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Abstract
Predator-prey interactions have been a central theme in population ecology for the past
century, but real-world data sets only exist for recent, relatively short (<100 years) time
spans. This limits our ability to study centennial/millennial-scale predator-prey dynam-
ics. We propose that regional radiocarbon databases can be used to reconstruct a signal
of predator-prey population dynamics in deep time, overcoming this limitation. We sup-
port our argument with examples from Pleistocene Beringia and the Holocene Judean
Desert.
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Introduction 

Predator-prey interactions are a fundamental topic in theoretical ecology  (May, 2001 [1974]), nature 
conservation (Johnson et al., 2019; Southall et al., 2019), and economics (Apedaille et al., 1994; Edwards 
et al., 2020). The dynamics of predator-prey populations exhibit multiple wavelengths, beyond the 
generational oscillations predicted by Lotka-Volterra models. For example, the well-known Canada lynx–
snowshoe hare system oscillates on a decadal timescale, which may be linked to climatic processes 
operating on centennial to millennial scales (Hone et al., 2011; Yan et al., 2013). Similar multiple-timescale 
oscillations have been observed in other systems and predicted theoretically (Laan and Hogeweg, 1995). 
These oscillations may reflect multi-generational evolutionary processes. 

Long-term predator-prey dynamics are difficult to study due to the scarcity of population data on 
timescales beyond a century. The longest record known to us is the hare-lynx records of the Hudson Bay 
Company, which reflect a century of fur trade (Elton and Nicholson, 1942). Other records are much shorter, 
typically covering decades  (Gilg et al., 2009; e.g., Vucetich et al., 2011). We propose that regional sets of 
radiocarbon-dated animal remains can be used to study predator-prey dynamics in deep time. Because 
radiocarbon can date materials up to 50,000 years old, it can extend the timescale for studying these 
important ecological interactions by three orders of magnitude. 

Radiocarbon dating is best known for providing absolute dates for archaeological and paleontological 
organic materials, anchoring stratigraphic sequences and establishing the temporal context of specific 
findings. Large radiocarbon databases are also used in archaeology to infer changes in human demography 
(e.g., Stewart et al., 2021) or mammalian community structure (Lazagabaster et al., 2022). These 
demographic inferences are based on the "dates as data'' paradigm, which assumes that the number of 
radiocarbon dates in a region reflects the magnitude of occupation or the total number of person-years of 
human existence (Rick, 1987). This is routinely applied today using summed probability distribution (SPDs), 
which are applied to calibrated radiocarbon dates (Williams, 2012)In paleontology, the probability of a 
specimen surviving to be dated is assumed to be proportional to the number of individuals of its taxon that 
existed in a specific region and time (Lazagabaster et al., 2022; Stuart and Lister, 2014). For example, 
radiocarbon data have been used to study megafaunal extinctions (Broughton and Weitzel, 2018; e.g., 
Stewart et al., 2021), using archaeological and paleoenvironmental data to assess the relative importance 
of anthropogenic and paleoclimatic drivers. Here, we address the more general question of whether the 
density of radiocarbon dates obtained from a regional set of paleozoological survey data can reveal long-
term predator-prey population dynamics.  

Radiocarbon data are inherently sparse, prone to selection and preservation biases, and subject to 
uncertainties arising from measurement error and calibration procedures used to adjust observed isotopic 
ratios to ancient background levels (Carleton, 2021; Hajdas et al., 2021; Reimer et al., 2020).  Therefore, 
any attempt to infer ecological processes from radiocarbon dates should exercise caution, employing 
minimalist hypotheses, spatially constrained samples, and randomly collected specimens to minimize 
biases. Radiocarbon datasets spanning a wide time range with continuous deposition and multiple species 
occurrences are relatively resilient to sample size and effect size issues, and the number of dates in each 
SPD (sensu Williams, 2012)becomes less critical when identifying strong signals in long-term trends (Crema, 
2022; Hinz, 2020).  In addition, our method is grounded on comparing the signal of specific taxa in 
constrained geographical regions through time, and, providing a strong signal, our main concern should be 
an equivalence of sample sizes between the compare SPDs.  

We found two datasets that meet the above criteria. The first comprises published radiocarbon dates 
of Late Pleistocene mammalian megafauna recovered from gravels near Fairbanks, Alaska (Fox-Dobbs et 
al., 2008; Leonard et al., 2007). The Fairbanks data includes 33 wolves (Canis lupus), 28 horses (Equus sp.), 
and 3 reindeer (Rangifer tarandus), representing regional mortality between ~40-7 kya. The second dataset 
is from the Holocene (~10-0.5 kya) southern Judean Desert, Israel, where Lazagabaster et al. (2022) 
collected radiocarbon dates of leopard (Panthera pardus nimr, N = 12), hyrax (Procavia capensis, N = 27), 
and Nubian ibex (Capra ibex nubiana, N = 10) from biogenic cave deposits. The Judean Desert data are 
argued to represent a random sample of the regional fauna (Lazagabaster et al., 2022).  

We hypothesize that the summed probability distribution (SPD) of predator radiocarbon dates, insofar 
as it tracks changes in population size, will have either greater or lesser divergence than expected from a 
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random sample of SPDs from the same time range. A non-random divergence would suggest that predator 
and prey populations covaried. This minimalist hypothesis assumes nothing about the wavelength, 
mechanism, or cause of predator-prey interaction, which we believe cannot be tested with the current 
data. If supported, this hypothesis would provide preliminary evidence that long-term regional radiocarbon 
data encode predator-prey interaction signals. This could justify constructing larger datasets to enable in-
depth investigation of the structure of these signals. 

It is important to emphasize that although we aim to reconstruct long-term ecological interactions 
between predator and prey taxa, our primary data are the distributions of observations of single taxa over 
time, aggregated across several find spots in each region. Therefore, biotic and abiotic biases in specimen 
frequencies should not affect our results unless we have reason to believe that these processes acted 
differently through time on specific taxa. For example, the hypothetical fact that predator tibiae preserve 
less well than herbivore tibiae does not matter to the distribution of predator remains over time. 
Conversely, if we have reason to believe that predator tibiae preserve less well during a particular time 
interval compared to other periods, this could bias our results. Here, we make the uniformitarian 
assumption that there are no changes over time in the biotic or abiotic factors affecting the deposition or 
post-depositional survivability of specific taxa (top predators/larger herbivores) and that the population 
density of a species in a region is the main factor affecting the probability of finding their remains in the 
paleontological record and obtaining radiocarbon dates for them. This assumption relies on the 
comparability of the depositional environments for each dataset throughout time, which consist of dry 
desert caves or gravel deposits.  

In the same vein, the overrepresentation of carnivores in both datasets in relation to a real ecosystem 
should not affect our analysis. The estimate of predator and prey frequencies at any point in time is not 
obtained from their numerical ratio, which would then indeed have to reflect a reasonable predator/prey 
balance. Rather, it is derived from the independent calculation of the probability densities of the 
radiocarbon dates of each group. In this case, the frequencies are irrelevant unless they are too few to 
represent the distribution of the species through time, a subject to which we referred above (Crema, 2022; 
Hinz, 2020).  

Methods 

The radiocarbon datasets, as detailed in Supplementary tables 1 and 2, were categorized into two 
groups for each region: predators (Canis / Panthera) and prey (Equus, Rangifer / Procavia, Capra). These 
groups exclude taxa that are not likely to be in trophic interaction in the Judean Desert, for example the 
carrion-eating striped hyena (Hyaena hyaena) or the plateau-dwelling Dorcas gazelle (Gazella dorcas). 
Specimens without both minimum and maximum age estimates were also excluded. The original 
publications by Leonard et al. (2007), Fox-Dobbs et al. (2008) and Lazagabaster et al. (2022) provide 
comprehensive information on the context and laboratory procedures, which are not reiterated here.  

Note, however, that the leopard specimens from the Judean Desert represent bones recovered from 
three caves, and their estimated minimum number of individuals is six (Lazagabaster et al., 2022). 
Unfortunately, we cannot distinguish individuals within each cave by removing from our analysis specimens 
that have similar radiocarbon dates, based, e.g., on the overlap of their 95% highest posterior density. This 
type of ‘chronological minimum number of individuals’ calculation is conceptually equivalent to flattening 
the summed probability density curves we are comparing and making them ipso facto like random noise. 
In this analysis, therefore, we assume that the specimens are independent from each other. This is partially 
supported by the fact that three leopard specimens that were recovered from the same cave and that 
yielded aDNA belong to three different individuals, although their minimum number of individuals would 
be calculated as one. Regardless, we acknowledge that some degree of interdependence is expected under 
these conditions and cannot be controlled. 

The grouped radiocarbon ages underwent calibration (using the ̀ rcarbon::calibrate` function) and were 
subsequently converted to summed probability distributions (SPDs) using the `rcarbon::spd` function. 
These operations were performed in R 4.3.0 (R Core Team, 2021), utilizing the 'rcarbon' library developed 
by Crema and Bevan (2021). 

Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) quantifies the distance between two 
probability distributions by calculating the difference between the Shannon entropy of the first distribution 
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and the cross-entropy of the first and second distributions. The resulting KL divergence value is not a 
distance metric as it does not satisfy the triangle inequality and is asymmetric, meaning the divergence of 
p(x) from q(x) differs from the divergence of q(x) from p(x). The KL divergence is one of the most popular 
ways to compare probability distributions in information theory and data science, and has mathematical 
properties that make it uniquely suitable for measuring relative information (reviewed in Deng et al., 2019). 
KL divergence from the prey to the predator SPD was computed in each case using the `philentropy::KL` 
function from the 'philentropy' library (Drost, 2018). Following this, a random set of integers, equivalent 
to the sample size of the predator, was drawn from the range of the radiocarbon years of the prey. Each 
integer in the random set was assigned a radiocarbon measurement error that closely matched the real 
radiocarbon error in the actual dataset. These integers were then calibrated, converted to an SPD, and the 
Kullback-Leibler divergence from the actual prey SPD was calculated. 

This random sampling procedure was repeated 100 times with replacement. The percentage of random 
samples was then used to estimate the likelihood of the divergence of the predator from the prey SPDs 
being derived from a random dataset, giving the probability of KL(Predator||Prey) ∉ KL(Random||Prey). 
Note that bootstrap support is a conservative estimate of accuracy in most cases and should not be 
understood as a statistical p-value without additional, case-specific research (Hilis & Bull, 1993). The 
smoothed SPDs (calculated using 'modelbased::smoothing') are presented in the figures below. The 
smoothing procedure was applied after the KL divergence calculations. 

Results and Concluding Remarks 

The Fairbanks dataset shows fluctuating and alternating values of predator and prey densities over the 
interval between ~45 and 7 kya (Figure 1).  

 

Figure 1 - The prey (red) and predator (blue) SPD for the Fairbanks data, against the background of 
100 random SPD replicates (top). The distribution of the Kullback-Leibler divergences from the prey 
to the predator KL(Predator||Prey) SPDs is marked by the vertical red line on the histogram below, 
which shows the distribution of the KL divergences between the prey SPD and the random replicates 
KL(Random||Prey) (bottom). The function was run with the following parameters: 
kld_dates(fairbanks_prey$RC_date, fairbanks_prey$RC_error, fairbanks_predator$RC_date, 
fairbanks_predator$RC_error, sample = 100, dataset_name = "Fairbanks", y_scaling_parameter = 4, 
smoothing = 0.4). 
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The Kullback-Leibler (KL) divergence between the predator and prey distributions is 1.7174, which is 
smaller than 98% of the divergences measured for (random) predator-(real) prey distributions. This 
supports our hypothesis that the Fairbanks predator and prey distributions are not random, and that the 
low divergence between them is therefore unlikely to be due to chance. Similarly, the Judean Desert 
dataset shows fluctuating and alternating values of predator and prey densities over the interval between 
10,000 and <500 years (Figure 2). The Kullback-Leibler (KL) divergence between the predator and prey 
distributions is 5.0741, which is greater than 94% of the divergences measured for (random) predator-
(real) prey distributions. This supports our hypothesis that the Judean Desert predator and prey 
distributions are not random, and that the low divergence between them is therefore unlikely to be due to 
chance. 

 

Figure 2 - The prey (red) and predator (blue) SPD for the Judean Desert data, against the background 
of 100 random SPD replicates (top). The distribution of the Kullback-Leibler divergences from the prey 
to the predator KL(Predator||Prey)  SPDs is marked by the vertical red line on the histogram below, 
which shows the distribution of the KL divergences between the prey SPD and the random replicates 
KL(Random||Prey) (bottom). The function was called with the following parameters: 
kld_dates(desco_prey$RC_date, desco_prey$RC_error, desco_predator$RC_date, 
desco_predator$RC_error, sample = 100, dataset_name = "Judean Desert", y_scaling_parameter = 
4, smoothing = 0.4). 

As a specific case of population dynamics, predator-prey systems  are typically studied over short time 
periods, limiting our understanding of long-term fluctuations driven by factors such as climate change and 
evolution. Radiocarbon records may capture signals of these dynamics under rare sampling conditions. 
Here, we tested the hypothesis that the divergence between predator and prey probability density curves 
is not random (KL(Predator||Prey) ∉ KL(Random||Prey)) using two coupled datasets from Fairbanks, 
Alaska, and the southern Judean Desert, Israel. Our results suggest that in these cases the divergence is 
unlikely to be random. This is informative of the idea that radiocarbon data may sequester long-term 
predator-prey interactions that are over and beyond the timescale observed until now. Additional high-
resolution datasets are required to validate these results and further investigate the observed patterns. 
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Table 2 - Summary statistics of the original KL divergence of predator from prey SPD in the Fairbanks 
and the Judean Desert datasets.  

Statistic  Fairbanks Judean 
Desert 

KL(Predator||Prey)  1.7174 5.0741 
KL(Random||Prey) Min. 1.559 3.065 
 1st 

quartile 
2.148 4.001 

 Median 2.315 4.523 
 Mean 2.294 4.417 
 3rd 

quartile 
2.473 4.858 

 Max. 3.072 5.242 
Bootstrap support for KL(Predator||Prey) ∉ KL(Random||Prey)  98% 94% 
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