability distribution on u(t, x), the macro-scale population density, which depends on the(unobserved) suitability of the habitat unit as follow. Consider a habitat unit i whose centroidis located at xi , and suppose that the habitat unit is small enough to reasonably assume that
u(t, x) = u(t, xi ) for every location x in the habitat unit. Let Ni (t) denote the number of individ-uals in i at time t . The conditional distribution of Ni (t) is modelled by a Poisson distribution:
(2) Ni (t) | u(t, xi ),Ri (t) ∼ Poisson(u(t, xi )Ri (t)),

where Ri (t) is the intrinsic propensity of the habitat unit i to be occupied by individuals of thepopulation at time t . Thereafter, Ri (t) is called habitat suitability and takes into account factorslike the exposure and the favorability of habitat unit i . The suitability of habitat unit i is a ran-dom effect (unobserved variable) and is assumed to follow a Gamma distribution with shapeparameter σ−2 and scale parameter σ2:
(3) Ri (t) ∼ Gamma(σ−2,σ2).

This parametrisation implies that the mean and variance of Ri (t) are 1 and σ2, respectively; thatthe conditional mean and variance of Ni (t) given u(t, xi ) are u(t, xi ) and u(t, xi ) + u(t, xi )
2σ2,respectively; and that its conditional distribution is:

(4) Ni (t) | u(t, xi ) ∼ Negative-Binomial(σ−2,
1

1 + u(t, xi )σ2

)
.

1.3. Multi-type sampling and models for the observation processes
During an invasion, the population density may range from zero (beyond the front) to themaximum carrying capacity of the habitat. To optimise the sampling effort, it may be relevantto carry out different sampling procedures depending on the population density at the samplingsites. In this article, we consider a two-stage sampling made of one raw sampling, which is sys-tematic and one optional refined sampling adapted to our case study, the downstream spread ofa fungal pathogen along a river (Figure 1). We consider that the habitat unit is a leaf. The fungalpopulation is monitored in sampling sites s ∈ {1, ... , S} and at sampling times t ∈ {t1, ... , tK}.Sampling sites are assumed to be small with respect to the study region, and the duration forcollecting one sample is assumed to be short with respect to the study period. Thus, the (macro-scale) density of the population at sampling time t in sampling site s is constant and equal to

u(t, zs) where zs is the centroid of the sampling site s . Any sampling site s is assumed to con-tain a large number of leaves which are, as a consequence of the assumptions made above, allassociated with the same population density function: u(t, xi ) = u(t, zs) for all leaves i withinsampling site s . Each observed tree and twig are assumed to be observed only once during thesampling period. Therefore, habitat suitabilities Ri (t) are considered independent in time.
The raw sampling is focused on trees, considered as a group of independent leaves regard-ing their suitabilities. This assumption can be made if the leaves observed on the same tree aresufficiently far from each other and represent a large variety of environmental conditions, andtherefore habitat suitabilities (for example, leaves observed all around a tree will not have the
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Figure 1 – Two-stage sampling on a sampling site, with one systematic raw sampling (onthe left) and one optional refined sampling (on the right). Each square represent a leaf,which can be non infected, infected but not detected, or infected and detected. Eachgroup of spatially grouped leaves represent a tree. Each tree already observed duringthe raw sampling are not available (and thus represented in grey) for the refined sampling,where connected leaves in twigs are observed.
same sun exposition, nor the same humidity depending on their height and their relative posi-tions to the trunk). In each sampling site s and at each sampling time t , a number Bst of trees aremonitored for the presence of infection. We count the number of infected trees Yst among thetotal number Bst of observed trees. In the simulations and the case study tackled below, the ran-dom variables Yst given u(t, xs) are independent and distributed under the conditional Binomialdistribution f rawst described in Appendix B.2. Its success probability depends on the variabilitiesof (i) the biological process through the variance parameter σ2 of habitat suitabilities, and (ii) theobservation process through a parameter γ. This parameter describes how the probabilities ofleaf infection perceived by the person in charge of the sampling differ between trees from trueprobabilities (as informed by the mechanistic model). Such differences may be due, for example,to the specific configuration of the canopy of each tree or to particular lighting conditions.

The refined sampling is focused on twigs, considered as a group of connected leaves. Nearbyleaves often encounter the same environmental conditions and, therefore, are characterised bysimilar habitat suitabilities represented by Ri (t); see Equations (2–3). This spatial dependencewas taken into account by assuming that the leaves of the same twig (considered as a smallgroup of spatially connected leaves) share the same leaf suitability. Accordingly, suitabilities areconsidered as shared random effects. The refined sampling is performed depending on diseaseprevalence and available time. In site s at time t , Gst twigs are collected. For each twig g , thetotal number of leaves Mstg and the number of infected leaves Ystg are counted. In the simula-tions and the case study tackled below, the random variables Ystg given u(t, xs) are independentand distributed under conditional probability distributions denoted by f refst described in Appen-dix B.3. The distribution f refst is a new mixture distribution (called Gamma-Binomial distribution)obtained using Equations (2–3) and taking into account the spatial dependence and the varianceparameter of unobserved suitabilities (see Appendix B.3).
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This sampling scheme and its vocabulary (leaves, twigs and trees) are specifically adapted toour case study for the sake of clarity. However, a wide variety of multi-type sampling strategiescan be defined and implemented in themodel, as long as it fits a two-stage sampling as presentedin Figure 1.
1.4. Coupling the mechanistic and observation models

The submodels of the population dynamics and the observation processes described abovecan be coupled to obtain a mechanistic-statistical model (also called physical-statistical model;Berliner, 2003; Soubeyrand et al., 2009b) representing the data and depending on dynamicalparameters, namely the growth and dispersal parameters. The likelihood of this mechanistic-statistical model can be written:
(5) L(θ) =

S∏

s=1

tK∏

t=t1




f rawst (Yst)




Gst∏

g=1

f refst (Ystg )



1(Yst>ȳ)




,

where 1(·) denotes the indicator function and expressions of f rawst and f refst adapted to the casestudy tackled below are given by Equations (S14) and (S18) in Appendix B. The power 1(Yst > ȳ)equals to 1 ifYst > ȳ and 0 otherwise, implies that the product∏Gst
g=1 f

ref
st (Ystg ) only appears if therefined sampling is carried out in site s . Moreover, such a product expression for the likelihoodis achieved by assuming that leaves in the raw sampling and those in the refined sampling arenot sampled from the same trees. If this does not hold, then an asymptotic assumption like theone in Appendix B.2 can be made to obtain Equation (5), or the dependence of the unobservedsuitabilities must be taken into account and another likelihood expression must be derived.

2. Parameter estimation and model selection
We performed simulations to check the practical identifiability of several scenarios of biolog-ical invasions. Invasion scenarios represent a wide range of possible states of nature regardingthe dispersal process, the environmental heterogeneity at macro-scale, and the intensity of localfluctuations at micro-scale. Even though the simulations are designed to cope with the structureof our real data set (Appendix D), the results enable some generic insights to be gained. Specifi-cally, we considered six sampling dates evenly distributed in time and 12 samplings sites evenlydistributedwithin the 1D spatial domain. For each pair (date, site), we simulated the raw samplingof 100 trees and the refined sampling of 20 twigs. For the fifth sampling date, the raw samplingwas densified with 45 sampling sites instead of 12.
The simulation study explored four hypotheses for the dispersal process: three I.D. hypothe-ses with kernels JExp, JGauss and JExpP and the R.D. hypothesis. Hypotheses JExp and JGauss statethat individuals dispersed according to Exponential and Gaussian kernels, respectively, withparameter θJ = (λ). Hypothesis JExpP states that individuals dispersed according to a fat-tailExponential-power kernel with parameters θJ = (λ, τ) and τ < 1. Finally, hypothesis R.D. statesthat individual dispersal is a diffusion process parameterised by θJ = (λ). The parameter λrepresents the mean distance travelled whatever the dispersal hypothesis considered. More-over, macro-scale environmental heterogeneity was accounted for in the simulations by varyingthe intrinsic growth rate of the pathogen population (r ) in space. Specifically, along the one-dimensional domain, we considered two values of r , namely a downstream value rdw and anupstream value rup, parameterised by θr = (rdw,ω) such that rup = rdweω . Finally, micro-scaleheterogeneity was accounted for in the simulations by varying the parameter of leaf suitability

σ2 and tree perception γ. Thereafter, θ = (θr , θJ , γ,σ
2) denotes the vector of model parameters.

2.1. Accurate inference of model parameters
To assess the estimation method and check if real data that were collected are informativeenough to efficiently estimate the parameters of the models (the so-called practical identifia-bility), we proceeded in three steps for each dispersal hypothesis: (i) a set of parameter values

θ = (θr , θJ , γ,σ
2) is randomly drawn from a distribution that encompasses a large diversity of
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realistic invasions, (ii) a data set with a structure similar to our real sampling is simulated given θand (iii) θ is estimated using the maximum-likelihood method applied to the simulated data set.These steps were repeated n = 160 times. Details on the simulation procedure, the conditionsused to generate realistic invasions, and on the estimation algorithm are provided in AppendixD.1. Practical identifiability was tested by means of correlation coefficients between the trueand estimated parameter values (see Table 1, Appendix B: Figures S2, S3, S4, S5).
Table 1 – Model practical identifiability. Numbers indicate the coefficient of correlationbetween the true and estimated parameter values for the four models corresponding tothe four dispersal processes (JExp, JGauss, JExpP and R.D.) from 160 replicates. High corre-lation between true and estimated parameters indicates a good practical identifiability.The standard deviations of the coefficients of correlation, estimated with a bootstrap-ping method, are indicated in brackets. Correlation coefficients and standard deviationsare given for natural scale for parameter ω, and logarithm scales for parameters rdw, γ, λ,
τ , and σ2.

Parameter Description JExp JGauss JExpP R.D.
rdw Growth rate downstream 0.997 (0.001) 0.997 (0.001) 0.992 (0.004) 0.991 (0.003)
ω Growth rate modulator 0.997 (0.001) 0.992 (0.003) 0.994 (0.002) 0.995 (0.002)
λ Mean dispersal distance 0.983 (0.007) 0.993 (0.004) 0.983 (0.006) 0.941 (0.023)
τ Kernel exponent NA NA 0.927 (0.019) NA
γ Tree perception 0.969 (0.006) 0.966 (0.006) 0.966 (0.006) 0.910 (0.018)
σ2 Variance in leaf suitability 0.996 (0.001) 0.997 (0.001) 0.997 (0.001) 0.994 (0.001)

All the parameters defining the macro-scale mechanistic invasion model (rdw , ω, λ) displayvery good practical identifiability whatever the model, with correlation coefficients above 0.98(except for mean dispersal distance λ under R.D., correlation coefficient of 0.94). In the caseof the Exponential-power dispersal kernel, the additional parameter representing the tail of thedistribution (τ ) also displays a very good practical identifiability with a correlation coefficient of0.93. The parameter defining the micro-scale fluctuations, σ2, leads to particularly high corre-lation coefficients (0.99 for all the models). The identifiability for the perception parameter γrelated to the observation process is somewhat lower (from 0.91 to 0.97).

2.2. Confidence in the selection of the dispersal process
Numerical simulations were next designed to test whether model selection could disentan-gle the true dispersal process (i.e. the dispersal hypothesis used to simulate the data set) fromalternative dispersal processes (Appendix D.2). The model selection procedure is the most effi-cient for the dispersal hypotheses Exponential-power JExpP, with 78% of correct kernel selection,respectively (Table 2). When the fat-tail Exponential-power kernel is not correctly identified, it ismostly mistaken with the Exponential one (for 17% of the simulations). In line with this, the prob-ability of correctly selecting the kernel JExpP decreases when the parameter τ increases towards1, the value for which the Exponential-power kernel coincides with the Exponential kernel (Fig-ure 2). Importantly, when the Exponential-power kernel is correctly selected, we observe a largedifference between its AIC and the AIC of the second best model (217.50 points on average).Conversely, when the invasion process is simulated under JExpP, but another kernel is selected,we observe a very small AIC difference (0.76 point on average). The model selection is the leastefficient for the Gaussian kernel JGauss (Table 2), with only 45% of correct model selection. Itscorrect identification is improved to 80% by densifying the sampling scheme (Appendix D.5: Ta-ble S3). Finally, note that when the invasion process is simulated under model R.D. or JGauss, ashort-tail kernel is almost always selected and, thus, never confounded with the fat-tail kernel

JExpP.

8 Méline Saubin et al.

Peer Community Journal, Vol. 4 (2024), article e9 https://doi.org/10.24072/pcjournal.356

https://doi.org/10.24072/pcjournal.356


Table 2 – Efficiency of model selection using Akaike information criterion (AIC). The fourfirst columns indicate the proportion of cases, among 60 replicates, where each testedmodel was selected using AIC, given that data sets were generated under a particularmodel (i.e. true model). Column dAICtrue (resp. dAICwrong) indicates the mean differencebetween the AIC of the model selected when the model selected is the true one (resp.when the model selected is not the true model) and the second best model (resp. beingthe true model or not).
Selected Model

JExp JGauss JExpP R.D. dAICtrue dAICwrongTrue Model
JExp 0.50 0.32 0.05 0.13 0.90 1.10
JGauss 0.25 0.45 0.02 0.28 1.30 0.67
JExpP 0.17 0.05 0.78 0 217.50 0.76R.D. 0.22 0.18 0 0.60 2.37 0.33
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Figure 2 – Logistic regression of the proportion of correct model selection of dispersal
JExpP as a function of τ . Dots represent the values of τ used for the 60 replicates ofsimulated dispersal model JExpP, and the estimated dispersal model (1 for a correct modelselection of JExpP and 0 for a wrong model selection). The blue line corresponds to thepredicted value of the proportion of correct model selection JExpP as a function of τ , andthe grey area corresponds to the confidence envelope at 95%.

3. Case study: Invasion of poplar rust along the Durance River valley
3.1. Study site

We applied our approach to infer the dispersal of the plant pathogen fungus Melampsoralarici-populina, responsible for the poplar rust disease, from the monitoring of an epidemic invad-ing the Durance River valley. Embanked in the French Alps, the Durance River valley constitutesa one-dimension ecological corridor that channels annual epidemics of the poplar rust pathogenM. larici-populina (Xhaard et al., 2012). Each year the fungus has to reproduce on larches (Larixdecidua) that are located in the upstream part of the valley only. This constitutes the startingpoint of the annual epidemics. Then the fungus switches to poplar leaves and performs severalrounds of infection until leaf-fall. Each infected leaf produces thousands of spores that are wind-dispersed. In our case study, u(t, xs) is the density of fungal infection at time t at point x on a
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poplar leaf. Each leaf has a carrying capacity of 750 fungal infections (Appendix E).
All along the valley, the Durance River is bordered by a nearly continuous riparian forest ofwild poplars (Populus nigra). The annual epidemic on poplars thus spreads downstream throughthe riparian stands, mimicking a one-dimension biological invasion (Xhaard et al., 2012). A previ-ous genetic study showed that the epidemic was indeed initiated in an upstream location wherepoplars and larches coexist (Prelles), and progresses along the valley (Becheler et al., 2016). Inautumn, the corridor is cleared for disease after leaf-fall. At 62 km downstream of the startingpoint of the epidemics, the Serre-Ponçon dam represents a shift point in the valley topology,with a steed-sided valley upstream and a larger riparian zone downstream. This delimitation ledus to consider 2 values of growth rates r along the one-dimensional domain: rup and rdw (seeAppendix D for details).

3.2. Monitoring of an annual epidemic wave
In 2008, rust incidence was monitored every three weeks from July to November at 12 sitesevenly distributed along the valley (Figure 3). Sites were inspected during seven rounds of sur-veys. For a unique date (Oct. 22), the raw sampling was densifiedwith 45 sites monitored insteadof 12. We focused on young poplar trees (up to 2m high) growing on the stands by the riverside.
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Figure 3 – Poplar rust epidemic wave along the Durance River valley in 2008. The larchdistribution area is represented in dark green, wild poplar riparian stands in pale green.The 12 study sites are represented by the green squares. Orange dots describe the evo-lution of the poplar rust epidemic through time (7 rounds of disease notation) and space(12 studied sites). Dot size is proportional to rust disease incidence assessed from therefined sampling.
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Two monitorings were conducted, corresponding to the raw and refined sampling, as de-scribed in previous sections. For the raw sampling, we prospected each site at each date tosearch for rust disease by inspecting randomly distributed poplar trees (different trees at differ-ent dates for a given site). Depending on rust incidence and poplar tree accessibility, 40 to 150trees (mean 74) were checked for disease. Each tree was inspected through a global scan of theleaves on different twigs until at least one infected leaf was found or after 30 s of inspection.The tree was denoted infected or healthy, respectively. This survey method amounts to minutelyinspecting 10 leaves per tree, i.e.with the same efficiency of disease detection as through the re-fined sampling (see details of the statistical procedure in Appendix C). The global scan procedureof the trees leads to equivalently surveying fewer and fewer leaves as the epidemic progresses.Optionally, when at least one tree was infected, and depending on available time, we carried outa refined sampling to collect more information on the variance in disease susceptibility (i.e. habi-tat suitability) among the sampling domain. The refined sampling consisted in randomly sampling20 twigs on different trees and recording, for each, the total number of leaves and the numberof infected leaves.
3.3. Dispersal and demographic processes ruling the epidemic wave

Model selection was used to decipher which dispersal process was best supported by thedata set for five initial parameter values. The large AIC difference in favour of hypothesis JExpPindicates that poplar rust propagules assuredly disperse according to an exponential-power dis-persal kernel along the Durance River valley (Table 3). Note that for all kernels, the five initialparameter values lead to similar estimations.
Table 3 – Model selection for the epidemic of poplar rust along the Durance River valley.The Akaike information criteria are indicated for each model fitted to the real data set.The model best supported by the data is indicated in bold. AICmedian and AICsd representthe median and standard deviation among the AIC obtained from five initial parametervalues.

Dispersal AICmedian AICsd
JExp 5461 5.81
JGauss 5493 0.15
JExpP 5163 0.01R.D. 6190 0.03

The estimation of the parameters for the bestmodel alongwith their confidence intervals (Ap-pendix D.3) are summarised in Table 4. The parameters of the Exponential-power kernel firstlyindicate that themean distance travelled by rust spores is estimated at 1.94 km. Second, its meanexponent parameter τ is 0.24. This value, much lower than 1, suggests substantial long-distancedispersal events. We also estimated the growth rates of the poplar rust epidemics along theDurance River valley. From upstream to downstream, their mean estimates are 0.085 and 0.023,respectively. The estimate of the parameter of the observation model, γ, is 4.82. This parameterrepresents how perceived probabilities of leaf infection differ among trees from true probabili-ties. The estimated value of 4.82 indicates some variability in the perception of infected leaves,but this variability is moderate because the shape of the underlying Beta-Binomial distributionapproaches the Binomial distribution (for which perception differences are absent) (Figure 4, row1). By contrast, the estimated value of the micro-scale fluctuation variance σ2 (1.29) suggests asubstantial variability in leaf suitability between twigs. This is evidenced by comparing the shapeof the estimated Gamma-Binomial distribution with a situation with negligible differences in re-ceptivity between twigs (Figure 4, row 2, case σ2 = 0.01).
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Table 4 – Statistical summary of the inference of the parameters for the model best sup-ported by the real data set JExpP. We used the vector of parameters θ giving the lowestAIC value in the previous model selection procedure as initial parameter values of the
R function mle2, to obtain maximum likelihood estimates of the vector of parameters θ̂and of its matrix of variance-covariance ∑̂. Summary statistics were derived from 1,000
random draws from the multivariate normal distribution with parameters θ̂ and ∑̂ (seeAppendix D.3). Columns Estimate, q−2.5% and q−97.5% represent the estimated valueof each parameter and the quantiles 2.5% and 97.5%, respectively.

Parameter Description q − 2.5% Estimate q − 97.5%
rup Growth rate upstream 0.0786 0.0853 0.0897
rdw Growth rate downstream 0.0143 0.0230 0.0311
λ Mean dispersal distance 1.78 1.94 2.12
τ Kernel exponent 0.226 0.243 0.260
γ Tree perception 3.49 4.82 6.11
σ2 Variance in leaf suitability 1.23 1.29 1.36
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Figure 4 – Distributions of the number of infected leaves in a tree and of the number ofinfected leaves in a twig, for increasing densities of infection u(t, x), and contrasted levelsof environmental heterogeneity σ2 and γ. The number of infected leaves in a tree followsa Beta-Binomial distribution (Eq. (S12)) with σ2 = 1.29. Its density is plotted for three treeperceptions γ: 4.82 (estimated value on the real data set), 10 (intermediate value) and
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Model check consists in testing whether the selected model was indeed able –given theparameter values inferred above– to reproduce the observed data describing the epidemic wavethat invaded theDurance River valley in 2008. To do so, we assessed the coverage rate of the rawsampling data (proportions of infected trees) based on their 95%-confidence intervals (AppendixD.4, Figure 5). Over all sampling dates, the total coverage rate is high (0.71), which indicatesthat the model indeed captures a large part of the strong variability of the data. By comparison,coverage rates given by models JExp and JGauss (0.68 and 0.67, respectively) show a poorer fit tothe data, especially for the first sampling date (Figures S6, S7) where the epidemic intensity isunderestimated upstream and overestimated downstream.
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Figure 5 – Model check under the selected dispersal model JExpP: Coverage rates forthe raw sampling. Each sampling date is represented on a separate graph. Sampling 1 isnot represented because it corresponds to the initial condition of the epidemics for allsimulations. Blue areas correspond to the pointwise 95% confidence envelopes for theproportion of infected trees, grey intervals correspond to the 95% prediction intervals ateach site, i.e. taking into account the observation laws given the proportion of infectedtrees. Red points correspond to the observed data. Only four observations are availablefor sampling 7 because at this date (November 13) the leaves had already fallen from thetrees located upstream the valley. The total coverage rate over all sampling dates is 0.71.

4. Discussion
This study combines mechanistic and statistical modelling to jointly infer the demographicand dispersal parameters underlying a biological invasion. A strength of the mechanistic modelwas to combine population growth with a large diversity of dispersal processes. The mechanis-tic model was coupled to a sound statistical model that considers different types of count data.These observation laws consider that habitat suitability and disease perception can vary over thesampling domain. Simulations were designed to prove that the demographic model can be confi-dently selected and its parameter values reliably inferred. Although the framework is generic, itwas tuned to fit the annual spread of the poplar rust fungusM. larici-populina along the Durance
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River valley. This valley channels every year the spread of an epidemic along a one-dimensionalcorridor of nearly 200 km (Becheler et al., 2016; Xhaard et al., 2012). The monitoring we per-formed enables to build a comprehensive data set at a large spatial scale, which is mandatoryto precisely infer the shape of the tail of dispersal kernels (Ferrandino, 1996; Kuparinen et al.,2007). A widely used alternative to the mechanistic-statistical approaches is to consider purelycorrelative approaches. However, the estimated parameters defining the strength of the tem-poral and spatial dependencies (as estimated for example using R-INLA package approach, Rueet al., 2009) will not allow to distinguish between the different shapes of dispersal kernels, whichwas the main goal of our work.
4.1. Estimation of the dispersal kernel of the poplar rust

This study provides the first reliable estimation of the dispersal kernel of the poplar rust fun-gus. Dispersal kernels are firstly defined by their scale, which can be taken to correspond tothe mean dispersal distance. The mean dispersal distance obtained from the best model is 1.94km with a 95% confidence interval ranging from 1.78 to 2.12 km. A non-systematic literature re-view identified only eight studies reporting dispersal kernels for plant pathogens that used datagathered in experimental designs extending over regions bigger than 1 km² (Fabre et al., 2021).The mean dispersal distances of the four fungal pathosystems listed by these authors are 213m for the ascospores of Mycosphaerella fijiensis (Rieux et al., 2014), 490 m for the ascosporesof Leptosphaeria maculans (Bousset et al., 2015), 860 m for Podosphaera plantaginis (Soubeyrandet al., 2009a) and from 1380 to 2560 m for Hymenoscyphus fraxineus (Grosdidier et al., 2018).Our estimates for poplar rust are in the same range as the one obtained at regional scale forHymenoscyphus fraxineus, the causal agent of Chalara ash dieback (Grosdidier et al., 2018).
Dispersal kernels can be further defined by their shape. We show that the spread of poplarrust is best described by a fat-tailed Exponential-power kernel. The “thin-tailed” kernels con-sidered (Gaussian and exponential kernels) were clearly rejected by model selection. These re-sults are in accordance with the high dispersal ability and the long-distance dispersal eventsevidenced in this species by population genetics analyses (Barrès et al., 2008; Becheler et al.,2016). Rust fungi are well-known to be wind dispersed over long distances (Aylor, 2003; Brownand Hovmøller, 2002). Recently, Severns et al. (2019) gathered experimental and simulation evi-dence that supports that wheat stripe rust spread supports theoretical scaling relationships frompower law properties, another family of fat-tail dispersal kernel. In fact, many aerially dispersedpathogens are likely to display frequent long-distance flights as soon as their propagules (spores,insect vectors) escape from plant canopy into turbulent air layer (Ferrandino, 1993; Pan et al.,2010). Accordingly, four of these eight studies listed by Fabre et al. (2021) lent support to fat-tailed kernels, including plant pathogens as diverse as viruses, fungi, and oomycetes.

4.2. Effect of fat-tailed dispersal kernels on eco-evolutionary dynamics
The dynamics produced by the mechanistic integro-differencial models we use strongly de-pends on the tail of the dispersal kernel. Namely, when the equation is homogeneous (i.e. whenthe model parameters do not vary in space, leading to r(x) = r ), it is well known that for any thin-tailed dispersal kernel J such that ∫ J(z)eλ|z|dz < +∞ for some λ > 0, the dynamics of u(t, x) iswell explained using a particular solution called travelling wave. In this case, the invading frontdescribed by the solution u(t, x) moves at a constant speed (Aronson and Weinberger, 1978).By contrast, for a fat-tailed kernel, these particular solutions do not exist anymore, and the dy-namics of u(t, x) describes an accelerated invasion process (Bouin et al., 2018; Garnier, 2011;Medlock and Kot, 2003). Here, we show that the dynamics of the poplar rust is better describedas an accelerated invasion process rather than a front moving at a constant speed. Such acceler-ating wave at the epidemic front has been identified for several fungal plant pathogens dispersedby wind, including Puccinia striiformis and Phytophthora infestans the wheat stripe rust and thepotato late blight, respectively (Mundt et al., 2009). However, it should be stated that fat-tailedkernels are not always associated with accelerated invasion processes. Indeed, fat-tailed ker-nels can be further distinguished depending on whether they are “regularly varying” (e.g. power
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law kernels) or “rapidly varying” (e.g. Exponential-power kernels) (Klein et al., 2006). Mathemati-cally, it implies that power law kernels decrease even more slowly than any Exponential-powerfunction. Biologically, fat-tailed Exponential-power kernels display rarer long-distance dispersalevents than power law kernels. On the theoretical side, the kernel’s properties subtly interactwith demographic mechanisms such as Allee effects to possibly cancel the acceleration of in-vasion. With weak Allee effects (i.e. the growth rate is density dependent but still positive), noacceleration occurs with rapidly varying kernels whereas an acceleration could be observed forsome regularly varying kernels, depending on the strength of the density dependence (Alfaroand Coville, 2017; Bouin et al., 2021). For strong Allee effects (i.e. a negative growth rate at lowdensity), no acceleration can be observed for all possible kernels (Chen, 1997). On the appliedside, whether or not the epidemic wave is accelerating sharply impacts the control strategies ofplant pathogens (Fabre et al., 2021; Filipe et al., 2012; Ojiambo et al., 2015).
4.3. Confidence in the inference of the dispersal process

The inference framework we developed is reasonably efficient in estimating the dispersalprocess with frequent long-distance dispersal events as generated by Exponential-power dis-persal kernels. The numerical experiments clearly show that the lower the exponent parameter
τ of the Exponential-power kernel, the higher the confidence in its selection. Conversely, theidentification of the dispersal process is less accurate with thin-tail kernels. The requirement forimproving the capacity to distinguish between thin-tail kernels may lie in the sampling scheme.Here, our sampling sites are regularly spaced, over a large sampling domain of 200 km, whichis better suited to monitor long-distance dispersal (Kuparinen et al., 2007). Sampling schemeswithmore frequent data in both time and space (or nested spatial sampling) might improve kernelidentification. We clearly observed that integro-differential models with Gaussian dispersal ker-nel on the one hand and reaction-diffusion equation on the other hand are well identified withour estimation procedure when the time and space sampling is dense enough. This result may atfirst appear striking as a common belief tends to consider that diffusion amounts to a Gaussiandispersal kernel. However, these two models represent different movement processes (Othmeret al., 1988). In addition, classical macroscopic diffusion, which is mainly based on Brownian mo-tion (Othmer et al., 1988), often ignores the inherent variability among individuals’ capacity ofmovements and as a consequence does not accurately describe the dispersal at the populationscale (Hapca et al., 2009). While it is reasonable to assume that a single individual disperses viaBrownianmotion, this assumption hardly extends to all individuals in the population. Accordingly,we believe that integro-differential models are better suited to take into account inter-individualbehaviour as the dispersal kernel explicitly models the redistribution of individuals.
4.4. Robustness and portability of the method

A strength of the approach proposed is the detailed description of the observation laws in thestatistical model. The derivation of their probability density functions allows to obtain an analyti-cal expression of the likelihood function. Model inference was however not straightforward dueto local optimum issues. In order to achieve satisfying computational efficiency, we developedan ad hoc hybrid strategy initiated from 20 initial values and combining the two classical Nelder-Mead and Nlminb optimisation algorithms. However, the framework of hierarchical statisticalmodels (Cressie et al., 2009), whose inference is often facilitated by Bayesian approaches, couldlikely be mobilised to improve model fit. In particular, although the coverage rate of the treesampling was correct, it could be further improved by relaxing some hypotheses. The orange-coloured uredinia being easily seen on green leaves, we assumed that the persons in charge ofthe sampling perfectly detect the disease as soon as a single uredinia is present on a leaf. How-ever, even in this context, observation errors are likely present in our dataset as in any largespatio-temporal study. The latent variables used in hierarchical models are best suited to handlethe fact that a tree observed to be healthy can actually be infected. False detection of infectioncould also be taken into account. This could make sense as a sister species, M. alli-populina, noteasily discernible from M. larici-populina in the field, can also infect poplar leaves. This speciescan predominate locally in the downstream part of the Durance River valley. This could have led
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to over-estimate the disease severity at some locations. Yet, all infected leaves from twigs werecollected and minutely inspected in the lab under a Stereo Microscope (25× magnification) tocheck for species identification.
More generally, the statistical part of the mechanistic-statistical approaches developed couldbe transposed to a wide range of organisms and sampling types. Sharing the sampling effort be-tween raw and refined samples improves the estimations. The two distinct types of sampling(sampling of random leaves in trees, and of leaves grouped within twigs) apply to a wide rangeof species, which local distribution is aggregated into patches randomly scattered across a studysite. Any biological study with two such distinct sampling types (as described in Figure 1) wouldfit the proposed statistical model. One can for example scale up the sampling by consideringthe plant (instead of the leaf) as the basic unit. Moreover, the framework naturally copes withthe diversity of sampling schemes on the ground such as the absence of one sample type forall or part of the sampled sites and dates. Finally, we used the first sampling date to estimateindependently the initial population densities u(0, x) that were then fixed among all simulatedepidemics. Future works could as well jointly estimate u(0, x) as part of θ.
Themechanistic part of themodel could also handle awider diversity of hypotheses. First, themodel can be adapted to take into account a wider range of dispersal kernels, such as regularlyvarying kernels (see above). Second, the model can also easily be adapted to take into accountparameter heterogeneity in time and space of its parameters. Similarly, one may easily assumethat the growth rate depends on daily meteorological variables. Finally, we ignore the influenceof the local fluctuations of the population size on the macro-scale density of the populationwhen stochastic fluctuations can influence epidemic dynamics (Rohani et al., 2002). Here, weneglect this influence by considering that the average population size is relevant when habitatunits are aggregated. Relaxing this hypothesis could be achieved by incorporating stochasticintegro-differential equations. The inference of such models is currently a front of research.

4.5. Future directions
As biological invasions are regularly observed retrospectively, carrying out spatio-temporalmonitoring is often highly difficult, when possible. A small number of longitudinal temporal datamakes model inference very difficult, in particular for its propensity to properly disentangle theeffect of growth rate and dispersal. Incorporating genetic data into the framework proposed hereis a challenge thatmust bemet to get around this problem. Indeed, colonisation and demographiceffects such as Allee effect generate their own specific genetic signatures (Dennis, 1989; Lewisand Kareiva, 1993; Miller et al., 2020). Similarly, genetic data could help to identify the dispersalkernel underlying the invasion process, as the population will exhibit an erosion of its neutraldiversity with a thin-tailed kernel (Edmonds et al., 2004; Hallatschek et al., 2007). Conversely,genetic diversity can be preserved all along the invasion front with a fat-tailed kernel, becauseof the long-distance dispersal of individuals from the back of the front, where genetic diversityis conserved (Bonnefon et al., 2014; Fayard et al., 2009).
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Appendix A. Numerical scheme
We use an implicit Euler scheme combined with a finite difference scheme (see Allaire, 2012for details) to compute the solution u(t, x) of the reaction-diffusion equation over [−R,R] ×

[0,T ], with 2 × R the length of the modelled environment, and T the duration of the modelledprocess. For the integro-differential equation, we use an explicit Euler scheme. More precisely,we perform a standard explicit Euler time discretisation of the equation:
(S1) ∂u

∂t
(t, x) ≈ u(t + δ, x) − u(t, x)

δthat leads to:
u(tn+1, x) = u(tn, x) + δ

(∫ R

−R
J(x − y)[u(tn, y) − u(tn, x)] dy

)

+ δr(x)u(tn, x)

(
1 − u(tn, x)

K

)(S2)

where {tn = nδ = nT/N : n = 0, ... ,N} is a series of increasing times separated by δ = T/N > 0,and N is the number of time steps in the series. For the space discretisation, we define a regulargrid {xi = −R + iϵ = −R +2Ri/I : i = 0, ... , I} with I +1 points separated by ϵ = 2R/I > 0. Wemake the following approximation for all x in [−R,R]:
(S3) u(tn, x) ≈

I∑

i=0

u(tn, xi )1[xi ,xi+ϵ)(x)

where x 7→ 1[xi ,xi+ϵ)(x) is the indicator function that gives 1 if x ∈ [xi , xi + ϵ), 0 otherwise.Based on this approximation, we only need to compute u(t, x) at points xi , i = 0, ... , I . PluggingApproximation (S3) in the integral of Equation (S2) computed for x = xi yields:
∫ R

−R
J(xi − y)[u(tn, y) − u(tn, xi )] dy

≈
∫ R

−R
J(xi − y)






I∑

j=0

u(tn, xj)1[xj ,xj+ϵ)(y)


− u(tn, xi )


 dy

=




I∑

j=0

u(tn, xj)

∫ R

−R
J(xi − y)1[xj ,xj+ϵ](y) dy


−

(
u(tn, xi )

∫ R

−R
J(xi − y)dy

)

≈ ϵ




I∑

j=0

u(tn, xj)J(xi − xj)


− ϵ u(tn, xi )

I∑

j=0

J(xi − xj)

(S4)

Let us define the matrix Jin := (J(xi − xj))0≤i ,j≤I whose element (i , j) is Jinij = J(xi − xj). Weget the following numerical scheme:

u(tn+1, xi ) = u(tn, xi ) + δϵ




I∑

j=0

Jinij u(tn, xj) − u(tn, xi )




I∑

j=0

Jinij






+ δr(xi )u(tn, xi )

[
1 − u(tn, xi )

K

](S5)

By defining the vectors U(tn) = (u(tn, xi ))0≤i≤I , R = (r(xi ))0≤i≤I and 1 = (1)0≤i≤I , we haveto solve the linear system:
(S6) U(tn+1) = U(tn) + δϵ

{
JinU(tn) − U(tn) · (Jin1)

}
+ δ{R · U(tn)} ·

{(
1 − U(tn)

K

)}

where · is the element-wise multiplication operator.
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Appendix B. Distributions of the population measurements
B.1. Term designations for the sampling units

In our biological application, a poplar leaf represents a habitat unit, a twig represents a groupof habitat units, and a tree represents a habitat bloc. For clarity, we refer to leaves, twigs andtrees in the following explanations. We call a sampling site a surveyed area along the valley,containing several hundreds of trees. Further adaptations of this model to other sampling unitswould only require adapting this initial vocabulary (Figure 1).
B.2. Raw sampling

In the raw sampling, trees represent the sampling units, and Bst trees are observed in site sat time t . For each tree b ∈ {1, ... ,Bst}, we measure the presence/absence of the pathogen bymonitoring an equivalent number of M leaves within b (see Appendix C below for the determi-nation ofM ). A tree is infected if at least one pathogen lesion has been detected, in at least oneleaf of the tree. The observation in site s at time t is the number Yst of infected trees.Now, let us derive the probabilistic law of the presence/absence of the pathogen in any tree
b observed in site s at time t . In this paragraph, subscripts s , t , and b are generally omitted toavoid cumbersome notation. We first remind that the numbers of pathogen lesions Ni (t) in theleaf i ∈ {1, ... ,M} observed in tree b, given Ri (t) and u(t, xs), are independent and Poissondistributed (see Eq. (2) in the main text):
(S7) Ni (t) | u(t, xs),Ri (t) ∼indep. Poisson(u(t, xs)Ri (t))

In the raw sampling, M leaves are sampled at different locations on the tree (i.e. they belong todifferent groups, referred to as twigs), but further information about the twigs is not known. Thus,in the following, we take into account the twig structurewithout exploiting twig information. Theleaves of a given twig g on tree b share at time t the same suitability Rg (t), which is unobservedand Gamma distributed like in Eq. (3) in the main text (for all leaves i in twig g , Ri (t) = Rg (t)).Given the suitabilities {Rg (t) : g = 1, ... ,G} of twigs which compose tree b and given theabsence of data about the twigs,Ri (t) (i ∈ {1, ... ,M}) are independent and identically distributedunder the discrete empirical probability distribution:
(S8) F̂G (r) =

1

G

G∑

g=1

1(r ≤ Rg (t))

where 1(·) is the indicator function. Therefore, Ni (t) (i ∈ {1, ... ,M}) given {Rg (t) : g = 1, ... ,G}and u(t, xs) are independent and their probability distribution is, using Eqs. (S7)–(S8):
(S9) P[Ni (t) = n | u(t, xs), {Rg (t) : g = 1, ... ,G}] = 1

G

G∑

g=1

exp(−u(t, xs)Rg (t))
(u(t, xs)Rg (t))

n

n!

The suitability Rg (t) being Gamma distributed with shape and scale parameters σ−2 and σ2,respectively, the right-hand-side of Eq. (S9) is a Monte Carlo approximation of the integral:
∫

R+

exp(−u(t, xs)r)
(u(t, xs)r)

n

n!

1

(σ2)σ−2Γ(σ−2)
rσ−2−1e−r/σ2

dr

=
Γ(n + σ−2)

(n!)Γ(σ−2)

(
1 − u(t, xs)

u(t, xs) + σ−2

)σ−2 (
u(t, xs)

u(t, xs) + σ−2

)n
(S10)

which coincides with the probability distribution of the Negative–Binomial law (i.e. the Gamma-Poisson mixture distribution) given by Eq. (4) in the main text. The larger G , the more precise theapproximation. Consequently, Ni (t) (i ∈ {1, ... ,M}) given u(t, xs) are asymptotically indepen-dent and distributed under the Negative–Binomial distribution given by Eq. (4) in the main text.
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Based on this approximation, the infections of leaves from tree b in site s at time t are asymp-totically independent and distributed under Bernoulli distributions with success probability:
pleafst = P(Ni (t) > 0 | u(t, xs))

= 1 − P(Ni (t) = 0 | u(t, xs))
= 1 − (1 + u(t, xs)σ

2)−1/σ2

(S11)

The people who carried out the sampling observed a number M of leaves on tree b. Dueto the particular configuration of the foliage of each tree, we assumed that the number Y leaf
stbof infected leaves among the M leaves observed in tree b is approximately distributed under aBeta-Binomial distribution with meanMpleafst and tree perception parameter γ:

Y leaf
stb | u(t, xs) ∼approx . Beta-Binomial(M, pleafst , γ)(S12)

Accordingly, the probability, as perceived by people in charge of the sampling, of leaf infectionon the set of M leaves observed on a given tree, is distributed according to a Beta distribution.The Beta distribution is centred around the true probability of leaf infection pleafst and allowsperceived probability to vary from tree to tree depending on the tree perception parameter γ. Itfollows that the infection of tree b is approximately distributed under the Bernoulli distributionwith success probability:
ptreest = P(Y leaf

stb > 0 | u(t, xs))
= 1 − P(Y leaf

stb = 0 | u(t, xs))

= 1 − Beta[γpleafst ,M + γ(1 − pleafst )]

Beta[γpleafst , γ(1 − pleafst )]

(S13)

where pleafst is given by S11 and Beta represents the beta function. It follows that the probabil-ity distribution functions of the number Y tree
st of infected trees infected among the Bst treesobserved satisfy, for all sampling sites s and sampling times t:

f rawst (y) = P[Y tree
st = y | u(t, xs)]

= fBinomial(Bst ,ptreest )(y)
(S14)
where fBinomial is the density of the Binomial distribution.
B.3. Refined sampling

In the refined sampling, Gst twigs (i.e. groups of spatially connected leaves) are sampled insite s at time t . Here, the twig information (the number of twigs and the distribution of leaveson twigs) are known but the suitability Rg (t) of leaves in a twig g remains unobserved. Thenumbers of pathogen lesions Ni (t) in the observed leaves i ∈ {1, ... ,Mstg} of twig g given Rg (t)and u(t, xs) are independent and Poisson distributed:
(S15) Ni (t) | u(t, xs),Rg (t) ∼indep. Poisson(u(t, xs)Rg (t))

Then, the numbers of infected leaves Y leaf
stg (i.e. leaves with at least one pathogen lesion) given

Rg (t) and u(t, xs) are independent and distributed under the following Binomial distributions:
(S16) Y leaf

stg | u(t, xs),Rg (t) ∼indep. Binomial(Mstg , 1 − e−u(t,xs)Rg (t))

In addition,
(S17) u(t, xs)Rg (t) | u(t, xs) ∼indep. Gamma(σ−2, u(t, xs)σ

2)

Using Eqs. (S15)–(S17), Y leaf
stg given u(t, xs) are independent and follow Gamma-Binomial mixturedistributions:

Méline Saubin et al. 25

Peer Community Journal, Vol. 4 (2024), article e9 https://doi.org/10.24072/pcjournal.356

https://doi.org/10.24072/pcjournal.356


f refst (y) = P[Y leaf
stg = y | u(t, xs)]

=

∫ ∞

0
fBinomial(Mstg ,1−e−z )(y)fGamma(σ−2,u(t,xs)σ2)(z)dz

(S18)
where fGamma is the density of the Gamma distribution. Note that this Gamma-Binomial mixturedistribution is an over-dispersed Binomial distribution like the Beta-Binomial distribution.

Appendix C. Estimation of the number of leaves efficiently observed during treescans
A problem inherent to the raw sampling design is that we do not know the number of leavesobserved during the scan of the trees, contrary to the twig data for which we counted both thenumber of infected leaves and the total number of leaves carried by each observed twig. In otherwords, an inspected tree is a set of leaves of unknown size.We assumes in Eq. (S12) that the number Y leaf

stb of infected leaves among the M leaves ob-served in tree b is approximately distributed under a Beta-Binomial distributionwithmeanMpleafstand tree perception parameter γ. Parameter γ is however an unknown parameter. To overcomethis parameter when calculating the average number of leaves observed per tree, we use thefact that on average the number of infected leaves is the same with a binomial distribution:
Y leaf
stb | u(t, xs) ∼approx . Binomial(M, pleafst )(S19)

From this distribution, we obtain at each site s and date t the probability ptreest that a tree isinfected as a function of both the probability pleafst that a leaf is infected and the number M ofleaves observed on a tree:
ptreest = P(Y leaf

stb > 0 | u(t, xs))
= 1 − P(Y leaf

stb = 0 | u(t, xs))
= 1 − (1 − pleafst )M

(S20)

Thus, the number of leaves on a tree satisfies:
(S21) M =

log(1 − ptreest )

log(1 − pleafst )

Let us use as approximations of ptreest the observed proportions qtreest of infected trees at sites
s and dates t , and as approximations of pleafst the observed proportions qleafst of infected leaves(calculated from twig data). Then, an estimate λ̂M of the mean number of leaves λM by tree isgiven by:

(S22) λ̂M = round
(
1

N

N∑

i=1

log(1 − qtreest )

log(1 − qleafst )

)

withN the number of pairs (s, t) (i.e. sampling sites and dates) displaying both tree and twig data.Proportions of infection qtreest = 1 and qleafst = 1 where approximated to 1 − 10−16 for numericalconsiderations. This procedure led to λ̂M = 10. This valuemay appear low.However, λM does notcorrespond to the actual mean number of leaves carried by an entire young tree but amounts tothemean number of leaves effectively inspected during tree scan, i.e. those observed asminutelyas for the twig data in a limited time (see Eq. (S13)). It is important to note that for each tree thetree scan stops when an infected leaf is observed, or after 30 s of inspection. Therefore, thenumber of inspected leaves per tree can be very low in highly infected sites.For the practical identifiability studies, we set λM = 10. For parameter inference on the realdata set a different value of (λ̂M)t was estimated for each sampling date, from the observedproportions qtreest of infected trees and the observed proportions qleafst of infected leaves at date
t (Table S1).
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Table S1 – Estimated number of leaves effectively observed per tree for each samplingdate t , (λ̂M)t . The values of (λ̂M)t were used in the application on the real data set.
Date t (λ̂M)t1 402 243 64 35 56 1

Appendix D. Simulation details
Computations were performed with the R software environment (R Core Team, 2018). Thevector of initial population densities u(0, x) for x over [−R,R]was estimated from the data of thefirst sampling date, by fitting a general model for analysis of dose-response data (package Drcon R, Ritz et al., 2015). This vector of initial population densities represented the initial conditionof all simulations. We modelled N = 1500 time steps and I = 400 points in space. Because of thenumerical scheme, with these parameters the reaction-diffusion dispersal model R.D. requiredan upper limit for parameter λ: we set λup = 23 for this model.To fit our real case study, for all simulations we set R = 100 km, for a 200 km long river valley,and the epidemic was monitored over T = 150 days. We considered a shift in the environmenttopology at d = 0.31% of the valley, which corresponds to the delimitation observed in theDurance River valley with the Serre-Ponçon dam at 62 km downstream of the starting point ofthe epidemic. Therefore, for all simulations, the two growth rates rup and rdw apply to continuoussegments of proportions d and 1 − d of the monitored space, respectively.

D.1. Practical parameter identifiability
Simulations were performed as follows in three steps.Step 1: Simulation of a realistic epidemic. Given a hypothetical dispersal model (JExp, JGauss, JExpPor R.D.), values in the parameter vector θ = (θr , θJ , γ,σ

2) are independently and randomly drawnfrom dedicated distributions encompassing a large diversity of invading scenarios and specifiedin Table S2. We then simulate the corresponding epidemic along the 1D spatial domain [−R,R].This epidemic is considered ‘realistic’ if a set of requirements on the observed proportion ofinfected trees Ps,t on the farther downstream site (s = R ) is met:
• PR,30 < 0.1 (the proportion of infected trees after one month is lower than 10%);
• PR,75 < 0.5 (the proportion of infected trees after two and a half months is lower than
50%);

• PR,150 > 0.1 (the proportion of infected trees after five months is higher than 10%);
• PR,150 < 0.8 (the proportion of infected trees after five months is lower than 80%).

Step 1 is complete once a candidate vector θ leads to an epidemic satisfying the four conditionsdescribed above (i.e. the simulation of θ and the epidemic is repeated while the four conditionsare not satisfied). Thereafter, the vector finally retained in Step 1 is denoted θtrue.Step 2: Simulation of the sampling process. We consider a sampling design similar to our realexperiment with six sampling dates and 12 sampling locations regularly spread over 150 daysand 200 km, respectively (R = 100 km). As for our real data, we increase the location densityfor the fifth date, with 45 locations instead of 12. For each date and location, the raw samplingconsists in simulating the observed sanitary status of 10 leaves per tree from 100 trees, and therefined sampling consists in simulating the observed sanitary status of 25 spatially connectedleaves from 20 twigs, the simulations being performed given θtrue. The resulting data set is de-noted Dtrue.
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Table S2 – Marginal distributions used to randomly sample the model parameters in-cluded in θ = (θr , θJ , γ,σ
2) before checking the requirements detailed in Step 1, with

θr = (rdw,ω) and θJ = (λ) or θJ = (λ, τ) depending on the model.
Parameter Distribution Interval

rdw Log-Uniform [0.01, 0.5]
ω Uniform [-2, 4]
λ Log-Uniform [0.2,5]
τ Log-Uniform [0.2,1]
γ Log-Uniform [2,20]
σ2 Log-Uniform [0.01, 15]

Step 3: Parameter estimation. We use the data Dtrue to estimate the model parameters by mini-mizing the logarithm of the likelihood function L(θ). In our case, preliminary tests revealed thatclassical optimisation algorithms were not accurate enough to provide satisfactory rates of con-vergence due to local optimum problems. Thus, we adopt a hybrid strategy combining first aNelder-Mead algorithm (improving global search ability) and then a Nlminb algorithm (for itshigh computational efficiency). Specifically, we proceed in three substeps described below, thecrucial stage consisting in finding initial values that give a satisfactory rate of convergence.
Step 3.1: Using Step 1, we generate 500 vectors θinit. Note that this step was only performedonce for all the estimations performed in this article. We provide in Figure S1 a comparison ofthe initial distribution of parameters as stated in Table S2, and of the distribution of parametersin the vector θinit, i.e. leading to “realistic" epidemics.
Step 3.2: The corresponding 500 likelihood values L(θinit) are calculated given Dtrue. Then, the20 vectors θinit corresponding to the 20 largest likelihood values are used as initial values for 50steps of a Nelder-Mead optimisation routine (R function optim), resulting in 20 updated ini-tial parameter vectors θinit2 depending on Dtrue. The new initial vectors θinit2 that do not satisfylower bounds θlow and upper bounds θup are excluded.We used θlow = (rdw = 0.001,ω = −7,λ =
0.02, τ = 0.02, γ = 1.05,σ2 = 10−7) and θup = (rdw = 0.5,ω = 4,λ = 10, τ = 1, γ = 30,σ2 = 20),with λ = 23 in θup instead of 10 for the R.D. model. The validity intervals defined by θlow and
θup encompass the intervals used to simulate θ (see Table S2). The likelihood values of the ninitremaining vectors L(θinit2) are calculated (given Dtrue) and ranked in descending order.
Step 3.3: θ is then estimated using the Nlminb optimisation routine with lower and upperbounds θlow and θup, respectively. The initial parameter values are set to the first vector θinit2as ordered in the previous step. The estimated parameter values, say θestim, are accepted if the
nlminb function in R delivered a successful convergence diagnostic (with tunning parameters
rel.tol=5.10−5 and iter.max=3000). If not, the second vector θinit2 is used, and so on untilreaching convergence or testing the ninit initial vector’s values selected at step 3.2. In the lattercase, a convergence failure is obtained. Overall, this algorithm allows to obtain high rates of con-vergence.

These three steps were reiterated until deriving the estimation of n = 160 realistic epidemicsfor each dispersal model. Checking for practical identifiability of parameters basically relies onplotting for each dispersal model the cloud of points between θtrue and θestim (Figures S2, S3, S4,S5) and computing the corresponding correlations. Among all simulations performed, the pro-portions of convergence were 0.98 for dispersal JExp, JGauss, and R.D. and 0.99 for JExpP. A sim-ulation converged when the convergence diagnostic of the algorithm indicated a convergence,and when all parameters were estimated inside intervals defined by θlow and θup. In the smallnumber of simulations where the value of λestim proposed by the optimisation algorithm washigher than 23 (which is the upper limit of our numerical scheme, Appendix A), the simulation
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Figure S1 – Distributions of parameters, before (in dotted black) and after (in red) retain-ing only parameters values leading to “realistic" epidemics. Dotted black distributionscorrespond to distributions given by Table S2. Red line distributions correspond to thedistribution of parameters in θinit. We represent here the distribution of “realistic" epi-demics from the four hypothetical dispersal models (JExp, JGauss, JExpP and R.D.) for pa-rameters rdw, ω, γ and σ2, for JExpP for parameter τ , and for JExp, JGauss and JExpP forparameter λ.
was still considered convergent with λestim = 23. This configuration can occur in particular whentrying to fit dispersal R.D. on datasets simulated according to JExpP.
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Figure S2 – Practical parameter identifiability for the dispersal model JExp. Each pointrepresents the parameter estimation (‘Estimated’ value) depending on the real parameter(‘True’ value). Each graph regroups the results of 160 replicates. Straight lines correspondto the first bisector.
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Figure S3 – Practical parameter identifiability for the dispersal model JGauss. Each pointrepresents the parameter estimation (‘Estimated’ value) depending on the real parameter(‘True’ value). Each graph regroups the results of 160 replicates. Straight lines correspondto the first bisector.
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Figure S4 – Practical parameter identifiability for the dispersal model JExpP. Each pointrepresents the parameter estimation (‘Estimated’ value) depending on the real parameter(‘True’ value). Each graph regroups the results of 160 replicates. Straight lines correspondto the first bisector.
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Figure S5 – Practical parameter identifiability for the dispersal model R.D. Each pointrepresents the parameter estimation (‘Estimated’ value) depending on the real parameter(‘True’ value). Each graph regroups the results of 160 replicates. Straight lines correspondto the first bisector.
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D.2. Model selection
Model practical identifiability was carried out in a similar way than parameter practical iden-tifiability (Appendix D.1), except that we fitted to each data set the true model (as previously)but also the three other models corresponding to the alternative hypotheses on the dispersalprocess. Models were compared using AIC (Akaike Information Criteria) to select the best data-supported model. AIC were assessed as 2k − 2ln(L) where k is the number of parameters of themodel considered and L is the maximized value of the likelihood function. To gain more insightsinto the confidence level in model selection, we also calculated for each data set the differencebetween the AIC of the model selected and the AIC of the second-best model according to thetwo possible issues of the selection procedure: (i) when the model selection procedure was suc-cessful (i.e. the selected model was the true model) and (ii) when the model selection procedurewas incorrect (i.e. the true model was not selected). The mean of these values were reportedas dAICtrue and dAICwrong in Table 2. The steps were reiterated until the estimation of n = 50realistic epidemics for each dispersal model.

D.3. Parameter inference on the real data set
The model selection procedure was applied to the real data set by fitting four dispersal pro-cess hypotheses (JExp, JGauss, JExpP and R.D.). The same optimisation routines described in Ap-pendix D.1 were performed from five initial parameter values selected as in Step 3.2 (Appen-dix D.1). The selected model corresponds to hypothesis JExpP. For parameter estimations, weused the mle2 function from the R package bbmle, with method Nelder-Mead and optimizernlminb, to obtain maximum likelihood estimates of the vector of parameters θ̂ and of its matrixof variance-covariance ∑̂. We used as initial parameter values the vector of parameters θ giv-ing the lowest AIC value in the previous model selection procedure. Confidence intervals werederived from 1,000 random draws from the multivariate normal distribution with parameters θ̂and ∑̂. The 95% confidence intervals of each parameter is obtained using the quantiles 2.5% and

97.5% (Table 4).
D.4. Model check

The model was checked by assessing the coverage rate of the data from the 95%-predictionintervals. The coverage rate was estimated as the proportion of observed data from the rawsampling within the prediction intervals (Figure 5).Data from the raw sampling represent 97 counts Yst of infected trees at sites s ∈ {1, ... , S}(with S = 12 or S = 45 depending on the sampling date) and times t ∈ {1, ... , 6}. Let us recall that,as stated in Appendix B, Yst follows a combination of Poisson and Beta-Binomial distributionswhose parameters depend on the known mean value (λm)t and the unknown u(t, xs), γ and σ2,and that u(t, xs) is a deterministic function of dynamical parameters r , λ and τ .Prediction intervals were calculated at each date and each site with a two-step procedure:Step 1: A confidence interval was obtained from 1000 random draws from the multivariate nor-mal distribution with θ̂ and ∑̂.Step 2: The mean proportions of infected trees were calculated at each date and site date fromeach random draw of parameters obtained from Step 1. A prediction interval was obtained fromthese parameters given the probabilities of infection, with 1,000 random draws in the observa-tion laws.Model checks were performed for each dispersal kernel model, and not only the selectedmodel JExpP, to ensure that the coverage rates were higher with the selected model (Figure 5 forthe selected dispersal model JExpP, and Figures S6 and S7 for dispersal models JExp and JGauss, re-spectively). The model check was not performed for dispersal model R.D. because the estimateddispersal distance λestim reached the upper limit of our numerical scheme λup = 23 and did notallow to calculate the confidence intervals.
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Figure S6 – Model check under the dispersal model JExp: Coverage rates for the rawsampling. Each sampling date is represented on a separate graph. Sampling 1 is not repre-sented because it corresponds to the initial condition of the epidemics for all simulations.Blue areas correspond to the pointwise 95% confidence envelopes for the proportion ofinfected trees, grey intervals correspond to the 95% prediction intervals at each site, i.e.taking into account the observation laws given the proportion of infected trees. Redpoints correspond to the observed data. Only four observations are available for sam-pling 7 because at this date (November 13) the leaves had already fallen from the treeslocated upstream the valley. The total coverage rate over all sampling dates is 0.68.
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Figure S7 – Model check under the dispersal model JGauss: Coverage rates for the rawsampling. Each sampling date is represented on a separate graph. Sampling 1 is not repre-sented because it corresponds to the initial condition of the epidemics for all simulations.Blue areas correspond to the pointwise 95% confidence envelopes for the proportion ofinfected trees, grey intervals correspond to the 95% prediction intervals at each site, i.e.taking into account the observation laws given the proportion of infected trees. Redpoints correspond to the observed data. Only four observations are available for sam-pling 7 because at this date (November 13) the leaves had already fallen from the treeslocated upstream the valley. The total coverage rate over all sampling dates is 0.67.
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D.5. Sampling densification
As in Appendix D.2, numerical simulations were run to disentangle the true dispersal processfrom alternative dispersal processes, with densification of time and site for the raw and therefined sampling (Table S3). Simulations were run with 21 sampling dates instead of 6, whichamounts to one sampling everyweek. The number of sampling siteswas set to 45 for all samplingdates. The steps described in AppendixD.1 andD.2were reiterated until the estimation of n = 50realistic epidemics for each dispersal model.

Table S3 – Efficiency of model selection for the densification of time samples (21 insteadof 6) and the site sampled (45 instead of 12). The four first columns indicate the pro-portion of cases, among 50 replicates, where each tested model was selected using AIC,given that data sets were generated under a particular model (i.e. true model). Column
dAICtrue (resp. dAICwrong) indicates the mean difference between the AIC of the modelselected when the model selected is the true one (resp. when the model selected is notthe true model) and the second best model (resp. being the true model or not).

Selected Model
JExp JGauss JExpP R.D. dAICtrue dAICwrongTrue Model

JExp 0.64 0.18 0.12 0.06 5.60 2.02
JGauss 0.14 0.8 0 0.06 9.93 1.51
JExpP 0.1 0.02 0.86 0.02 2228.45 1.81R.D. 0.12 0.16 0 0.72 32.97 1.04

Appendix E. Carrying capacity of poplar leaves
Wemeasured the area of 10 wild poplar leaves (Populus nigra) and obtained a mean leaf areaof 870mm2. We consider that poplar rust can not infect the leaf veins and edges, which representapproximately 15% of the leaf area. This leads to a net leaf area accessible to the pathogen of

740mm2. The size of a poplar rust lesion ranges from 0.2mm2 to 0.8mm2 (Maupetit et al., 2018).The lesions cannot fuse and are surrounded by living host tissue. We thus consider a lesionoccupies a total area of 1 mm2. This leads to a maximum of 740 lesions per leaf on average. Torespect this order of magnitude, we consider in this analysis that the carrying capacity of a poplarleaf is 750 poplar rust lesions.
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