Research article

Published
2024-01-29

Cite as

Correspondence
lucio.navarro@austin.utexas.edu

Peer-review
Peer reviewed and recommended by PCI Microbiology, https://doi.org/10.24072/pci.microbiol.100004

Abstract

Insects and microbes have developed complex symbiotic relationships that evolutionarily and ecologically play beneficial roles for both, the symbiont and the host. In most Hemiptera insects, bacterial symbionts offer mainly nutritional, defensive, and reproductive roles in addition to promoting the adaptive radiation of several hemipteran phytophagous lineages. The tropical plant bug Monalonion velezangeli (Hemiptera: Miridae) is a polyphagous herbivore considered an important insect pest for several economically relevant tropical crops, but information about the composition of its bacterial microbiota was missing. In this study, we describe the diversity and structure of the bacterial microbiota in the nymph and adult life stages of M. velezangeli using Illumina high-throughput sequencing of 16S ribosomal RNA gene amplicons (meta-barcoding). We found that both insect life stages share a similar microbiota in terms of bacterial diversity and community structure. The intracellular symbiont Wolbachia dominated the overall microbiome composition (~92%) in these life stages. Members of the core microbiota include Wolbachia, Romboutsia, Ignavibacterium, Clostridium, Allobaculum, Paracoccus, Methylobacterium, Faecalibacterium, Collinsella, Rothia, Sphingomonas and 4 other undetermined bacterial genera. Based on PCR screening and DNA sequencing of the wsp gene, Wolbachia infection was confirmed in almost 80% of samples, and represented by two different isolates or strains within the supergroup B. This data offers opportunities for studying the contribution of symbiotic bacteria in the biological performance of this insect pest, and provides a base to explore other insect control methods.

1Disciplina de Entomología, Centro Nacional de Investigaciones de Café - CENICAFÉ. Manizales, Colombia,
2Department of Entomology, Pennsylvania State University, University Park, PA, United States
Most insects harbor diverse microbiota inside their body that collectively perform important biological roles for the insect-host in processes such as nutrition, reproduction, immunity, and development. These symbiotic interactions involve microbes adapted to live inside specialized host cells (intracellular symbionts), or outside cells (extracellular symbionts). The vast majority of insect-associated microbes reside in the gut lumen, and some are adapted to live within specialized structures in the insect posterior midgut. Insect gut-associated microorganisms have been proposed as key players in the adaptive radiation of herbivorous insects by allowing them to metabolize or assimilate recalcitrant plant compounds, or to exploit low-nutrient plant contents by providing additional nutritious molecules (Janson et al., 2008; Sudakaran et al., 2017; Motta et al., 2022; Ge et al., 2023). In some cases the outcomes of this symbiotic interplay in plant-feeding insects has also extended to the control of host-plant defense responses for the benefit of the insect (Chung et al., 2013; Acevedo et al., 2017; Schausberger, 2018; Li et al., 2019). Moreover, insect-associated microbial symbionts have been shown to confer resistance to chemical insecticides in various pest insects (Kikuchi et al., 2012; Blanton & Peterson, 2020; Sato et al., 2021).

Equally important, intracellular symbionts such as Wolbachia that frequently reside within the reproductive tissues of most insects are well known as manipulators of insect reproduction. Wolbachia are maternally inherited bacteria symbionts that infect at least 65% of insect species (Hilgenboecker et al., 2008), and are capable of altering host reproduction and fitness in order to achieve high frequency of infection in the host populations (Stouthamer et al., 1999). This manipulation can involve cytoplasmic incompatibility (CI) (Sinkins, 2004; Shropshire et al., 2020), parthenogenesis (Werren, 1997; Vavre et al., 2004; Zhou et al., 2021), male-killing (Hurst et al., 1999; Fukui et al., 2015), and feminization (O'Neil et al., 1998; Hiroki et al., 2002; Narita et al., 2007). Additionally, several lines of evidence show that Wolbachia can affect behavioral patterns in their hosts by altering mating, feeding, locomotion, or aggressive behavior in addition to learning and memory capacity (reviewed by Bi & Wang, 2020).

Several Hemiptera plant-feeding insect species in the suborders Sternorrhyncha, Auchenorrhyncha and Heteroptera display a variety of insect-microbial symbiosis. Phytophagous Sternorrhyncha and Auchenorrhyncha species have piercing and sucking mouthparts for stylet-sheath feeding (phloem and xylem sap-suckers) as in aphids and leafhoppers. Phytophagous Heteroptera species have macerate-and-flush feeding mouthparts (sucking of extra-orally digested plant tissues) as seen in stink bugs and plant bugs. In consequence, several of these insect species are agricultural pests of economic importance. Most members of Sternorrhyncha and Auchenorrhyncha harbor intracellular obligate symbionts within specialized cells or bacteriocytes that provide essential amino-acids and vitamins to the insect (Moran & Telang, 1998). However, most phytophagous Heteroptera members lack intracellular symbionts, but instead have developed relationships with extracellular symbionts in special midgut compartments such as midgut crypts and caeca. These extracellular symbionts are mainly found in stink bugs, flat bugs and seed bugs, within the infraorder Pentatomomorpha. Nonetheless, special symbiont-harboring midgut compartments seems to be absent in most phytophagous species in the infraorder Cimicomorpha which includes true plant bugs such as Monalonion velezangeli.

The plant bug M. velezangeli (Hemiptera: Miridae: Bryocorinae) is a neotropical polyphagous insect native to Central and South America. This insect feeds on 21 plant species in 14 families (Giraldo-Jaramillo & Machado, 2012; Rodas et al., 2014; Ocampo Flórez et al., 2018). It is considered as a strict phytophagous insect based on the lack of reports of other feeding habits, and the fact that all known members of the mirid subfamily Bryocorinae are herbivorous as well (Jung & Lee, 2012; Namyatova & Cassis, 2016). This plant bug is a notorious agricultural pest of cacao (Theobroma cacao, Malvaceae), avocado (Persea americana, Lauraceae), guava (Psidium guava, Myrtaceae), and tea (Camellia sinensis, Theaceae) (Jaimes et al., 2015; Ramírez-Gil et al., 2020). Monalonion velezangeli is also an emerging pest for coffee crops in Colombia especially in the southern coffee-producing regions of the country (Ramírez-Cortés et al., 2008). The immature (nymph) and adult stages of this plant bug feed on terminal shoot tips, young leaves or fruits causing cell-death at the feeding sites as the main direct damage. Severe plant damage is mainly caused by nymphal stages when they inject enzyme-rich saliva into the plant tissues for extra-oral digestion of the cell contents. Current recommendations for pest management vary according...
to host crops. Common methods include cultural practices (e.g. manual collection of insects in the field or flaming), biological control with fungal entomopathogens, and insecticides. Despite its significance as an agricultural pest, several aspects of the biology of *M. velezangeli* remain poorly studied including the composition of its microbiota.

Diversity and functional characterization of symbiotic microbiota in Miridae plant bugs have been poorly studied except for the strictly phytophagous cotton flea hopper *Pseudatomoscelis seriatus* and the omnivorous *Adelphocoris suturalis* to the best of our knowledge (Xue et al., 2021; Fu et al., 2021; Luo et al., 2021). Knowledge of *M. velezangeli* associated microbiota is fundamental not only to better understand its biology, but also could provide new opportunities for the development of insect management methods. For example, symbiont-mediated RNA interference (smRNAi) is emerging as a potential approach for control of pest insects in agriculture (Dyson et al., 2022), and as an efficient tool for insect gene functional analysis (Lariviere et al., 2023). It is necessary to characterize the taxonomic composition of microbes within the insect body before any study on the role of the microbiota in insect biology or exploration of symbiont-based methods for pest control can be carried out. In this study, we analyzed for the first time the diversity and structure of the symbiotic microbiota within *M. velezangeli* nymph and adult life stages using high-throughput DNA amplicon sequencing of bacterial 16S rRNA gene (DNA meta-barcoding). Here we discovered a diverse microbiota across all life stages that is dominated by few bacterial genera, highlighting the presence of the endosymbiont *Wolbachia*.

**Materials and methods**

**Insect collection, DNA isolation and 16S rRNA sequencing**

Samples of immature and adult individuals of *M. velezangeli* feeding on leaves of multiple coffee plants (*Coffea arabica* var. Castillo) were collected from a coffee plantation in the Department of Huila (Segovianas, Coordinates: 2.3784, -75.88291), Colombia. Insects were externally sterilized by washing three times with 75% ethanol and immediately conserved in 96% ethanol for DNA isolation. Three independent samples of immature (pools of 5 nymphal stages, one per instar) and three independent samples of adults (pools of one female and one male) of *M. velezangeli* were used for microbiota analysis. Total DNA was isolated from whole-body insects using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) including a lysozyme treatment according to the manufacturer protocol. DNA integrity was checked on agarose gel and quantified on Nanodrop (Invitrogen, Waltham, MA, USA). PCR amplification of the hyper-variable region V3V4 of the bacterial 16S rRNA gene was performed using primers 341F (5'-CCT AYG GGR BGC ASC AG-3') and 806R (5'-GAC TAC NNG GGT ATC TAA T-3') (Caporaso et al., 2011; Klindworth et al., 2013). Illumina sequencing libraries were generated with NEBNext® UltraTM DNA Library Prep Kit (New England BioLabs, Ipswich, MA, USA). The 16S rRNA amplicon Illumina 250PE libraries were sequenced using NovaSeq platform (Illumina, San Diego, CA, USA) at Novogene Corporation Inc. (Sacramento, CA, USA).

**Processing of 16S rRNA sequence data and taxonomic classification**

Demultiplexed raw 16S rRNA sequences were processed using QIIME2 v.2020.8 (Bolyen et al., 2019) as follows. Paired-end read sequences were quality-filtered, denoised and clustered using DADA2 (Callahan et al., 2016) (dada2 denoise-paired) to produce Amplicon Sequence Variants (ASV). The ASVs were taxonomically classified using the plugin feature-classifier classify-sklearn with the GreenGenes database (version 13_8) using default confidence threshold (≥ 0.7). The ASVs that could not be identified to genus with Greengenes were blasted against the NCBI Microbial Genome sequences (Bacteria and Archaea) to identify best hits and also compared with the EzBioCloud Database (version 2021.07.07) for assignation of genus using 97% identity threshold on both searches. The original GreenGenes identification taxon level was maintained when NCBI-BLAST and EzBiocloud resulted in contradictory genus best-hits at ≥97% identity respectively. Contaminant sequences identified as chloroplast or mitochondria were removed from processed data tables and excluded from further analyses.

**Diversity analysis and taxon abundance comparisons**

The ASV tables for raw abundance and taxonomy classification were exported from QIIME2 and processed through the MicrobiomeAnalyst tool (Dhariwal et al., 2017; Chong et al., 2020) using the
Marker Data Profiling (MDP) pipeline as follows. The ASV abundances were brought to the total sum scaling for data normalization and further analysis of diversity. Alpha-diversity was estimated using the Bray-Curtis distance between groups and their ordination visualized with Principal Coordinate Analysis (PCoA) and Non-metric Multidimensional Scaling (NMDS). Statistical differences in community structure between groups was tested with the permutational multivariate analysis of variance (PERMANOVA, one-way) and the analysis of similarities (ANOSIM, one-way). Both were based on Bray-Curtis distance as implemented on Past v.4.08 (Hammer et al., 2001). Differences in dispersion within each group was tested using PERMDISP (Anderson & Walsh, 2013). Bacteria taxon abundance bar-plots were built with the MicrobiomeAnalyst tool and the heatmap plots using Matrix2png (Pavlidis & Noble, 2003). Statistical differences for taxon abundances between groups were tested with the Mann-Whitney U test.

**Molecular screening of Wolbachia endosymbiont**

Abdomen samples were separately dissected from nymphs or adults under sterile conditions in a stereoscope from the *M. velazangeli* individuals collected in this study and individually used for DNA isolation with DNeasy Kit (Qiagen) as described above. Detection and classification of Wolbachia was performed following the wsp gene (Wolbachia surface protein) PCR-based method established by Zhou et al. (Zhou et al., 1998) as follows. PCR screening was done with the wsp-specific primers wsp81F (5'-TGG TCC AAT AAG TGA TGA AGA AAC-3') and wsp691R (5'-AAA AAT TAA ACG CTA CTC CA-3') in 20 μL reactions containing 1X Green GoTaq® reaction buffer (Promega, USA), 250 μM dNTPs, 0.5 μM of each primer, 0.5 u of GoTaq® polymerase (Promega, Madison, WI, USA) and 1 μL of DNA template. PCR cycling involved one initial step of denaturation at 95°C for 2 min, and then followed by 35 cycles of three steps including 95°C for 40 sec, 55°C for 30 sec and 72°C for 40 sec. The cycle ends with a final extension of 72°C for 5 min. DNA template integrity was additionally tested by PCR with universal primers for arthropod 28S rRNA gene sequences (28sF3633: 5'-TAC CGT GAG GGA AAG TTG AAA-3', and 28sR4076: 5'-AGA CTC CTT GGT CCG TGT TT-3') using the same PCR reaction conditions and cycling described above. Total DNA from a naturally Wolbachia-infested fruit fly (*Drosophila melanogaster*) strain was used as positive control in the PCR screening experiments. PCR amplicons were visualized with agarose gel electrophoresis.

**Sanger DNA sequencing and phylogenetic analysis of Wolbachia wsp amplicons**

A group of 10 randomly selected wsp PCR amplicons (wsp81F/691R primers) derived from the *M. velezangeli* DNA samples were further purified using the QIAquick PCR Purification Kit (Qiagen) following the manufacturer protocol. Purified amplicons were directly submitted to ABI automated bidirectional sequencing with wsp81F and wsp691R primers. DNA sequence chromatograms were processed in Chromas v2.6.6 (https://technelysium.com.au/wp/chromas/) for quality and primer-sequence trimming. Bidirectional sequences for each sample were clustered into single DNA consensus sequences (isolates) using GeneStudio v.2.2.0 (https://sourceforge.net/projects/genestudio/). The DNA consensus sequences were compared to available sequence data at GeneBank nt database using BLASTn search algorithm and were deposited at GeneBank under accession numbers OR129441-OR129450.

A phylogenetic analysis of the *M. velezangeli*-derived wsp sequences was performed using the web-based Phylogeny.fr platform (Dereeper et al., 2008) along with wsp sequences from insect-derived Wolbachia isolates at the GeneBank database as representatives of major Wolbachia subgroups found in insects according to Zhou et al. (Zhou et al., 1998). Sequences were aligned using ClustalW (v2.1) (Thompson et al., 1994). After alignment, positions with gaps were removed from the alignment. The phylogenetic tree was reconstructed using the maximum likelihood method implemented in the PhyML program (v3.1/3.0) aLRT) (Guindon & Gascuel, 2003). The default substitution model was selected assuming an estimated proportion of invariant sites (of 0.003) and 4 gamma-distributed rate categories to account for rate heterogeneity across sites. The gamma shape parameter was estimated directly from the data (gamma=0.398). Reliability for internal branches was assessed using the aLRT test (SH-Like) (Anisimova & Gascuel, 2006).
Results

Microbial 16S rRNA sequence data

A total of 491,802 denoised non-chimeric merged sequences for the 16S rRNA V3V4 variable region were produced among all samples (nymph and adult) after removing putative contaminant sequences. Sequence clustering produced 123 ASVs, with an average number of ASVs for adult and nymph samples of 57 and 79 respectively. The number of Illumina reads and ASV sequences for each sample are detailed in Table 1. Rarefaction curves showed that all samples reached richness saturation (Figure 1A) indicating that sequencing effort was enough to capture total diversity (Good’s coverage > 99.99% for all samples, Table 1).

Table 1 - Overview of Illumina 16S rRNA gene amplicon sequencing of the bacterial microbiota in *Monalonion velezangeli*.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Raw PE reads</th>
<th>Clean PE reads</th>
<th>Raw merged sequences</th>
<th>Clean merged sequences</th>
<th>Total ASVs</th>
<th>Good’s coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult 1</td>
<td>173,233</td>
<td>96,265</td>
<td>74,667</td>
<td>69,782</td>
<td>63</td>
<td>100%</td>
</tr>
<tr>
<td>Adult 2</td>
<td>162,775</td>
<td>109,344</td>
<td>90,923</td>
<td>90,168</td>
<td>62</td>
<td>100%</td>
</tr>
<tr>
<td>Adult 3</td>
<td>167,579</td>
<td>109,789</td>
<td>91,180</td>
<td>90,009</td>
<td>45</td>
<td>100%</td>
</tr>
<tr>
<td>Nymph 1</td>
<td>170,239</td>
<td>110,169</td>
<td>87,856</td>
<td>86,212</td>
<td>82</td>
<td>99,99%</td>
</tr>
<tr>
<td>Nymph 2</td>
<td>172,490</td>
<td>85,101</td>
<td>60,756</td>
<td>58,026</td>
<td>85</td>
<td>100%</td>
</tr>
<tr>
<td>Nymph 3</td>
<td>169,525</td>
<td>115,394</td>
<td>97,798</td>
<td>97,605</td>
<td>71</td>
<td>100%</td>
</tr>
</tbody>
</table>

Diversity of bacterial community

The bacterial diversity associated with the nymph and adult life stages of *M. velezangeli* was analyzed through five alpha-diversity indices (Figure 1B and Table 2). No statistical differences for species richness (Observed species), abundance (Chao1 and ACE) and abundance distribution indices (Fisher and Shannon) were detected between nymph and adult stages (Observed species: U = 0, p = 0.1; Chao1: U = 0, p = 0.1; ACE: U = 0, p = 0.1; Fisher: U = 0, p = 0.1; Shannon: U = 3, p = 0.7).

Differences in microbial community structure (beta-diversity) between nymph and adult was assessed with PERMANOVA and ANOSIM analyses, and their ordinal distances (Bray-Curtis dissimilarity) visualized with PCoA and NMSD plotting (Figure 1C,D). PERMANOVA tests whether distance in community structure differs between groups (e.g. nymph vs adult) (Anderson 2001) whereas ANOSIM tests whether distances between groups are greater than within groups (Clarke 1993). Both analyses indicated no significant differences in microbial community structure between nymphs and adults (PERMANOVA: F-value: 0.4774; R-squared: 0.1135; p-value = 0.5016; ANOSIM: R: -0.1111; p-value = 0.7019). We assessed the differences in dispersion (variance) within groups with PERMDISP (Anderson & Walsh, 2013) considering that PERMANOVA and ANOSIM are sensitive to variance within groups. This analysis showed that there is homogeneity of multivariate dispersions between nymph and adult samples (PERMDISP: F-value: 0.1958; p-value: 0.681).

Table 2 - Alpha diversity indices for 16S rRNA-based microbiota in *Monalonion velezangeli*.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Observed</th>
<th>Chao1 (±se)</th>
<th>ACE (±se)</th>
<th>Fisher</th>
<th>Shannon (H')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult1</td>
<td>63</td>
<td>63 (±0.0)</td>
<td>63 (±1.69)</td>
<td>6.82</td>
<td>0.81</td>
</tr>
<tr>
<td>Adult2</td>
<td>62</td>
<td>62 (±0.0)</td>
<td>62 (±2.90)</td>
<td>6.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Adult3</td>
<td>45</td>
<td>45 (±0.0)</td>
<td>45 (±1.91)</td>
<td>4.55</td>
<td>0.37</td>
</tr>
<tr>
<td>Nymph1</td>
<td>82</td>
<td>83 (±2.33)</td>
<td>82.5 (±3.25)</td>
<td>8.94</td>
<td>0.46</td>
</tr>
<tr>
<td>Nymph2</td>
<td>85</td>
<td>85 (±0.0)</td>
<td>85 (±2.97)</td>
<td>9.78</td>
<td>1.12</td>
</tr>
<tr>
<td>Nymph3</td>
<td>71</td>
<td>71 (±0.0)</td>
<td>71 (±2.66)</td>
<td>7.49</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Figure 1 - Diversity and community structure of the bacterial microbiota in adult and nymph life stages of *Monalonion velezangeli*. (A) Rarefaction curves. (B) Alpha diversity indices and their corresponding p-value of the Mann-Whitney U test. (C) Principal coordinate analysis (PCoA) plot based on Bray-Curtis dissimilarity of bacterial communities in nymphs and adults. (D) Non-metric multidimensional scaling (NMDS) ordination analysis plot based on Bray-Curtis dissimilarity of bacterial communities in nymphs and adults. Stress value represents the goodness-of-fit for the NMDS analysis.

Figure 1 - Diversity and community structure of the bacterial microbiota in adult and nymph life stages of *Monalonion velezangeli*. (A) Rarefaction curves. (B) Alpha diversity indices and their corresponding p-value of the Mann-Whitney U test. (C) Principal coordinate analysis (PCoA) plot based on Bray-Curtis dissimilarity of bacterial communities in nymphs and adults. (D) Non-metric multidimensional scaling (NMDS) ordination analysis plot based on Bray-Curtis dissimilarity of bacterial communities in nymphs and adults. Stress value represents the goodness-of-fit for the NMDS analysis.
Removal of Wolbachia-associated sequences is a regular practice for microbiome analysis in insects when they are detected in bacterial 16S rRNA libraries (Chandler et al., 2014; Rudman et al., 2019). We compared the overall microbial community structure in our samples when Wolbachia sequences are kept or removed from the data. The removal of Wolbachia reads did not alter the similarities in alpha diversity indices between nymphs and adults (Supplementary Table S1) (Observed species: U = 0, p = 0.1; Chao1: U = 0, p = 0.1; ACE: U = 0, p = 0.1; Fisher: U = 0, p = 0.1; Shannon: U = 3, p = 0.1). Similarity in microbial community structure between life stages also remained unchanged (PERMANOVA: F-value: 1.698; R-squared: 0.5142; p-value = 0.2028; ANOSIM: R: 0.2593; p-value = 0.2992; PERMDISP: F-value: 0.0993; p-value = 0.7684).

**Taxonomic composition of bacterial community**

From the 123 ASV, 107 (87%) were taxonomically assigned to at least the Phylum level. Taxonomic distribution of ASVs included 10 bacteria phyla, 18 classes, 22 orders, 33 families and 36 genera. Distribution of relative abundances for phylum, order and genus levels are shown in Figure 2 and fully detailed for all taxonomic levels in Supplementary Tables S2 to S6 (Navarro-Escalante et al., 2024). Overall, the Phylum Proteobacteria (92.6%) and Firmicutes (5.2%) represented almost the full microbiota detected in this study (Supplementary Table S2, Figure 2A). The orders Rickettsiales (Phylum Proteobacteria: Class Alphaproteobacteria) and Clostridiales (Phylum Firmicutes: Class Clostridia) with abundances 91.9% and 4.8% respectively dominated the bacterial community. To a lesser extent, other 20 orders were present at or below 1% overall abundance (Supplementary Table S4, Figure 2B).

From the total 123 ASVs, 95 (77.2%) were assigned to the genus level where 66 ASVs (53.7%) were annotated using GreenGenes (≥ 0.7 confidence level) and 29 ASVs (23.6%) annotated using BLASTn and EzBioCloud (≥ 97% identity to top-hit for both algorithms). The remaining 28 ASVs (22.8%) were considered as undetermined at genus level (Not Assigned). At the genus level, Wolbachia (Rickettsiaceae) dominated the overall abundance (91.9%) across nymph and adult samples followed by Romboutsia (1.8%), Ignavibacterium (0.8%), Clostridium (0.70%), Mycoplasma (0.5%), Allobaculum (0.4%), Blautia (0.4%), Eubacterium g23 (0.3%), Sporobacter (0.3%), Paracoccus (0.3), Methylobacterium (0.2%), Dorea (0.2%), Sediminibacterium (0.1%), Faecalibacterium (0.1%), and Ruminococcus (0.1%) as the top 15 taxa. Overall, the list of the top ten most abundant genera remained unchanged; and in all cases the microbiota was dominated by Wolbachia with few changes in the order of the remaining genera (Figure 2B). However, the exclusion of Wolbachia resulted in Firmicutes (69.3%) as the overall dominant Phylum, followed by Proteobacteria (10.4%), Chlorobi (6.2%) and other seven Phyla to a lesser extent (Figure 3A).

**Core microbiota**

According to the data collected in this study, the core microbiota of M. velezangeli is composed of 21 bacterial ASVs (17% of all ASVs) that were consistently shared between the nymph and adult life stages (ASVs present in all samples in this study) (Figure 2D). These core ASVs were identified by analyzing 42 ASVs present in all samples of both life stages. The remaining 21 ASVs were present at either nymph or adult. Other 81 ASVs (65.9% of all ASVs) were not consistently detected in all samples of each life stage and may represent transient or non-resident microbes within the microbiome of M. velezangeli.

The bacterial genus assignments for the core 21 ASVs based on 16S GreenGenes database are shown in Table 3. These core bacterial genera, listed in decreasing order of abundance, included: Wolbachia, Romboutsia, Ignavibacterium, Clostridium, Allobaculum, Paracoccus, undetermined Anaerolineaceae, Methylobacterium, Faecalibacterium, undetermined Lachnospiraceae, Collinsella, Rothia, undetermined Peptostreptococcaceae, Spingomonas and undetermined Coriobacteriaceae.
Figure 2 - Taxonomic composition of the bacterial microbiota in nymphs and adults of Monalonion velezangeli. (A) Relative abundance at Phylum level. (B) Relative abundance at Order level. (C) Heatmap for relative abundances at genus level. (D) Number of ASV sequences consistently detected on either adults of nymphs and number of shared ASVs (circle intersection) as members of the core microbiota.
Figure 3 - Relative abundance of the bacterial microbiota, with the exclusion of Wolbachia-associated sequences, for nymphs and adults of Monalonion velezangeli. (A) Relative abundances at Phylum level. (B) Heatmap of relative abundances at genus level.

Wolbachia PCR detection and profiling

Taking into account the large proportion of Wolbachia-associated ASVs found in our samples, we decided to further investigate the presence of Wolbachia endosymbiont in M. velezangeli by PCR screening of the wsp gene. About 79% of the insect individuals tested (22 out of 28) from the Segovianas locality resulted positive for Wolbachia infection according to the amplification of a ~600 bp DNA band (Figure 4). A PCR test for DNA template integrity showed that all 28 (100%) M. velezangeli DNA samples were PCR quality grade based on the successful amplification of a DNA band for the arthropod 28S rRNA gene target. This indicates that the no wsp amplification in 21% (6/28) of the samples could be explained by the absence of Wolbachia infection and not because of a low DNA template quality.

DNA Sanger sequencing was performed for 10 randomly selected wsp DNA amplicons derived from M. velezangeli samples. All DNA sequences had clearly defined single-pick chromatograms, which suggested the presence of single Wolbachia-strain infections in each sequenced sample. A multiple sequence alignment showed that these isolates can be grouped in two distinct wsp sequence haplotypes that share 78% similarity between them (Supplementary Figure S1). Haplotype 1 (hereafter wMvel1) was represented by 80% (8/10) of the sequence isolates in this study, whereas haplotype 2 (hereafter wMvel2) was represented by the remaining 20% (2/10) isolates. A BLASTn search against the GeneBank database showed that wMve1 wsp sequence was 99.46% identical (top hit) to a Wolbachia wsp isolate from the butterfly Acraea equitorialis (GenBank accession: AJ271195) whereas wMvel2 wsp was 98.91% identical (top hit) to a Wolbachia wsp isolate from the planthopper Perkinsiella saccharicida (GenBank accession: GU190768) (Hughes et al., 2011). Phylogenetic analysis clustered all wMvel wsp sequences within the Wolbachia wsp B supergroup clade (Figure 5) and assigned the distinct wMvel wsp haplotypes within two distant subclades respectively along with their corresponding wsp BLASTn top-hits.
Table 3 - Bacterial genus annotations for ASVs considered as members of the core microbiota in Monalonion velezangeli.

<table>
<thead>
<tr>
<th>ID</th>
<th>Overall abundance</th>
<th>Genus (Family) rank annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASV01</td>
<td>91.7%</td>
<td>Wolbachia (Rickettsiaceae)</td>
</tr>
<tr>
<td>ASV02</td>
<td>0.97%</td>
<td>Romboutsia (Peptostreptococcaceae)*</td>
</tr>
<tr>
<td>ASV03</td>
<td>0.79%</td>
<td>Romboutsia (Peptostreptococcaceae)*</td>
</tr>
<tr>
<td>ASV04</td>
<td>0.73%</td>
<td>Ignavibacterium (Ignavibacteriaceae)*</td>
</tr>
<tr>
<td>ASV05</td>
<td>0.47%</td>
<td>Clostridium (Clostridiaceae)*</td>
</tr>
<tr>
<td>ASV06</td>
<td>0.26%</td>
<td>Paracoccus (Rohdobacteraceae)</td>
</tr>
<tr>
<td>ASV07</td>
<td>0.25%</td>
<td>Undetermined (Anaerolineaceae)*</td>
</tr>
<tr>
<td>ASV08</td>
<td>0.22%</td>
<td>Allobaculum (Erysipelotrichaceae)</td>
</tr>
<tr>
<td>ASV09</td>
<td>0.19%</td>
<td>Methylobacterium (Methylobacteriaceae)</td>
</tr>
<tr>
<td>ASV10</td>
<td>0.14%</td>
<td>Sediminibacterium (Chitinophagaceae)</td>
</tr>
<tr>
<td>ASV11</td>
<td>0.13%</td>
<td>Allobaculum (Erysipelotrichaceae)</td>
</tr>
<tr>
<td>ASV12</td>
<td>0.12%</td>
<td>Faecalibacterium (Ruminococcaceae)</td>
</tr>
<tr>
<td>ASV13</td>
<td>0.11%</td>
<td>Clostridium (Clostridiaceae)</td>
</tr>
<tr>
<td>ASV14</td>
<td>0.09%</td>
<td>Undetermined (Lachnospiraceae)</td>
</tr>
<tr>
<td>ASV15</td>
<td>0.09%</td>
<td>Collinsella (Coriobacteriaceae)</td>
</tr>
<tr>
<td>ASV16</td>
<td>0.09%</td>
<td>Rothia (Micrococcaceae)</td>
</tr>
<tr>
<td>ASV17</td>
<td>0.06%</td>
<td>Clostridium (Clostridiaceae)</td>
</tr>
<tr>
<td>ASV18</td>
<td>0.06%</td>
<td>Undetermined (Peptostreptococcaceae)</td>
</tr>
<tr>
<td>ASV19</td>
<td>0.06%</td>
<td>Allobaculum (Erysipelotrichaceae)</td>
</tr>
<tr>
<td>ASV20</td>
<td>0.05%</td>
<td>Sphingomonas (Sphingomonadaceae)</td>
</tr>
<tr>
<td>ASV21</td>
<td>0.04%</td>
<td>Undetermined (Coriobacteriaceae)</td>
</tr>
</tbody>
</table>

# The taxonomic classification was determined using the 16S GreenGenes (GG) database with a confidence level of ≥0.7. For ASVs where GG failed to assign a Genus taxon, the Genus identification was performed using the BLASTn and EzBioCloud search algorithms with a concomitant ≥97% sequence identity for their top hits (taxa denoted with asterisk [*]). Further details can be found in the Methods section.

Figure 4 - Molecular screening for presence of Wolbachia endosymbiont in Monalonion velezangeli samples. DNA samples from single insects (HU15.1 to HU20.6) were tested for PCR amplification of the Wolbachia wsp gene using wsp81F and wsp691R primers. Quality of DNA was tested by amplification of the 28S rRNA (28S) gene fragment (~700 bp). DNA from a Drosophila melanogaster (Dm) population was used as positive control for Wolbachia infection, and water (-) as negative control.
Figure 5 - Maximum Likelihood phylogenetic tree of Wolbachia wsp sequences from Monalonion velezangeli and representative Wolbachia strains from other host insects at the GenBank database. Wolbachia superfamilies A (green branch) and B (blue branch) clusters based on wsp sequences are shown. Sequence haplotypes clustering of the M. velezangeli wsp isolates, wMvel1 and wMvel2, are shown in purple and pink colors respectively. Hemiptera species are highlighted in bold letters. The aLRT branch supports are indicated as red numbers. Genbank accession numbers precede each sequence name.

Discussion

We used 16S rRNA amplicon high-throughput sequencing to investigate for the first time the diversity of the symbiotic bacteria community associated with the tropical plant bug M. velezangeli. Here, we found a relatively diverse core microbiota dominated by genera Wolbachia, Romboutsia, Ignavibacterium and Clostridium. Although this plant bug is a polyphagous herbivore considered a pest for various tropical crops in America, in this study we focused the bacteria screening on a population feeding on coffee plants in Colombia. We found that overall bacteria diversity (Alpha diversity, Figure 1B) was similar between the nymph and the adult life stages. Based on the most abundant taxa (ASVs with overall abundance >0.01%), the bacterial community composition (Beta diversity) is conserved between these two developmental
stages. However, there is a degree of variability regarding the presence of bacteria with low abundance within and between life stages. The immature forms of *M. vellezangeli* go through 5 nymphal instars that differ among them mainly in body size (Giraldo-Jaramillo et al., 2010). The microbial composition we present in this work for the nymph is based on pooled individuals from all instars. Hence, whether the overall bacterial community diversity and structure experience any changes along nymphal development needs to be addressed in future analyses.

The bacterial 16S rRNA gene sequence has been used historically as a gold standard genetic marker to infer bacteria taxonomic identity and community diversity in high-throughput microbiome studies especially with the use of the partial sequencing of some of its nine hypervariable sequence regions (V1 to V9) (Van de Peer et al., 1996). In our study, we used the sequences of the combined V3-V4 variable regions, a 16S sequence section commonly utilized in microbiome analysis; however, it must be noticed that the used of partial sequences of this gene marker can result in overestimation of microbial diversity due to bacterial intragenomic heterogeneity (Sun et al., 2013), and does not offer enough accuracy for bacteria identification at the species or strain level (Johnson, Spakowicz, et al., 2019). Being aware of this bias, we mainly describe the microbial taxonomic diversity in this study at genus level as the deepest taxonomic rank.

We found that the intracellular symbiont *Wolbachia* dominated the full microbiota associated with *M. vellezangeli* which represent about 92% of the bacterial load within the body of nymph and adult stages. The observed high abundance of *Wolbachia* in our samples may indicate a proportionally elevated titer of this endosymbiont in the analyzed insects as well. Presence of *Wolbachia* was also confirmed by PCR screening in *M. vellezangeli* samples. Additionally, DNA sequence analysis of wMvel wsp isolates indicates that they belong to the *Wolbachia* B supergroup. Insect-infecting *Wolbachia* strains with major biological effects have been mostly associated with host reproductive disturbances such as CI, parthenogenesis, male-killing and feminization (Serbus et al., 2008; Werren et al., 2008; Kaur et al., 2021). Furthermore, recent studies suggest that *Wolbachia* infections may also influence other behavioral and physiological processes including nutrition, defense and insecticide-resistance (Hosokawa et al., 2010; Nikoh et al., 2014; Zug & Hammerstein, 2015; Zhang et al., 2020; Soh & Veera Singh, 2022). In other mirid species the presence of *Wolbachia* has been associated with reproductive alterations and nutritional roles. For example in the predatory mirid bug *Macrolopus pygmaeus* this parasitic bacteria induces strong CI (Machtelinckx et al., 2009). *Wolbachia* infection in the hematophagous bed bugs *Cimex lectularius* and *Cimex hemipterus* (Hemiptera: Miridae) creates an obligate mutualism that is essential for normal insect growth and reproduction via provision of B vitamins (Hosokawa et al., 2010; Laidoudi et al., 2020). *Wolbachia* infections in insects have been mainly associated with host reproductive tissues, but it is also commonly found in several insect somatic organs or tissues including brain, salivary glands, gut, malpighian tubules, muscles, fat bodies and also as habitant of bacteriocytes (Hosokawa et al., 2010; Casper-Lindley et al., 2011; Pietri et al., 2016; Diouf et al., 2018). The presence of this parasitic endosymbiont in *M. vellezangeli* raises new questions about the possible biological implications for this plant bug. The detection of two distinct wMvel wsp haplotypes in our analysis suggest that multiple *Wolbachia* strains are present in the insect population tested here. However, insect individuals seem to be infected by single *Wolbachia* strains. Additionally, the prevalence of infection is not 100% across all insect individuals, which seems to indicate that an obligate mutualism is not the proper characterization of the *M. vellezangeli* - *Wolbachia* relationship.

The extremely high abundance of ASV sequences identified as *Wolbachia* in our samples (~92% overall abundance) could introduce a potential confounding effect in the estimation of relative abundances for the actual gut-associated bacterial taxa. This possible issue was recently analyzed by Wilches et al. (Wilches et al., 2021) using the spotted-wing drosophila (*Drosophila suzukii*) as a case of study when high-throughput sequencing is applied to investigate the microbiome in *Wolbachia*-infected insect samples. The authors detected large discrepancies in the measures of alpha and beta diversity as well as in the relative abundances of several bacteria taxa in the microbiome between *Wolbachia*-infected fly samples (mean abundance of 98.8% for *Wolbachia* sequences) and non-infected. This and other work has shown that in some cases removing the *Wolbachia*-associated reads from the analyses could also have major impacts in the interpretation of the study results which may be especially relevant when comparing infected samples versus non-infected (Henry & Ayroles, 2021; Wilches et al., 2021). We addressed the impact of removing *Wolbachia* reads in microbiota diversity and structure in *M.*
velezangeli. Here, the exclusion of Wolbachia-associated sequences did not affect the similarity in microbiota composition between the life stages.

Apart from Wolbachia (Proteobacteria) the remaining top 10 most abundant bacterial genera detected in M. velezangeli include members of Phylum Firmicutes (5.2% overall abundance) such as Romboutsia, Clostridium, Allobaculum, Blautia, Eubacterium, Faecalibacterium, and Ignavibacterium. Members of these Firmicutes genera have been previously found in the alimentary canals of other arthropods (Greck-Mora et al., 1996; Husseneder et al., 2017; Li et al., 2020; Fang et al., 2020; Shukla & Beran, 2020; Mejía-Alvarado et al., 2021). In our study, Romboutsia (1.75%) (Firmicutes: Peptostreptococcaceae) was the second most abundant bacterial genus across all samples. Members of this genus have been mainly found in the gut microbiota from several vertebrate animals and insects (Gerritsen et al., 2014; Ricaboni et al., 2016; Johnson, Sylte, et al., 2019; Shukla & Beran, 2020). There is no information about the functional roles of the Romboutsia members as gut symbionts; however, they seem to be well adapted to live within animal guts (Gerritsen et al., 2017, 2019). Similarly, members of Paracoccus, Methylobacterium and Ignavibacterium are regular habitants of arthropod guts (Zhang et al., 2016, 2018; Sajnaga et al., 2022). We infer that most abundant bacteria genera found in this study, except Wolbachia, are likely residents of the M. velezangeli gut lumen and may be involved in important biological processes for this plant bug. Several of these symbionts (Romboutsia, Ignavibacterium, Clostridium, Paracoccus, Allobaculum, Methylobacterium, Faecalibacterium, Collinsella, Rothia and Sphingomonas) were found to be consistently present in all our samples of nymph and adult stages and we consider them as members of the insect gut-associated core microbiota. Most of these genera, except for Paracoccus, Methylobacterium and Sphingomonas, are primarily anaerobic bacteria taxa. Compared with the microbiota associated with the cotton flea hopper P. seriatus (Hemiptera: Miridae) (Fu et al., 2021) and A. suturalis (Hemiptera: Miridae) (Xue et al., 2021) the composition at the genus level within M. velezangeli is clearly different. In P. seriatus, the gut microbiome is dominated by bacteria Diaphorobacter, Lactococcus, Pseudomonas, Pantoea and Izhakieila; whereas in A. suturalis, the gut microbiome is dominated by Erwinia, Acinetobacter, Staphylococcus, and Lactococcus. These differences in microbiota composition could be associated with environmental differences due to host-plant species, feeding habits and geographical origins.

Several bacteria isolates found in M. velezangeli’s microbiota that belong to genera Paracoccus, Methylobacterium and Sphingomonas are potential culturable strains and may also represent candidate symbionts for paratransgenesis applications such as symbiont-mediated RNAi (Dyson et al., 2022). The use of bacteria within paratransgenesis applications requires a culturable symbiont genetically manipulable and especially amenable under aerobic culturable conditions (Ratcliffe et al., 2022). Conditions like these make easier bacterial engineering and experimentation processes. Future attempts for selection of cultivable bacterial isolates from the M. velezangeli gut will reveal what microbes have these characteristics.

Conclusions

The tropical plant bug M. velezangeli harbors a diverse microbiota, and in some cases it can be dominated by the intracellular symbiont Wolbachia. The M. velezangeli microbiota also contain potential gut-associated members of the genera Romboutsia, Ignavibacterium, Clostridium, Paracoccus, Allobaculum, Methylobacterium, Faecalibacterium, Collinsella, Rothia and Sphingomonas. The persistent detection of these bacteria genera in nymphal and adult life stages indicates they seem to be part of the core microbiome and likely play important biological roles in the normal development of M. velezangeli. Additionally, our observations suggest that multiple Wolbachia strains are present in M. velezangeli populations, but insect individuals seem to harbor single-strain infections. The findings reported by this study offer new avenues to improve our understanding of the microbiome contribution in the biology of Miridae plant bugs such as the tropical insect pest M. velezangeli.
The authors thank the National Federation of Coffee Growers of Colombia (FNC) and the personnel of the Extension Service of FNC at the Department of Huila (Colombia) for their support and logistic arrangements for insect sample collection. The authors also thank the coffee farmers at the Municipality of La Argentina (Huila, Colombia) who kindly allowed the insect sampling in their coffee plantations. Preprint version 7 of this article has been peer-reviewed and recommended by Peer Community In Microbiology (https://doi.org/10.24072/pci.microbiol.100004; Volland, 2024).

Funding

This work was supported by the National Coffee Research Center at the National Federation of Coffee Growers of Colombia [Funder ID 100019597, project number ENT101006]; and Sistema General de Regalías del Departamento de Huila, Colombia [convenio 0244 del 2014].

Conflict of interest disclosure

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in relation to the content of the article.

Data, script, code and supplementary material

The datasets generated or analyzed during the current study are included in this article and its supplementary data (https://doi.org/10.5281/zenodo.10524900; Navarro-Escalante et al., 2024). The raw sequence data is accessible at the NCBI Sequence Read Archive (SRA) database under the bioproject number PRJNA875474 (http://www.ncbi.nlm.nih.gov/bioproject/875474).

References


Soh L-S, Veera Singham G (2022) Bacterial symbionts influence host susceptibility to fenitrothion and imidacloprid in the obligate hematophagous bed bug, *Cimex hemipterus*. Scientific Reports, 12, 4919. https://doi.org/10.1038/s41598-022-09015-0


