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Abstract
The Sylvatub system is a national surveillance program established in 2011 in France to
monitor infections caused byMycobacterium bovis, the main etiologic agent of bovine tuber-
culosis, in wild species. This participatory program, involving both national and local stake-
holders, allowed us to monitor the progression of the infection in three badger populations
in clusters covering between 3222 km2 and 7698 km2 from 2013 to 2019. In each cluster,
badgers were trapped and tested forM. bovis. Our first aim was to describe the dynamics of
the infection in these clusters. We developed a Bayesian model of prevalence accounting
for the spatial structure of the cases, the imperfect and variable sensitivity of the diagnostic
tests, and the correlation of the infection status of badgers in the same commune caused
by local factors (e.g., social structure and proximity to infected farms). This model revealed
that the prevalence increased with time in one cluster (Dordogne/Charentes), decreased in
the second cluster (Burgundy), and remained stable in the third cluster (Bearn). In all the
clusters, the infection was strongly spatially structured, whereas the mean correlation be-
tween the infection status of the animals trapped in the same commune was negligible.
Our second aim was to develop indicators for monitoringM. bovis infection by stakeholders
of the program. We used the model to estimate, in each cluster, (i) the mean prevalence
level at mid-period, and (ii) the proportion of the badger population that became infected in
one year. We then derived two indicators of these two key quantities from a much simpler
regression model, and we showed how these two indicators could be easily used to moni-
tor the infection in the three clusters. We showed with simulations that these two simpler
indicators were good approximations of these key quantities.
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1. Introduction

Mycobacterium bovis is a bacterium that can be transmitted to several domestic and wild

species, and to humans. It is the main etiologic agent for bovine tuberculosis (bTB), a regulated

disease that is still detected in cattle in different European countries. When a farm is infected,

different control measures can be applied depending on the country and the specific situation of

the farm, including the slaughtering of the herd. France has been officially free of bTB since 2001

(Delavenne et al., 2019), as less than 0.1% of cattle herds are infected annually. In certain parts

of the country, infection is still regularly detected on cattle farms and in wild species, mainly in

wild boars and badgers. The main factor of persistence is cattle-to-cattle transmission through

between-herd contact (Marsot et al., 2016; Palisson et al., 2016). However, in some areas, a

complex multihost system can explain the circulation of M. bovis between different compart-

ments (domestic species, wild species and the environment, Réveillaud et al., 2018); however,

even if badgers and wild boars are able to transmitM. bovis infection to cattle, these species are

not considered long-term maintenance hosts in bTB endemic areas in France (Payne, 2014).

However, due to an increasing numberofM.bovis cases inwild species, a national surveillance

program for M. bovis in wildlife named ‘Sylvatub’ was launched in September 2011 (Réveillaud

et al., 2018; Rivière et al., 2012). This program aims to detect and monitorM. bovis infections in

wild species such aswild boar (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus)

and European badger (Meles meles) populations, by means of both event-based and targeted

surveillance strategies. Sylvatub is a participatory monitoring program (sensu Danielsen et al.,

2003), carried out with the help of local stakeholders such as hunters associations, pest control

officers, trapper associations, veterinary associations, livestock health defense associations and

epidemiologists (Réveillaud et al., 2018). Briefly, depending on the assessed bTB risk in a given

department (French administrative division), three levels of surveillance can be implemented.

Level 1 is implemented in a department if no domestic or wild animal has been found to be

infected (according to the postmortem examination of hunted or found dead animals). Levels 2

and 3, which are of interest for us in this study, are implemented in departments with sporadic

outbreaks in cattle (level 2) and in departments with several outbreaks in cattle and/or cases in

wildlife (level 3). In level 3 departments, an at-risk area is defined. This at-risk area is composed

of an infected area (communes where the infection has been detected in domestic and/or wild

animals – a commune being the smallest French administrative subdivision, with median area of

12 km2) and a buffer zone (communes neighboring the infected areas). Trapping is carried out

in all the communes of the at-risk area. In level 2 departments, a prospection zone is defined

within 2 km from the pastures of infected farms and trapping is restricted to this area (for details,

see Réveillaud et al., 2018).

Three main clusters of M. bovis infection have been discovered in France during the last 20

years in badger and wild boar populations following an increased prevalence on cattle farms

(Delavenne et al., 2019) and are being followed up by Sylvatub: Burgundy (initially discovered

in wild boar in 2002, and in badgers afterward), Dordogne/Charentes (initially discovered in red

deer in 2010, and in wild boar and badgers afterward), and Bearn (initially discovered in wild

boar in 2005 and in badgers afterward; Fig 2D). The data collected by this program are used to

monitor the spatial extent of the infection aswell as its progressionwithin these already infected

wild populations, by estimating the prevalence level of the infection in badgers in the different

clusters. Since the prevalence is simply the proportion of the population that is infected, it is

easily understood by nonspecialist local communities, which is important to keep stakeholders

informed and involved in the program. Of course, cattle bTB prevalence and incidence are key

parameters to monitor, especially when attempting to maintain the national official bTB-free

status; however, because of the multihost system in place, monitoring of cattle prevalence alone

cannot capture the complex epidemiological situation of bTB in an area. Therefore, estimating

such a parameter in wildlife populations, that are easily comparable from one year to another,

would also be essential for monitoring the epidemiological situation and evaluating the impact

of control measures.
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However, an ongoing issue in wildlife epidemiology is the difficulty in estimating prevalence

in wild populations, as the sampling of animals used for this estimation cannot be entirely con-

trolled. Indeed, the population is usually sampled using capture methods (e.g., traps for badgers),

and the prevalence is usually estimated from the sample of captured animals, under the assump-

tion that these animals are a random sample of the population (which therefore ignores possible

capture bias such as the uneven behavior of the animals toward the traps and the logistical con-

straints that can affect the placement of traps). Moreover, in the case of participatorymonitoring

programs, the participating local communities generally already have their own objectives (e.g.,

wanting to trap more animals close to some given farms during certain years, and close to oth-

ers during other years) in addition to the Sylvatub objectives. Thus, monitoring protocols cannot

be too rigid in participatory programs involving volunteers (e.g., Pocock et al., 2015). However,

the spatial structure of the infection must be considered when estimating the prevalence or any

related indicator in a given population.

In addition, another estimation problem occurs when the sampled species is characterized

by a social structure that makes trapped animals nonindependent from each other. For exam-

ple, badgers typically live in social groups that share the same sett and mutually defend a group

territory (Roper, 2010). As a consequence, a correlation of infection status is expected among

animals trapped at a given place (e.g., Delahay et al., 2000): when one trapped animal is infected,

it is likely that other animals trapped at the same place belong to the same group, and are there-

fore also infected. Moreover, it has been shown that bTB infections in badgers and cattle are

spatially associated (Bouchez-Zacria et al., 2018, 2023); therefore badgers trapped near an in-

fected farm are more likely to be infected. Not accounting for this correlation when estimating

the prevalence may lead to an overestimation of precision (Hisakado et al., 2006).

A final difficulty occurs when the sensitivity and specificity of the tests used for diagnosis are

not perfect: not all infected (resp. non-infected) animals are identified as such by these tests;

there may be false positives and false negatives. Ignoring this imperfect measure of infection

status can lead to biased estimation of the prevalence (Dohoo et al., 2003). Moreover, if the

tests used for this diagnosis (and the corresponding sensitivity/specificity) changewith time, the

assessment of infection progression based on the uncorrected prevalence estimation may also

be biased.

In this study, we focused on the targeted surveillance of badgers, which was carried out in

communes characterized by surveillance levels 2 and 3 (representing 80% of the data collected

in the framework of Sylvatub between 2013 and 2019): in each identified bTB cluster, traps

were set up by members of Sylvatub in the communes of the at-risk areas, and M. bovis infec-

tion was sought in a subsample of the trapped badgers (the proportion and spatial distribution

of tested animals depend on the number of trapped animals, trap location and annual sampling

objectives). We used these trapping data to develop a complex Bayesian model and provide

insight into how the proportion of infected badgers varied in space and time in the three French

bTB clusters, accounting for the complex spatial structure of the infection, the correlation be-

tween the infection status of animals trapped at the same place and the limited sensitivity of

the diagnostic tests. Then, we used this model as a basis for developing simpler indicators of the

prevalence that also account for all the aforementioned difficulties. These simpler indicators can

be easily understood by all stakeholders and used tomonitor both themean prevalence level and

the mean prevalence trend over a given period. The work in this paper is summarized in Fig 1.

2. Material and methods

2.1. Sylvatub program and database

The national surveillance system is described in detail in Réveillaud et al. (2018). Briefly, in

the communes from level 2 and 3 departments (i.e., communes from infected areas), trapping

and culling badgers is implemented as a control measure to reduce badger abundance. To do

so, licensed field stakeholders (hunters, trappers, pest control officers) trap badgers, mostly be-

tween March and August. The regulatory guidelines for badger trapping are uniform across the

three clusters, and are defined by the French Ministry of Ecology and Sustainable Development,
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Figure 1 – Summary of the models fitted in this paper. For each cluster (illustrated herein

with the Dordogne/Charentes cluster), our dataset consisted of a sample of badgers

trapped in different communes during different years, and tested for M. bovis. We first

fit a complex Bayesian model to this dataset accounting for many characteristics of the

infection (left). We then focused on highly infected communes and used the average

predictive comparisons to estimate the mean proportion of the cluster population in-

fected in one year. Additionally, we used the model to estimate the mean prevalence of

these infected communes during the year in the middle of the study period. We then

fit a much simpler linear regression (right) on the data collected from the highly infected

communes, which allowed us to directly estimate the mean proportion of the cluster

population becoming infected in one year, and the mean prevalence in the cluster pop-

ulation during the year in the middle of the study period. The simulations indicate that

the two approaches returned nearly identical results.

through the ministerial order of January 29th, 2007. Only two types of traps are authorized in

France: stop snare (i.e., snare with a mechanism that stops the noose from closing too tightly)
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and cage traps. Night shooting is also an option in level 3 communes. Nevertheless, with a few

exceptions, French trappers predominantly utilize stop snares. Given the participatory nature of

the Sylvatub program, local trappers retain the autonomy to decide on the number of traps, trap

nights, and their placement. However, the Sylvatub program encourages however trapping near

infected farms (technical directive from the FrenchMinistry ofAgriculture DGAL/SDSPA/2018-

708).

The trapped badgers are culled, and sent to the local veterinary laboratory for necropsy and

M. bovis testing following the framework of Sylvatub. Not all dead animals are tested; the na-

tional guidelines are to analyze at most two animals in each commune and each year. The choice

of analyzed animals among trapped badgers was left to the local partners of the network. Given

that the infection status of trapped badgers is seldom discernible from external observations

(as most TB lesions diagnosed in badgers are internal, as noted by Réveillaud et al. (2018)), we

are confident that there was no sampling bias directly related to the infection status of animals.

While trapping efforts were intensified near infected farms to control the density of badgers

in proximity to these areas, Sylvatub guidelines encouraged the analysis of badgers distributed

spatially as uniformly as possible. In practice, we observed that the badgers of a commune sent

for analysis were often the first two trapped badgers.

In the following, we assume that the animals sent to the laboratory are a random sample of

the trapped animals. This guideline to test at most two animals was intended more as a general

recommendation rather than a strict fieldwork requirement. Although fieldworkers generally ad-

hered to these guidelines during the study period, approximately 25% of the communes trapped

and analyzed more than two animals per year on average. In all three clusters, between 12% and

13% of the communes trapped and analyzed more than 21 badgers over the 7-year period, and

between 3 and 4% of the communes trappedmore than 36 badgers during this period. Note that

our statistical approach assumed the ignorability of the sampling; in other words, we assumed

that infected and noninfected badgers are characterized by equal trappabilities. The results of

the test for each analyzed animal are stored in a local database and subsequently compiled in

the national Sylvatub database.

As Sylvatub was launched in 2011 and was not yet well-established before 2013, our study

period therefore covered 2013 to 2019. The set of communes where targeted surveillance was

authorized for at least one year between 2013 and 2019was used to define three main spatially

connected sets, which are hereafter called M. bovis clusters (Fig 2D). The Dordogne/Charentes

cluster covers 7698 km2 and is composed of 413 communes; the Burgundy cluster covers 4254

km2 and is composed of 254 communes; and the Bearn cluster covers 3222 km2 and is com-

posed of 196 communes. The median surface area of a commune is 12 km2 (interquartile range:

7.2 km2 to 18.3 km2). Note that we lack precise information regarding the social group size of

badgers in the three clusters. Jacquier et al. (2021) employed a standard methodology, utiliz-

ing camera traps and genetic identification, to estimate badger density across multiple sites in

France, including the three clusters of interest. These authors showed that the badger density

was highest in the Dordogne/Charentes cluster (6.18 badgers / km2), followed by the Bearn

cluster (5.39 badgers / km2), and the Burgundy cluster (two sites were studied by these authors

in this cluster and were characterized by a density of 4.08 and 4.22 badgers / km2). For com-

parison, the mean density across the 13 sites studied by these authors, distributed across the

entire metropolitan region of France was 5.85 badgers / km2 – SD = 3.25 badgers / km2).

Following necropsy, two types of first-line tests were carried out on the animal samples.

Pools of lymph nodes (retropharyngeal, pulmonary andmesenteric) and organswith gross lesions

were used in the analysis. The type of analysis depended on the period: (i) from 2013 to 2015,

the first-line testwas the bacterial culture performed on the sampled tissues of all tested animals,

following the protocol established by the French NRL (NFU 47-104) for the isolation ofM. bovis;

(ii) since 2016, the first-line test has been real-line PCR performed after DNA extraction from

the sampled tissues. Molecular typing (spoligotyping) was performed either on Mycobacterium

tuberculosis complex (MTBC) isolates or directly on PCR-positive sample DNA (see Réveillaud et

al., 2018, for technical details on these two procedures). The sensitivities of the two techniques

differ: the sensitivity of microbiological cultures is estimated to be 50%, whereas the sensitivity
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of the PCR is estimated to be 75% (Réveillaud et al., 2018; Riviere et al., 2015). The specificity

should be equal to 100% for these two tests (i.e., no false positives).

During the study period, 4590 badgers were trapped and sent to the laboratory in Dor-

dogne/Charentes, among which 4379 badgers were actually tested. Interpretable results were

obtained for 4323 of them (i.e., on average 1.5 badgers per commune and per year; interquartile

range: 0 animals to 2 animals tested per commune and per year). In Burgundy, 3042 badgers

were trapped and sent to the laboratory, among whom 2900 were actually tested; interpretable

results were obtained for 2786 of them (on average 1.56 animals were tested per commune and

per year; interquartile range: 0 to 2 animals were tested per commune and per year). Finally,

in Bearn, 2223 badgers were trapped and sent, among which 1999 were tested; interpretable

results were obtained for 1970 (on average 1.43 animals were tested per commune and per year;

interquartile range: 0 to 2 animals were tested per commune and per year).

For each trapped animal, the following data were stored: date of trapping, name of the com-

mune where the animal was trapped, results of the test (M. bovis positive, M. bovis negative),

type of first-line test carried out (bacterial culture; PCR), date of the analyses, surveillance level

of the commune of trapping, and sex and age class (young; adult) of the animals (although this

latter information is not systematically reported by the field partners).

2.2. A Bayesian model of infection

2.2.1. Model fit. For each of the three M. bovis clusters, we fitted a Bayesian model describing

the dynamics of the infection process. Consider one particular cluster. Let Nit be the known

number of badgers trapped and tested in commune i during year t . Let yit be the unknown
number of badgers actually infected among those Nit animals. Let zit be the known number of
animals for which the test indicated M. bovis infection among those yit infected animals. We

fitted the following hierarchical Bayesian model:

zit ∼ Binomial(yit , st)(1)

yit ∼ Beta-Binomial(Nit , pit , ρ)(2)

log
pit

1 − pit
= α + β × t + ui(3)

ui |u−i ∼ N (
1

di

∑

j∼i

uj ,
1

di

1

τ
)(4)

Equation (1) accounts for the known sensitivity st of the tests used during year t (i.e., st = 0.5
for microbiological culture, and st = 0.75 for PCR): the number zit of animals for which an M.

bovis infection was diagnosed is a random subset of the unknown number yit of animals actually
infected (which is a latent variable in this model). Each infected animal is detected as such with

a known probability st .
We assumed a beta-binomial distribution for the unknown number of infected animals yit

(Equation (2)). This distribution accounts for a possible correlation between the infection status

of the animals trapped in the same year in the same commune, and is parameterized by the

known number Nit of badgers trapped in commune i during year t , the unknown prevalence

pit of M. bovis infection in commune i and year t , and the unknown correlation coefficient ρ
(estimated by the model fit) between the infection status of the animals trapped in the same

commune. The parameterization of the beta-binomial distribution as a function of a probability

(here, the prevalence) and a correlation coefficient was proposed by Hisakado et al. (2006) as a

means to account for the correlation between binary variables in binomial counts. Appendix A

gives the formal expression of this distribution with this parameterization, and discusses how it

relates to the parameterization classically used by statistical software such as R.

The prevalence pit is itself modeled by a logistic regression depending on a commune effect
and a linear year effect (also estimated by the model fit; Equation (3)). The effects ui of the
communes on the prevalence are not independent of each other. Indeed, because of the strong

spatial structure of the infection in the clusters, there is a high probability that the prevalence

of infection is high in a commune if it is high in neighboring communes. We account for this
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spatial autocorrelation of the commune effects by modeling these random effects ui with an

intrinsic conditional autoregressive (iCAR) model (Equation (4), see also Rue and Held, 2005).

Thus, the random effect ui of commune i is assumed to be drawn from a Gaussian distribution

with a mean equal to the mean of the random effects of neighboring communes. In Equation (4),

i ∼ j means that commune i shares a boundary with commune j , u−i is the vector of commune

random effects excluding the effect ui , and di is the number of communes sharing a boundary
with commune i . The parameter τ is estimated by the model fit, which describes the precision

(inverse of the variance) of the random effects ui .
We defined weakly informative priors for the parameters of the model. We fitted this model

byMarkov chain Monte Carlo (MCMC) using 4 chains of 1 million iterations each after a burn-in

period of 3000 iterations. To save some memory space, we thinned the chains by selecting one

sample every 1000 iterations. We checked the mixing properties of the chains both visually and

using the diagnostic method of Gelman and Rubin (1992). We checked the goodness of fit of our

model using the approach recommended by Gelman and Meng (1996): each MCMC iteration r
generated a sampled value θr of the vector of parameters of interest θ = (τ ,α,β, ρ,u)t . For each
simulatedvalue θr , we simulated a replication of the Sylvatub dataset (i.e., we simulated a random
infection status for each trapped animal of the dataset with the fitted model parameterized by

the vector simulated by the r-th MCMC iteration). We then compared summary statistics calcu-

lated on the observed Sylvatub dataset with the distribution of the same statistics derived from

the simulated datasets. All these checks indicated a satisfactory fit of the model (see Appendix

D for details on these checks and on model fit).

2.2.2. Estimation of the prevalence level and trend from the model. First, we used the fitted model

to estimate the trend over time of the prevalence in each cluster. On a logit scale, the average

change in the prevalence with time is reflected by the coefficient β in Equation (3). It is well

known that in a logistic regression, the exponential of a coefficient (here β) is equal to the odds
ratio of the corresponding variable (here the time t), i.e., {pt/(1−pt)}/{pt−1/(1−pt−1)}, which in
ourmodel measures the amount bywhich the odds p/(1−p) of the infection aremultiplied in one
year (Hosmer and Lemeshow, 2000, p. 50). However, odds ratios are difficult for stakeholders

to understand, which can be problematic in a participatory program context. As noted by King

and Zeng (2002), “we have found no author who claims to be more comfortable communicating with

the general public using an odds ratio. Similarly, Gelman and Hill (2006, p. 83) reported that “we

find that the concept of odds can be somewhat difficult to understand, and odds ratios are even more

obscure. Therefore, we prefer to interpret coefficients on the original scale of the data”. In this section,

we follow this last recommendation, by calculating the average rate of change in the prevalence

in a cluster using the fitted model.

Due to both the nonlinearity of the logit transform used in the model and the strong spatial-

ization of the infection, estimating from the model of the average proportion of animals becom-

ing infected in one year can be difficult. Gelman and Pardoe (2007) proposed an approach to

estimate this rate of change, based on the concept of predictive comparison. For a given com-

mune v and a given value of the vector of parameters θ of the model, the predictive comparison
measures the expected rate of change in the prevalence p when the year changes from t(1) to
t(2):

δt(t
(1) → t(2), v , θ) =

E (p|t(2), v , θ) − E (p|t(1), v , θ)
t(2) − t(1)

This quantity, easily calculated with our model, varies as a function of these inputs (the years

compared, the commune, and the value of the vector of parameters). To summarize the overall

effect of the year on the prevalence in a given dataset, Gelman and Pardoe (2007) proposed

calculating the mean value ∆t of the predicted comparisons over the probability distribution of

the inputs (years and communes) estimated with the data, and over the posterior distribution

of the parameters. This averaging is equivalent to considering all pairs of animals (i , j ) in the

data, corresponding to pairs of transitions of (ti , vi ) to (tj , vj ) in which the commune vi = vj is
held constant. Technical details on the calculation of the average predictive comparison (APC)

are given in Appendix B. When positive, the APC estimated the proportion of the animals that
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became infected within one year in each cluster. Conversely, negative values of the APC indi-

cated a decrease in the prevalence within one year. This reduction results from a combination

of factors, including the death of infected animals, the birth of uninfected animals, or a decrease

in the infection rate.

The APC provides an index of the dynamics of the infection in a cluster. We also estimated

another statistic summarizing the mean prevalence level in a cluster during the study period.

Because the prevalence varied spatially and temporally, we used Equation (3) to estimate the

expected prevalence in each commune during the middle year of our study period (i.e., for the

year t =2016), and we averaged it over the communes of the cluster. This gave an idea of the
importance of the infection in each cluster during the study period.

The calculation of both the APC and the mean prevalence level during the middle year was

restricted to the set of highly infected communes (i.e., communes for which ui > 0 in Equation
(4)) to allow comparison with the simpler indicators developed in the next section.

2.3. Development of simple indicators ofM. bovis prevalence level and trend

Although the model developed in the previous sections is useful for understanding the spa-

tialization and dynamics of the infection process, it is too complex to be used on a regular basis

by the stakeholders of Sylvatub to assess how the prevalence level changes with time. Instead,

in this section, we propose two new indicators that can be estimated with the trapping data

collected by the network. These indicators estimate in a simpler way the same quantities that

were introduced in the last subsection, i.e., the mean prevalence level in the middle year of the

study period and the mean proportion of animals becoming infected in one year.

Consider a given M. bovis cluster during a given study period of several years t = 1, 2, ...,T ,
during which n animals were collected via the Sylvatub network. For each animal i , let Bi be the

infection status returned by the test (coded as 0/1) and si be the sensitivity of the test used for
this diagnosis. We can derive two useful indicators with classical simple linear regression fitted

to the set of animals trapped during the study period:

(5) Bi/si = a+ b × t̃i + εi

where t̃i is the centred year (i.e. ti − t̄ , where t̄ is the middle year of the study period), and εi
is a residual. In this model, the coefficient a corresponds to the average prevalence observed in
the middle year of the study period, and the coefficient b corresponds to the proportion of the
badger population that becomes infected during a year on average during the study period (i.e.,

the same quantity as the APC calculated for the Bayesian model; see Appendix C for a detailed

explanation of the rationale).

This approach accounts for the imperfect sensitivity of the tests used for M. bovis diagno-

sis, but does not account for the spatial structure of the infection in the cluster under study.

We show (see the Results section) that there is a very strong spatial structure of the infection

in the three M. bovis clusters. Therefore, not accounting for this structure can lead to biased

estimates if the trapping pressure in highly infected areas varies between years. We therefore

suggest calculating these prevalence indicators by focusing only on highly infected communes

(i.e. communes characterized by an estimated random effect ui greater than 0 in Equation (4)),
so that the remaining unaccounted spatial variability of infection can be ignored. This approach

also ignores the correlation possibly caused by the social structure of the badger population and

by other local factors (e.g. proximity to an infected farm); however, we show that this correlation

is negligible in the three clusters (see Results).

2.4. Assessing the indicators with the Bayesian model

The complex Bayesian model described by equations (1) to (4) and the simpler regression

model described by Equation (5) are two models of the same process, though the latter is much

simpler. Both can be used to estimate the mean prevalence level during the middle year of the

study period and the mean proportion of the population becoming infected in one year in a clus-

ter. The simple regression model imperfectly accounts for the spatial structure of the infection

and ignores the correlation caused by local factors (e.g. social structure, proximity to infected
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farms); however, this approach is much easier for stakeholders to understand and implement.

This latter model is therefore proposed for stakeholders as a means to monitor infection in a

cluster.

We carried out three sets of simulations to assess the ability of the simpler regression model

to estimate the two target quantities. The first set was designed to assess the ability of our

regression model to estimate the trend over time of the prevalence in various situations that

might be encountered in reality (that is, either an initially rare but increasing infection or an

already widespread infection with different trends). The second set was designed to assess the

ability of our regression model to estimate the mean prevalence level of the infection at a variety

of actual levels (from rare to very frequent infection). The last set was designed to assess the

robustness of our approach to violations of the hypotheses on which it relies (strong spatial

heterogeneity remaining even in highly infected communes, spatial structure of the infection

changing with time, nonrandom sampling).

For all these simulations, we used the Dordogne/Charentes cluster as an example. In all

the cases, we simulated datasets covering 7 years in this cluster. We generated a sample of

trapped animals for each year and for each commune i of the cluster from a binomial negative

distribution with mean µi and dispersion parameter θ = 0.48 (this value was estimated from our

dataset by maximum likelihood); in the first and second sets of simulations, four possible values

of µi = µ, corresponding to four levels of trapping pressure, were simulated: µ = 0.5 animals
trapped per commune and per year on average, and µ = 1, µ = 3 and µ = 10 (as a point of
comparison, remember that in our dataset, µ ≈ 1.5 in all clusters). In the third set of simulations,
µi varied among communes (see below). For each simulated animal, we simulated the probability

of infection with the help of Equation (3). Different values of the slope β and intercept α were

specified for the different simulation situations (see below). We simulated an iCAR process to

generate random commune effects ui using Equation (4). We set τ = 0.73 for this process

in the first and second sets of simulations (corresponding to the mean value estimated by the

model with the Sylvatub dataset in the Dordogne/Charentes Cluster, see Results). We used

another value of τ for the third set of simulations (see below). For each animal, we calculated

the probability of infection pit from the vector (α,β, {ui})with Equation (3). We then simulated

the random infection status of each animal using Equation (2), fixing the correlation coefficient

ρ = 0.04 (which also corresponded to the value estimated in the Dordogne/Charentes cluster
using the Sylvatub dataset, see Results). Finally, we used Equation (1) to simulate an imperfect

but variable sensitivity (sensitivity equal to 0.5 during the first three years and 0.75 during the

last four years).

In the first set of simulations, wewanted to assess the ability of our regression model to esti-

mate the trend over time of the prevalence in two different situations with regard to its change

with time: (i) a rare infection that becomesmorewidespreadwith time: we simulated anM. bovis

infection rarely present in the study area during the first year (≈ 5% of the animals were infected

in a typical commune of the cluster), with the prevalence increasing with time. More precisely,

we set the intercept α = −3.1 in Model (3) and the slope β of the year was randomly drawn

from a uniform distribution bounded between 0 and 0.4; (ii) an already widespread infection

with different trends: we simulated frequent infection during the first year of the study period

(≈ 20% of the animals were infected in a typical commune) with an either increasing or decreas-

ing prevalence. More precisely, we set the intercept α = −1.38 and the slope β randomly drawn

from a uniform distribution bounded between -0.4 and 0.4. For each combination of trapping

pressure µ and simulated situation (either low but increasing prevalence or high prevalence), we

simulated 1000 datasets. For each dataset, we estimated the true proportion ∆u of animals in

the area that became infected within one year in the highly infected communes (i.e. those with

simulated random effects greater than 0) via the APC procedure. We applied linear regression

(5) to the data simulated in these communes. We then compared the estimated slope b with
the APC ∆u of the simulated model, which should in theory be equal if the two models are

equivalent.

In the second set of simulations, we wanted to assess the ability of our regression model

to estimate the mean prevalence level during the middle year. We simulated the data with our
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Bayesian model, using different values of the intercept α = −4,−3,−2,−1, 0, which describes
different mean prevalence levels. We then randomly sampled a slope β from a uniform distri-

bution bounded between -0.4 and 0.4. We simulated 1000 datasets for each combination of

intercept α and trapping pressure µ. For each simulated dataset, we considered only the highly
infected communes (i.e., those with ui > 0) and we calculated the true mean prevalence over
the area during the middle year of the study period. We then applied linear regression (5) to

the data simulated in these communes. We then compared the estimated slope a with this true
mean prevalence, which should be equal if the two models are equivalent.

In the third set of simulations, we aimed to assess the robustness of ourmodel to the violation

of two underlying hypotheses: (i) ignorability of the remaining spatial structure of the prevalence

when the regression model is applied only to the data coming from highly infected communes

and (ii) additivity of the space and time effects on the prevalence. In these two situations, we

simulated the data with our Bayesian model using two different values of the intercept α =
−2, 0, representing different mean prevalence levels. We then randomly sampled a slope β in a

uniform distribution bounded between -0.4 and 0.4. To test the effect of the violation of the first

hypothesis, we simulated random commune effects ui using Equation (4), setting a very lowvalue

τ = 0.1, corresponding to very strong spatial heterogeneity. To test the effects of violating the
second hypothesis (additivity of space and time effects), we simulated the spatial structure of the

infection changing with time. More precisely, we simulated two sets of commune effects, {u(1)i }
and {u(T )

i }, describing the spatial structure at the start and end of the study period, respectively
(using τ = 0.73 in both cases). The set of random effects used at time t was calculated by

ũ
(t)
i = ((t − 1)/6)× u

(1)
i + (1− (t − 1)/6)× u

(T )
i . In the two tested situations, we estimated the

two parameters of interest (intercept and slope of the regression model) and compared them to

the theoretical values used for simulation. In this third set of simulations, two sampling schemes

were compared to demonstrate howdirected sampling can exacerbate the effect of the violation

of underlying hypotheses: random sampling with µi = 2 and directed sampling where the mean
number of animals in a commune was proportional to the mean prevalence in the commune, i.e.

µi = 2 × M × exp(ui )/(
∑

j exp(uj)) (whereM is the number of communes).

2.5. Computational aspects

All our analyses and simulations were carried out with R software (R Core Team, 2023). We

used the package nimble for model fit (Valpine et al., 2017), coda for the analysis of the fit

(Plummer et al., 2006), and tidyverse (H. Wickham and Grolemund, 2017) and ggplot2 (Wick-

ham, 2016) for data manipulation and graphical display. We programmed an R package named

badgertub, available at https://github.com/ClementCalenge/badgertub, containing all the code
and data used to fit the model. The package can be installed in R with the package devtools us-
ing the function devtools::install_github("ClementCalenge/badgertub", ref="main").
This package includes a vignette describing how the user can easily reproduce the model fit

and simulations (vignette available with the command vignette("badgertub") once the pack-
age has been installed). This vignette also serves as the supplementary material for the paper

and contains additional information on our model (e.g., precision on the parameterization of the

beta-binomial distribution, and a formal description of the iCAR model).

3. Results

3.1. Collected data and model fit

The number of animals trapped in eachM. bovis cluster during each year of the study period

is presented in Tab 1, as is the proportion of these animals diagnosed as infected with M. bovis.

Note that even though it is challenging to interpret the observed temporal changes in preva-

lence (as this proportion does not account for all the factors that influence the prevalence, i.e.,

inhomogeneous prevalence patterns in space, sensitivity of the tests used increasing with time,

etc.), this table clearly demonstrates the overall temporal change observed in each cluster, i.e.
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a strong increase in Dordogne/Charentes, a decrease in Burgundy, and a moderate increase in

Bearn.

Table 1 – NumberN of trapped badgers during each year of the study period in each one

of the three M. bovis clusters, and proportion p of the badgers that were diagnosed as
infectedwithM. bovis (the corresponding number n of infected animals is in parentheses).

Year
Dordogne/Charentes Burgundy Bearn

N p (n) N p (n) N p (n)

2013 449 0.024 (11) 310 0.094 (29) 381 0.045 (17)

2014 637 0.036 (23) 636 0.05 (32) 387 0.047 (18)

2015 787 0.051 (40) 479 0.044 (21) 189 0.042 (8)

2016 639 0.036 (23) 429 0.037 (16) 287 0.077 (22)

2017 700 0.056 (39) 310 0.019 (6) 320 0.053 (17)

2018 502 0.1 (50) 303 0.003 (1) 204 0.059 (12)

2019 609 0.1 (61) 319 0.041 (13) 202 0.109 (22)

The model provides a clearer point of view on the infection process. The estimated parame-

ters of the model for each cluster are presented in Tab 2. The abundance of data available in the

three clusters results in precise estimations, as evident from the narrow width of the credible

intervals for all parameters in this table. The situation was contrasted among the three clus-

ters: the infection strongly decreased in Burgundy, strongly increased in Charentes/Dordogne

and seemed stable in Bearn, as revealed by both the slope β of the year in the model and the

APC (i.e., the proportion of animals becoming infected in one year). The correlation ρ between
the infection status of animals trapped in the same commune was actually rather small in all the

clusters (≈ 0.03), revealing that the correlation caused by local factors (social structure, local

environment, etc.) did not cause a strong dependency between animals in a commune. Con-

versely, a strong spatial structure was evident in all three studied clusters, revealing distinct

patterns of highly infected areas and low-risk areas within each cluster (see Fig 2). Specifically,

the set of highly infected communes formed a connected subset of communes (i.e. a unique sub-

area) in the three clusters, except the Dordogne-Charentes cluster, where two highly infected

communes were located only a few kilometers away from the main subarea. Furthermore, the

proportion of trapped animals diagnosed as infected was greater in the highly infected com-

munes than in the other communes (focusing on 2017–2019 to limit temporal changes: 16%

in highly infected communes of Dordogne-Charentes vs. 3% in other communes; 11% in highly

infected communes of Bearn vs. 0.75% in other communes; and focusing on 2013–2015 in Bur-

gundy, when the infection rate was still noteworthy; 10.6% in the highly infected communes vs.

0% in the other communes).

In the three clusters, there was close agreement between the parameters estimated by the

Bayesian model and the same parameters estimated by simple linear regression (Tab 2), although

themean prevalence seemed to be slightly overestimated by the regression approach in the three

clusters or slightly underestimated by the Bayesian model.

3.2. Simulations

The first two sets of simulations revealed that the two indicators correctly estimated the

mean prevalence and the mean proportion of animals becoming infected fixed in our simulated

situations. On the one hand, the first set of simulations of two contrasting situations (high preva-

lence or lowand increasing prevalence) showed that the slope of theyear in the regression agreed

with the true simulated proportion of animals becoming infected in one year, regardless of the

simulated trapping pressure (Fig 3). Of course, the uncertainty was greater when the trapping

pressure was lower (the cloud of points was more dispersed around the line y = x when µ was

low); however, this indicator correctly estimated the target proportion.

On the other hand, the second set of simulations of different prevalence levels under dif-

ferent trapping pressures showed that there was close agreement between the intercept of the

Clément Calenge et al. 11

Peer Community Journal, Vol. 4 (2024), article e10 https://doi.org/10.24072/pcjournal.363

https://doi.org/10.24072/pcjournal.363


Table 2 – Main results derived from the model fit to the three M. bovis clusters. We

present here: (i) the parameters of interest in the model (the first three rows are the

parameters of the model: slope β associated with the year, correlation coefficient ρ
between the infection status of animals trapped in the same commune, and standard

deviation 1/
√

τ of the commune effects); (ii) the average predictive comparison (APC)

estimating the proportion of the population becoming infected in one year as estimated

by the complex Bayesian model and by the simpler regression in the highly infected com-

munes (see text); (iii) the mean prevalence level in the highly infected communes in the

middle year of the study period (see text) as estimated by the complex Bayesian model

and by the regression. For each parameter and each cluster, we give the point estimate

(mean of the posterior distribution) and the 90% credible interval.

Parameter Dordogne/Charentes Burgundy Bearn

β 0.18 [0.11, 0.25] -0.29 [-0.39, -0.2] 0.05 [-0.04, 0.14]

ρ 0.04 [0.02, 0.08] 0.02 [0.01, 0.04] 0.04 [0.02, 0.08]

1/
√

τ 1.17 [0.87, 1.5] 1.58 [1.11, 2.04] 1.08 [0.69, 1.54]

APC

(model)

0.018 [0.009, 0.027] -0.028 [-0.039, -0.017] 0.005 [-0.008, 0.018]

APC

(regression)

0.029 [0.02, 0.037] -0.034 [-0.043, -0.024] 0.008 [-0.002, 0.018]

Mean Prev.

(model)

0.126 [0.109, 0.143] 0.08 [0.065, 0.097] 0.112 [0.092, 0.134]

Mean Prev.

(regression)

0.157 [0.141, 0.174] 0.117 [0.098, 0.136] 0.133 [0.113, 0.153]

Figure 2 – Location of the three M. bovis clusters in France (D). The boundaries of the

French departments are displayed on this map, as well as the median prevalence esti-

mated by our Bayesian model for each commune in the Dordogne/Charentes cluster (A),

the Burgundy cluster (B), and the Bearn cluster (C). A common color scale is used for all

clusters (inset in the Bearn map).
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Figure 3 – Comparison of the proportion of animals infected in one year estimated using

the regression indicator (see text) with the true value, estimated by simulations for two

different situations (high prevalence = top row; low but increasing prevalence = bottom

row) and different trapping pressures (mu corresponds to the mean number of animals

trapped per commune). The straight line is the line of equation y = x .

linear regression and the true mean prevalence level during the middle year in highly infected

communes (Fig 4). Similarly, the uncertainty was greater for low trapping pressures.

Table 3 – Coverage probability of the 95% confidence interval on the proportion of ani-

mals in a cluster infected in one year estimated with simple linear regression, estimated

by simulations for the two tested settings (either high prevalence or low but increasing

prevalence) and the 4 trapping pressures. The value of µ corresponds to the mean num-

ber of animals trapped in each commune.

Situation Trapping Pressure Coverage Probability

High µ = 0.5 0.93

High µ = 1 0.94

High µ = 3 0.91

High µ = 10 0.84

Low Increasing µ = 0.5 0.94

Low Increasing µ = 1 0.94

Low Increasing µ = 3 0.89

Low Increasing µ = 10 0.83

Since we used linear regression to estimate our two indicators, we derived confidence inter-

vals for these two parameters using the classical formulas derived from the normal theory. We

calculated the coverage probability of the 95% confidence intervals for the different simulated

situations (Tab 3 and Tab 4). In these first two sets of simulations, the coverage probabilities of

the 95% confidence intervals for the two indicators were closer to 90% than to 95% for moder-

ate trapping pressure. When the trapping pressure was extremely high (i.e., 10 animals trapped
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Figure 4 – Comparison of the mean prevalence level during the middle year estimated

using the regression indicator (see text) with the true value, estimated by simulations for

five different prevalence levels (simulated by fixing different values of the intercept alpha)

and the different trapping pressures (mu corresponds to the mean number of animals

trapped per commune). The straight line is the line of equation y = x .

on average in each commune of a cluster), the coverage probability of the 95% confidence in-

terval decreased to ≈ 80% for the proportion of animals becoming infected in one year and to

≈ 60% for the mean prevalence level during the middle year.

Finally, the last set of simulations showed that as long as the sample of trapped animals can

be considered a random sample from the population, the model is robust to violations of the

underlying hypotheses (Fig 5 and Tab 5). However, when the animals are preferentially trapped

in places where the prevalence is high, the mean prevalence is overestimated (and this bias will

be greater when the spatial heterogeneity is strong), and the mean proportion of animals be-

coming infected in one year will also be biased (although this bias is much smaller than the bias

affecting themean prevalence, and can be ignored formoderate spatial heterogeneity). Similarly,

nonrandom sampling can generate bias in the estimation of the two parameters when both the

spatial structure changes with time and when the sampling is directed toward highly infected

communes. Note that in our study, the sampling intensity was uncorrelated with the commune

random effects in the Dordogne/Charentes (Pearson correlation coefficient between the num-

ber of trapped badgers and ui , R = -0.02) and the Bearn (R = 0.04) clusters, whereas the trapping
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Table 4 – Coverage probability of the 95% confidence interval on the mean prevalence

during the middle year in anM. bovis cluster estimated with simple linear regression, for

the different tested prevalence levels (intercept α; see text) and for the different trapping
pressures µ. The value of µ corresponds to the mean number of animals trapped in each

commune.

Intercept TrapPress Probability

α = -4 µ = 0.5 0.91

α =-4 µ = 1 0.90

α =-4 µ = 3 0.78

α =-4 µ = 10 0.58

α =-3 µ = 0.5 0.94

α =-3 µ = 1 0.90

α =-3 µ = 3 0.79

α =-3 µ = 10 0.56

α =-2 µ = 0.5 0.93

α =-2 µ = 1 0.90

α =-2 µ = 3 0.80

α =-2 µ = 10 0.64

α =-1 µ = 0.5 0.92

α =-1 µ = 1 0.90

α =-1 µ = 3 0.77

α =-1 µ = 10 0.58

α =0 µ = 0.5 0.92

α =0 µ = 1 0.92

α =0 µ = 3 0.86

α =0 µ = 10 0.66

effort exhibited a slight preference for the most infected communes in the Burgundy cluster (R
= 0.35).

Table 5 – Coverage probability of the 95% confidence interval for the mean prevalence

(intercept) during themiddle year and themean proportion of animals in a cluster infected

in one year (slope) in an M. bovis cluster estimated with simple linear regression for the

different sampling schemes and situations (additive effects of space and time on preva-

lence eitherwith moderate [τ = 0.73] or strong [τ = 0.1) spatial structures, or interaction
between space and time on prevalence with moderate spatial structure [τ = 0.73]).

Sampling TrapPress Intercept Slope

directed Additive, moderate 0.07 0.64

directed Additive, strong 0.00 0.69

directed Interaction, moderate 0.23 0.19

random Additive, moderate 0.87 0.93

random Additive, strong 0.88 0.91

random Interaction, moderate 0.78 0.92

4. Discussion

We developed a complex Bayesian model to describe how the infection status of badgers

changed in space and time in three M. bovis clusters in France, accounting for the resolution

of the data (commune scale), the spatial structure of the infection, the imperfect and variable

sensitivity of the diagnostic tests, and the possible correlation of the infection status of badgers

within the same commune. This model allowed us to estimate both the mean prevalence level

and the mean proportion of badgers becoming infected in one year. We also developed an alter-

native, much simpler model of the infection process, based on classical linear regression, which
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Figure 5 – Comparison of the two statistics of interest – (A) proportion of animals be-

coming infected in one year, and (B) mean prevalence during the middle year – estimated

using the regression indicator (see text) with the true values, estimated by simulations

for the two different sampling schemes (directed = top row; random sampling = bottom

row) and the different situations (additive effects of space and time on prevalence either

with a moderate [τ = 0.73] or strong [τ = 0.1) spatial structure or interaction between
space and time on prevalence with a moderate spatial structure [τ = 0.73]). Here, we
pool the data simulated with the two possible values of the intercept α = −2 or α = 0.
The straight line is the line of equation y = x .

also allowed us to easily estimate these two quantities in highly infected communes only. Simu-

lations of the complex model showed that the two simpler indicators were good approximations

of the true quantities, and could easily be used by stakeholders to estimate the key parameters

of the infection process in the most infected communes.
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Basically, if the tests used to diagnose M. bovis were characterized by a sensitivity of 100%,

our regression approach would be equivalent to a simple linear regression of theM. bovis infec-

tion status of each animal coded as a binary variable as a function of the year (the form of the

response variable Bi/si in Equation (5) is just a way to account for the imperfect sensitivity of
the tests). The suggestion to use a classical linear regression to model what is basically a binary

variable can seem surprising, given that such variables are usually modeled with logistic regres-

sions. We preferred to fit a classical linear regression since its coefficients (intercept and slope

of the year) are directly interpretable as the mean prevalence level and proportion of animals

becoming infected in one year respectively. Using classical linear regression to predict a binary

variable leads to the violation of several hypotheses underlying this method. However, this vi-

olation is not a problem when the aim is to estimate the regression parameters, as long as we

do not want to use the regression model to predict the infection status of each animal. Thus,

as long as we are interested only in the slope and intercept of the regression, it does not mat-

ter that the linear regression can, in theory, predict probabilities of infection greater than 1 or

lower than 0. Similarly, as noted by Gelman and Hill (2006, p. 46), “for the purpose of estimating

the regression line (as compared to predicting individual data points), the assumption of normality is

barely important at all”. Finally, the violation of the homoscedasticity assumption (equal variance

of the residuals for all the predicted values) is also a minor issue in this case (Gelman and Hill,

2006, p. 46). The greater interpretability of the regression coefficients and the easier applica-

tion of linear regression have led several authors to recommend this method instead of logistic

regression for binary variables (Gomila, 2021; Hellevik, 2009), as long as the model is not used

to predict new data points. Note, however, that the departure from the normal distribution led

to low coverage probabilities for the two parameters (and especially the mean prevalence level

at mid-period) when the sample size was large. Indeed, under these conditions, the departure

from normality has a stronger effect on the estimation of the precision of the parameters. How-

ever, as long as the mean sample size in a commune is not too large (e.g., less than 3 animals per

commune and per year), the coverage probability of the 95% confidence intervals derived from

the linear regression for these parameters is close to the nominal level and can provide a rough

first approximation of the uncertainty of the target quantities.

The correlation between the infection status of badgers trapped in the same commune during

a givenyearwas low (≈ 0.03), andwe showed that ignoring this correlationwas not characterized

by strongly biasedmeasures of precision. Other authors have found that different badgers of the

same sett have a greater chance of being infected (e.g. Delahay et al., 2000; Weber et al., 2013a).

However, our spatial resolutionwas much coarser than that used in the studies of these authors:

weworked at the commune scale (median area of 12 km2), whereas the badger home range rarely

exceeds 4 km2 and is often much smaller (Elmeros et al., 2005; Payne, 2014). The traps set up in

a commune often allow the capture of badgers from different social groups, thereby limiting the

resulting correlation between infection status. Moreover, the local environmental context may

be highly variable around different traps within a given commune (e.g., some places can be very

close to an infected farmwhereas others can be much further), which also limits this correlation.

In addition, on a larger scale, in the complex multihost system encountered in France, the source

of M. bovis infection for badgers might vary and may also come from other wild hosts, such as

wild boar (whosemovementsmayexceed the commune scale). If traps are setwhere interspecies

transmission may occur, the correlation may be limited at a commune scale.

Our complex model identified a very marked spatial structure of the infection in the three

studied M. bovis clusters, and both our complex model and the simpler regression approach as-

sumed that this structure was stable in time (i.e., the areas with the highest prevalence remained

the same every year; even if the mean prevalence increased or decreased in time, it changed

in the same way everywhere). In statistical terms, we assumed that time and space had addi-

tive effects on the prevalence. If the spatial distribution of the infection had changed over time,

which can occur for certain diseases (e.g. with some clusters becoming larger with time; see

Wobeser, 1994, p. 29), this assumption would be violated. Simulations showed that a mild vio-

lation of this assumption does not impede its ability to assess the average situation in a cluster

(mean prevalence and mean trend in prevalence), provided that the sample of trapped badgers
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can be considered entirely random, a condition we show to be approximately valid in our study

(i.e., weak correlation between the sampling pressure and the prevalence ofM. bovis infection).

Moreover, this assumption of additivity is reasonable for M. bovis infection, as demonstrated

by both a preliminary exploratory analysis of our dataset and by the epidemiological properties

of this infection. The preliminary fit of a simplistic generalized additive model to predict the

infection status of trapped badgers as a function of space and time showed that space-time

interactions could be ignored in all clusters and that the spatial distribution of the infection in

badgers was stable over time during our study period (see Appendix E for more details).

This stable spatial structure of the infection can be explained by the infection dynamics ofM.

bovis in relation to the structure of the multihost system. Indeed, infection of the badger popu-

lation may result from two different dynamics: within-species transmission related to the social

structure of the badger population, and between-species transmission caused by contact with

infected animals of other species – in our context, mainly cattle and wild boar. The relative im-

portance of these two dynamics varies according to the context. For instance, in Burgundy, in a

recent study, we found that the spatial structure of the infected badger population was strongly

related to the spatial structure of the pastures of infected cattle (Bouchez-Zacria et al., 2023),

suggesting that a between-species transmission dynamic, still active 20years after infection,was

detected in both the cattle and badger populations. In any case, within- and between-species

infection dynamics logically lead to a strong and stable spatial structure of badger infection be-

cause of (i) the strong social structure of the badger population associated with a small number

of dispersing animals that usually move between adjacent groups (Rogers et al., 1998); (ii) the

strong spatial structure of the main external source of infection, i.e., the cattle population, which

has been relatively stable over the years; and (iii) theM. bovis transmission mode, which involves

direct or indirect contact between animals aswell as an infection resulting frequently in a chronic

disease (with animals being infectious for a long time). Thus, these elements suggest that the

spatial diffusion ofM. bovis infection is rather slow so it is reasonable to assume that the spatial

structure of the infection in a cluster is stable over a period of a few years (e.g., 5 to 10 years).

The two proposed indicators can therefore be used at this time scale to monitor changes in the

infection pattern. In particular, a few informal tests of the indicators seem to indicate that a 5-

year scale is an interesting scale for assessing the effect of management measures implemented

to controlM. bovis infection. When the study period coversmore than 10 years, a slidingwindow

in time can be used to fit the linear regression.

The Bayesian model accounted for the spatial structure ofM. bovis infections in each cluster.

In contrast, the regression model did not consider this spatial structure. Therefore, we recom-

mend focusing only on highly infected communeswhen applying the regressionmodel, assuming

that the remaining spatial variability within this subset of communes is negligible. Note that our

simulations showed that even in the presence of a substantial remaining spatial structure, there

was no detectable bias in the estimation of the two focus parameters (mean proportion of the

population becoming infected in oneyear andmean prevalence during themiddle year), provided

that the sample of trapped badgers could be considered completely random. When sampling is

directed toward communes with the highest infection prevalence, a substantial remaining spa-

tial structure within these highly infected communes will result in the preferential sampling of

infected animals. Neglecting the spatial structure of the infection in the regression model then

leads to an overestimation of the mean prevalence during the middle year and a biased estima-

tion of the proportion of the population becoming infected in one year. Therefore, monitoring

programs intending to use our regression approach should pay attention to maintaining uniform

trapping pressure across a clusters’ entire area. In our study, the correlation between the level

of infection in a commune and the sampling effort remained low, suggesting a very limited bias

in our estimation.

We assumed equal trappability between infected and noninfected badgers. However, pre-

vious studies have shown that the trappability of badgers may be influenced by factors such as

weather, season or age class (Byrne et al., 2012; Martin et al., 2017). Therefore, trappability

might also vary based on other individual characteristics, and particularly the infection status of

the animal, although we did not find any study supporting this hypothesis. In addition, other
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factors related to the infection status of badgers may indirectly affect their trappability. Thus,

several studies suggest that infection can lead to behavioral changes in badgers, making them

more solitary and mobile, with larger home ranges (Cheeseman and Mallinson, 1981; Garnett et

al., 2005; Weber et al., 2013b). In particular, greater mobility of infected animals was observed

in the three clusters in our study, leading to an increased risk of being killed by cars; the propor-

tion of infected badgers is greater in animals killed by cars collected on the side of roads than

in trapped badgers (unpublished results). This greater mobility of infected badgers may increase

their exposure to traps. However, even if therewas a lingering bias in the prevalence estimation,

there is no indication that this bias varied among the three clusters or between years. Therefore,

it is reasonable to assume that the situations can be compared consistently across clusters or

between years.

During our study period, we observed different tendencies in the 3 main M. bovis clusters

in France. In Burgundy, there was an annual decrease in the proportion of infected badgers

between 2013 and 2019, and the mean prevalence in 2016 was estimated to be 0.08 (0.065-

0.097)with themodelwhereas in the 2 otherM. bovis clusters the tendencywas either an annual

increase in the proportion of infected badgers (Dordogne/Charente) or a stabilization (Bearn)

with a slightly highermean prevalence than in Burgundy: 0.126 (0.109-0.143) and 0.112 (0.092-

0.134), respectively. The observations in the captured badger population are in linewith the bTB

situation in the bovine population. Indeed, in Burgundy, the incidence on cattle farms decreased

during the same period, which was not the case for the 2 other clusters (Delavenne et al., 2021).

Burgundy strengthened bTB control measures earlier than did the other regions, especially in

terms of early detection of infected cattle farms and in badger culling pressure, at least for some

years. This is most likely the main reason for these differences, even if differences in the badger

population andmultihosts structures may also have played a role. Southwest of France (covering

the 2 clusters with the highest proportion of infected badgers), now has the highest number of

M. bovis cases (80% of cattle bTB cases and 94% ofwildlife cases – all species included– in 2018;

see Delavenne et al., 2021), and additional years of effort are needed to see an improvement in

epidemiological indicators.

Having a follow-up of such indicators is therefore crucial for assessing the efficiency of the

measures applied. In Sylvatub, it will now be easier to reevaluate the developed indicators reg-

ularly in at-risk areas. We demonstrated that our indicators need to be calculated for the most

infected communes. In our study, the complex Bayesian model that we used allowed us to iden-

tify highly infected communes (i.e., those with a random effect greater than the average); thus,

these communes can be used in later monitoring for the calculation of the indicators.

If the present indicators are to be used in other situations (e.g., in newly discovered clusters

or in other countries), there are several options for identifying those highly infected places. One

possibility would be to fit the complex model once, a few years after the time of discovery of

the cluster, to identify those communes. However, other approaches could also be used. Thus,

given the reasonable additivity of space and time effects on the infection at a time scale of a few

years, one could try to describe the spatial distribution of the infection risk using data collected

over a short period by ignoring the time dimension. For example, the nonparametric approach of

Kelsall and Diggle (1995), which estimates the spatial distribution of risk by calculating the ratio

of two probability densities of positive and negative tests in space, could be used to identify

more infected places.

We developed this regression approach, focusing on the badger populations in infected areas

in France; however, in theory, this approach could be used more generally for any infection

characterized by the additivity of space and time effects on the prevalence. Thus, the preliminary

results indicate that this regression approach could also be used for wild boar in the three main

French M. bovis clusters. In this case, the same Bayesian model provides a good description of

the infection (although the spatial structure is much less clear, C. Calenge pers. com.), which

suggests that the linear regression indicators proposed for the badgers could also be used for

wild boar monitoring.
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