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Abstract
Since 1976 various species of Ebolavirus have caused a series of zoonotic outbreaks andpublic health crises in Africa. Bats have long been hypothesised to function as importanthosts for ebolavirus maintenance, however the transmission ecology for these virusesremains poorly understood. Several studies have demonstrated rapid seroconversion forebolavirus antibodies in young bats, yet paradoxically few PCR studies have confirmed theidentity of the circulating viral species causing these seroconversions. The current studypresents an age-structured epidemiological model that characterises the effects of sea-sonal birth pulses on ebolavirus transmission within a colony of African straw-colouredfruit bats (Eidolon helvum). Bayesian calibration is performed using previously publishedserological data collected from Cameroon, and age-structure data from Ghana. The modelpredicts that annual birth pulses most likely give rise to annual outbreaks, although morecomplex dynamic patterns – including skip years, multi-annual cycles and chaos – may bepossible. Weeks 30 to 31 of each year were estimated to be the most likely period forisolating the circulating virus in Cameroon. The probability that a previous PCR campaignfailed to detect Ebola virus, assuming that it was circulating, was estimated to be one intwo thousand. This raises questions such as (1) what can we actually learn from ebolavirusserology tests performed without positive controls? (2) are current PCR tests sufficientlysensitive? (3) are swab samples really appropriate for ebolavirus detection? The currentresults provide important insights for the design of future field studies aiming to detectEbola viruses from sylvatic hosts, and can contribute to risk assessments concerning thetiming of zoonotic outbreaks.
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Introduction
Bats have been implicated as reservoir hosts to numerous viruses of zoonotic or animal healthimportance, including: Hendra virus, Marburg virus, Middle East respiratory coronavirus (MERS-CoV), Nipah virus, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 andSwine acute diarrhoea syndrome corona-virus (Letko et al., 2020). This list of bat-borne emerg-ing viruses is thought to also include filoviruses of the Ebolavirus genus (Caron et al., 2018; Feld-mann et al., 2020; Leroy et al., 2005). Indeed, the filovirus-like VP35 gene is estimated to havebeen maintained in bat genomes for 13.4 million years (Taylor et al., 2011), which provides evo-lutionary support for the long-term exposure of bats to filoviruses. However, despite numerousoutbreaks of Ebola in equatorial Africa since 1976 – where fatality rates typically fall in therange of 40-70% (Jacob et al., 2020; Munster et al., 2018) – the hypotheses that (i) bats providesylvatic reservoirs for Ebola viruses, and (ii) that these reservoirs contribute to spillover events,remain unconfirmed. Moreover, the eco-epidemiology of Ebola virus remains poorly understood,and empirical evidence for bats functioning as primary maintenance reservoirs for Ebola virusesremains non-conclusive (Olival and Hayman, 2014).
Serological data shows that some bat species express high seroprevalence for Ebola virus(De Nys et al., 2018; Hayman et al., 2012b). But serology is hard to interpret in bats withoutpositive controls, and there is a paradoxal discrepancy between serological data and viral detec-tion (Caron et al., 2018). Indeed, no Ebola virus has ever been isolated from bats, and only afew individuals of three bat species have tested positive by polymerase chain reaction (PCR) forEbola virus (Leroy et al., 2005) – a result that remains to be replicated despite extensive sam-pling. Recent longitudinal monitoring of a straw-colored fruit bat (Eidolon helvum) population inCameroon has shown extensive seroconversion of young (juvenile and sexually immature adult)bats over a period of a few months, suggesting active Ebola virus circulation - however, no battested positive for Ebola virus by PCR during that study (Djomsi et al., 2022). Another E. helvumstudy in Guinea provided similar results, with seroprevalence decreasing over the first monthsof life and increasing again in the first years of adult life, but again, no bats were found to bePCR positive (Champagne et al., 2023).
Modelling is being increasingly used to help understand the interplay between ecological andepidemiological dynamics in bats (Glennon et al., 2019; Hayman, 2015; Peel et al., 2018). Consid-erable attention has been paid to the effects of seasonal birth pulses on the pool of susceptibleindividuals and subsequent epidemiological consequences (Hranac et al., 2019; Peel et al., 2014).For example, strong seasonal patterns in the prevalence of rabies in bats have been attributed toepidemiological consequences of birth pulses (George et al., 2011), and the biannual birth pulsesof some Egyptian fruit bat populations are thought to increase the probability of pathogen main-tenance (Hayman, 2015). Modelling has also indicated that maternally-derived antibodies cancontribute to viral maintenance (Hayman et al., 2018).
In order to explore the enigmatic discrepancy between Ebola serology and virology data, wedeveloped an age-structured epidemiological model that included seasonal birth pulses andwan-ing immunity, and used Bayesian techniques to fit the model to longitudinal E. helvum serologydata from Cameroon (Djomsi et al., 2022). Our three main objectives were as follows. First, toquantify uncertainty in the parameters and dynamics of the model given the seroprevalencedata of Djomsi et al. (2022). Second, to quantify the probability of not detecting any PCR posi-tive bats given the sampling scheme of the Djomsi et al. (2022) study. Third, to identify whetherseasonal birthing patterns can help identify optimal time-windows for Ebola virus detection. Thismodelling work has identified potentially important biological parameters that can help explainthe observed serology dynamics, and provides insights that can help improve the efficiency ofsurveillance strategies for detecting Ebola virus in bats. In particular, these analyses provide in-sights into practical questions concerning the establishment of adequate sampling efforts forvirus isolation, and raise questions concerning the meaning of positive serological samples frombats.
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Material and methods
Study site and eco-epidemiological data

Our analyses were based primarily on data from a longitudinal serology survey at an E. helvumcolony in Yaounde, Cameroon (Djomsi et al., 2022). Although various antigens were used forserological testing in that study, we exclusively used data from the Res1GP.ZEBVkiss antigenictest – a test based on the glycoprotein of Zaire Ebola virus. We selected this data-set because,among all antigenic tests used, the Res1GP.ZEBVkiss test generated the highest seropositive rateand the strongest seasonal signal. This data provided information concerning seasonal variationin the presence of four different age classes: pups (P ) - young non-weaned bats that remainattached to their mothers; juveniles (J ) - weaned young, that do not yet display joint ossification;immature adults (I ) - large bats with ossified joints but without any sign of sexual maturity; andadult bats (A). Pups were not sampled directly, however, lactating females provided a proxy fortheir presence. A summary of this data is provided in table 1.
Table 1 – Summary of E. helvum serology and lactation data from Yaounde, Cameroon.Negative and positive results for the Res1GP.ZEBVkiss antigenic test are shown for cap-tured bats of three age classes. The number of captured adult female bats either lactatingor not lactating are also shown. Lactation was used as a proxy for inferring seasonalityin the presence of pups. A full description of this data is available in Djomsi et al. (2022).

Juvenile Immature Adult Female AdultsDate Neg Pos Neg Pos Neg Pos Lactating Not Lactating2018-12-07 0 0 2 0 10 8 0 82019-01-26 0 0 0 0 45 53 0 422019-03-03 0 0 0 0 10 7 1 72019-04-02 12 1 0 0 50 24 46 92019-05-07 116 1 0 0 21 10 20 62019-06-16 71 1 0 0 4 6 0 32019-07-17 13 4 67 10 27 11 0 162019-09-17 1 0 11 26 3 11 0 32019-10-15 0 0 16 22 15 16 0 112019-11-15 0 0 13 51 31 20 0 24
To help estimate adult mortality rates we used tooth cementum annuli data from 294 adultbats sampled in Ghana (Peel et al., 2016). Thus, we assume that the age structures at the sampledcolonies in Ghana and Cameroon are equivalent.

Mechanistic model
A system of ordinary differential equations was developed to provide a deterministic char-acterisation of Ebola transmission in an age-structured E. helvum population. This system is de-picted graphically in figure 1 and algebraically in equations 1-19. A list of model parameters ispresented in table 2. Age structure in the model was defined using the same four age classesrecorded in the field (see above), namely: pups (P ); juveniles (J ); immature adults (I ); and adultbats (A). Five epidemiological classes were used: protected by maternal antibodies (M ); suscep-tible (S ); infected (I ); recovered (R ); long-term immunity (L). For simplicity, it was assumed thateach year is exactly 52 weeks long, and weeks are used as our time unit throughout (unlessstated otherwise).The epidemiological model assumes that susceptible individuals become infected via a den-sity dependent infection process with homogeneous mixing. Recovered individuals are assumedto transition to one of two classes – either they loose their immunity and return to being sus-ceptible, or they enter a state of long-term immunity in which anti-bodies are not expressedunless they become re-exposed to the virus. Such a long-term immunity class has proved useful
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in modelling other bat-virus systems (Brook et al., 2019), and was included to avoid incompati-bility between (i) rapid seroconversion among immature adults (and some juveniles), with sero-prevalence reaching 60-80% in immatures, and (ii) a global seroprevalence of just 43% amongall tested adults (figure 3). It was assumed that bats in the recovered and maternal antibodyclasses would express sufficient quantities of antibodies to test seropositive, whereas bats inall other epidemiological classes would test seronegative. We associated two parameters withthe long-term immunity class: pR2L, the proportion of all individuals leaving the recovered class(i.e. loosing antibodies) that acquire long-term immunity, as opposed to loosing immunity andbecoming susceptible again; and pL2R , the proportion of exposures to the virus that reinitialiseanti-body production in bats with long-term immunity. Given a lack of evidence for vertical trans-mission for the related Marburg virus in Egyptian fruit bats (Towner et al., 2009), we assumedinfectious females could only produce susceptible pups. We also assumed that the number ofadult bats still expressing maternal antibodies was negligible, and thus omitted that category toreduce computation time.

  

Pups Juveniles Immatures Adults

M
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I
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Figure 1 – Schematic diagram of an age-structured MSIRL model used to analyse Ebolaserology dynamics in Eidolon helvum from Yaounde, Cameroon. The total population N isdivided into four age classes – pups (P), juveniles (J ), immature adults (I ) and adults (A)– and five epidemiological classes – maternal anti-bodies (M ), susceptible (S ), infected(I ), recovered (R ) and long-term immunity (L). Maturation through the age classes is con-trolled by a series of pulse functions (see annex 1), which lag behind a seasonal birth pulse.Density dependant mortality rates, µ̃Y and µ̃A, are specified for first-year and older indi-viduals respectively. Anti-bodies are assumed detectable in individuals of the M and Rcompartments and undetectable for all other compartments. It is assumed that all pupsfrom recoveredmothers (p♀RA) start life withmaternal antibodies (MP ), and all other pupsstart life susceptible (SP ).
Seasonal demographic dynamics were controlled via four pulse functions, which restrainwhen certain birth or maturation processes can or cannot occur. These functions are essentiallysmoothed (i.e. continuous) step functions that toggle whether or not a given step in the life cy-cle can be made at a given time. Each pulse function has three parameters: 1) the pulse starttime; 2) the pulse end time; 3) and the rate at which individuals mature, or give birth, during thepulse. Nine of the twelve pulse function parameters were estimated as free parameters, whereasthe three maturation pulses were constrained to end two weeks prior to the start date of thepreceding pulse function of the following year (see table 2). This two week buffer ensured thatindividuals joining a given age class could not immediately mature to the following age class. Atwo week buffer size was chosen so that: 1) the buffer was large enough for overlap between

4 David R.J. Pleydell et al.

Peer Community Journal, Vol. 4 (2024), article e39 https://doi.org/10.24072/pcjournal.380

https://doi.org/10.24072/pcjournal.380


the continuous pulse functions to be negligible; 2) each pulse function was wide enough so thatonly a negligible number of individuals remained in the age class when the maturation rate re-turned to zero. Further details of the pulse functions are provided in annex 1.

Table 2 – Parameters, priors and functions used formodelling the dynamics of Ebola viruscirculation in the Eidolon helvum population of Yaounde, Cameroon (see Fig.1). These arepresented in groups corresponding to: the four pulse functions; birth pulse parameters;maturation pulse parameters; mortality parameters; initial populations; and epidemiolog-ical parameters. The choice of priors is described in annex 2.
Parameter Description Prior, function or constant

b(t) Birth rate Pulse function
mP(t) Maturation rate, pups Pulse function
mJ(t) Maturation rate, juveniles Pulse function
mI (t) Maturation rate, immature adults Pulse function
bStart Start of birth pulse Gamma(shape=5, scale=2)
dBirth Duration of birth pulse Gamma(shape=5, scale=1)
bStop End of birth pulse bStart + dBirth
pBirth Prop. females contributing to birth pulse Beta(171.5, 8.1)
p♀ Prop. females in population 0.5
m̂P Maximum pup maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m̂J Maximum juvenile maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m̂I Maximum immature maturation rate Gamma(shape=1, scale=-log(0.01)/8)

mStart
P Start of pup maturation pulse Uniform(0, 104)

mStart
J Start of juvenile maturation pulse Uniform(0, 104)

mStart
I Start of immature maturation pulse Uniform(0, 104)

mStop
P End of pup maturation pulse bStart + 50

mStop
J End of juvenile maturation pulse mStart

P + 50

mStop
I End of immature maturation pulse mStart

J + 50

µ−1
A Baseline adult life expectancy Gamma(mean=10 × 52, sd=4 × 52)
R Survival ratio (young/adult) Beta(4.7, 1.6)
µY Additional mortality in young bats − log(R)/52
K Density dependence parameter 100000
N0 Population size at t0 Gamma(shape=500, scale=1000)
pAge0 Prop. of each age class at t0 Dirichlet(0, 0, 1.0, 3.78)
ϕI0 Prop. of immatures inM,S , I ,R, L at t0 Dirichlet(0, 1, 1, 1, 1)
ϕA0 Prop. of adults in S , I ,R, L Dirichlet(1, 1, 1, 1)
β Transmission rate Gamma(shape=1, scale=10−5)
ρ Antibody acquisition (recovery) rate Gamma(shape=1, scale=1)

α−1
M Duration of maternal antibodies Uniform(0, 20×52)

α−1 Duration of antibody protection Gamma(shape=1, scale=1011)
p
R2L

Prob. long-term immunity after antibody loss Beta(1,1)
p
R2S

Prob. loosing immunity after antibody loss 1 - p
R2L

p
L2R

Prob. antibodies re-acquired on re-exposure Beta(1,1)
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The transmission of Ebola virus within the E. helvum population of Yaounde, Cameroon, wasmodelled using the following system of ordinary differential equations (ODE):
ṀP = b(t)RAp♀ − MP(µ̃Y +mP(t) + α

M
)(1)

ṠP = b(t)(SA + IA + LA)p♀ + α
M
MP + αp

R2S
RP − SP(µ̃Y +mP(t) + βIΣ)(2)

˙IP = βSP IΣ − IP(µ̃Y +mP(t) + ρ)(3)
ṘP = ρIP + βp

L2R
IΣLP − RP(µ̃Y +mP(t) + α)(4)

L̇P = αp
R2L

RP − LP(µ̃Y +mP(t) + βp
L2R

IΣ)(5)
ṀJ = mP(t)MP − MJ(µ̃Y +mJ(t) + α

M
)(6)

ṠJ = mP(t)SP + α
M
MJ + αp

R2S
RJ − SJ(µ̃Y +mJ(t) + βIΣ)(7)

İJ = mP(t)IP + βSJ IΣ − IJ(µ̃Y +mJ(t) + ρ)(8)
ṘJ = mP(t)RP + ρIJ + βp

L2R
IΣLJ − RJ(µ̃Y +mJ(t) + α)(9)

L̇J = mP(t)LP + αp
R2L

RJ − LJ(µ̃Y +mJ(t) + βp
L2R

IΣ)(10)
ṀI = mJ(t)MJ − MI (µ̃Y +mI (t) + α

M
)(11)

ṠI = mJ(t)SJ + α
M
MI + αp

R2S
RI − SI (µ̃Y +mI (t) + βIΣ)(12)

İI = mJ(t)IJ + βSI IΣ − II (µ̃Y +mI (t) + ρ)(13)
ṘI = mJ(t)RJ + ρII + βp

L2R
IΣLI − RI (µ̃Y +mI (t) + α)(14)

L̇I = mJ(t)LJ + αp
R2L

RI − LI (µ̃Y +mI (t) + βp
L2R

IΣ)(15)
ṠA = mI (t)(SI +MI ) + αp

R2S
RA − SA(µ̃A + βIΣ)(16)

˙IA = mI (t)II + βSAIΣ − IA(µ̃A + ρ)(17)
ṘA = mI (t)RI + ρIA + βp

L2R
IΣLA − RA(µ̃A + α)(18)

L̇A = mI (t)LI + αp
R2L

RA − LA(µ̃A + βp
L2R

IΣ).(19)
Table 2 provides a summary of model parameters and notation. Note, IΣ = IP + IJ + II + IA isthe total density of all infectious bats, and µ̃A and µ̃Y are density dependant mortality rates foradult and young bats respectively. Adult mortality was modelled as
(20) µ̃A = µA

(
1 +

J + I + A

K

)

where µA is themortality rate in the absence of competition,K is a density dependant parameterthat contributes to determining the carrying capacity, and J , I and A provide the total populationdensities for juveniles, immatures and adults respectively. We assumed that, since pups andjuveniles depend on theirmothers, and that immature adults probablymakemistakes thatmatureadults learn to avoid, then the mortality rates of non-adults should be equivalent to or higherthan that of adults. Therefore, density dependant mortality among young bats was modelled as
(21) µ̃Y = µ̃A + µY ,

where µY is the rate of additional mortality among young bats. Note, since J , I andA vary in time,so do µ̃A and µ̃Y . These density dependant mortality rates could therefore be represented usingthe notation µ̃Y (t) and µ̃A(t), however, to simplify notation we adopt µ̃Y and µ̃A as shorthandalternative representations.Let SA(t) be a survival function that tracks how the survival probability of an adult bat de-creases in continuous time. This survival function is described by the following differential equa-tion
(22) ṠA = −µ̃ASA

with the initial condition SA(0) = 1. Let SA and SY denote the annual survival probabilities foradult and young (<1 year) bats respectively (note, different fonts are used for susceptible adults
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(SA), adult survival (SA) and the annual adult survival probability (SA)). One way to obtain SAwould be to integrate equation 22 over a single 52 week year, i.e.
SA = exp

( ∫ 52

t=0
−µ̃A(t)dt

)

where µ̃A(t) is the density dependant adult mortality (equation 20). Similar arguments for youngbats give
SY = exp

( ∫ 52

t=0
−µ̃Y (t)dt

)

= SA exp(−µY × 52).(23)
Thus, the additive nature of equation 21 permits us to parameterise µY in terms of the ratio ofthe annual survival probabilities SY and SA. In other words

R =
SY

SA
= exp(−µY × 52)

and
µY = − 1

52
log(R).

The advantage of this parameterization is that data were available for an informative prior on R(see annex 2). In practice: integration of equation 22 was performed concurrently with the nu-merical integration of equations 1-19;SA was obtained using equation 25; andSY was obtainedusing equation 23.
Bayesian inference

A Bayesian approach was used to quantify uncertainty in model parameters, trajectories andderived metrics. Priors are detailed in table 2 and in annex 2. For each simulation of the ODE sys-tem performed during model fitting: state variables were initialized at the start of the year 2017;dynamics were simulated for three years; the ODE solver returned the state variables after eachof 520 evenly spaced time steps per year; and the simulated trajectories were confronted withobserved field data over the period December 2018 to November 2019. Starting the simulationsin 2017 allowed a 23 month pre-data burn-in period in which the proportion of individuals ineach category at time t (ϕIt , ϕAt and pAget ) could converge from the wide range of possibilitiespermitted by the uninformative priors towards biologically plausible proportions driven by themodel. The following subsections describe the various likelihood functions and penalties usedfor Bayesian inference, and outline how the model was used to address questions relating to (1)the mismatch between serology and PCR data, and (2) to the optimal timing of virology studies.
Likelihood of age class data.

The age distribution data (table 1) provides information as to when in the year we can expectto capture juveniles, immatures and lactating females – where the latter was used as a proxyfor pups. It was suspected that between-class heterogeneity in capture rates could bias theabsolute numbers of captures – therefore, the data were not used for calibrating between-classdifferences in density. Instead, we used this data to infer how the probability to capture a batof a given class changes throughout the duration of the sampling period. Thus, for a given ageclass j ∈ {P, J, I}, the likelihood that the total number of captures were distributed across thevarious sampling dates as observed in the data was quantified assuming
(24) yj1, yj2, ... , yjndates ∼ Multinomial(pj1, pj2, ... , pjndates ,

ndates∑

i=1

yji
)

where ndates is the number of observation dates, yji is the total number of bats of age class jcaptured at the i th observation date and pji is the associated set of probabilities. The probabili-ties to sample a given pup (i.e. lactating female), immature or juvenile on the i th sampling date
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were assumed to be proportional to the population density predicted by the system of ODEs atsampling time ti , thus,
pPi ∝P(ti )

pIi ∝I (ti )

pJi ∝J(ti )

where ∑ndates
i=1 pji = 1 for any given age class j .

Likelihood of tooth data.
Tooth cementum annuli data (Peel et al., 2016) were used to inform estimates of adult mor-tality rates. Let yi ∈ {1, 2, ... } represent the age of bat i in years. A likelihood for a given bat’sage was obtained assuming

yi ∼ Geometric(1 − SA)where SA is the probability for an adult to survive one year. Following each simulation of threeyears, the annual adult survival probability was obtained as the ratio of the survival probabilitiesat the end of the final and penultimate years
(25) SA =

SA(t = 3 × 52)

SA(t = 2 × 52)
,

which is the conditional probability for an adult to survive the third year given that it survivedthe second year.
Likelihood of serology data.

The serology data (table 1) provides information about the number of seropositive individuals(yj(t)) of age class j ∈ {J, I ,A} found in a sample of nj(t) individuals at time t . Thus, we assumedthe following likelihood
yj(t) ∼ Binomial(pj(t), nj(t))

where
pj(t) =

Mj(t) + Rj(t)

Mj(t) + Sj(t) + Ij(t) + Rj(t) + Lj(t)is the expected seroprevalence for age class j at time t .
Penalties against demographic growth or decline.

Due to an absence of longitudinal population census data, there were large uncertainties con-cerning the total population size at the beginning and end of the simulation period. We madethe simplifying assumption that the E. helvum population was close to its carrying capacity andwas approximately stable. Thus, we added penalty terms to the Bayesian model, to limit popu-lation growth or decline over the short simulation period and therefore constrain the potentialdistribution of starting population densities. These penalties were implemented as follows,
0 ∼Laplace(location = log(IEnd/IEarly), scale = log(1001/1000)

)

0 ∼Laplace(location = log(AEnd/AEarly), scale = log(1001/1000)
)

where IEarly and IEnd are the total densities of immatures early on, and at the end of, a simulation,and AEarly and AEnd are the total densities of adults early on, and at the end of, a simulation –where "Early" and "End" indicate the first model output for January following one year and threeyears of simulation respectively. The contribution to the total likelihood given by these penaltiesis greatest when there is zero population growth or decline over the last two years of the threeyear simulation period. The scale parameter controls the strength of the penalty. These penaltieswere only applied to the sizes of the adult and immature bat populations, because the other ageclasseswere absent at the beginning of each year.Whilst it could arguably be reasonable tomakethis simplifying assumption that the total population size was roughly stable over the simulation
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period, a similar stability assumption for the epidemiological dynamics was considered to be toostrong, since too little is known about the dynamics of Ebola in natural reservoirs – thus we didnot use equivalent penalty terms to constrain the starting values of the various epidemiologicalcompartments of the model.
Markov chain Monte Carlo.

Bayesian inferencewas based onMarkov chainMonteCarlo sampling. An adaptiveMetropolis-Hastings block sampler was used to explore the posterior distribution of the model. Starting val-ues for each parameter were based on the final values obtained from a previous short run ofthe algorithm. The sampler was run for 40 million iterations, with thinning set to 2000, and thefirst half of the samples were removed as a burn-in period. Thus, we obtained 10000 samples intotal.
Multi-annual cyclicity and skip years

An analysis of the long-term behaviour of the model was performed, with the aim of deter-mining if seasonal patterns in prevalence were likely to be consistent (or not) from one year tothe next. For each of the 10000 MCMC samples the ODE system was projected for 1100 years,with the first 1000 years removed as a burn-in period. The time vector sent to the ODE solverprovided a temporal resolution of 10 steps per week. Each trajectory of infectious adults (IA)over the final 100 years was used to construct a recurrence plot (Marwan et al., 2007), usinga threshold neighbourhood of 1 bat. In other words, each trajectory was used to construct amatrix with entries
Ri ,j = 1(|IA(ti ) − IA(tj)| < 1)(26)

where 1 is the indicator function, i and j are indices for location along the time vector, and |·| rep-resents the absolute value. Clearly, the main diagonal of any recurrence plot contains only ones(because i = j for each entry of the diagonal) and is uninteresting. However, any other diagonalcontaining only ones is interesting, because it informs about periodic (i.e. repeating) dynamics.Thus, we searched for the closest diagonal (to the principal diagonal) containing just ones, inorder to identify k , the periodicity in years of any multi-annual pattern in IA. Thus, 10000 valuesof k were tabulated in order to quantify uncertainty in the periodicity of the epidemiologicaldynamics. For this tabulation, we pooled all observations of 50 < k < 100 years, and 100 ≤ k , toavoid potential false positives near the corners of the recurrence plots and to identify potentiallychaotic trajectories.For any simulation where we identified that k > 1 we searched for skip years, which wedefined as any 52 week period within which the density of infectious adults (IA) consistentlyremains below one. Thus, when tabulating the various observed values of k we also tabulatedthe frequency of observing skip years as a function of k .
Probability of not sampling an infectious bat

A key aim of this work was to quantify whether or not we should expect to see PCR positivebats in a typical sample given the fitted model of Ebola transmission in E. helvum. Let Nj(t)represent the sample size for bats of age class j obtained during a sampling campaign performedin week t – the probability to have zero infectious bats in this sample is:
(27) p(Ij(t) = 0|Nj(t)) =

(
1 − Ij(t)

Mj(t) + Sj(t) + Ij(t) + Rj(t) + Lj(t)

)Nj (t)

where Ij(t) is the number of infectious bats in the sample. We considered that Nj(t) = 25 is afairly typical scenario in a given sampling campaign, and thus plotted the evolution of p(Ij(t) =
0|Nj(t) = 25) in time for adult and immature bats, to provide an indication of when in the yearwould be an optimal time for sampling if viral extraction was the aim.
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Similarly, we also calculated the probability of having not captured a single infectious batgiven all the bats tested by PCR throughout the entire study,
(28) p(I = 0|NJ ,NI ,NA) =

∏

t∈TObs

∏

j∈{J,I ,A}

(
1 − Ij(t)

Mj(t) + Sj(t) + Ij(t) + Rj(t) + Lj(t)

)Nj (t)

where I is the total number of infectious bats sampled during the study, Nj is the vector indicat-ing how many bats of age class j were sampled in each sampling campaign, and TObs is the setof times for all of the observation campaigns.
Implementation

All calculations were performed in R (R Core Team, 2022) version 4.2.1. Numerical integrationof the ODE system (equations 1-19 and 22) was performed using the lsoda function in the
deSolve package (Soetaert et al., 2010). Functions for the derivatives and Jacobian of the ODEsystem were coded in C. Bayesian inference was performed in NIMBLE (de Valpine et al., 2022,2017), and the function nimbleRcall was used to call lsoda from inside NIMBLE. The package
nimbleNoBounds (Pleydell, 2023) was used for improving the efficiency of adaptive Metropolis-Hastings sampling near the bounds of the parameter space. The R package CODA (Plummer et al.,2006) was used to perform convergence diagnostics on the MCMC output, and to provide themean, median, 95% credibility interval and effective sample size (ESS) for each parameter. Theeffective sample size, which estimates the number of independent samples per parameter whileaccounting for auto-correlation, was calculated using the function effectiveSize. Whilst thesystem of ODEs was defined in continuous time, it is common for ODE solvers to discretize time– for each simulation lsoda was provided a time vector with intervals of 0.1 weeks to definewhen estimates for the state of the system were required. To economise on memory allocationwe configured NIMBLE to store and use the state of the dynamic system at weekly time intervals.

Results
Inference from parameters

The posterior mean, median and 95% credibility intervals (shown in parentheses below) ofeach parameter, along with the annual survival and effective sample sizes (ESS) estimates ob-tained from 10000 MCMC samples, are presented in table 3. Twelve of the parameters wereassociated with ESS scores of 10000 or higher. The lowest ESS estimates were associated withthe inverse of antibody loss rate (ESS(α−1) = 2289), the proportion of recovered individualsobtaining long-term immunity (ESS(pR2L) = 6024), and the proportion of adults with long-termimmunity at the start of each simulation (ESS(p0(L|Ad)) = 7133).The birth pulse is expected to start in the eighth week of the year and last nine (95% CI:
6.6 − 10.7) weeks. The three consequent maturation pulses are expected to start in weeks 12,24 and 45 respectively. The ranges of the 95% credibility intervals for the four pulse functionstart times were (in chronological order) 0.76, 0.3, 1.5 and 1.9 weeks respectively. Annual sur-vival probabilities were estimated as 39% (33%− 46%) and 76% (74%− 79%) in young and adultbats respectively. The estimated recovery rate, ρ = 0.67 (0.37−1.5), indicates that the expectedduration of infections was 1.5 weeks (5 days - 19 days). Recovered bats are expected to produceantibodies for 75 (48 − 135) weeks, and maternal antibodies are expected to last 1.1 (0.36 − 2.3)weeks. The estimates of pR2L indicate that roughly two thirds of recovered individuals pass tothe long-term immunity class, although uncertainty was high (0.24 − 0.92). Only 17% of infec-tious attacks on individuals with long-term immunity re-initiate anti-body production, althoughuncertainty is large (0.7% − 47%).A comparison of age-structure seasonality in the data and the model is presented in Fig. 2.The modelled trajectory of pup presence (red) closely follows the observed seasonal patternsin the number of lactating females (black). The model slightly underestimates the proportionof juveniles in May, but otherwise matches the juvenile data well - i.e. with overlap betweenthe credibility intervals generated from the data and from the model. Seasonality in the pres-ence/absence of immature adults is characterised well, although some considerable fluctuations
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in densities remain unexplained by the model. Similarly, there was considerable overlap betweenthe credibility intervals calculated from the model and from the tooth-age data, albeit with somenotable outliers among young adult bats.
Table 3 – Summary of marginal posterior distributions for each parameter in the Ebola-E.helvum model. The mean, median and 95% credibility intervals for each parameter arepresented, alongwith the effective sample size (ESS) estimated using the effectiveSizefunction of R package CODA.

Parameter Mean 2.5% Median 97.5% ESS
bStart 8.04E+00 7.67E+00 8.04E+00 8.43E+00 10000
dBirth 9.12E+00 6.62E+00 9.31E+00 1.07E+01 7372
pBirth 9.54E-01 9.19E-01 9.56E-01 9.80E-01 10000
m̂P 6.41E-01 3.31E-01 6.10E-01 1.11E+00 10000
m̂J 4.58E-01 3.22E-01 4.37E-01 7.04E-01 10375
m̂I 1.44E+00 7.71E-01 1.33E+00 2.75E+00 10000

mStart
P 1.25E+01 1.19E+01 1.25E+01 1.28E+01 10000

mStart
J 2.40E+01 2.30E+01 2.39E+01 2.55E+01 9381

mStart
I 4.58E+01 4.50E+01 4.57E+01 4.69E+01 11342

µ−1
A 1.24E+03 1.09E+03 1.24E+03 1.41E+03 9532
R 5.12E-01 4.16E-01 5.10E-01 6.19E-01 9199
N0 4.92E+05 4.51E+05 4.92E+05 5.36E+05 9711

p0(Im) 2.09E-01 6.65E-03 1.67E-01 6.22E-01 10341
ϕ0(S |Im) 2.43E-01 8.60E-03 1.99E-01 7.02E-01 10000
ϕ0(I |Im) 2.60E-01 8.90E-03 2.17E-01 7.15E-01 9662
ϕ0(R|Im) 2.45E-01 7.48E-03 2.00E-01 7.01E-01 10000
ϕ0(L|Im) 2.52E-01 8.89E-03 2.07E-01 7.05E-01 10000
ϕ0(S |Ad) 2.38E-01 6.09E-03 1.81E-01 7.18E-01 10000
ϕ0(I |Ad) 2.76E-01 1.24E-02 2.41E-01 7.24E-01 9037
ϕ0(R|Ad) 2.35E-01 7.17E-03 1.89E-01 6.91E-01 10000
ϕ0(L|Ad) 2.51E-01 8.53E-03 2.07E-01 7.22E-01 7133

β 5.57E-06 3.08E-06 4.96E-06 1.21E-05 7574
ρ 6.77E-01 3.71E-01 6.06E-01 1.49E+00 7540

α−1 7.51E+01 4.81E+01 6.96E+01 1.35E+02 2289
α−1
M 1.11E+00 3.60E-01 1.04E+00 2.28E+00 9575

pR2L 6.33E-01 2.47E-01 6.54E-01 9.20E-01 6024
pL2R 1.70E-01 7.67E-03 1.47E-01 4.71E-01 9426
SY 3.91E-01 3.27E-01 3.90E-01 4.60E-01 9198
SA 7.65E-01 7.42E-01 7.65E-01 7.87E-01 9474

Seroprevalence dynamics
Comparisons of modelled and observed seroprevalence, in juvenile, immature adult and adultbats, are presented in Fig 3. The credibility intervals of observed and modelled seroprevalenceoverlap at all sampling dates. In juveniles and immature adults there is a large drop in seropreva-lence when the maturation pulse functions permit the re-population of those age classes – bycontrast, in adults there is a small increase in seroprevalence at the time when immatures startbecoming adults. Seroprevalence increases in juveniles and immature adults during midsummer,with median seroprevalence rates being just 0.4% (0.05% − 1.8%) and 0.9% (0.007% − 3.8%) inweeks 22 and 24 (of 2019) respectively, and reaching 68% (60% − 74%) in week 40. Whilst thispeak in seroprevalence is synchronised for the two classes, the density of juveniles is alreadyreaching zero by that time, whereas the density of immature adults is reaching its maximum.A summertime upward trend is also observed in the seroprevalence of adults, with a median
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Figure 2 – Comparison of model trajectories to age-structure data for Eidolon helvumin Yaounde, Cameroon (top row and bottom left), and of modelled adult survival to ageestimates of adults based on tooth annuli data from Ghana (Peel et al., 2016).
seroprevalence of 35% (29% − 41%) in week 25 rising to 51% (43% − 62%) in week 38. The tra-jectories of both observed and modelled seroprevalence from early April to early May suggestthat seroprevalence in juveniles drops considerably during this period – a continuation of thedrop initiated one month earlier by the initiation of weaning in week 12.
Period and predictability of long-term dynamics

The periods of multi-annual cyclicity in the dynamics of infectious adults (IA), identified us-ing recurrence plots from 10000 simulations, are presented in table 4. Eighty nine percent ofsimulations resulted in dynamics with a period of one year – in these cases, the timing of theannual peak remained identical from one year to the next. Among the 11% of simulations whichexhibiting more complex dynamics, 31% exhibited skip years. Nearly nine percent of simulationsresulted in biennial (k = 2) cycles, 24% of which exhibited skip years. Sixty seven simulations re-sulted in four-year cycles, with 94% exhibiting skip years. Nineteen simulations exhibited k > 4and k < 50. Seventy three simulations exhibited k > 50, with 48% exhibiting skip years. Exam-ples of the types of trajectories possible under each value of k are presented in Fig. 4.The timing of the annual peak in infectious adults, and the relation ship between that timingand the size of the peak, is presented in Fig. 5. An annual peak in the density of infectious adultsis most likely in weeks 30 - 31 (p = 0.63), in weeks 17 - 27 (p = 0.05), or in weeks 48 - 52

12 David R.J. Pleydell et al.

Peer Community Journal, Vol. 4 (2024), article e39 https://doi.org/10.24072/pcjournal.380

https://doi.org/10.24072/pcjournal.380


Juveniles
S

er
op

re
va

le
nc

e

Date

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2018 2019 2020
0

50
00

0
15

00
00

25
00

00
D

en
si

ty

Immature Adults

S
er

op
re

va
le

nc
e

Date

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2018 2019 2020

0
50

00
0

1e
+

05
15

00
00

2e
+

05
D

en
si

ty

Adults

S
er

op
re

va
le

nc
e

Date

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2018 2019 2020 35
00

00
40

00
00

45
00

00
50

00
00

55
00

00
D

en
si

ty

Figure 3 – Seroprevalence data and estimates for 2018-2019. The mean and 95% cred-ibility intervals for the seroprevalence data are shown as black dots and whiskers re-spectively. The median and 95% credibility intervals for the modelled seroprevalenceare shown as dotted lines and red bands respectively. 95% credibility intervals for thedensity of individuals in each class are shown in beige.
Table 4 – Recurrence plot analysis results, providing the frequency distribution for vari-ous values of k , the period (in years) of dynamics in the density of infectious adults (IA),and the frequency of observing skip years in those patterns. Since recurrence plots wereconstructed from 100 year simulations, the maximum periodicity permitting at least onewhole replication of a dynamic cyclewas 50 years. Thus, we pool all simulations providingjust partial evidence for periodicity in the 50 - 99 range. Similarly, we pool all simulationsindicating k ≥ 100, many of which are likely to have been chaotic. Four simulations re-sulted in extinction of the virus.

Period k Frequency Frequency(years) with skips1 8938 02 899 2194 67 635 1 06 5 47 1 08 7 710 1 114 1 025 1 028 1 048 1 151-99 25 8
≥100 48 27Extinct 4 N.A.Total 10000 330

(p = 0.045). Weeks 21, 25 and 27 are associated with the greatest expected outbreak sizes(24610, 24411 and 24528 infectious adults respectively), despite bi-modality in outbreak sizeduring that period of the year. The expected outbreak size in weeks 30 and 50 are 8128 and9618 respectively.
Probability of not sampling an infectious bat

Seasonality across 2019 in the probabilities to not have an infectious individual in a sampleof 25 adults and 25 young bats are represented graphically in figure 6. The expected values of
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Figure 4 – Example long-term trajectories of infectious adults under various values ofperiod k . From top to bottom, k equals 1, 2, 4, 6, 8, 48 and k > 100 respectively. Verticalgrey, and blue, lines depict the start of each year, and the period k , respectively. Skip years(any 52 week period without an outbreak) are evident in several examples. A higher (thanone bat) threshold in the recurrence plot definition (equation 26) could clearly result in
k = 8 and not k = 48 in the sixth example. The dynamics in the final example appear tobe chaotic.
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these probabilities were minimised in week 31 in both young and adult bats, and were 0.02 (95%CI: 0.0039 – 0.069) and 0.48 (0.29 – 0.70) respectively.
The probability to not have an infectious bat in the samples tested by PCR in the (Djomsi etal., 2022) study was 0.00052 (6.6×10−9 – 4.2×10−3). These probabilities are greatest during thefirst four to five months of the year. Uncertainty in these probabilities is greatest in late summerand early autumn.

Discussion
Model overview and fit

The current work presents a Bayesian analysis of an age-structured epidemiological model ofEbolavirus transmission in Eidolon helvum. The model simulates both demographic and epidemi-ological dynamics, and was calibrated to ecological and serological data collected previously inCameroon (Djomsi et al., 2022) and age structure data from Ghana (Peel et al., 2016). A keycomponent of the model is a series of four seasonally dependant pulse functions, which con-trol when females can produce pups, and when maturation between successive age classes canoccur. Uncertainty in the estimated starting times of those pulse functions was low, with the95% credibility interval being less than two weeks wide in all four cases. Some outliers in theage-structure data were observed (Fig. 2) and are likely linked to neglected ecological mecha-nisms, such as heterogeneity in dispersion patterns, food availability and survival. Nevertheless,the model trajectories provide a succinct summary of trends observed in both the age-structureand serology data – the most notable trend being the sharp increase in seroprevalence in latesummer (Fig. 3).
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Figure 6 – Probability of not capturing an infectious bat in a sample of 25 pre-adult (left)or adult (right) bats, across 2019. Grey vertical lines indicate weeks at which bats werecaptured for PCR analysis, with a mean sample size of 25.

Inference from parameter estimates
Our analyses indicate that, on average, 76% of adults and 39% of young bats survive eachyear. Infections are expected to last one and a half weeks. Maternal antibodies are expected toprovide protection for just 1.1 weeks on average, thus the annual birthing pulse leads rapidly togrowth in the pool of susceptible individuals, which in turn typically leads to increased transmis-sion and seasonal outbreaks. Somewhat similar patterns of maternal antibody loss, followed byacquisition as young adults, and with seroprevalence in adults stabilising at roughly 60%, havealso been reported for Lagos bat virus and henipavirus in E. helvum (Peel et al., 2018) – however,the mean duration of protection frommaternal antibodies in that study was estimated to be halfa year. Following experimental infections with canine distemper virus in adult female Pteropushypomelanus and natural infections of Hendra virus in adult female Pteropus alecto serologicaltests could still detect maternal antibodies in pups of up to 7.5 and 8.5 months of age (Epsteinet al., 2013). The duration of protection frommaternal antibodies estimated in the current studydoes appear to be low compared to estimates from other studies for other viruses, however, un-certainty was low (despite a very uninformative prior) which suggests that the result was reallydriven by the observed data. Further studies could be useful to verify why maternal antibodiesplay an apparently less important role here, compared to other host-virus systems.Here, the expected duration of antibodies in recovered bats was estimated to be 75 weeks,or possibly as much as 135 weeks – although again, this duration of protection from antibodiesis shorter than the four years and twelve years estimated for henipavirus and Lagos bat virusrespectively in Peel et al. (2018). Given the shorter half-life of detectable antibodies in the adultbats of the current study, it is perhaps less surprising that maternal immunity appears to beshorter here than in other studies. The posterior distribution of pR2L indicated that the major-ity of individuals loosing antibodies are expected to enter a form of long-term immunity – and97.5% of samples indicated pR2L > 0.24, thus some form of long-term immunity appears to belikely. This result replicates modelling results of Brook et al. (2019), who described a similar phe-nomenon in henipavirus transmission in Eidolon dupreanum, Pteropus rufus and Rousettus mada-gascariensis fruit bats in Madagascar. Moreover, experimental infections suggest that Egyptianfruit bats (Rousettus aegyptiacus) continue to exhibit long-term protection to Marburg virus 17-24 months after an original infection despite waning expression of virus-specific IgG antibodies(Schuh et al., 2017).
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Probability of serology-PCR mismatch
A key aim of the current work was to explore an apparent mismatch between seroprevalencedata – which suggest Ebola-related virus circulation in juvenile and sexually immature bats – andthe results of PCR tests – which have failed to detect a positive sample among the 456 oraland rectal swabs tested from 366 bats (152 juveniles and 214 immature adults)(Djomsi et al.,2022). Here the probability to not have an infectious bat among all the samples tested by PCRwas estimated to be 0.00052 (95% CI: 6.6 × 10−9 - 4.2 × 10−3), which confirms a paradoxicalmismatch between the results of the serology and PCR tests.
The circulation pattern observed in the serology data, and replicated in our model, is appar-ently driven by seasonal pulses of young susceptible bats entering the population, fueling anannual resurgence of viral circulation, and playing a key role in viral persistence. That birthingpatterns play an important role for contributing to the timing of outbreaks has been reportedfor various other host-pathogen systems (Cappelle et al., 2021; Jolles et al., 2021; Mariën et al.,2020; Peel et al., 2014), which supports the argument that the seasonal patterns observed in theserology data really are linked to viral circulation. However, in the absence of confirmed positivecontrol samples for ebolaviruses in bats the calibration of a serological test is challenging, there-fore there is a risk that a low cut-off value could have inflated the frequency of false positiveresults. Indeed, Djomsi et al. (2022) tried several methods to identify a cut-off value – however,even the most stringent of those cut-offs suggested the presence of bats that were seropositiveto ebolaviruses and seasonality in transmission. Cross-reactivity between different ebolaviruseshas been documented in humans (Diallo et al., 2021) and in experimentally infected Rousettusaegyptiacus, where limited cross reactivity with other filoviruses was also documented (Schuh etal., 2019). Such results suggest that the serological signal observed in that study did come fromthe circulation of Ebola-related viruses and not other filoviruses. Nevertheless, false positive re-activity with other pathogens cannot be excluded for the serological assay used in our study,which may explain why all PCR tests remained negative – i.e. the viruses actually circulating andcausing positive serology in E. helvum might not be in the detection range of the pan-filovirusPCR of Djomsi et al. (2022). However, other factors could also explain the lack of positive PCRtest results, even if Ebola-related viruses actually are circulating within the bat population.
One alternative possibility is that low sensitivity of the PCR assay may have lead to manyfalse negative test results and may therefore explain the mismatch between the serological andPCR data. PCR assays designed to detect viral families may have lower sensitivity than PCRtargeting specific viruses. For example, a Bomabali-virus-specific real-time PCR assay detectedan additional positive sample than the filovirus ‘family level’ cPCR assay used by Goldstein et al.(2018).
Furthermore, samples taken from infectious sylvatic bats are likely to have very low viralloads compared to experimentally infected bats or sick naturally infected humans for whom thePCR assays have been designed. If PCR sensitivity is an issue, then developing a more sensitivePCR should help, so long as it is not associated with a decrease in specificity. Indeed, if unknownEbola-related viruses are actually circulating in the population, designing a specific PCR assaywould prove challenging. Moreover, future studies that succeeded to identify or isolate thoseviruses would greatly clarify the epidemiological picture.
Finally, another potential explanation for the negative PCR results, despite the apparent circu-lation of Ebola-related viruses, may be the absence of viral excretion in the rectal and oral swabsamples collected. During an experimental inoculation of Rousettus aegyptiacuswith Ebola virus,none of 36 swab samples taken 3-10 days post infection tested positive by PCR, although EbolaRNA was detected in the blood of one bat and the lungs and liver of another (Paweska et al.,2016). Transmission routes other than the fecal-oral or oral-oral routes may be involved in thetransmission of Ebola-related viruses in E. helvum. In rare cases Ebola virus has been detectedin various samples from humans, and a sexual route of transmission has been demonstrated(Christie et al., 2015; Mate et al., 2015; Thorson et al., 2016). The large majority of samplestaken from bats so far have been oral and rectal swabs. Taking multiple samples from bats, in-cluding organs, may help to clarify this point. Ethical questions would arise from such a protocol
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involving bat euthanasia, and the balance between improving our understanding of the ecologyof ebolaviruses and animal well-being should be discussed by ethics experts.
Complex dynamics and optimal timing for sampling

A key aim of the current study was to predict the optimal timing for identifying or isolatingthe virus(es) responsible for the sero-conversions observed in E. helvum. Clearly, when planningfield sampling schemes, it can be highly beneficial to have as complete an understanding aspossible concerning the complexity of viral dynamics in a sylvatic host population. Some bat-borne zoonotic viruses are known to exhibit complex multi-year inter-epizootic periods, whichhave been attributed to interactions between population density changes, waning immunity,and viral recrudescence (Cappelle et al., 2020; Epstein et al., 2020). Results from our long-termsimulations indicate a degree of uncertainty regarding whether or not complex multi-annualdynamics in the number of infectious bats are to be expected. Ten percent of our simulationssuggest that the period of cyclicity could be greater or equal to two years, and 31%of that subsetof simulations suggest that there may be periods of twelve months or more where prevalencerates remain close to zero. Such "skip years" are a well known phenomenon in mathematicalepidemiology (Stone et al., 2007; Subramanian et al., 2020; Zhao et al., 2018) and arise whenthe size of the susceptible population remains below a threshold required for an outbreak forprolonged periods of time. Clearly, whether or not skip years occur is an important question forfield-virologists interested in sampling sylvatic hosts for virus isolation. Here the probability thatthe system exhibits skip years was estimated as 0.033, which is low but not completely negligibleeither.Actually, almost 90% of our long-term simulations suggested that the dynamics of ebolavirusin E. helvum in Cameroon may be relatively simple. The most likely scenario appears to be: oneoutbreak occurs per year; the size of those outbreaks is somewhat consistent; and the peak ofeach outbreak likely occurs during weeks 30 and 31 of the year (p=0.63). Thus, a sampling cam-paign centered at these dates would most likely be optimal. However, our uncertainty analysisdoes not eliminate the possibility of more complex patterns where the peak in the number of in-fectious bats could occur at any time after the first three months of the year, and where the sizeand timing of outbreaks are related. Given this uncertainty in the timing and size of outbreaks,it could also be worth sampling in weeks 17-27, because although the probability to have anoutbreak in this period is lower, the size of outbreaks predicted in this period can be greater.Any outbreaks occurring after week 35 would only generate low prevalence rates, thus it couldbe challenging to isolate the virus during this period. These results can be used to target periodswhen ebolavirus circulation can be expected to be greatest, and to help optimise the samplesizes required to have a high probability of sampling at least one infectious bat – which can helplimit the number of bats euthanized for the purpose of viral isolation.
Limitations and future research

Various limitations should be kept in mind when interpreting the results presented in thecurrent work. For example, our modelling neglects: stochasticity in population dynamics, trans-mission and recrudescence (Muñoz et al., 2022; Peel et al., 2014); spatial dynamics andmigration(Richter and Cumming, 2006); between-year variation in the timing and success of birth pulses(Adole et al., 2016); potential long-term carriers (Forrester, 2018); temporal changes in envi-ronmental stress that may affect susceptibility (Lafferty and Holt, 2003); and age-dependantheterogeneity in contact rates (Rohani et al., 2010). Future modelling studies should considerusing sensitivity analysis to assess whether or not neglecting such mechanisms can have im-portant consequences on the long-term trajectories of disease transmission and on the optimaltiming of sampling. Moreover, the current work has focused on one host, one serological testand is based on just over one year of field data. We cannot eliminate the possibility that multipleEbola-related viruses contributed to the observed trends in serology, because of a lack of speci-ficity of the serological tests. The limitations of this study highlight the importance of conductinglong-term field monitoring, for the calibration of models, assessing their predictions and for fullyelucidating the complex dynamics of Ebola-related viruses in sylvatic host communities.
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Conclusions
The current paper presents modelling work that addresses a paradoxical observation in strawcoloured fruit bats, where young bats exhibit rapid seroconversion for ebolavirus antibodieswhilst confirmation by PCR remains elusive. The probability of this contradictory observation isestimated to be one in two thousand. The potential causes of this mismatch have been discussedand remain the focus of future research. This work provides novel insights in to the nature ofthe seasonality of ebolavirus transmission in fruit bats and provides predictions which can helpwith the design of future field programs for isolating circulating Ebola viruses.
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Supplementary information
Details regarding the pulse functions used to control seasonality are provided in annex 1.Details regarding the parameterisation of priors are provided in annex 2.

Annex 1: Pulse functions
Seasonal flow of individual bats through the four-class life cycle model was controlled via aseries of four pulse functions. The scaled product of two logistic curves was used to define asingle pulse, and modulo arithmetic was used so that this pulse could be applied to an unlim-ited number of years. Thus, the rate of a given life-cycle process (i.e. birth, or maturation) wasmodelled as a function of time t as follows:

(29) r(t) = rMax 1

1 + exp(γX1(t))

1

1 + exp(γX2(t))

with
(30) X1(t) = ((tStart − t + δ) mod 52) − δ,

(31) X2(t) = ((t − tStop + δ) mod 52) − δ

and
(32) δ =

52 + tStop − tStart − 10−2

2
,

where tStart gives the start of the pulse (i.e. the centrality parameter for the first logistic curve),
tStop gives the end of the pulse (i.e. the centrality parameter for the second logistic curve), moduloarithmetic permits the recycling of the pulse function over multiple years, δ provides a shift thateliminates artefacts arising from edge effects under most biologically reasonable combinations
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of parameters, and γ is a shape parameter controlling how rapidly the rate r(t) passes from zeroto rMax, and back again. In practice we fix γ at ten. Note, tStop > tStart.For the birth pulse function, rMax represents the within-season birth rate, which we note as
bMax, which we define as
(33) bMax = pBirth

dBirthwhere dBirth is the duration of the birth pulse, and pBirth is the proportion of females expected togive birth (to a single pup) during the birth pulse. For the pulse functions controlling maturationfrom the state of being a pup, juvenile or immature adult rMax is m̂P , m̂J and m̂I respectively.
Annex 2: Parameterisation of priors

Prior distributions for all fitted parameters are summarised in table 2 of the main text. In thefollowing subsections we outline our choices for how the prior distributions for each of the esti-matedmodel parameters were specified. Typically our choices for prior distributionswere classic.For example: the beta distribution was used to model scalar proportions; Dirichlet distributionswere used for vectors of proportions that sum to one; and gamma distributions were used aspriors for positive scalars such as rates or sejourn times. Recall, an exponential distribution is agamma distribution with a shape parameter of one.
Prior for bStart and dBirth

For the start and duration of the birth pulse (bStart and dBirth respectively) semi-informativepriors were chosen to represent the knowledge and uncertainties of ecologists familiar with theE.helvum population of Yaounde.For the start of the birth pulse, bStart, a gamma distribution was chosen with an expectedvalue of 10 and a standard deviation of approximately 4.5. This provides a distribution withapproximately 90% of its mass distributed between the 4th and 18th week of the year.For the duration of the birth pulse, dBirth, a gamma distribution was chosen with an expectedvalue of 5 and a standard deviation of approximately 2.2, providing a distribution with approxi-mately 90% of its mass distributed between 2 and 9 weeks.
Prior for pBirth

The proportion of females giving birth each year, pBirth, was modelled using data from Hay-man et al. (2012a) and a beta-binomial model, which is a natural choice for modelling proportionswith binary data. According to that paper, the expected value and 95% confidence interval of
pBirth are 0.96 and (0.92, 0.98) respectively. We sought to identify the parameters of a beta dis-tribution that would minimise the L2 norm of errors between fitted values and these three datapoints. Using the optim function in R, we identified that
(34) pBirth ∼ Beta(171.49, 8.13).
For further details, see the script hayman.R.
Prior for m̂P , m̂J and m̂I

The maximummaturation rates of pups, juveniles and immatures (m̂P , m̂J and m̂I ) were givenexponential prior distributions, with the scale parameter set so that an expected 99% of individ-uals completed the given stage of the life cycle within eight weeks. The expected time for 99%of individuals to complete the life stage becomes 76 weeks (or 3.5 weeks) if the maturation ratewas set to the 10th (or 90th) percentile of its prior distribution (respectively) – suggesting that thisthe prior is only weakly informative within a biologically plausible range of values.
Prior for mStart

P , mStart
J and mStart

I

The start of the pulse functions controlling maturation (to subsequent life stages) of pups,juveniles and immatures were given uniform priors. The bounds on those uniform distributionswere set to 0 and 104 weeks, making them uninformative over the expected development timeof E. helvum.
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Prior for µ−1
A

The baseline mortality rate for adults, µA, is the mortality rate that is expected in the absenceof competition with other bats. Thus, it is the expected mortality rate when bat densities areclose to zero. We set a mildly informative prior on its inverse, the baseline life expectancy. Forthat, we used a gamma distribution with an expected value of ten years and a standard deviationof four years. For this distribution 99% of the mass corresponds to the expected life expectancybeing less than 21.6 years.
Prior for R

According to Hayman et al. (2012a) the expected annual survival probability and 95% confi-dence intervals is 0.63 and (0.27, 0.88) for adult bats. Using arguments similar to the previoussection on pBirth, we used optim to minimise the L2 norm of the errors between these three datapoints and fitted values, giving the following model of adult survival
(35) SA ∼ Beta(4.95, 3.35).

Similarly, Hayman et al. (2012a) reported the expected annual survival probability and 95%confidence intervals for young bats are 0.43 and (0.16, 0.77) respectively. To ensure that SY <
SA, we assumed SY = RSA and that R could be modelled using a beta distribution. Thus, wesought to identify parameters for R that could minimise an L2 norm between the three datapoints and their equivalent "fitted values". We used Monte Carlo approximation to obtain these"fitted values" as follows.Assume the following model for R,
(36) R ∼ Beta(αR,βR).

For a given set of parameters (αR,βR), we simulated 10001 values from equations 35 and 36.Those vectorsweremultiplied to obtain 10001 samples ofSY , and kernel density estimationwasapplied to these samples to obtain an empirical distribution for SY . This empirical distributionwas used to identify the fitted expected value and 95% credibility interval, which were then usedto calculate the L2 norm. Minimising the L2 norm resulted in obtaining the following prior
(37) R ∼ Beta(4.7, 1.6).
For further details, see our script hayman.R.
Prior for N0

The total population size at the start of each simulation (N0) is a parameter that cannot beknownwith precision, given the lack of census data or capture-mark-recapture studies. However,experience in the field indicates that Yaounde’s E. helvum population is extremely large, andprobably consists of several hundreds of thousands of individuals. We adopted a prior that wasinformative about the order of magnitude of the population - representing uncertainty in thetotal population size via a gamma distribution, with an expected value of 5 × 105, a standarddeviation of 2.2×104 and 2.5th and 97.5th percentiles of 4.6×105 and 5.4×105 respectively. Thepurpose of this prior was to constrain N0 within a likely order of magnitude, in order to facilitatethe estimation of the other parameters.
Prior for pAge0

Before simulating dynamics with an epidemiological model, it is necessary to set the initialconditions of the system, i.e. the state of each compartment at time zero. For an age structuredmodel, this includes setting the initial population sizes for each age class. We do that by pa-rameterizing in terms of the total population size at time zero, N0, and the proportion of thatpopulation associated with each age class, pAge0 = (pP0 , p
J
0 , p

I
0, p

A
0 ). Since pups and juveniles areabsent at the start of the year we set their initial proportions to zero. The prior on N0 was set toapproximate the unknown population size in Yaounde. Thus, we simply needed to set a prior forthe proportion of immatures, pI0, and it’s compliment, pA0 = 1 − pI0. We outline how we did thathere.
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Since pI0 is a probability, it was natural to assign a beta distribution and to seek data on whichto base the hyper-parameters. Assuming that the annual adult survival is constant with age,the population age structure follows a geometric series, and the proportion of individuals of agiven age relative to all individuals of the same age or greater is constant. Thus, we used toothcementum annuli data (Peel et al., 2016) to estimate that proportion, and thereby obtain anestimate for the proportion of immature adults in the population at the start of the year, justprior to the spring birth pulse. For each age t , in years, we modelled the proportion of bats ofage t among all bats of age t or more as a beta-binomial model with uniform prior, i.e.
p(Age = t|Age ≥ t) ∼ Beta(1 + nt , 1 + n>t)

where nt is the number of sampled bats of age t , n>t is the number of sampled bats older than tand t is any integer in the interval [1, 14]. Recall, the oldest bat in the data set was 15 years old,so 14 was the greatest value of t for which nt and n>t were both non-zero. A weighted averageof these 14 priors was calculated to obtain a general prior
pw (Age = t|Age ≥ t) ∼ Beta(

1 +
14∑

τ=t

ωτnτ , 1 +
14∑

τ=t

ωτn>τ

)

where the weights ωτ ∝ ∑14
τ=t(nt + n>t) sum to one and account for the diminishing samplesize as bats die each year. Since pw (Age = t|Age ≥ t) is constant (with respect to t) under theassumption of constant mortality, we originally considered it to be a suitable a prior for pI0. Thisresulted in the prior

pI0 ∼ Beta(38.74, 146.57).
However, in practice, this prior lead to mismatches with data that suggested that very few batswere still being classified as immature at the start of the year (fig. 2). Thus, we maintained theexpected value of this prior, but relaxed the variance so to not exclude zero as the proportion ofimmatures at the start of January. This relaxation resulted in the following prior
(38) pI0 ∼ Beta(1, 3.8).
The density functions of these priors, and the 14 distributions used to build them, are showngraphically in figure 7.
Prior for ϕI0 and ϕA0

The proportions of immatures and adults within each of the epidemiological classes at thestart (t = 0) of each simulation (ϕI0 and ϕA0 respectively) were givenDirichlet priors. These priorswere parameterised to be uninformative, with the exception that we assumed no bats in eitherof these age classes will carry maternal antibodies at the start of the year.
Prior for β

Experience with our model indicated that uninformative priors for the transmission rate β donot work well. Thus, it was important to restrain β from being so large that the posterior distri-butions became biologically implausible. To do this, we assumed an exponential (or equivalently,a gamma distribution with shape equal to one) prior, to penalise against very large values of β.To obtain a reasonable expected value for this prior we asked roughly how many new infectionsmight a single infectious individual generate in one week when introduced into a completely sus-ceptible population (and neglecting all other transitions). In other words, we askedwhat might bea roughly reasonable value for the product βSI , where I = 1 and S = E [N0]. Since E [N0] = 5×105we opted for E [β] = 10−5 so that a priori the expected number of secondary cases in one weekis five. Thus, we used the following prior
(39) β ∼ Gamma(shape = 1, scale = 10−5).

Setting β to the 1st or 99th percentile of this prior leads to the product βSI being 0.05 or 23respectively.
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Figure 7 – Posterior distributions for beta-binomial models of the proportion of a givenage of adult in years (t) in the sub-population of bats the same age or more. Tooth ce-mentum annuli data (Peel et al., 2016) were used to calculate these distributions, fixing
t at integer values in the interval [1, 14]. The weighted average of those 14 distributions(dotted line) proved to be overly restrictive as a prior. So the variance of the prior wasrelaxed to not exclude zero (black line), providing a prior for the proportion of immatureadults in the E.helvum population at the start of the year.

Prior for ρ, α−1
M and α−1

For the recover rate, we set an exponential prior with an expected value of one week – avalue consistent with many virus infections in humans. In other words we assumed that
(40) ρ ∼ Gamma(shape = 1, scale = 1).

For the expected duration of maternal antibodies (inverse of antibody loss rate) we set anuninformative uniform prior over the range of zero to twenty years
(41) α−1

M ∼ Uniform(0, 20 × 52).

For the expected duration of maintaining antibodies following infection, we specified thefollowing non-informative exponential prior
(42) α−1 ∼ Gamma(shape = 1, scale = 1011).

Prior for pR2L and pL2R

The probabilities of developing long-term immunity following the loss of antibodies, pR2L,and of re-acquiring antibodies when exposed to the virus whilst in a state of long term immunity,
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pL2R , were assigned uniform uninformative priors. In other words,
(43) pR2L ∼ Beta(1, 1)
and
(44) pL2R ∼ Beta(1, 1).
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