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Abstract
State variables such as abundance and occurrence of species are central to many questions in
ecology and conservation, but our ability to detect and enumerate species is imperfect and of-
ten varies across space and time. Accounting for imperfect and variable detection is important
for obtaining unbiased estimates of state variables. Here, I investigate whether closed spatial
capture-recapture (SCR) and single season occupancy models are robust to ignoring temporal
variation in detection probability. Ignoring temporal variation allows collapsing detection data
across repeated sampling occasions, speeding up computations, which can be important when
analyzing large datasets with complex models. I simulated data under different scenarios of tem-
poral and spatio-temporal variation in detection, analyzed data with the data-generating model
and an alternative model ignoring temporal variation in detection, and compared estimates be-
tween these two models with respect to relative bias, coefficient of variation (CV) and relative
root mean squared error (RMSE). SCR model estimates of abundance, the density-covariate co-
efficient β and the movement-related scale parameter of the detection function σ were robust
to ignoring temporal variation in detection, with relative bias, CV and RMSE of the two mod-
els generally being within 4% of each other. An SCR case study for brown tree snakes showed
identical estimates of density and σ under models accounting for or ignoring temporal variation
in detection. Occupancy model estimates of the occupancy-covariate coefficient β and average
occupancy were also largely robust to ignoring temporal variation in detection, and differences
in occupancy predictions were mostly <<0.1. But there was a slight tendency for bias in β
under the alternative model to increase when detection varied more strongly over time. Thus,
when temporal variation in detection is extreme, it may be necessary to model that variation to
avoid bias in parameter estimates in occupancy models. An occupancy case study for ten bird
species with a more complex model structure showed considerable differences in occupancy
parameter estimates under models accounting for or ignoring temporal variation in detection;
but estimates and predictions from the latter were always within 95% confidence intervals of
the former. There are cases where we cannot or may not want to ignore temporal variation in
detection: a behavioral response to detection and certain SCR observation models do not allow
collapsing data across sampling occasions; and temporal variation in detection may be informa-
tive of species phenology/behavior or for future study planning. But this study shows that it can
be safely ignored under a range of conditions when analyzing SCR or occupancy data.
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Introduction 

State variables such as abundance and occurrence of species are central to many questions in ecology 
and conservation. It is well understood that our ability to detect individuals (e.g., Otis et al., 1978; Pollock 
et al., 1990; Williams et al., 2002) or species (e.g., MacKenzie et al., 2002; Tyre et al., 2003) in field surveys 
is imperfect (i.e., we may undercount individuals and fail to detect species even if they are present). 
Further, detection often varies across survey locations, methods, and conditions. Ensuring that important 
sources of variation in detection are accounted for is important for robust inference about ecological 
parameters (Pollock et al., 2002; Gimenez et al., 2008) and the development of methods that can estimate 
abundance while accounting for imperfect detection has a long history (Lincoln, 1930). The past decades 
have seen the development of a variety of hierarchical models (HM) that formulate sub-models for the 
(imperfectly observed) state and the conditional (on the state) detection process (Royle & Dorazio, 2008; 
Kéry & Royle, 2015). Essentially a combination of multiple Generalized Linear (Mixed) Models (GL(M)Ms), 
describing variation in detection is straight forward in HM.  

Closed capture-recapture, both spatial (e.g., Royle et al., 2014) and traditional (e.g., Otis et al., 1978; 
Pollock et al., 1990), and occupancy modeling (MacKenzie et al., 2017) are popular frameworks to estimate 
animal abundance and occurrence, respectively, that explicitly model the state and detection process and 
thus allow for accounting for imperfect and varying detection. Closed population capture-recapture models 
use individual-level encounter data collected over multiple sampling occasions to estimate abundance 
while correcting for imperfect detection probability of individuals. The simplest estimator is model M0, 
which assumes that detection, p, is the same for all individuals at all times, which is unlikely in reality. There 
are three main sources of variation in p in closed CMR models (Otis et al. 1978): p can vary by individual, 
depend on whether an individual has been caught before, or across sampling occasions. The respective 
estimators accounting for these sources of variation are referred to as model Mh (heterogeneity), Mb 
(behavior) and Mt (time) (more than one source of variation in p can be present, and estimators can 
account for multiple such sources). When individual heterogeneity is present but not accounted for, 
estimates of abundance will be biased low as the sample will be skewed towards more detectable 
individuals. When ignoring behavioral responses to capture, bias in abundance can be positive or negative, 
depending on whether animals are trap shy or trap happy. Temporal variability in p can be induced by, for 
example, sampling-related factors such as sampling effort (e.g., Agresti, 1994), environmental conditions 
interacting with catchability of the study species (e.g., Wegan et al., 2012), or random variation. But 
contrary to behavioral and individual variation, Otis et al. (1978) showed via simulations that M0 was largely 
unbiased when data violated the assumption of constant detection over time. 

Compared to traditional closed CMR, spatial capture recapture (SCR) explicitly describes the spatial 
nature of sampling and populations (Efford, 2004; Borchers & Efford, 2008; Royle & Young, 2008), thereby 
accounting for individual movement on and off the sampling grid and variation in exposure to sampling 
among individuals. In SCR, detection probability is modeled on the detector level as a declining function of 
distance to an individual’s activity center; thus, in addition to individual, behavioral and temporal variation, 
detection can vary in space (for example, due to setup location, Sollmann et al., 2011; or due to different 
trap types, Kervellec et al., 2023). Investigation of SCR estimator bias related to detection has largely 
focused on spatial variation (Moqanaki et al., 2021), as well as mis-specification of the detection function 
(Dey et al., 2022). In developing SCR models with sampling effort adjustments, Efford et al. (2013) showed 
that ignoring temporally varying effort that is consistent across detectors (i.e., induces only temporal but 
no spatial variation in detection probability) had negligible effects on density estimates. This suggests that 
SCR should be robust to violation of the assumption of time-constant detection. But to my knowledge, this 
has not been investigated more generally.  

Whereas CMR models deal with individual detection probability when estimating abundance, single 
season occupancy models estimate species presence/absence accounting for species detection probability. 
Models are fit to repeated species detection/non-detection data collected across multiple sampling 
locations; thus, detection probability can be modeled as varying in space, as well as in time. Similar to SCR 
models, temporal (or spatio-temporal) variation in p can be the consequence of varying sampling effort 
(e.g., Kéry & Royle, 2009), environmental conditions affecting sampling efficiency (e.g., noise, Wiest & 
Shriver, 2016), but also of fluctuations in abundance over time (Royle & Nichols, 2003), for example due to 
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migratory behavior that can make a species essentially non-detectable in parts of the survey (e.g., Flanders 
et al., 2015). Occupancy models have been compared, conceptually, to non-spatial capture recapture 
models in which the all-0 encounter histories (here, sampling locations without any detections) are 
observed (Nichols & Karanth, 2002). In spite of that similarity, I am not aware of any studies exploring the 
sensitivity of occupancy model estimates to ignoring temporal variation in p.  

Here, I explore via simulation and case studies whether estimates of parameters of the ecological (or 
state) sub-model of SCR and occupancy models are robust to violation of the assumption of time-constant 
detection. Fitting SCR models in which detection is allowed to vary over time requires calculating the 
likelihood of each individual by trap by occasion data point (i.e., using 3D data). In contrast, when detection 
is constant over time, data for common observation models (Poisson, Binomial) can be summarized across 
occasions in a 2D format. A 3D data format can greatly increase computation time, which can become 
cumbersome or problematic in complex models and/or when working with large data sets. As for SCR, 
when p varies over time in occupancy models, site and occasion specific data must be used, whereas if it is 
constant over time, data can be summarized to binomial counts. Although generally far less time 
consuming than SCR models, complex occupancy models (i.e., with multiple random effects, for 
communities, combining multiple surveys, etc.), can take hours to days to fit and require large amounts of 
memory. As large scale and long-term camera trap and other survey data sets increasingly become 
available, so will the demand for fitting complex models to large data, across study areas or time periods. 
If temporal variability in detection can be ignored safely, this will greatly contribute to keeping these 
models manageable and viable, including for users without access to designated high-power computing 
resources. 

Methods 

Simulations 
Both SCR and occupancy models (OM) estimate a partially latent state – density and occurrence – while 

accounting for imperfect detection of individuals (SCR) or species (OM), p. I implemented a simulation 
study to test the effect of ignoring temporal variation in detection on estimates of parameters associated 
with the ecological state (for model-specific details, see following sections; for an overview over all model-
specific scenarios, see Table 1).  

For both frameworks, I explored three main scenarios of temporal variation in detection, by making it 
a logit-linear function of a covariate, Z. In scenario 1, Z increased linearly over time (sampling occasions) 
but was constant for all detectors. Here, Z could represent day/month of sampling in a study where all 
detectors operate at the same time; or the time since application of lure/bait if it was applied to all 
detectors once at the beginning of a study.  

In scenario 2, the detector-level mean of Z, �̅�, varied randomly across detectors following a standard-
normal distribution, and for each detector, occasion specific values of Z varied around �̅� following a normal 
distribution with standard deviation SD=0.5. Possible examples for such spatio-temporally varying 
covariates might be activity of other species affecting space use of the focal species; varying sampling effort 
(e.g., in volunteer-run surveys where effort cannot be fully standardized, or due to malfunctioning or 
staggered setup/take-down of detector equipment; but note that in many cases, including effort as a form 
of offset may be preferred, Efford et al., 2013); or varying survey conditions, especially when not all 
locations can be surveyed simultaneously due to logistic constraints.  

In scenario 3, I also generated a spatio-temporally varying Z, but one that was correlated with a spatial 
covariate affecting density/occupancy X (see below). Scenario 3 represents a situation in which not 
accounting for spatial variation in detection is likely to lead to bias in estimates of the state-covariate 
relationship. 

For SCR models, I further created several variations on scenario 2: In scenario 2a, I randomly assigned 
detectors to one of 4 standard deviations for Z to mimic different degrees of variability in detection over 
time. In scenario 2b, I randomly assigned detectors to one of five Normal distributions with different 
amounts and directions of skew to create a situation in which the mean of Z is not necessarily the best 
representation of the most common conditions. Finally, in 2c, I created temporally correlated values of Z 
for each detector, as spatial correlation in detection probability, when ignored, has been shown to lead to 
bias in parameter estimates (Moqanaki et al., 2021).   
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Details of how Z was generated in all scenarios and for both frameworks can be found in Appendix 1. 
In both frameworks, I refer to models that account for temporal variation in detection only as Mt, models 
that account for spatial variation only as Ms, models that account for variation in both space and time as 
Mst, and models that do not account for either as M0. In contrasting models that do vs do not account for 
temporal variation (i.e., Mt vs M0; Mst vs Ms), I will refer to the latter as the alternative model. 

SCR 
For all scenarios, I simulated activity centers of N=60 individuals in a discrete state space with 24x26 

cells, each measuring 50 by 50 units. I generated a spatially correlated covariate X for all 624 grid cells, and 
set the effect of X on density, 𝛽 = 1. I randomly assigned activity centers to state space cells using a 
multinomial distribution with cell probabilities 𝛑 = 𝛽𝐗/∑𝛽𝐗. I generated detections across a 7x8 detector 
grid (J=56 detectors) spaced 100 units and centered in the state space, across K=8 sampling occasions. With 
this configuration, the state space extended 300 units beyond the trap array. I calculated detection 
probability of each individual i at each detector j and occasion k following a half-normal detection function, 

𝑝+,- = 𝑝.,,-exp	(
5678

9

:;9
), 

where 𝑑+, is the distance between the activity center of individual i, 𝐬+, and the detector j, and  
𝑙𝑜𝑔𝑖𝑡(𝑝.,,-) = 𝛼. + 𝛼F𝑍,-  

That is, in the SCR framework spatio-temporal variability in detection is modeled as variation in the baseline 
detection probability 𝑝.. Note that 𝑍F- = 𝑍:- = … = 𝑍H-  in scenario 1. I set the scale parameter	𝜎 = 80 
to ensure that individuals would be detectable at multiple detectors and chose values of 𝛼. and 𝛼F that 
led to similar overall detectability for all scenarios (with, on average, 20 individuals being detected at least 
once in all scenarios; for details on 𝛼. and 𝛼F, see Appendix 1). I then generated individual, location and 
occasion specific detections as a Bernoulli random variable with 𝑝+,-.  

With my settings for 𝛼. and 𝛼F, variability in 𝑝. at a given detector over time was approximately 7-fold 
for scenario 1, 3-fold for scenarios 2 and 3, and 6-fold in scenarios 2a, b and c. To check that the magnitude 
of variation in 𝑝. was not driving results, I repeated scenario 2a (which showed the largest amount of bias 
in parameter estimates under the alternative model, see Results) with, on average, 10-fold variation in 𝑝.. 

For each scenario, I generated 100 data sets and analyzed each data set with the data generating model 
(i.e., properly accounting for temporal variability in 𝑝.; Mt in scenario 1 and Mst in scenarios 2 and 3) and 
the corresponding alternative model ignoring temporal variation in 𝑝. (M0 in scenario 1, Ms in scenarios 2 
and 3). To fit model Ms, I used the detector-level average value of Z, �̅�,, as a covariate on 𝑝.. All models 
used the half-normal detection function and included the effect of X on density.   

I implemented models in the R package secr ver 4.5.6 (Efford, 2022), in R ver. 4.2.1 (R Core Team, 2022). 
For each model I kept track of model convergence, as well as estimates of all model parameters, and AICc; 
and I calculated realized abundance across the state space using the region.N() function. I considered a 
model as not converged either when likelihood maximization failed or when at least one standard error 
could not be calculated due to a singular Hessian matrix. 

I assessed the effect of ignoring temporal variation in 𝑝. by comparing median relative bias 
(LMN+OPNL5NQRNS

NQRNS
× 100), precision (coefficient of variation CV: UV

|LMN+OPNL|
× 100), and accuracy (relative root 

mean squared error) between the data generating model and the corresponding alternative model for N, 
𝜎 and 𝛽. These are typically the parameters of main ecological interest; 𝜎 is a detection parameter but is 
linked to animal movement, and as a detection parameter, could be more sensitive to mis-specification of 
the detection model. I opted for the median across datasets instead of the mean to minimize the effect of 
outlier iterations with extreme estimates. If SCR models are robust to violation of the assumption of 
constant 𝑝. over time, I expect bias to be similar whether or not the model accounts for temporal variation 
in 𝑝.. Similar precision between the data generating and the alternative model would indicate similar 
coverage of truth. Finally, I calculated how often AICc suggested the data-generating model as the most 
parsimonious model, to gauge whether my simulations created sufficient temporal variation in 𝑝. to be 
detectable in the data. I only counted a model as the most parsimonious when all other models had a 
ΔAICc≥2.  
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Occupancy 
I implemented an analogous simulation study for occupancy models. I generated detection/non-

detection data across J=100 detectors and K=8 sampling occasions. I modeled occupancy probability 𝜓,  as 
a function of a single, spatially correlated covariate X, 

𝑙𝑜𝑔𝑖𝑡Y𝜓,Z = 𝛽. + 	𝛽𝑋,  
with 𝛽 = 1 and 𝛽. = 0.5. This corresponded to an average occupancy probability �̂� = 0.62. Temporal 
variation in detection probability was modeled as 

𝑙𝑜𝑔𝑖𝑡Y𝑝,-Z = 𝛼. +	𝛼F𝑍,-  
In all scenarios, 𝛼. and 𝛼F were chosen so that the total detector-level detection probability across all 

8 sampling occasions was, on average, approximately 0.67 (for details, see Appendix 1). I explored only the 
main scenarios 1-3, as results from scenarios 2a-c from the SCR simulation suggested that these were not 
fundamentally different from main scenario 2 (see Figure 1, Appendix 2: Table S2). However, exploratory 
occupancy simulations suggested that sensitivity of occupancy models to ignoring temporal variation in p 
may depend on the magnitude of variability in p over time. I therefore explored two versions for all main 
scenarios, one where per-detector variability in p was, on average, 3-fold (labelled ‘low’), and one where 
it was 6-fold (labeled ‘high’).  

As occupancy models were much faster to fit, I ran 250 iterations per scenario, using the package 
unmarked ver. 1.2.5 (Fiske & Chandler, 2011). I used the same criteria for convergence as described above. 
A few converged models had parameter estimates >|10|, with similarly large or much larger standard 
errors. Because in a real analysis with scaled covariates such estimates would be considered unreasonable, 
I considered iterations with any parameter estimate >|10| as not converged. For all converged iterations, 
I compared relative bias, CV and RMSE for estimates of 𝛽 and �̂� (i.e.,	𝑙𝑜𝑔𝑖𝑡5F(𝛽.), as X was centered on 0) 
between the data-generating and the alternative model. I further calculated the maximum difference in 
occupancy predictions across sampling locations, as well as the number of sampling locations with an 
absolute difference >0.1. As for SCR, I tallied how often the data-generating and alternative model were 
selected as the most parsimonious model by AIC (the default criterion in the package unmarked).  

Table 1 - Overview of simulation scenarios to investigate effects of ignoring temporal variation in 
detection probability p for occupancy models (OM) and spatial capture-recapture (SCR) models. 
‘Specific scenario’ columns show which variations (if any) of the main scenarios were fit for each 
modeling framework. Input parameters for all scenarios can be found in Appendix 1. 

Main scenario General description Specific scenarios SCR Specific scenarios OM* 
1 Temporal variation in p 1 1 high 

1 low 
2 Spatio-temporal variation in p 2 

2a: amount of temporal variability in p 
varies in space 

2a-10: same as 2a but with stronger 
temporal variability in p 

2b: temporal variability in p is skewed 
2c: temporal variability in p is 

autocorrelated 

2 high 
2 low 

3 Spatio-temporal variation in p, correlated 
with spatial variation in 
density/occupancy 

3 3 high 
3 low 

* high and low refer to average 6-fold and 3-fold variation in p over time, respectively 

Case studies 

SCR – brown tree snakes 
I re-analyzed the brown tree snake data set described in Amburgey et al. (2021a) collected along 27 

transects in a fenced area inside Andersen Air Force Base, Guam. Data are freely available from Amburgey 
et al. (2021b). All transects were split into 16-m segments, resulting in 351 potential detection locations. 
In November and December 2016, researchers conducted 32-night time surveys during which transects 
were either sprayed with scent the day of the survey (fresh) or the previous day (old), to determine 
whether scent improved detectability of snakes. As application of the two scent treatments varied in space 
and time, this is an example of scenario 2, with spatio-temporal variation in 𝑝.. In the original analysis, an 
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SCR model was fit estimating 𝑝. separately for no, old, and fresh scent, but results indicated that 𝑝. was 
similar for no and old scent. I therefore grouped these two treatments into a single category, thus creating 
a binary predictor (no/old scent vs fresh scent). I fit model Mst using the location and occasion specific scent 
treatment, and model Ms, for which I calculated the proportion of active sampling occasions with fresh 
scent for each location. I fit both models in secr, compared them by AICc, and compared estimates of 
density and 𝜎 between the two models. 

Occupancy – Swiss breeding birds 
I analyzed data for ten bird species (Appendix 3: Table S1) from the 2014 Swiss Breeding Bird survey 

(Schmid et al., 2004), available with the R package AHMbook v. 0.2.6 (Kéry et al., 2022). Data were collected 
2-3 times along fixed transects during the breeding season by skilled volunteer birdwatchers across 266 1-
km squares. I reduced the original count data to binary detection/non-detection data. The dataset provides 
several square and survey-specific covariates; following Kery and Royle’s (2015) community occupancy 
analysis of the full dataset, I considered elevation (m), elevation squared and percent forest cover as 
predictors of occupancy, and Julian date (1 April = 1), date squared and survey duration (min) as predictors 
of detection (Mst). For the model accounting only for spatial variation in p (Ms), I also calculated average 
survey date and duration for each square. I scaled all covariates prior to analysis. As average date was 
highly correlated with elevation (r=0.84), this is an example of scenario 3. The 2014 dataset consists of 145 
species with detections. I first selected species with >50 detections (n=77) to avoid sparse data issues, then 
fit the above described model Mst to data from each of these 77 species. I predicted detection probabilities 
across all squares and occasions based on that model and calculated the ratio between the maximum and 
minimum p at each square. I kept the ten species for which that ratio was, on average, >2, to avoid species 
with very little temporal variation in p. For these species, I also fit model Ms, with the same structure on 
occupancy, and average date, average date squared and average duration on p. I compared both models 
with respect to AIC, occupancy coefficient estimates 𝛃 (relative difference (𝛽bM −	𝛽bMN)/𝛽bMN; and	𝛽bM 
within 95%CI of 𝛽bMN), model predictions of occupancy for sampled locations, 𝝍e  (maximum of 𝝍ebM −
	𝝍ebMN; and 𝝍ebMwithin 95%CI of 𝝍ebMN), and response curves for individual occupancy covariates (curve 
under Ms within 95%CI for curve under Mst). 

Results 

Simulations 

SCR 
Both the data generating model and the model ignoring temporal variation in 𝑝. converged for all 

iterations in all scenarios. Even for these small simulated data sets, model run time increased almost 7-fold 
(from approximately 26 seconds to 179 seconds) from model Ms to model Mst.  

In all scenarios and for all three parameters, median relative bias (Figure 1), precision (CV; Appendix 2: 
Figure S1) and relative RMSE (Appendix 2: Table S2) were near-identical between the data-generating and 
the alternative model ignoring temporal variation in p0. Median relative bias under the two models was 
always within 4% of each other, and mostly within 1 or 2%, with the highest difference in bias being 
exhibited by 𝛽 in both versions of scenario 2a (amount of variation in p0 over time varies across detectors). 
Differences in median CV and relative RMSE were similarly in the 1-3% range. The only exception was the 
RMSE for estimates of 𝛽 in scenario 3, which was 8% higher under the alternative than the data-generating 
model.    

According to AICc, the data-generating model was the most parsimonious model in 67% (scenario 2) to 
93% (scenario 2c; 97% for 2a 10-fold) of all iterations. The corresponding model ignoring temporal variation 
was the most parsimonious model in 1-4% of all iterations (Appendix 2: Table A1). Thus, temporal variation 
in p0 translated to considerable temporal variation in detections in the data in almost all cases. 

Occupancy  
Both the data generating model and the model ignoring temporal variation in p converged in 230 - 249 

iterations across all scenarios (Appendix 2: Table S3). Model run time was about 3 times higher for models 
accounting for temporal variation in p. 
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When detector-level temporal variation in p was, on average, 3-fold, for both parameters median 
relative bias (Figure 2), precision (CV; Appendix 2: Figure S2) and relative RMSE (Appendix 2: Table S4) were 
near-identical between the data-generating and the alternative model ignoring temporal variation in p, 
differing by at most 2%. The only exception was the estimate of 𝛽, which in scenario 1 had a 5% higher 
relative bias, and in scenario 2 had a 4% higher RMSE under the alternative model. When detector-level 
temporal variation in p was, on average, 6-fold, median relative bias, CV and relative RMSE in estimates of 
both parameters remained very similar for both models (generally within 4% of each other). But there was 
a tendency for 𝛽 to show higher relative bias under the alternative model for all scenarios (7% higher for 
scenario 1, 5% higher for 2 and 3).  

Corresponding to these minor differences in parameter estimates, the maximum difference in 
occupancy predictions for sampling locations between the data generating and alternative model was, on 
average across simulation iterations, 0.02 or lower for all 3-fold and 6-fold scenarios (Figure 2). The average 
number of sampling locations (out of 100) with an absolute difference >0.1 was 2.26 (scenario 3, 6-fold 
variation) or lower (Appendix 2: Table S4).  

According to AIC, the data-generating model was the most parsimonious model in 83% (scenario 1, 6-
fold) to 100% (scenario 1, 3-fold) of all iterations. The corresponding model ignoring temporal variation 
was the most parsimonious model in 1-3% of all iterations (Appendix 2: Table A3). 

 

Figure 1 - Relative error (boxplot) and bias (median) in estimates of abundance (N), covariate effect 
on density (β) and scale parameter of the half-normal detection function (σ) from data-generating 
spatial capture-recapture (SCR) model accounting for temporal variation in baseline detection 
probability p0 (light-grey) and alternative SCR model not accounting for temporal variation in p0 (dark-
grey), for 100 simulated data sets. Red dashed line shows zero error/bias. In scenario 1, p0 varies over 
time, in 2 and 3, over time and space. Scenarios 2 and 2a-c differ in degree and shape of temporal 
variation in p0. In scenario 3, detection and density covary. For scenario details, see main text and 
Appendix 1.  
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Figure 2 - Relative error (boxplot) and bias (median) in estimates of mean occupancy (�̂�) and 
covariate effect on occupancy (β) from data-generating occupancy model accounting for temporal 
variation in detection probability p (light-grey) and alternative model not accounting for temporal 
variation in p (dark-grey), and maximum difference in occupancy predictions (𝜓f) between these 
models, for 100 simulated data sets. Red dashed line shows zero error/difference. In scenario 1, p 
varies over time, in 2 and 3, over time and space. In scenario 3, occupancy and detection covary. 
Average variation in p over time either approximately 3-fold (low) or 6-fold (high). For scenario 
details, see main text and Appendix 1. 

Case studies 

SCR – brown tree snakes 
For the SCR analysis of the brown tree snake data, model Mst was clearly favored by AICc over model 

Ms (ΔAICc = 6.3). Estimates of 𝑝. under Mst were 1.4×10-3 with no/old scent and 0.9×10-3 with fresh scent. 
Nonetheless, estimates of density and 𝜎 were indistinguishable (D: 22.24 individuals/ha ± 2.33, 𝜎: 41.21 m 
± 2.18 under both models). Model Mst took about half an hour to run. When compressing data into binomial 
counts for model Ms, run time decreased to about 10 minutes. 

Occupancy – Swiss breeding birds 
For the occupancy analysis of ten Swiss breeding birds, Mst was clearly favored over Ms by AIC for 8 

species (ΔAIC for Ms >2), comparable to Ms (ΔAIC for Ms <2) and less supported than Ms (ΔAIC for Mst >2) 
for one species each. Average site-level ratios of maximum to minimum p ranged from 2 to 89 (in the latter 
case, the species was essentially non-detectable early and late in the season; Appendix 3: Table S2, Figure 
S1). 

Even though for several species, the relative difference in occupancy coefficients was considerable 
(>10% and up to 192% in one case of a coefficient close to 0; Appendix 3: Table S3), all coefficients under 
Ms were always within the 95%CI of the respective coefficients under Mst. For all species, occupancy 
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predictions at sampled locations under Ms were slightly higher than predictions under Mst, with maximum 
differences per species ranging from 0.02 to 0.14. All predictions under Ms were always within the 95%CI 
of the respective predictions under Mst (Appendix 3: Figure S2). Similarly, all response curves for individual 
predictors under Ms were within the 95%CI envelope for the respective curves under Mst, but curves 
reflected the tendency of Ms to lead to higher occupancy estimates (Figure 3). Parameter estimates for all 
ten species under both models can be found in Appendix 3: Table S3 and S4.  

 

Figure 3 - Relationship of occupancy with elevation and forest estimated with an occupancy model 
that does (Mst) and one that does not (Ms) account for temporal variation in detection, for 10 species 
of birds surveyed across Switzerland in 2014. Shaded areas are 95% confidence intervals of 
predictions under Mst.  

Rahel Sollmann 9

Peer Community Journal, Vol. 4 (2024), article e1 https://doi.org/10.24072/pcjournal.357

https://doi.org/10.24072/pcjournal.357


Discussion 

Based on simulation and case studies, I found that estimates of parameters of ecological interest from 
SCR and occupancy models were largely robust to ignoring temporal variation in detection probability. 
Compared to SCR, occupancy models appeared to be somewhat more sensitive to this assumption 
violation, particularly when temporal variability in p was high. However, even when estimates differed 
between occupancy models accounting for and ignoring this temporal variation, inference under both 
models about occupancy-covariate relationships and occupancy probabilities remained largely the same. 

Spatial capture-recapture 
Similar to traditional closed CMR models (Otis et al., 1978; Williams et al., 2002), ignoring temporal 

variation in p0 in SCR models had little effect on estimates of abundance, the density-covariate relationship, 
or space use (σ). As such, this study provides yet more evidence that density estimates from SCR models 
are robust to various forms of mis-specification of the detection model. They have been shown to be robust 
to unmodeled spatial heterogeneity in detection probability, so long as that heterogeneity is not spatially 
autocorrelated (Efford et al., 2013; Bischof et al., 2017; Moqanaki et al., 2021), and to a range of mis-
specifications of the detection function (Efford, 2004; Royle et al., 2014; Dey et al., 2022). In the latter case, 
though, inference about σ can be strongly affected by choosing the wrong detection function (Dey et al., 
2022). In contrast, I found that estimates of σ were robust to ignoring temporal variation in detection. As 
σ in most applications relates to a stationary activity center and is modeled as constant across occasions, 
it appears sufficient to take into account spatial variation in p0 to obtain unbiased estimates of σ. It is 
conceivable that in closed SCR models where activity centers are allowed to move (Royle et al., 2016), not 
accounting for temporal variation in p0 may affect estimates of σ. Exploring this was beyond the scope of 
this study.  

Beyond density, I found that estimates of the density-covariate relationship were not affected when 
temporal variation in p0 was ignored, so long as spatial variation was properly modeled. Efford et al. (2013) 
showed that ignoring spatial variation in sampling effort (and hence, detection) can bias estimates of this 
relationship. Though the effect of ignoring spatial variation in p0 was not the focus of the present simulation 
study, I did fit model M0 to data generated under scenarios 2 and 3 (i.e., with spatio-temporal variation in 
detection in data generation; results not shown). Abundance and σ estimates showed as little bias as under 
models Ms and Mst, as did the density-covariate relationship in scenario 2 (no correlation between 
detection and density). But in scenario 3, where density and detection covaried, estimates of the density-
covariate relationship under M0 had a median relative bias of -95%; as expected, in such situations variation 
in detection and density is confounded.  

Even though different SCR simulation scenarios corresponded to different amounts of temporal 
variation in p0, results were very similar across scenarios, including for scenario 2a, which I ran with two 
levels of temporal variation in p0. This indicates (a) that SCR is robust to ignoring temporal variation in p0 
across a range of magnitudes of such variation; and (b) that the lack of effect of violating the constant-p0 
assumption is unlikely to be the result of being too conservative (with respect to temporal variation in p0) 
when generating data. The latter is supported by AICc identifying, in most cases, temporal variation in 
detection as important to explain variation in the data. Checking the raw generated data, even in scenarios 
with 3-fold variation in p0, the number of detections declined from about 7 in high-p0 occasions to about 2 
in low-p0 occasions. In the brown tree snake case study, p0 was 50% higher on occasions when no fresh 
scent was present, and ignoring that variation had no effect on estimates of density or σ. Royle et al. (2014), 
based on another case study in which ignoring temporal variation in p0 had no effect on estimates of other 
parameters, suggested that the observed 3-fold variation was too weak to cause bias when ignored. But 
based on the present study, I suggest that temporal variation does not matter for obtaining unbiased 
estimates of these parameters, at least in the conditions explored here (but see the final paragraph for 
situations where ignoring temporal variation in detection may not be an option). 

Occupancy 
Even though generally low, there was a tendency for bias in estimates of the occupancy-covariate 

relationship to increase in the simulation study when temporal variability in detection was high and not 
accounted for in the model. Moreover, when ignoring temporal variation in p, predicted occupancy 

10 Rahel Sollmann

Peer Community Journal, Vol. 4 (2024), article e1 https://doi.org/10.24072/pcjournal.357

https://doi.org/10.24072/pcjournal.357


probability was slightly higher than when accounting for it (that was the case in both the simulation and 
the case study). Maximum differences in simulations were typically <<0.1 and whether such small 
differences in site level occupancy predictions are relevant will depend on the study objective. Compared 
to simulations, differences in estimates and predictions between the two models were larger in the bird 
case study (though never statistically different based on 95%CI), but there was no clear pattern that these 
were related to the degree of temporal variation in detection. For example, of the five species with the 
largest amount of temporal variation in p (an average maximum-to-minimum ratio of p across occasions 
>10), three had a maximum difference in occupancy predictions >0.1, but the other two were comparable 
to the remaining species (maximum-to-minimum ratio of p <8), which had maximum differences ≤0.08. 
Ten species is too small a sample size to draw conclusions on the relationship between temporal variation 
in p and its effects on estimates when it is ignored. Still, I suggest that when extreme variability in p is 
suspected (e.g., due to extreme variation in survey effort or conditions, or due to known migratory or other 
behavior affecting species detection) and highly unbiased predictions of occupancy are important for the 
study objective, modeling temporal variability in p may be necessary. In contrast, if the general nature of 
relationships between occupancy and predictors is the focus, and/or extreme temporal variability in p is 
not expected, results suggest that temporal variability in p can be safely ignored.  

In the bird case study, relationships of detection with predictor variables were sometimes markedly 
different, depending on whether that variable was included at the occasion level (for Mst) or summarized 
across occasions (for Ms). Conceptually, this is not surprising, as the two versions of the detection 
covariates measure different things – variation in space and time vs variation in space only. This may have 
implications, however, when AIC is used for variable selection, which is a common procedure in wildlife 
research (e.g., Murtaugh, 2009; Arnold, 2010). Thus, while fitting model Ms may not lead to appreciably 
different ecological inference when using the same covariate structure as one would use under Mst (i.e., 
when the detection model is determined a priori), inference about which covariates are important drivers 
of detection and occupancy may change if model selection is performed with data that are collapsed across 
occasions. Exploring the implications of modeling binomial counts instead of binary detections for model 
selection was beyond the scope of this study.  

Finally, I suspect that the larger discrepancies in estimates/predictions between the two models in the 
bird case study are related to the more complex real-world situation, including potential (albeit weak) 
correlation among multiple predictors in the model, as well as missing predictors and/or random variation 
not reflected in the model. It is possible that a similarly complex SCR data set with multiple predictors 
varying in space and time may also show larger discrepancies in parameter estimates between a model 
with and without temporal variation in detection.  

Mt or not Mt: considerations for both modeling frameworks 
The data and models underlying both simulation studies were simple enough (out of necessity) that 

fitting models Mt or Mst was trivial in terms of computation time; and even for the SCR case study, when 
fit in secr, it only took 30 minutes to run a model using the 3D data. But researchers increasingly leverage 
multiple and/or large datasets to answer questions on large temporal and spatial scales. In such 
circumstances, the more complex nature of the data and question often requires a custom model, often 
written in the BUGS language and implemented in a Bayesian framework. For example, Bischof et al. (2020) 
used seven years of data collected across much of Sweden and Norway to estimate spatial population 
dynamics of four carnivores, each with >6000 detected individuals, with SCR models. Tremendous 
computational advances have made it possible to fit SCR models to such large data at all. Vectorization, for 
example, – performing the same set of model computations on a vector, which is possible in nimble (de 
Valpine et al., 2017) – reduces memory usage and run time of SCR models (Turek et al., 2021). Vectorizing 
model computations over the (vector of) occasion-specific detection histories can counteract some of the 
added computational expense of 3D data. Nimble provides several other avenues to increase efficiency 
and speed up model fitting (Turek et al., 2021). Still, even with these improvements, models such as the 
one fit to the multi-year Swedish/Norwegian carnivore data remain extremely computationally challenging 
(Bischof et al., 2020). Having to use 3D data with projects of this scope can be a real limitation for what can 
be achieved in a reasonable time frame (noting that, while computation time in theory should not be a 
reason for not fitting the most appropriate model, in practice, projects and people operate under real time 
constraints).  
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When computation time is not a limiting factor, there is, of course no loss in fitting a model accounting 
for temporal variation in detection. When there is only temporal and no spatial variation in detection, then, 
the model ignoring temporal variation (M0) has one fewer parameter than the model accounting for that 
variation (Mt). There was no indication in simulation results from scenario 1 that this reduction in model 
complexity led to a change in parameter precision. It is possible that in sparse data situations, the simpler 
model M0 may improve precision of parameter estimates, or may even be the only model that can be fit. 
On the other hand, for situations where spatio-temporal predictors of detection are summarized across 
occasions, we effectively lose information on the detection-covariate relationship and precision of 
estimates may suffer. Again, I found no indication of that in the simulation study, but for the bird case 
study, there was a slight tendency for standard errors of estimates to be higher under Ms than under Mst 
(Appendix 3: Table S4). Whether that matters will again depend on the specific data and objectives of a 
study.   

There are also situations in which we have little choice but to fit a model taking into account the 
temporal dimension of the data. The first is by necessity: Some SCR observation models cannot be reduced 
to two-dimensional data, for example, the multinomial model in which an animal can only be detected in 
a single trap in a given occasions (Royle et al., 2014). Also, in SCR models we may have to account for a 
behavioral response to being captured (or otherwise detected). Such a behavioral response effectively 
creates individual heterogeneity in detection over time, and ignoring such heterogeneity will bias estimates 
of density (e.g., Royle et al., 2014). A similar situation can occur in occupancy models, when detection of 
the species improves the observer’s ability to detect it again on subsequent visits (e.g., Riddle et al., 2010). 
The second situation is by design, when we are explicitly interested in temporal variation in detection. In 
SCR models, when data on other species is available at detectors, as is the case for camera traps, these can 
be used to study the spatio-temporal response in site use of the focal species to sympatric species (e.g., 
Bahaa-el-din et al., 2016). The same is true for occupancy models that take into account the detections of 
potentially interacting species when modeling detection of a focal species (e.g., Richmond et al., 2010). 
Further, in occupancy, temporal changes in detectability can be used to study species phenology, e.g., 
when birds are detected by song, which is indicative of territorial behavior and mate attraction during the 
breeding season (Strebel et al., 2014; Furnas & McGrann, 2018). Temporal variation in detection can also 
inform the design of futures studies, by revealing the most suitable times or conditions (i.e., associated 
with high detection probability) for sampling (e.g., Chambert et al., 2012; Amburgey et al., 2021a). As a 
side note, this study only refers to variation in detection across a set of secondary sampling occasions all 
nested within the same primary sampling period (in the simulation and case studies, only a single primary 
period is considered). In studies with multiple primary sampling occasions, variation in detection among 
primary occasions should be modeled, as otherwise, changes in detectability over time will be confounded 
with changes in abundance or occurrence (e.g., Pollock et al., 2002). Still, in many cases where detection is 
a mere nuisance variable and behavioral responses to capture/detection are unlikely (as is often the case 
with non-invasive survey methods), this study suggests that temporal variation in p across secondary 
occasions can be ignored under a range of conditions without meaningful impact on estimates of density 
or occupancy and their correlates. 

Appendices 

Appendix 1: Input parameters for simulation scenarios 
Appendix 2: Detailed results of simulation study 
Appendix 3: Detailed results of occupancy case study of Swiss breeding birds 
Appendices can be found at https://doi.org/10.5281/zenodo.8221229 (Sollmann, 2023a). 
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