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Abstract
The reproductive mechanism of a species is a key driver of genome evolution. The standardWright-Fisher model for the reproduction of individuals in a population assumes that eachindividual produces a number of offspring negligible compared to the total population size.Yet many species of plants, invertebrates, prokaryotes or fish exhibit neutrally skewed off-spring distribution or strong selection events yielding few individuals to produce a numberof offspring of up to the same magnitude as the population size. As a result, the genealogyof a sample is characterized by multiple individuals (more than two) coalescing simultane-ously to the same common ancestor. The current methods developed to detect such mul-tiple merger events do not account for complex demographic scenarios or recombination,and require large sample sizes. We tackle these limitations by developing two novel anddifferent approaches to infer multiple merger events from sequence data or the ancestralrecombination graph (ARG): a sequentially Markovian coalescent (SMβC) and a graph neu-ral network (GNNcoal). We first give proof of the accuracy of our methods to estimate themultiple merger parameter and past demographic history using simulated data under the
β-coalescent model. Secondly, we show that our approaches can also recover the effectof positive selective sweeps along the genome. Finally, we are able to distinguish skewedoffspring distribution from selection while simultaneously inferring the past variation ofpopulation size. Our findings stress the aptitude of neural networks to leverage informa-tion from the ARG for inference but also the urgent need for more accurate ARG inferenceapproaches.
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Introduction
With the availability of genomes of increasing quality for many species across the tree of

life, population genetics models and statistical methods have been developed to recover the
past history of a population/species from whole genome sequence data from several individ-
uals (Barroso and Dutheil, 2023; Barroso et al., 2019; Johri et al., 2022, 2020; Li and Durbin,
2011; Schiffels and Durbin, 2014; Sellinger et al., 2020; Sheehan and Song, 2016; Speidel et al.,
2019; Stephan, 2019). Indeed, the inference of the past demographic history of a species, i.e.
population expansion, contraction, or bottlenecks, extinction/colonisation, is not only interest-
ing in its own right, but also essential to calibrate genome-wide scans to detect genes under
(e.g. positive or balancing) selection (Johri et al., 2021; Stephan, 2019). A common feature of
inference methods that make full use of whole genome sequences is the underlying assump-
tion of a Kingman coalescent process (Kingman, 1982) to describe the genealogy distribution
of a sample. The Kingman coalescent process and its properties stem from using the traditional
forward-in-time Wright-Fisher (WF) model to describe the reproduction mechanism of a popu-
lation. Besides non-overlapping generations, a key assumption of the neutral WF model is that
an individual offspring chooses randomly (i.e. uniformly) its parents from the previous gener-
ation. More precisely, each chromosome chooses a parental chromosome from the previous
generation. Thus, a key parameter is the distribution of the number of offspring that parents
can have. In the WF model, due to the binomial sampling, the distribution of offspring number
per parent is well approximated by a Poisson distribution with both mean and variance equal
to one. This implies that parents will most likely have zero, one, or two offspring individuals,
but it is improbable that one parent would have many offspring individuals (i.e. on the order of
the population size, under the Wright-Fisher haploid model the probability for a parent to have
10 or more offspring is ≈ 10−8). The assumption of small variance in offspring distribution be-
tween individual parents is realistic for species with low juvenile mortality (so-called
type I and II survivorship in ecology, see survivorship curves e.g. by Demetrius, 1978), such as
mammals.

As genome sequence data become available for a wide variety of species with different bi-
ological traits and/or life cycles, the applicability of the Kingman coalescent relying on the WF
model can be questioned (Árnason and Halldorsdottir, 2015; Árnason et al., 2023; Freund et
al., 2023; Kato et al., 2017; Menardo et al., 2020; Morales-Arce et al., 2020; Niwa et al., 2016;
Steinruecken et al., 2013; Tellier and Lemaire, 2014). Indeed, for some species, such as fish, with
high fecundity and high juveniles mortality (type III survivorship, Demetrius, 1978), it is expected
that the variance in reproduction between parents can be much larger than under the Poisson
distribution (Tellier and Lemaire, 2014). This effect is termed as sweepstake reproduction (Árna-
son and Halldorsdottir, 2015; Hedgecock and Pudovkin, 2011). Neutral processes such as strong
seed banking (Blath et al., 2020), high fecundity with skewed offspring distribution (Eldon and
Wakeley, 2006; Hedgecock and Pudovkin, 2011), extremely strong and recurrent bottlenecks
(Birkner et al., 2008; Casanova et al., 2020), and strong selective processes (i.e. positive selec-
tion; Árnason et al., 2023; Brunet et al., 2006, 2007; Durrett and Schweinsberg, 2005; Harris and
Jensen, 2020) are theoretically shown to deviate from the classicWFmodel in a way that the ge-
nealogies can no longer be described by a Kingman coalescent process. Under such conditions,
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a new class of processes arise to describe the genealogy distribution, a class where multiple indi-
viduals can coalesce and/or multiple distinguished coalescence events can occur simultaneously
(Bolthausen and Sznitman, 1998; Donnelly and Kurtz, 1999; Mohle and Sagitov, 2001; Pitman,
1999; Sagitov, 1999, 2003). Generally, this class of genealogical processes is called the Multiple
Merger Coalescent (MMC).MMCmodels aremore biologically appropriate than the Kingman co-
alescent to study many species of fish (Árnason and Halldorsdottir, 2015; Árnason et al., 2023;
Eldon et al., 2015; Hedgecock and Pudovkin, 2011), invertebrates (insects, crustaceans, etc.),
viruses (Matuszewski et al., 2017), bacteria (Menardo et al., 2020; Neher and Hallatschek, 2013),
plants and their pathogens (Tellier and Lemaire, 2014). While we would like to assess which pop-
ulation model best describes the species genealogy, field experiments to quantify the underlying
reproduction mechanism of a species can be costly and time consuming at best, or intractable
at worst. Therefore, an alternative solution is to use inference methods based on genome data
to identify which model best describes the genealogy of a given species/population.

In this study we use the so-called β-coalescent, a specific class ofMMCmodels. Unlike under
the WF model, under MMC models the ploidy level strongly affects the distribution of genealo-
gies (Birkner et al., 2013). For simplicity, in this study we focus on haploid organisms. In the poly-
ploid case, where each parent contributes multiple genomes, the SMC formulations of putative
intra- and inter-individual coalescence events would need to be carefully modelled, since this
effect would lead to smaller coalescence probabilities and a change of the predicted statistical
power for demographic inference. It is demonstrated that if the probability of a parent to have k
or more offspring is proportional to k−α, where 1 < α < 2, then the genealogy can be described
by a Λ-coalescent (Schweinsberg, 2003). The latter is a general class of coalescent process de-
scribing how and how fast ancestral lineages merge (Pitman, 1999; Sagitov, 1999). When using
the Beta(2−α,α) distribution as a probability measure for the Λ-coalescent, the transition rates
(i.e. coalescent rate) can be analytically obtained leading to the β-coalescent, a specific MMC
model. If α tends to 2, then the coalescent process converges to a Kingman coalescent up to a
scaling constant as specified in a more detailed way in the documentation of msprime (https:
//tskit.dev/msprime/docs/stable/api.html#msprime.BetaCoalescent). The effective
population size calculations for the Beta coalescent yield Ne = (µestimated

µreal )/scaling constant) 1
(α−1) ,

where m = 1 + 1
2α−1·(α−1)

, scaling constant = (mα)
(α·β(2−α,α)) (β being the Beta function) and

µestimated = θ(
2·

∑nind−1

i=1
1
i

)
·L
(Baumdicker et al., 2022; Birkner et al., 2013; Koskela, 2018; Koskela

and Berenguer, 2019; Schweinsberg, 2003) . If α tends to one, the model tends to a Bolthausen-
Sznitman coalescent process (i.e. dominated by strong multiple merger events) (Bolthausen and
Sznitman, 1998). The β-coalescent has the property that the observed polarized Site Frequency
Spectrum (SFS) of a sample of single nucleotide polymorphisms (SNPs) exhibits a characteristic
U-shape with an excess of rare and high frequency variants (compared to the Kingman coales-
cent) (Sargsyan and Wakeley, 2008). Current methods to draw inference under MMC models
leverage information from the summary statistics extracted from full genome data such as Site
Frequency Spectrum (SFS, or derived summary statistics; Harris and Jensen, 2020; Koskela and
Berenguer, 2019; Sackman et al., 2019), minor allele frequency (Rice et al., 2018) or copy num-
ber alteration (Kato et al., 2017). It is shown that the SFS is robust to the effect of recombination
(Koskela and Berenguer, 2019; Rice et al., 2018) and its shape allows to discriminate between
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simple demographic models (population expansion or contraction) under the Kingman coales-
cent and MMCmodels with constant population size (Eldon et al., 2015; Koskela, 2018; Koskela
and Berenguer, 2019). However, methods relying on genome-wide SFS have twomain disadvan-
tages. First, in absence of strong prior knowledge, they can suffer from non-identifiability (Johri
et al., 2022) as several complex neutral demographic and/or selectivemodels under the Kingman
orMMCmodels can generate similar SFS distributions. Second, as they summarize the collection
of underlying genealogies, they require high sample sizes (>50) to produce trustworthy results
(Eldon et al., 2015; Koskela, 2018; Koskela and Berenguer, 2019), relying on experimental de-
signs which are prohibitive for the study of non-model species. To tackle these limitations, we
develop twomethods that integrate recombination events along the genome in order to leverage
more information from full genome data, thus requiring fewer samples.

In species undergoing sexual reproduction, recombination events break the genealogy of
a sample at different position of the genome (i.e. the genealogy of a sample varies along the
genome), leading to what is called the Ancestral Recombination Graph (ARG; Birkner et al., 2013;
Hudson, 1983; Lewanski et al., 2024; Wong et al., 2023). Because all the genealogical informa-
tion is contained in the ARG, in this study we aim at the interpretation of the ARGs to recover
model parameters in presence of multiple merger events. With the development of the sequen-
tially Markovian coalescent theory (Marjoram and Wall, 2006; McVean and Cardin, 2005; Wiuf
and Hein, 1999), it becomes tractable to integrate linkage disequilibrium over chromosomes
in inferences based on the Kingman coalescent (Li and Durbin, 2011). Hence, we first develop
an SMC approach based on the β-coalescent named the Sequentially Markovian β Coalescent
(SMβC). The β-coalescent has the additional property that, under recombination, long range
dependency can be generated between coalescent trees along the genome if multiple-merger
events happen in a single generation (Birkner et al., 2013). In other words, coalescent treeswhich
are located at different places in the genome, and expected to be unlinked from one another (Nel-
son et al., 2020), would show non-zero correlation in their topology and coalescent times. This is
because coalescent trees from different genomic regions may all be affected by the same MMC
event (merger event of multiple lineages in the past) which then leaves traces in the genome at
several loci (Birkner et al., 2008). To overcome the theoretically predicted non-Markovian prop-
erty of the distribution of genealogies along the genome under the β-coalescent with recombi-
nation (Birkner et al., 2013) and the increasing sparsity of genealogies and ancestral nodes with
respect to α (see Supplementary Figure S18, S19 and S20), we develop a second method based
on deep learning (DL) trained from efficient coalescent simulations (Baumdicker et al., 2022).
In evolutionary genomics, DL approaches trained by simulations are shown to be powerful in-
ference tools (Korfmann et al., 2023; Sheehan and Song, 2016). Previous work demonstrated
that DL approach can help overcome problems mathematically insolvable or computationally in-
tractable in the field of population genetics (Battey et al., 2020; Burger et al., 2022; Chen et al.,
2018; Flagel et al., 2018; Isildak et al., 2021; Qin et al., 2021; Sheehan and Song, 2016; Wang
et al., 2021; Yelmen et al., 2021). The novelty of our neural network relies on its structure (Graph
Neural Network, GNN) and its training algorithm based on the ARG of a sample, or its tree se-
quence representation (Brandt et al., 2024; Kelleher et al., 2018;Whitehouse et al., 2024). GNNs
are an emerging category of DL algorithm (Bronstein et al., 2017; Cao et al., 2020; Xu et al., 2019;
Zhou et al., 2020) that benefit by using irregular domain data (i.e. graphs). GNNs are designed for
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the prediction of node features (Kipf and Welling, 2016; Yang et al., 2016), edge features (link
prediction) (Schlichtkrull et al., 2017; Zhang and Chen, 2018), or additional properties of entire
graphs (Lee et al., 2018; Ying et al., 2019). Therefore, GNNs represent a new tool to address the
large dimensionality of ARGs, while simultaneously leveraging information from the genealogy
(namely topology and age of coalescent events) as a substantial improvement over convolutions
of genotype matrices, as currently done in the field (Sanchez et al., 2020).

We first quantify the bias of previous SMC methods (MSMC and MSMC2, Schiffels and
Durbin, 2014; Wang et al., 2020) when performing inference of past population size variation
under the β-coalescent. We then describe our two methods, SMβC and GNNcoal , and demon-
strate their statistical power aswell as their respective limitations. From simulated tree-sequence
(i.e. ARG) and sequence (i.e. SNPs) data, we assess the accuracy of both approaches to recover
the past variation of population size and the α parameter of the Beta-distribution. This parame-
ter indicates how frequent and strong multiple merger events occur (see Supplementary Figure
S20). We demonstrate that our approaches can infer the evolutionary mechanism responsible
for multiple merger events and distinguish local selection events from genome-wide effects of
multiple mergers. We highlight the limits of the Markovian property of SMC to describe data
generated under the β-coalescent. Finally, we show that both our approaches can model and
identify the presence of selection along the genome while simultaneously accounting for non-
constant population size, recombination, and skewed offspring distribution. Thus our methods
represents a major and necessary leap forward in the field of population genetic inferences.

Materials and Methods
In our studywe first assume the trueARG to be known.Hence, the ARGof the sample is given

as input to our methods to estimate recover model parameters of interest (e.g. the α parameter
and/or the past variation of population size). We then show the applicability of our methods
by using as input simulated sequence data (i.e. SNPs) and/or ARG inferred using ARGweaver
(Rasmussen et al., 2014) from simulated sequence data.
SMC-based method

In this study, we use different SMC-based algorithms: two previously published, MSMC and
MSMC2 (Schiffels and Durbin, 2014; Wang et al., 2020), and the new SMβC. In the latter, the
software backbone stems from our previous eSMC (Sellinger et al., 2020, 2021) whilst the theo-
retical framework originates from theMSMC algorithm (Schiffels and Durbin, 2014) (see Supple-
mentary Text S1). All approaches can either use the ARG or sequence data as input. Providing
the ARG as input for MSMC and MSMC2 is enabled by a re-implementation included in the R
package eSMC2 previously published in (Sellinger et al., 2021). It is important to mention that
there are no theoretical differences in the models whether sequence data or ARG is inputted
(see Sellinger et al., 2021) and Supplementary Text S1 for details). The difference is that in one
case the hidden states are inferred from sequence data with a forward-backward algorithm, and
in the later the sequence of hidden states are directly built from reading the inputted ARG (skip-
ping the forward-backward algorithm). The MSMC2 algorithm focuses on the coalescence time
between two haploid samples along the genome. In the event of recombination, there is a break
in the current genealogy and the coalescence time consequently takes a new value. A detailed
description of the algorithm can be found in (Malaspinas, 2016; Wang et al., 2020). The MSMC
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algorithm simultaneously analyses multiple sequences (up to 10) and follows the distribution of
the first coalescence event in a sample of size n > 2 along the sequence based on the King-
man coalescent (Kingman, 1982). A detailed description of MSMC can be found in Schiffels and
Durbin, 2014.

Our new approach, SMβC, is a theoretical extension of the MSMC algorithm, simultaneously
analyzing multiple haploid sequences and focusing on the first coalescence event of a sample
size 3 or 4 (this parameter is namedM throughout the manuscript). We define asM the number
of lineages simultaneously modeled by either approach. Hence, the SMβC follows the distribu-
tion of the first coalescence event of a sample sizeM along sequences assuming a β-coalescent
process. Therefore, our SMβC allows for more than two ancestral lineages to join the first co-
alescence event, or new lineages to join an already existing binary (or triple) coalescent event.
Hence, the SMβC extends the MSMC theoretical framework by adding hidden states at which
more than two lineages coalesce. Currently, the SMβC has been derived to analyze for up to 4 se-
quences simultaneously (due to computational load andmathematical complexity). However the
SMβC can handle more than M sequences by analyzing all combination of sample sizeM before
optimizing the likelihood. The emission matrix is similar to the one of MSMC. As in the MSMC
software, the population size is assumed piece-wise constant in time and we discretize time in
40 bins throughout this study. A detailed description of SMβC can be found in Supplementary
Text S1. To test and validate the theoretical accuracy of our approach, we first study its best case
convergence (introduced in Sellinger et al., 2021) which corresponds to themodel’s performance
when the true (exact) genealogy is given as input, i.e. as if the hidden states are known. Addition-
ally, we also validate the practical accuracy of the SMβC on simulated sequence data taking the
same input as the MSMC software (Schiffels and Durbin, 2014), or using the inferred ARGs by
ARGweaver (Rasmussen et al., 2014). All SMC approaches used in this manuscript are found in
the R package eSMC2 (https://doi.org/10.5281/zenodo.10782372, Sellinger, 2024).
GNNcoal method

Inspired by results obtained from inferences based on tree sequence data (Gattepaille et al.,
2016; Sellinger et al., 2021), we develop a graph neural network (GNN) taking tree sequence
data as input. Our GNN is designed to infer population size along with the α parameter of the
Beta distribution describing the distribution of offspring production. In practice, the ARG is re-
shaped into a sequence of genealogies (more precisely a sequence of undirected graphs), and
then given as input to the GNN (similar to what is described above for the SMβC). In our anal-
yses, we fixed the batch size to 500. This value represents the number of coalescence trees
being processed before updating parameters of the neural network. As the batch size is fixed
to 500, only simulations displaying at least 500 recombination events are considered for the
training data sets. If more than 500 recombination events occur along the sequence, the ARG
is truncated and the GNN will only take as input the first 500 genealogies and remove the rest.
Thanks to the GNN architecture, the algorithm can account for the topology of the genealogy.
Hence, the GNN leverages information from coalescence time and branch lengths but also from
the topology of the ARG. This operation is known as a graph convolution. By doing so, the GNN
is capable of learning from local features of the ARG and extract information from its complex
structure. To learn from global genealogy patterns (which SMC-based methods cannot do), an
additional pooling strategy is implemented as part of the network (Ying et al., 2019). To do so,
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the ARG is broken into smaller ARGs (i.e. subgraphs) during the forward-pass step. To illustrate
the GNN strategy, we visualize the compression-like process, from the coalescent trees (1) being
processed by GNNcoal (2,3) to the inferred variable of interest (4, 5) in Figure 1.

1. Coalescent
trees with

feature vectors

2. Learned subgraph
with updated feature

vectors

3. Last pooling step
with feature vector

containing inferred variables

4.  Masking of
time-relevant regions

and column-wise mean

5. Visualization of
inferred variables

Figure 1 – Schematic representation of GNNcoal processing an ARG The figure repre-sents the analogues compression of node embeddings (or feature vectors) as in Fig. 1 of(Ying et al., 2019). The pooling is hierarchical and applied to each coalescent trees untila single embedding per tree remains, which is fed into a dense neural net to obtain theinferred variable of interest (i.e. demographic changes). Each coalescent ancestor or leafnode is initialized by this feature vector (light grey boxes) (1). Sub-graphs are generatedby a pooling network with updated feature vectors and a final compression step is per-formed until ideally one node per graph remains (2-3). Lastly, the column-wise mean istaken after applying a time mask (blue - based on number of coalescent events), so thatsingle feature vector remains (4-5). Detailed description of the graph convolution, fea-ture vector initialization, pooling methodology, coalescent time mask construction, anddataset generation can be found in Supplementary Text S2 or (Ying et al., 2019).

To infer parameters from our neural network, we need to define an objective function to be
optimized.We use amasked root-mean-squared error (RMSE) loss function as objective function
which is computed for each inputted ARG (i.e.minimizing the average square difference between
predicted and true parameter value). In practice, time is discretized (as for the SMβC) and time
windows are defined. The true α value and true demography at 60 predefined time points are
given as input to the GNN to compute the loss function. The GNN captures the stochastic com-
plexity arising from the underlying demographic scenario and model parameters. Furthermore,
our algorithm naturally defines an appropriate time window to have sufficient observation at
each time point. A more detailed description of the GNNcoal can be found in Supplementary
Text S2. The code of the model architecture is implemented in Pytorch (Paszke et al., 2017) using
the extension Pytorch Geometric (Fey and Lenssen, 2019). The model is available with the simu-
lated training dataset at https://doi.org/10.5281/zenodo.10781643 (Korfmann, 2024b) and
https://doi.org/10.5281/zenodo.10781640 (Korfmann, 2024a).
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ARGweaver and tsinfer
As the ARG is not known in practice, it needs to be inferred from sequence data. ARGweaver

displays the best performance at recovering the ARG from whole genome polymorphism data
at the sample sizes employed in this study (i.e. « 50; Brandt et al., 2022; Rasmussen et al., 2014).
Briefly, ARGweaver samples the ARG of n chromosomes/scaffolds conditional on the ARG of
n − 1 chromosomes/scaffolds. To this aim, ARGweaver relies on hidden Markov models while
assuming a sequentially Markov coalescent process and a discretization of time, similarly to the
SMC-based methods previously described. For a more detail description of the algorithm, we
refer the reader to the supplementary material of Rasmussen et al., 2014.

For distinguishing between MMC and selection we additionally applied tsinfer to estimate
undated genealogical topologies in an effort to build a small training dataset for amodel selection
study reframed as classification task. Tsinfer has been chosen due to its computational perfor-
mance and details about the algorithm can be found in the respective supplementary information
of (Kelleher et al., 2019).

Simulation of data
Validation dataset for bothmethods. The ARG is given as input to the DL approach and the SMβC
(see Sellinger et al., 2021). We use msprime (Baumdicker et al., 2022) to simulate the ARG of a
sample (individuals are assumed to be haploid) under the β-coalescent based on (Birkner et al.,
2013; Schweinsberg, 2003) or under the Kingman coalescent (under neutrality or selection us-
ing msprime SweepGenicSelection functionality with start and end frequency of 1/Ne and 0.99,
respectively). We simulate 10 sequences of 100 Mbp under five different demographic scenar-
ios: 1) Constant population size; 2) Bottleneck with sudden decrease of the population size by
a factor 10 followed by a sudden increase of population by a factor 10; 3) Expansion with sud-
den increase of the population size by a factor 10, 4) Contraction with sudden decrease of the
population size by a factor 10; and 5) "Saw-tooth" with successive exponential decreases and
increases of population size through time, resulting in continuous population size variation (as
shown in Schiffels and Durbin, 2014; Sellinger et al., 2021; Terhorst et al., 2017). We simulate
data under different α values (i.e. parameters of the β-distribution) including values of 1.9 (al-
most no multiple merger events), 1.7, 1.5, and 1.3 (frequent and strong multiple merger events;
Supplementary Figure S20). Mutation and recombination rate (respectively µ and r ) are set to
10−8 per generation per bp in order to obtain the best compromise between realistic values and
number of SNPs. When specified, some specific scenarios assume recombination and mutation
rate set to produce sufficient data or to avoid violation of the finite site hypothesis. All python
scripts used to simulate data sets are available at https://doi.org/10.5281/zenodo.10781640
(Korfmann, 2024a). Note that the output of msprime suffers from a discontinuity in behaviour
when increasing α above 1.9 and transitioning from the Beta coalescent to the Kingman coales-
cent (α = 2). The coalescent process converges to a Kingman coalescent up to a scaling constant
which we recover in our simulations and estimations (see description in https://tskit.dev/
msprime/docs/stable/api.html#msprime.BetaCoalescent).
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Additionally, to generate sequence data, we simulate 10 sequences of 10 Mbp under the
five different demographic scenarios described above and for the same α values. For each sce-
nario, 10 replicates are simulated. In order to obtain sufficient SNPs for inference, we simulate
sequence data with mutation and recombination rate (respectively µ and r ) of 10−8 per genera-
tion per bp when α is set to 1.9 and 1.7, 10−7 per generation per bp when α is set to 1.5, and
10−6 per generation per bp when α is set to 1.3.
Training dataset for the GNNcoal . In our study we train two GNNs, one to infer past variation
of population size through time along with α, and one for model selection. The training dataset
used for both GNNs is described below.

Training dataset for the GNN inferring α and demography
We generate an extensive number of ARGs to train our GNN. The ARGs are simulated under

many demographic scenarios and α values. The model parameters are updated in supervised
manner. The loss function is calculated for each batch with respect to how much the machine-
learning estimates differ from to the true parameters used for simulation. The simulations strat-
egy to recover past demographic history is based on the strategy described and used in (Boitard
et al., 2016; Sanchez et al., 2020). The idea of this approach is to generate a representative
set of demographic scenarios over which the network generalizes to consequently infer simi-
lar demographic changes after training. More details on the training strategy can be found in
Supplementary Text S2.

To improve the simulated demographic history before inference, we introduce a smoothing
of the demography allowing to infer continuous variation of population size through time. We
do so by interpolating I time points cubically, and choosing w (set to 60) uniformly spaced new
time points of the interpolation in log space. All time points more recent than ten generations
in the past are discarded, since inference is too imprecise in the very recent present under our
models. An example of this process can be seen in Supplementary Text S2.

Training dataset to disentangling coalescent and selection signatures
Beyond parameter inference, deep learning approaches can also be used for clustering. Hence,

we train a GNN to disentangle between different scenarios and models. In total, we define
eight classes, namely K (S0) (Kingman, no selection), K (WS) (Kingman, weak selection), K (MS)
(Kingman, medium selection), K (SS) (Kingman, strong selection) and four different β-coalescent
classes (1.75 ≤ α < 2, 1.5 ≤ α < 1.75, 1.25 ≤ α < 1.5, 1.01 ≤ α < 1.25) without selection. The
three different selection regimes are defined as: 0.01 ≤ Ne × s < 0.1 for SS, 0.001 ≤ Ne × s <

0.01 for MS, 0.0001 ≤ Ne × s < 0.001 for WS and Ne × s = 0 for absence of selection. De-
mography is kept constant and set to 104 and 106 individuals for Kingman and β-coalescent
respectively and sequence length is set to 105 bp. The simulation is discarded if it resulted in less
than 2,000 obtained trees and is rerun with twice the sequence length until the tree number
required is satisfied. This procedure avoids simulating large genome segments of which only a
small fraction of trees is used for the given scenario during training and inference. The selection
site is introduced in the centre of the respective sequence, so that 249 trees left and 250 right
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of the middle tree under selection form a training sample, using 500 trees for each sample. One
hundred replicates are generated for each training sample. The complete training dataset con-
sists of 4,000 parameter sets: 2,000 for the Kingman cases and 2,000 for the β-coalescent cases
(90% training dataset and 10% testing dataset). The model itself is trained for 20 epochs (num-
ber of time the data is analyzed), and the evaluation performed afterward on 1,000 randomly
generated parameter sets, with one replicate per parameter set. Branches of the datasets have
been normalized by population size to avoid biases in the dating. Additionally, all tree sequences
have been re-inferred with tsinfer to create a separated dataset, which has been used for train-
ing and evaluation (see results below). The same architecture used for demography estimation is
employed with additional linear layers to reduce the number of output dimensions from 60 to 8.
The loss function is set to a Cross-Entropy-Loss for the network to be trainable for categorical
labels. Otherwise all architecture and training parameters is the same as described above and
detailed in Supplementary Text S2.

Results

Inference bias under the wrongly assumed Kingman coalescent

We first study the effect of assuming a Kingman coalescent when the underlying true model
is a β-coalescent (i.e. in presence of multiple merger events) by applying MSMC and MSMC2
to our simulated data. The inference results from MSMC and MSMC2 when the population un-
dergoes a sawtooth demographic scenario are displayed in Figure 2. For α > 1.5 the shape of
the past demography is fairly well recovered. Decreasing the parameter α of the β-coalescent
(i.e. higher probability of multiple merger events occurring) increases the variance of inferences
and flattens the demography. Yet, both methods fail to infer the correct population size, due
to the scaling discrepancy between the Kingman and β-coalescent. While MSMC and MSMC2
assume an underlying Wright-Fisher model as reproduction model, whose genealogy is well ap-
proximated by a Kingman coalescent with one unit of coalescent time corresponding toN gener-
ations, the β-coalescent simulation are based on a different reproduction model (Schweinsberg,
2003), whose genealogy is given by a β-coalescent with a different timescale (see Introduction).
Even for α close to 2, where the β-coalescent resembles the Kingman coalescent, one unit of
coalescent time in the β-coalescent and one unit in a Wright-Fisher model associated Kingman
coalescent still differ by a scaling factor (see Introduction and Methods for details). Hence, we
perform the same analysis and correct for the scaling effect after the inference of the MMC
versus a Kingman coalescent to better capture the specific effects of assuming binary mergers
only. The results are displayed in Figure S1. For α > 1.5 the demography is accurately recov-
ered providing we know the true value of α to adjust the y-axis (population size) scale. However,
for smaller α values the observed variance is extremely high and a flattened past variation of
population size is observed.
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Figure 2 – Performance of MSMC and MSMC2 under a β-coalescent. Averaged esti-mated demographic history by MSMC (blue) and MSMC2 (red) based on 10 sequences(mean of random permutations of M=3) of 100 Mb with µ = r = 10−8 per generationper bp over ten repetitions (while analyzing simultaneously 3 sequences, noted by M=3).Each repetition result is represented in light red (PSMC’/MSMC2) or in light blue (MSMC).Population undergoes a sawtooth demographic scenario (black) for A)α = 1.9, B)α = 1.7,C) α = 1.5, and D) α = 1.3.

The limit of the Markovian hypothesis
As SMC approaches rely on the hypothesis of Markovian change in genealogy along the

genome, we study the effect of α on the linkage disequilibrium (LD) of pairs of SNPs (r2, Miles
et al., 2021; Rogers and Huff, 2009) in data simulated under the Kingman Coalescent or the β-
coalescent (with α = 1.5 and α = 1.3) and constant population size (Figure 3). LD monotonously
decreases in average with distance under the Kingman coalescent suggesting the hypothesis
of Markovian change in genealogy to be a fair approximation of the genealogical process in
that case (Wilton et al., 2015). Under the β-coalescent a similar shape of the distribution is
observed but with a higher average amount of LD. We find a higher variance in LD for smaller α

values. The increased variance results in the occurrence of high spikes of LD along the genome
(e.g. Figure 3 B). The stochastic increase of linkage along the genome demonstrates that the
Markovian hypothesis used to model genealogies along the genome is strongly violated under
the β-coalescent due to the long range effect of strong multiple merger events (Birkner et al.,
2013).
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Figure 3 – Linkage disequilibrium under a Kingman and β-coalescent. Pairwise linkagedisequilibrium between SNPs (r2) under a Kingman and β-coalescent with α = 1.5 and
α = 1.3 using 100 sequences of length 0.5 Mb for A) - C) and 1 replicate in D) - F).The population size is constant at N = 104 for the Kingman model and N = 106 forthe β-coalescent, with µ = 1 × 10−7 and r = 1 × 10−8 per generation per bp. For eachLD analysis, the linkage disequilibrium is calculated by averaging it over automatically-selected window sizes, such that on average at least two mutations are in each windowfor A) to F), respectively.

We further investigate the effect ofmultiplemerger events on LD. To this aim,we first assume
an SMC framework (e.g.MSMC2 or eSMC) to predict the transition matrix (i.e.matrix containing
the probabilities for the coalescent time to change to another value between two positions of
the genome) and investigate the absolute difference between the observed transition events.
Under the Kingman coalescent, the distribution of coalescent times between two positions in
a sample of size two (n = 2) is well spread across hidden states in Figure S2 (i.e. absence of
structured difference between observed and predicted transition events). However, under the
β-coalescent (with α = 1.3) we observe significant differences between observed and predicted
transition events at times points where multiple merger events occur (Figure S3). More precisely
we observed transitions at specific time points (corresponding to multiple merger events) occur-
ring much more frequently than what is predicted by the model (dark blue lines). This plot thus
shows that multiple merger events do not affect the genealogy at every time point and that mul-
tiple merger events are over represented in the distribution of transitions events due to the long
range effects of MMC events (i.e. many positions of the genome contain the same information).
This means that one multiple merger coalescent events can affect all positions in the genomes
(explaining the spikes in the LD distribution). In contrast, under the Kingman coalescent with
recombination, the probability for a coalescent event to affect the whole genome is negligible.

This plot thus unveils the discrepancy between the expectation from the SMC (i.e. approxi-
mating the distribution of genealogies along the genome by a Markov chain) and the actual ef-
fect of multiple merger events on the genealogy distribution along the genome. This discrepancy
does not stem from the simulator, because it correctly generates ARG under the β-coalescent
model (Baumdicker et al., 2022; Birkner et al., 2013), but from the limits of the SMC approxima-
tion to model events with long range effects on the ARG (Figure S3).
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Inferring α and past demography on ARG
To test if our two approaches (GNNcoal and SMβC) can recover the past variation of popula-

tion size and the α parameter, we run bothmethods on simulated tree sequences under different
α values and demographic scenarios. Figure 4 displays results for data simulated under a saw-
tooth past demography and for α ranging from 1.9, 1.7, 1.5 to 1.3. In all cases, the GNNcoal

approach exhibits low variance to infer the variation of population size and high accuracy from
1.9 to 1.5 with a noticeable drop in accuracy for 1.3 attributable to the ever increasing spar-
sity due to decreasing α generating stronger β-coalescent events. For high α values (>1.5), the
shape of population size variation is well recovered by SMβC (4). However, for smaller values,
the observed high variance demonstrates the limits of SMC inferences.
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Figure 4 – Best-case convergence estimations of SMβC and GNNcoal under a β-coalescent. Estimations of past demographic history by SMβC in red (median) and byGNNcoal in blue (mean and 95% confidence interval, CI95; while analyzing simultane-ouslyM=3 orM=10 sequences; individual replicates of SMβC shown as light lines) whenpopulation undergoes a sawtooth demographic scenario (black) under A) α = 1.9, B)
α = 1.7, C) α = 1.5 and D) α = 1.3. SMβC runs on 10 sequences and 100 Mb, GNNcoalruns on 10 sequences and 500 trees, and µ = r = 10−8 per generation per bp.

On average, both approaches seem to recover fairly well the true α value (Figure 5 and Table
S1). In particular, GNNcoal displays high accuracy and lower standard deviation. We note that
the variance in the estimation of α increases with diminishing α value. Moreover, increasing the
number of simultaneously analyzed sequences by SMβC does not seem to improve the inferred
α value (Table S1). These conclusions are also valid for the results in Figure S4-S7 and Table S1
based on inference under four additional demographic scenarios: constant population size, bot-
tleneck, sudden increase and sudden decrease of population size.

Kevin Korfmann et al. 13

Peer Community Journal, Vol. 4 (2024), article e33 https://doi.org/10.24072/pcjournal.397

https://doi.org/10.24072/pcjournal.397


When α diminishes, the effective population size decreases and the number of recombination
events plummets for small values of α < 1.5. To demonstrate the theoretical convergence of
SMβC to the correct values, we run SMβC on data simulated with mutation and recombination
rate fifty times higher under similar scenarios as in Figure 4. This operation increases the amount
of data in the form of SNPs and number of independent coalescent trees by recombination. Since
branch lengths (in generations) are on average smaller in the presence of multiple merger when
compared to a Kingman coalescent, we choose to increase the rates as opposed to increasing
the genome lengths, which does not affect the branch lengths (but increases the number of ge-
nealogies). Results of SMβC for α values of 1.7, 1.5 and 1.3 are displayed on Table S2. Overall our
results show that SMβC can recover α with higher accuracy when more data is available. To be
more precise when M = 3 (M being the number of simultaneously haploid sequence analyzed),
the overall average inferred α values improve from 1.6, 1.53 and 1.42 (Table S1) to 1.64 , 1.49 and
1.36 (for data simulated respectively under α = 1.7,α = 1.5 and α = 1.3). Yet when M = 4 a
gain in accuracy is only observed for α = 1.5 and α = 1.3. Indeed, the overall average inferred
α values changed from 1.60, 1.54 and 1.47 (Table S1) to 1.58, 1.47 and 1.39 (for data simulated
respectively under α = 1.7, α = 1.5 and α = 1.3).
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Figure 5 – Estimated α values by SMβC and GNNcoal . Estimated values of α by SMβCand GNNcoal over ten repetitions using 10 sequences of 100 Mb with µ = r = 10−8 pergeneration per bp under a β-coalescent process (with differentα parameter). The analysisare run on five different demographic scenarios (Constant population size, Bottleneck,Sudden increase, Sudden decrease and a Sawtooth demography) using a sample size
n = 3 for A) and C), n = 4 for B), and n = 10 for D). Grey dashed lines indicate thetrue α values. For exact values and standard deviations of the respective experiment seeSupplementary Table S1.
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Although 10 sequences are given to SMβC in the previous analyses, the method can only
analyze three or four simultaneously. On the other hand, GNNcoal can simultaneously analyze
10 sequences, that is the whole simulated ARG. As we observe that GNNcoal has a higher per-
formance than SMβC, we wish to test whether the GNNcoal better leverages information from
the ARG or benefits from simultaneously analyzing a larger sample size. Thus, we run GNNcoal

on the same dataset, but downsampling the coalescent trees to a sample size three. Results for
sample size ten are displayed in Figure S4 to S7 and downsampled results with sample size three
(M=3) of GNNcoal , which appear to be similar, are displayed in Figure S8, demonstrating that
the GNNs can better leverage information from the ARG in presence of multiple merger events.

Additionally, we test if both approaches can recover a Kingman coalescent from the ARG
when data are simulated under the Kingman coalescent, namely both approach should recover
α = 2. To do so, we simulate the same five demographic scenarios as above under a Kingman co-
alescent and infer the α parameter along with the past variation of population size. Estimations
of α values are provided in Table 1 and are systematically higher than 1.85, suggesting mostly
binary mergers. The associated inferred demographies are shown in Figures S9-S13. Both ap-
proaches correctly infer the past demographic shape up to the scaling discrepancy between the
Beta and the Kingman coalescent (as previously described). Furthermore, we notice that the
scaling effect only affects the y-axis for the SMβC but affect both axes for GNNcoal .

Table 1 – Average estimated values of α by SMβC and GNNcoal over ten repetitionsunder the Kingman coalescent using 10 haploid sequences of 10 Mb and µ = r = 10−8

per generation per bp. The standard deviation is indicated in brackets.
scenario True α α:SMβC,M=3 α:SMβC,M=4 α : GNN, M=3 α : GNN, M=10Constant 2 1.97 (0.005) 1.97 (0.008) 1.99 (0.002) 1.99 (0.003)Sawtooth 2 1.94 (0.017) 1.87 (0.019) 1.99 (0.002) 1.99 (0.003)Bottleneck 2 1.97 (0.01) 1.97 (0.009) 1.99 (0.003) 1.99 (0.004)Decrease 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.003) 1.99 (0.004)Increase 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.004) 1.99 (0.002)

As GNNcoal was not trained on data simulated under the Kingman coalescent (especially
with such high population size), some events fall beyond the scope of the GNN due to the scal-
ing discrepancy between the Beta and Kingman coalescence. Hence, we run GNNcoal on data
simulated under the Kingman coalescent but with smaller population size (scaled down by a fac-
tor 100) to assure that all events fall within the scope of the GNN. Values of α inferred by the
GNNcoal and the SMβC under the five demographic scenarios are available in Table S3. The as-
sociated inference of population size are plotted in Figure S9-S12. Both approaches recover high
α values (i.e.>1.85) suggesting a genealogy with almost exclusively binary mergers. In addition,
both approaches accurately recover the shape of the past variation of population size up to a
scaling constant but only on the population size y-axis.
Inferring α and past demography from simulated sequence data

We first investigate results for both GNNcoal and SMβC with the objective of evaluating the
performance on ARG reconstructed from sequence data using ARGweaver (Rasmussen et al.,
2014) as ARGweaver is currently being considered the best performing approach to infer ARG
for sample size smaller than 20 (Brandt et al., 2022). Demographic inference results by both
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approaches are displayed in Figure S14, and α inference results in Table S4. GNNcoal does not
recover the shape of the demographic history from the inferred ARGs and largely overestimates
α. In contrast, SMβC produces better inferences of α when giving the inferred ARG as input
when compared to theGNN. SMβC recovers the shape of the past variation of population size for
α > 1.3 but displays extremely high variance for α = 1.3. We then evaluate SMβC on simulated
sequence data to compare the necessity of reconstructing the ARG for the SMC method and
found that α is typically well recovered (Table 2) and that results are similar to what obtained
when the true ARG is given. Furthermore, the shape of the past variation of population size is
well inferred under the sawtooth demographic scenario for α > 1.3 (Figure S15). In the other
four scenarios, the shape of the demography is recovered in recent times but population sizes
are underestimated in the past (Figure S16). Finally, as found above from inputted ARGs, the
variance in estimates of population sizes generally increases with diminishing α.

Table 2 – Average estimated α values by SMβC on simulated sequence data over tenrepetitions using 10 sequences of 10 Mb with recombination and mutation rate set to
1 × 10−8 for α 1.9 and 1.7, 1 × 10−7 for α 1.5 and 1 × 10−6 for α 1.3 per generation perbp under a Beta coalescent process. The analysis are run on five different demographicscenarios (Constant population size, Bottleneck, Sudden increase, Sudden decrease anda Sawtooth demography).

scenario True α α∗:SMβC,M=3Constant 1.9 1.86 (0.16)Bottleneck 1.9 1.89 (0.09)Increase 1.9 1.93 (0.07)Decrease 1.9 1.96 (0.04)Sawtooth 1.9 1.76 (0.17)Constant 1.7 1.82 (0.10)Bottleneck 1.7 1.64 (0.23)Increase 1.7 1.82 (0.10)Decrease 1.7 1.89 (0.13)Sawtooth 1.7 1.71 (0.27)Constant 1.5 1.52 (0.30)Bottleneck 1.5 1.64 (0.33)Increase 1.5 1.57 (0.24)Decrease 1.5 1.60 (0.18)Sawtooth 1.5 1.66 (0.14)Constant 1.3 1.31 (0.20)Bottleneck 1.3 1.2 (0.17)Increase 1.3 1.24 (0.13)Decrease 1.3 1.57 (0.11)Sawtooth 1.3 1.37 (0.16)

Inferring MMC and accounting for selection
As specific reproductive mechanisms and selection can lead to the occurrence of multiple

merger-like events, we train our neural network on data simulated under the β-coalescent, and
under the Kingman coalescent in presence or absence of selection to assess our methods ca-
pacity to distinguish between them. We then use the trained GNNcoal to determine if multiple
merger events originate from skewed offspring distribution or positive selection, or if the data
follows a neutral Kingman coalescent process. The classification results are displayed in Figure 6
in the form of confusion matrices, where the percentage of times the GNNcoal correctly assigns
the true model shown on the diagonal evaluated on a test dataset of 1,000 ARGs. We tested
three scenarios A) training and evaluating on known exact ARGs, B) training on exact ARGs but
evaluating on inferred ARGs, and, lastly C) training and evaluating on inferred ARGs. The results
indicate the necessity of integrating inference errors or instances of branch unresolvability into
the training process. The network is able of distinguishing between signals of multiple merger,
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which translate to an estimate of α, from simple ARG-estimation uncertainties. The overall con-
fusion between neighboring classes may be attributed to the comparably small size of training
data (4,000 simulations), which enabled to build a training dataset comprised of inferred trees
within few hours. To summarize our approach can accurately distinguish between Kingman and
β-coalescent, but uncertainty needs to be part of the training procedure.
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Figure 6 – Confusion matrix for Kingman and β-coalescent classification model undervarying selection coefficients. Evaluation of classification accuracy for Kingman (K) and
β-coalescent (B) for no selection (S0), weak selection (SW), medium selection (SM) andstrong selection (SS) using a 1,000 repetition validation dataset (and small 4000 proof-of-concept repetition training set). Population size was kept constant at N = 104 individualsfor the Kingman scenario and atN = 106 for the β-coalescent, using a sample size n = 10and r = 10−8 per bp per generation. Branch length are normalized by the respectivepopulation size. Classification model has been trained and evaluated either on exact orinferred tree sequences (tsinfer without dating) as indicated in the subfigure titles of A),B) and C).

Since strong selection can lead to multiple merger coalescent or rapid and successive coa-
lescent events (as the beneficial alleles spreads very quickly in the population; Bisschop et al.,
2021; Durrett and Schweinsberg, 2005; Sackman et al., 2019), we investigate if our approaches
can model and recover the effect of selection. Therefore, we infer α along the genome (to model
the local effect of selection on the genome) with both approaches from true genealogies simu-
lated with strong positive selection or neutrality under a Kingman coalescent with population
size being constant through time. SMβC infers α on windows of 10kbp along the genome, and
GNNcoal infers α every 20 trees along the genome. Results for GNNcoal and SMβC are dis-
played in Figure 7. The SMβC approach recovers smaller α value around the locus under strong
selection (while GNNcoal displays higher variance). However under neutrality or weak selection,
inferred α values remain high (>1.6) along the genome.
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Similarly, we run both approaches on genealogies simulated under the β-coalescent (assum-
ing neutrality) and we infer the α value along the genome. Inferred α values by both approaches
are plotted in Figure S17. GNNcoal is able to recover the α value along the genome with moder-
ate overestimation due to tree sparsity. On the contrary, SMβC systematically underestimates
α values. Nevertheless, unlike in presence of positive selection at a given locus, the inferred α

values are found in all cases to be fairly constant along the genome.
We finally simulate data under a Kingman coalescent (true genealogies) with a strong se-

lective sweep or under neutrality conditioned on a sawtooth demographic scenario to test our
methods’ simultaneous inference capabilities. Under neutrality, our both approaches recover, as
expected, high α values along the genome and can accurately recover the past variation of pop-
ulation size (only up to a scaling constant for GNNcoal , since it was trained on the β-coalescent
only) (Figure 8). Similarly, when the simulated data contains strong selection, a small α value is
recovered at the locus under selection and the past variation of population size is accurately re-
covered, albeit with a small underestimation of population size in recent times for SMβC (Figure
8).
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Discussion
With the rise in popularity of SMC approaches for demographic inferences (Li and Durbin,

2011), most current methods leverage information from whole genome sequences by simulta-
neously reconstructing a portion of the ARG to infer past demographic history (Li and Durbin,
2011; Schiffels and Durbin, 2014; Terhorst et al., 2017; Upadhya and Steinrücken, 2021), migra-
tion rates (Kim et al., 2020;Wang et al., 2020), variation in recombination andmutation along the
genome (Barroso and Dutheil, 2023; Barroso et al., 2019), as well as ecological life history traits
such as selfing or seed banking (Sellinger et al., 2020; Struett et al., 2022). However, other pre-
vious studies proposed to uncouple both steps, namely by first reconstructing the ARG and by
then inferring parameters from its distribution (Gattepaille et al., 2016; Rasmussen et al., 2014;
Sellinger et al., 2021). Indeed, recent efforts have been made to improve approaches to recover
the ARG (Brandt et al., 2022; Hubisz and Siepel, 2020; Kelleher et al., 2019; Mahmoudi et al.,
2022; Rasmussen et al., 2014; Speidel et al., 2019), as well as its interpretation (Gattepaille et al.,
2013; Sellinger et al., 2021). Our results on data simulated under the β-coalescent clearly show
the strong effect of multiple merger events on the topology and branch length of the ARG. We
find that the more multiple merger events occur, the more information concerning the past de-
mography is lost. Both GNNcoal and SMβC, whether given sequence data, the true or inferred
ARG, can recover the α parameter and the variation of past population size for α values high
enough (i.e. α ≥ 1.5). However, for lower values of α, a larger amount of data is necessary for
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any inference, specifically in the form of a high effective population size (correspondingly ade-
quate mutation and recombination rates) and sufficient sequence length, which becomes nearly
impossible when α tends to one. Both approaches can also recover the Kingman coalescent
(i.e. α>1.8). We find that GNNcoal outperforms SMβC in almost all cases when given the true
ARG, and we demonstrate that GNNcoal can be used to disentangle between β-coalescent and
Kingman models with selection.

Overall, our results provide a substantial improvement in the development of inferencemeth-
ods for models with multiple merger events, a key step to understand the underlying reproduc-
tion mechanism of a species. While still inferring population sizes of the correct order of mag-
nitude, SMβC is outperformed by GNNcoal when given true ARGs as input. As ARG inference
method improve, GNN models will offer a promising alternative to current SMC methods. As
we directly compare our theoretical SMC to the GNN based on the same input data (coalescent
trees), we are ideally placed to dissect the mechanisms underlying the power of the GNNcoal

method. We identify four main reasons for the difference in accuracy between the two methods
developed. First, the SMβC approach suffers from the limit of the sequential Markovian coales-
cent hypothesis along the genome when dealing with strong multiple merger events (Birkner et
al., 2013; Casanova et al., 2020). Second, most current SMC approaches, except XSMC (Ki and
Terhorst, 2020), rely on a discretization of the coalescent times into hidden states, meaning that
simultaneous mergers of three lineages may not be easily distinguished from two consecutive bi-
nary mergers occurring over a short period. Third, the SMβC relies on a complex hidden Markov
model and due to computational and mathematical tractability, it cannot leverage information
on a whole genealogy. In fact, as MSMC, SMβC only focuses on the first coalescent event, and
therefore cannot simultaneously analyze large sample size. Furthermore, the SMβC approach
leverages information from the distribution of genealogies along the genome.Whilst, in the near
absence of recombination events, both approaches cannot utilize any information from the ge-
nealogy itself, GNNcoal can overcome this limit by increasing the sample size. Fourth, the SMβC
is based on a coalescent model where α is constant in time. Yet multiple merger events do not
appear regularly across the genealogical timescale, but occur at few random time points. Hence,
the SMC approach suffers from a strong identifiability problem between the variation of popu-
lation size and the α parameter (for low α values). For instance, if during one hidden state one
strong multiple merger event occurs, multiple merger events are seldom observed and SMβC
may rather assume a small population size at this time point (hidden state). This may explain the
high variance of inferred population sizes under the β-coalescent.

By contrast, GNNcoal makes use of thewhole ARG, and can easily scale to larger sample sizes
(over 10), although it recovers α with high accuracy with sample sizeM= 3 only. Our interpreta-
tion is that GNNcoal is able of simultaneously leveraging information from topology and the age
of coalescent events (nodes) across several genealogies (here 500). GNNcoal ultimately lever-
ages information from observing recurrent occurrences of the same multiple merger events at
different locations on the genome, while being aware of true multiple merger events from rapid
successive binary mergers. We believe that our results pave the way towards the interpretabil-
ity of GNN and deep learning methods applied to population genetics. For further theoretical
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insights into recent descriptions of multiple merger we would like to point the reader towards
(Diamantidis et al., 2023).

When applying both approaches to simulated sequence data (and not to true ARGs), both
approaches behave differently. GNNcoal is not capable to accurately infer model parameters, i.e.
past variation of population size or α. In contrast, SMβC performed better than GNNcoal when
dealing with sequence data (and not true ARG). SMβC is capable of recovering α and the shape
of the demographic scenario in recent times irrespective of whether sequence data or ARG in-
ferred by ARGweaver is given as input. This is most likely because the statistic used by SMβC
(i.e. first coalescent event in discrete time) is coarser than the statistic used by GNNcoal (i.e. the
exact ARG). We therefore speculate that the theoretical framework of the SMβC, although be-
ing in theory less accurate than GNNcoal , is more robust and suited for application to sequence
data. More specifically, the issue being faced by the GNNcoal is known as out-of-distribution
inference (Hüllermeier and Waegeman, 2021), which requires the network to generalize over
an untrained data distribution. This issue happens because GNNcoal is not trained using ARG
inferred by ARGweaver. Building a training data set for GNNcoal to overcome this issue is cur-
rently impractical due to the inference speed of ARGweaver. However, future work will aim at
increasing robustness of GNN inferences, for instance by adding uncertainty or multiple models
during the training process. Improving the performance of GNNcoal on sequence data requires
more efficient and accurate ARG inference methods, such as to incorporate inferred (non-exact)
genealogies into the training, thereby accounting for inference errors and for the evaluation of
the algorithm on a broader spectrum of common population genetic research questions. The
former observation is important to avoid bias from potential hypothesis violations of the chosen
ARG inference approach.

Past demographic history, reproductive mechanisms, and natural selection are among the
major forces driving genome evolution (Johri et al., 2022). Hence, in the second part of this man-
uscript we focus on integrating selection in both approaches. Currently, no method (especially
if relying only on SFS information) can account for the presence of selection, linkage disequi-
librium, non-constant population size and multiple merger events (Johri et al., 2022) although
recent theoretical framework might render this possible in the future (Alberti et al., 2021).
As a first step to fill this gap, we demonstrate that GNNcoal can be used for model selection to
reduce the number of hypotheses to test. Determining which evolutionary forces are driving the
genome evolution is key, as only under the appropriate neutral population model results of past
demography and selection scans can be correctly interpreted (Johri et al., 2022, 2021). The high
accuracy of GNNcoal in model selection is promising, especially as other methods based on the
SFS alone (Kato et al., 2017; Koskela and Berenguer, 2019) have limits in presence of complex
demographic scenarios. GNN can possibly overcome these limits, as it is easier to scale the GNN
to estimate more parameters. We follow a thread of previous work (Bisschop et al., 2021; He-
jase et al., 2022; Sackman et al., 2019), by integrating and recovering selection, multiple merger
and population size variation by simply allowing each fixed region in the genome to have its
own α parameter. In presence of strong selection, we find lower α value around the selected
loci and high α value in neutral neighbouring regions. Hence, our results point out that strong
selection can indeed be modeled as a local multiple merger event (see Bisschop et al., 2021;
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Durrett and Schweinsberg, 2005; Sackman et al., 2019). In presence of weak selection, no effect
on the estimated α value is observed, demonstrating that weak selection can be modeled by a
binary merger and has only a local effect on the branch length by shortening it. In theory, both
approaches should be able to infer the global α parameter linked to the reproductive mechanism,
as well as the local α parameter resulting from selection jointly with the variation of population
size. However, the absence of a simulator capable of simulating data with selection and non-
constant population size under a β-coalescent model prevents us from delivering such proofs.
We show strong evidence that under neutrality our approaches can recover a constant (and cor-
rect) α along the genome as well as the past variation of the population size. We further predict
that, while selective processes may preferentially occur in coding regions or regulatory poten-
tially non-coding regions, local variations in α (as a consequence of sweepstake events) should
be indifferent to the genomic functionality (coding or non-coding). Hence, we suggest that cur-
rent sequence simulators (Baumdicker et al., 2022; Haller et al., 2019) could be extended to
include the aforementioned factors and de facto facilitate the development of machine learning
approaches.

Our study is unique in developing a state-of-the-art SMC approach and demonstrating that
computational and mathematical problems can be overcome by deep learning (here GNN) ap-
proaches. The GNNcoal approach is, in principle, not limited to the β-coalescent, and should
work for other multiple merger models (e.g., Dirac coalescents (Eldon and Wakeley, 2006)) with
the appropriate training. Furthermore, our SMβC approach is the first step to build a full genome
method with an underlying model accounting for positive selection. In the future, further imple-
mentationsmay be added for amore realistic approach. Theα parameter should be varying along
the genome (as a hidden state), as the recombination rate in the iSMC (Barroso et al., 2019). This
would allow to account for the local effect of strong and weak selection (Alberti et al., 2021).
The effect of the α parameter could be also changing through time to better model the non uni-
form occurrence of multiple merger events through time. Although it is mathematically correct
to have α as a constant in time, it is erroneous in practice (Figure S2). We speculate that those
additional features will allow to accurately model and infer multiple merger events, variation of
population size, and selection at each position on the genome. We believe that deep learning
approaches could also be improved to recover more complex scenarios, providing in depth de-
velopment on the structure of the graph neural networks, for example, by accounting for more
features. At last, further investigation are required to make progress in the interpretability of the
GNN methods, namely which statistics and convolution of statistics are used by GNNcoal to
infer which parameters.

As our approaches are the first of their kind, we chose to restrain our study to haploid mod-
els of β and Kingman coalescent as a proof of principle. However, the GNNcoal and SMβC ap-
proaches can be extended to higher ploidy levels. Diploid versions of the haploid reproduction
models whose genealogies are given by the β-coalescent lead to slightly different MMC coales-
cent models which can exhibit simultaneous multiple mergers (Birkner et al., 2013, 2018). Thus,
our GNN approach should be directly applicable when trained on these diploid models which
are implemented in msprime (Baumdicker et al., 2022). However, to adjust the SMβC approach
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would be somewhat more cumbersome (but doable), since wewould need to extend the underly-
ing HMM to account for simultaneous multiple mergers. We emphasise that while there is grow-
ing evidence that MMC models produce better fitting genealogies for various species (Freund
et al., 2023), there is ongoing discussions about which mathematical models are better suited to
which species (for example see Árnason et al., 2023 for cod). We advocate that the life-cycle and
various ecological factors determine whether a haploid or diploid MMC model can be chosen.
On the one hand, a diploid MMCmodel is likely realistic if the species has a diploid life-cycle and
balanced sex-ratio, so that multiple merger events do indeed happen in both sexes. On the other
hand, if species are mostly haploid or clonal/asexual during their life-cycle (with periodically one
short diploid phase for sexual reproduction) or exhibit strongly imbalanced sex-ratio, a haploid
MMC model may be better suited. In their current form, our approaches are applicable to data
from species with the latter characteristics such as many fungal and micro-parasites of plants
and animals (including humans) as well as invertebrates (e.g. Daphnia or aphids) which undergo
several clonal or parthenogenetic phases of reproduction (and one short sexual phase) per year.
This represents a non-negligible set of study organisms which are of importance for medicine
and agriculture (Tellier and Lemaire, 2014).

Our results on inferred ARGs stress the need for improving ARG inference (Brandt et al.,
2022). Thanks to the SMC we are close to model the ARG allowing to infer demographic his-
tory, selection and specific reproductive mechanism. Moreover, the comparison of deep learn-
ing approaches with model driven ad hoc SMC methods may have the potential to help us solve
ongoing challenges in the field. These include simultaneously inferring and accounting for recom-
bination, variation of population size, different type of selection, population structure and the
variation of the mutation and recombination rate along the genome. These issues have puzzled
theoreticians and statisticians since the dawn of population genetics (Johri et al., 2022).

On a final note, as environmental changes hit us all, we suggest that decreasing the computer
and power resources needed to perform DL/ GNN analyses should be attempted (Sapoval et
al., 2022). Based on our study, we suggest that population genetics DL methods could be built
as a two step process: 1) inferring ARGs, and 2) inferring demography and selection based on
the ARGs. We speculate that general training sets based on ARGs could be build and be widely
applicable for inference across many species with different life cycles and life history traits, while
the inference of ARGs could be undertaken by complementary deep learning or Hidden Markov
methods.
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