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Abstract

Statistical analysis and node clustering in hypergraphs constitute an emerging topic suf-
fering from a lack of standardization. In contrast to the case of graphs, the concept
of nodes’ community in hypergraphs is not unique and encompasses various distinct
situations. In this work, we conducted a comparative analysis of the performance of
modularity-based methods for clustering nodes in binary hypergraphs. To address this,
we begin by presenting, within a unified framework, the various hypergraph modularity
criteria proposed in the literature, emphasizing their differences and respective focuses.
Subsequently, we provide an overview of the state-of-the-art codes available to maxi-
mize hypergraph modularities for detecting node communities in hypergraphs. Through
exploration of various simulation settings with controlled ground truth clustering, we
offer a comparison of these methods using different quality measures, including true
clustering recovery, running time, (local) maximization of the objective, and the number
of clusters detected. Our contribution marks the first attempt to clarify the advantages
and drawbacks of these newly available methods. This effort lays the foundation for
a better understanding of the primary objectives of modularity-based node clustering
methods for binary hypergraphs.
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2 Veronica Poda & Catherine Matias

1. Introduction

The interest in higher-order interactions stems from the recognition that many phenomena
are inherently more complex than what can be effectively represented by pairwise relationships
alone. While graphs model pairwise interactions, hypergraphs generalize this concept by captur-
ing higher-order interactions involving more than two elements. This extension provides a more
expressive framework for modeling intricate dependencies and interactions in various fields,
ranging from social network analysis (early acknowledged in Wolff, 1950) or co-authorship re-
lations (Roy and Ravindran, 2015) to ecological systems (Muyinda et al., 2020), neurosciences
(Chelaru et al., 2021) or even chemistry (Flamm et al., 2015). We refer to Battiston et al., 2020;
Bick et al., 2023; Torres et al., 2021 for recent reviews on higher-order interactions.

With the emergence of hypergraph datasets (see for e.g. Lee et al., 2021) to model higher-
order interactions, the question of nodes clustering and, more specifically, the detection of com-
munities in hypergraphs arises. In the context of graphs, the seminal paper by Newman and
Girvan, 2004 introduced the concept of modularity (commonly known as the Newman-Girvan
modularity), paving the way for a flourishing literature on community detection in networks. In
the context of hypergraphs, the past few years have witnessed the surge of modularity-based
proposals for hypergraph community detection. One of the first challenges is to propose a mod-
ularity criterion that measures the extent to which a hypergraph is composed of communities.
This raises a more fundamental question: What is a community of nodes in a hypergraph? While
in the context of graphs, a community is simply a set of nodes with more within-cluster inter-
actions than between-clusters ones, generalizing that concept to hypergraphs is not immediate.
As hypergraph interactions have a heterogeneous size (i.e., the number of nodes they contain),
a primary issue is whether one should weigh the links with respect to (wrt) their sizes and put
more emphasis on larger hyperedges (see Figure 1 for an illustration). Consequently, various
modularity criteria have recently emerged in the literature.

A

Figure 1 - On the left, a modular graph with two clusters is depicted, represented as
circle-blue and triangle-green nodes, respectively. In each cluster, the number of within-
cluster interactions is much larger than the between-clusters ones. On the right, a hyper-
graph is shown using the same set of nodes, where each clique from the previous graph
is replaced by a hyperedge. In this hypergraph, the number of within-cluster interactions
in each of the two clusters is the same as the number of between-clusters interactions.
Is this hypergraph modular? Should we consider weighting hyperedges with respect to
their sizes to analyze how modular the hypergraph is?

For a long time now, the computer science literature has tackled hypergraphs by simplifying
them into graphs, employing two primary methods: the clique reduction graph, also known as the
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two-section graph, and the star-expansion graph. In the clique reduction graph, each hyperedge
of a hypergraph is transformed into a clique in a graph over the same set of nodes (as illustrated
in Figure 1, where the graph on the left represents the clique reduction of the hypergraph on
the right). Conversely, the star-expansion graph constructs a bipartite graph by treating the orig-
inal vertex set as the first part and introducing a new vertex for every original hyperedge in a
second part. These parts are then connected whenever a node is contained in a hyperedge in
the hypergraph. While the former reduction loses information (the original hypergraph cannot
be reconstructed from its clique reduction graph), the latter transformation is one-to-one, given
that the two parts are labeled (allowing the distinction between original nodes and original hy-
peredges) and hypergraphs with self-loops and multiple hyperedges are allowed. Consequently,
a natural approach is to define hypergraph modularity by relying on graphs. Figure 1 illustrates
the limitations of such a method, where the clique reduction graph (on the left) appears clearly
modular, while one may question whether the original hypergraph (on the right) should be con-
sidered modular or not.

In this article, we explore the current state-of-the-art and challenges posed by modularity-
based community detection methods in binary hypergraphs. In the context of graphs, Yang et al.,
2016 propose a comparative analysis of community detection algorithms for undirected and bi-
nary graphs. In the same vein, we here restrict our attention to modularity-based methods whose
performances for community detection in binary hypergraphs are compared. The methodology
is described in Section 2. After introducing general notation, we first present a reformulated
version of the different hypergraph modularities existing in the literature (Section 2.2). The goal
of this reformulation is to facilitate the comparison of concepts introduced independently from
each other and never fully connected before. To be a valuable concept, a hypergraph modularity
should come with a (local and/or heuristic) maximization algorithm that outputs a node clus-
tering. Available implementations of such algorithms are presented in Section 2.3. To compare
the different modularities and maximization algorithms, it is mandatory to work with synthetic
datasets where ground truth clustering is known and hypergraph statistics can be controlled.
While in the graph context, recent years have seen the emergence of benchmark datasets for
such a task, as for instance the Lancichinetti-Fortunato-Radicchi benchmark graph (LFR, Lanci-
chinetti et al., 2008) used in Yang et al., 2016, there is yet no such benchmark for hypergraphs.
We thus rely on several models for generating synthetic modular hypergraphs, described in Sec-
tion 2.4. Then Section 3 describes our experiments: which scenarios have been explored in each
model generating method (Section 3.1) and quality assessment through the lens of different mea-
sures, namely true clustering recovery, running time, (local) maximization of the objective and
the number of clusters detected (Section 3.2). All the results are presented in Section 4 and a
discussion follows in Section 5. The scripts to reproduce the experiments are available online.

To conclude this introduction, we mention that there are other methods to cluster the nodes
of a hypergraph, such as spectral clustering approaches (Chodrow et al., 2023; Ghoshdastidar
and Dukkipati, 2017) or model-based methods (Brusa and Matias, 2022b; Ruggeri et al., 2023).
It is also possible to cluster hyperedges instead of nodes (Ng and Murphy, 2022). However, our
focus in this work is on clustering nodes through modularity-based methods.
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2. Material and methods

2.1. General notation and definitions

A hypergraph H = (V, £) is defined as a set of nodes V = {1, ..., n} and a set of hyperedges
E C P(V), where P(V) is the set of all subsets of V. In other words, each hyperegde e € £
is a subset of nodes in V (namely, e C V or e € P(V)). A hypergraph can either be binary
(presence/absence of subsets of nodes) or weighted (also equivalently called multiple). In the
latter case, the hypergraph H = (V/, £, w) comes with a weight function w : P(V) — NU{0} such
that Ve ¢ £, we have w(e) = 0, and w(e) € N otherwise. The weight counts how many times
a hyperedge appears in the hypergraph. Multiple (i.e., weighted) hypergraphs can be viewed
as hypergraphs where the set of hyperedges £ is allowed to be a multiset (some hyperedges
may appear several times). A binary hypergraph is a particular case of a weighted hypergraph
with weight function being the indicator function w(e) = 1{v € e} (i.e., each hyperedge has
multiplicity 1). The size of a hyperedge e is the number of nodes it contains |e| = 3 .\, 1{v € e}.
A hypergraph is said to be s-uniform if it only contains hyperegdes of size s. Any 2-uniform
hypergraph is simply a graph. We let £; denote the subset of £ of hyperedges with size s. We
can allow hyperedges e € £ to be multisets of V, in which case nodes may appear more than
once in the same hyperedge. Such hypergraphs are called multiset hypergraphs and can either
be binary or multiple. In a multiset hypergraph, each node v € V has a multiplicity in hyperedge
e € &, denoted by m.(v) € NU{0}, which counts the number of times this node appears in that
hyperedge. Moreover, the hyperedge size accounts for the nodes multiplicity and becomes |e| =
> vev me(v). For example, a self-loop {u, u} is a (multiset) hyperedge of size 2. In the following,
unless otherwise stated, all sets can be multisets in which case all counts include multiplicities
(be it for nodes or for hyperedges). A hypergraph is said simple whenever it is binary and non-
multiset, i.e., neither nodes or hyperedges may be repeated. The (weighted) degree deg(v) of
a node v in a hypergraph H is the (weighted) count of the hyperedges it belongs to, namely
degy(v) = > .ce w(e). The incidence matrix H of the hypergraph has size |V| x |£| and entries
H(v,e) = 1{v € e} or m(v) for multiset hypergraphs. Note that we use the same notation
H for a graph and its incidence matrix, the difference should be clear from the context. Letting
w = (w(e))ece denote the (column) vector of the hyperedges weights and wT its transpose, we
obtain the vectors of node degrees and hyperedges sizes as Hw and wTH, respectively. Two
nodes are said incident whenever they belong to a same hyperedge e € £.

For any subset of nodes C C V, we define its volume:

Voly(C) = Z degy(v),
veC

and the (weighted) number of hyperedges whose nodes are all included in C:

ecC
Note that Voly(V) =3 . s|&| and eq(V) = |E] = D24 |Es]-

From a (weighted) hypergraph H = (V, &) we may construct its clique reduction graph
Geliave — (v E). This graph has the same set of nodes V as the hypergraph and every hyper-
edge e € £ in the hypergraph is reduced into a complete clique in the graph. In other words, for
any hyperedge e € £ with size |e| > 2 and for any pair of incident nodes u, v € e, the graph
Geliave contains the edge {u, v} € E and only edges obtained in this way are contained in E. The
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(weighted) adjacency matrix A°li9u® of the clique reduction graph satisfies A9 = Hdiag(w)HT,
where H is the incidence matrix of the hypergraph and diag(w) is the diagonal matrix induced by
the vector of hyperedge weights w. In general, self-loops are removed from Acli4u¢ and Aclique g
set to 0 for any v € V. This can be done directly by setting A" = Hdiag(w)HT — Dy where
Dy is the diagonal matrix of node degrees (degy(v)),ecv.-

A nodes clustering is a partition C = (G, ..., Ck) of the set of nodes V into parts called
clusters. For any partition C = (i, ..., Ck) of the set of nodes V and any subset e C V, we let
eNC = (e, ..., ej) denote the partition of the subset e induced by C. It has J parts with J < K
and is indeed a partition of ¢, namely

Vi#ke{l, ..., J}, e #0, e Nex =0, Uf:lej:e-

The adjacent clusters of a node u € V are the parts C, that contain at least one node v € C;
that is incident to u, or in other words such that there is a hyperedge e € £ such that u, v € e.

In this manuscript, the identity matrix is denoted by / (its size should be clear from the con-
text). We already used notation |S| for the cardinality of a set S (or a multiset), and 1{S} for the
indicator function of an event S.

2.2. Modularities in hypergraphs

Different hypergraph modularity criteria have been proposed in the literature up to now
(Chodrow et al., 2021; Kaminski et al., 2019a; Kaminski et al., 2021; Kumar et al., 2020). We
recall these different quantities, using a unified presentation that highlights similarities and dif-
ferences between them. As we will see, these are all constructed in the same way, namely the
difference between a first term that is a specific hyperedge count and a second term that in some
cases corresponds to the expected value of this count under some null model, and otherwise is
a correction term. The differences between the expressions of those hypergraph modularities
come from: i) the type of hyperedges that are counted; ii) the null model used for computing the
expectation or the correcting term; iii) possible weights to each of these terms.

Kumar et al., 2020's definition of hypergraph modularity corresponds to a graph modularity
as originally defined in Newman and Girvan, 2004 and applied to a specific graph choice. Consid-
ering the clique reduction graph of a hypergraph, Kumar et al. noticed that the reduction does
not preserve the node degrees: in the clique reduction graph G°9%¢, the degree of a node differs
from its initial value in the hypergraph H. Indeed, a simple computation shows that

deggetique (V) = Z H(v,e)w(e)(le] — 1) Z H(v,e) = degy(v).
ec ec
Thus, Kumar et al., 2020 simply modified the weights in the clique reduction graph to pre-
serve these degrees. Let D¢ = diag(|e|).cs denote the diagonal matrix of the hyperedges sizes.
We define the weighted clique reduction graph G¥-i9u¢ through its adjacency matrix Av-cliaue —
(A1) vev by
Av-clique — Hdiag(w)(Dg — 1)"1HT — Dy,.

The node degrees in this graph G¥-cliau¢ gre equal to the initial node degrees in the hypergraph

H (where self-loops are discarded). This construction is equivalent to saying that for each hy-
peredge e € &, we create G¥-°li9u by forming a total of (|e|) edges with weights w(e)/(|e| — 1),
between any pair of nodes incident in the hypergraph H.
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Then for any hypergraph H = (V, £) and any partition C = (G, ..., Ck) of its set of nodes V,

we let
Q™ -clique H C Z Z (Aw-clique o degH(u) degH(V)>
2|8’ k=1 u,veCy v ;7:1 degH(i)
(Voly(Cy))?
(1) 2|5’ Z <6Gw clique Ck) 7VO|H(V) .

Note that Q¥-¢li9u® ranges in [—1; 1]. It is an average over all pairs of nodes u, v belonging to the
same cluster C, of the difference between the weighted edge value Al19 in the weighted
clique reduction graph and its expectation under a configuration model (Chung and Lu, 2002)
that accounts only for nodes degrees and plays the role of a null model. A high value of modular-
ity QV-cliaue means dense connections in the weighted clique reduction graph G¥-clidue petween
the nodes within the same cluster and sparse connections between nodes in different clusters.
Going back to the hypergraph H, that means node pairs u, v € V belonging to the same cluster
participate more in the same hyperedge than node pairs in different clusters.

Kaminski et al., 201%a introduce a strict hypergraph modularity such that only the hyperedges
e € & entirely included in a same cluster contribute to increasing modularity, which is in sharp
contrast with the previous proposal. For any hypergraph H = (V, ) and any partition C =
(Ci, ..., Ck) of its set of nodes V, we let

strict VOlH ) °
2 TR ) |6|Z( )= X (Vi )>)

Note that Q5"i°t also ranges in [—1; 1]. Here, the first term inside the sum accounts for the num-
ber of hyperedges whose all nodes are within the same cluster. The second term comes from a
generalization of the Chung and Lu model to hypergraphs. Again, it plays the role of an expected
value of the first term ey (Cy) under some null model which preserves both node degrees and
the (weighted) number |&;| of size-s hyperedges. This quantity is called by its authors the degree
tax.

Kaminski et al., 2021 propose a more general modularity that accounts for the homogeneity
of each hyperedge, namely, the fraction of its vertices that belong to the largest cluster (provided
it is more than 50%). For any subset C C V/, any size s > 2 and any integer c € {|s/2] 4+ 1, ..., s},
we let €};°(C) denote the number of size-s hyperedges that have exactly ¢ nodes mcluded in
their majority part C. With our previous notation, we have

= ¢&°(0).

s>2

In the following, P(Bin(s, p) = ¢) = (3)p°(1 — p)°~¢ is the probability that a Binomial random
variable with parameters (s, p) takes the value c. Then for any partition C = (i, ..., Ck) of the
set of nodes, Kaminski et al., 2021 introduce the modularity

(3)  Q¥°(H,C) Z Z Z Ws.c €5 (Ck) — |Es|P <Bin($, m) = C>:| :

k 15>2c=|s/2]+1
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where w; . € [0, 1] are hyper-parameters to be specified. Note that we have

. VO|H(Ck) ) (VOlH(Ck))S
P(B —— ) = =—-
( in(s, Volp(V) )=s Volu(V)
so that (2) is a special case of (3) where w . = 1{c = s}. Different setups may be considered for

the hyper-parameters w; . and we focus here on the choices for which an optimisation algorithm
is available, namely

1{c =5} strict setting,
(4) wse =< 1{c>s/2} majority setting,
c/sl{c > s/2} linear setting.

As already mentioned, the strict setting gives back Q%i°t, already introduced in (2). For the other
2 settings, we call the corresponding modularities Q™2°"ity and Q'inear respectively.

Finally, Chodrow et al., 2021 first defined a general symmetric modularity, where for any
partition C of the set of nodes, the contribution of a hyperedge e € £ to the modularity of this
partition is characterized only by the vector p whose entries p, count the number of nodes in e
belonging to the k-th largest partin eNC. It is based on a general affinity function Q2 : P — R that
modulates the weight of the contribution of each partition vector p, where the set of partition
vectors is

P={p=(p1,..ps)ipr>--->py>1, forsomeJ > 1}.

For instance, a s-tuple of nodes with s = 7 that are clustered by a partition C into the parts
{v1};{v2, va}; {va}; {vs, v6, v7} induces the partition vector p = (3,2, 1, 1). The symmetric modu-
larity from Chodrow et al., 2021 will thus account for the different clusters counts that compose
a hyperedge, treating all the clusters in an exchangeable way. We present the details of this
modularity in Section A from the Supplementary Material. Then, the authors consider particular
cases of their general symmetric modularity, relying on specific forms of the affinity function Q
(see Table 1 in that reference). However, an implementation of the algorithm for optimising the
induced specific modularities is available only for the all-or-nothing affinity function on which we
focus now.

The all-or-nothing modularity function is defined as:

K
(5) Q*M(H.C)=>_3" 5 ( > en(G) - ’AYs(VoIH(Ck))S) :
k=15>2 C;CCiilCll=s

where 3, and As are parameters estimated from the data. While in general we may expect that
both 3, As > 0 (see Section B in the Supplementary Material for more details on these parame-
ters), we then recover in this expression a sum of difference terms between a count of specific
hyperedges, namely those entirely included in a cluster, and a correcting volume term. The extra
parameters f, 9s might not seem natural at first. In fact, they appear as the result of an ap-
proximate maximum likelihood approach in a specific degree-corrected hypergraph stochastic
blockmodel (DCHSBM), in the same way as Newman, 2016 did in a graph context.

As a final remark, Chodrow et al., 2021 notice that considering the specific choices BS =1land
As = |Es|/Voly(V)* in their modularity Q2°", they recover (up to a scaling factor and an additional
term not depending on the partition C and which can thus be discarded) the expression of the
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modularity Qs'"t from (2). However, they argue that leaving these parameters free (adapting to
the data) lends important flexibility to their approach.

Additional comments. We already highlighted similarities and differences between the different
modaularities defined above. Let us add some more comments.

Two extreme cases are represented by the modularities Q™-cliaue and Qstrit, the former being
less stringent than the latter. Whenever a hyperedge is split by the partition C into different
clusters, it will be ignored by Q%" but as soon as this hyperedge contains at least 2 nodes in the
same cluster, the modularity Q%-cliaue wijll account for it. The weakness in Q%-cli9v¢ |ies in that the
exact composition of each hyperedge in nodes falling into the different clusters is captured only
through pairs of nodes. The modularity Q%=¢ represents a compromise between the 2 previous
extremes: it accounts for homogeneous hyperedges, namely hyperedges such that (at least) half of
their nodes fall into a cluster that becomes a majority cluster. In particular, Kaminski et al., 2021
argue that the hyper-parameters w, . may be chosen so that Q% well approximates @*-cliaue
because contributions in the latter from parts that contain at most s/2 vertices may often be
neglected. Finally, the modularity Q" is as strict as Q"' and focuses on hyperedges with
nodes split into a unique cluster by the partition C. As already stressed, the major difference
between Q"' and Q*°" lies in that the latter, while summing similar differences as the former,
weights differently each terms in those differences (with weights adaptive to the data, as they
are estimated from these).

Note that possible self-loops in the hypergraph H never contribute to a modularity and may
thus be discarded from the dataset. However, we highlight that all these modularities are devel-
oped for multiset hypergraphs, where nodes may be repeated in a same hyperedge. In partic-
ular, the Chung and Lu null models (for graphs and hypergraphs) used in defining modularities
Qw-clique Qstrict and QWse a5 well as the DCHSBM underlying the definition of the modularity
Q*", all rely on models for multiset hypergraphs. While it is known in the case of graphs that
this is inadequate (Cafieri et al., 2010; Massen and Doye, 2005; Squartini and Garlaschelli, 201 1),
that assumption has not yet been discussed in the context of hypergraph modularities. It might
be that the computational simplifications enabled by this assumption prevent from any attempt
not to use it (see for e.g. Section B2 in Supplementary Material from Brusa and Matias, 2022b).

2.3. Modularity maximization methods

In this section, we focus on available implementations for hypergraph nodes clustering
through modularity-based methods. We briefly describe the corresponding algorithms and their
major characteristics, as well as the options that were chosen for our comparison study. All the
algorithms require an initialization, most of the times relying on an initial partition where each
node is in its own part, i.e.,, CO"" = ({1}, ..., {n}). We group the different methods by the pack-
ages where they can be found. A summary is given in Table 1.

Note that we did not include in our experiments a comparison with methods based on clique
reductions. Indeed, Kumar et al., 2020 already did so and concluded that “hypergraph based
methods perform consistently better than their clique based equivalents” (end of page 16 in
that reference).

HyperNetX package. The HyperNetX Python package (PNNL Lab, 2023) contains a modularity
submodule (see https://pnnl.github.io/HyperNetX/modularity.html) including various
functions for hypergraph clustering through modularity maximization.
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Kumar et al., 2020 propose to maximize their modularity Q¥-¢9u¢ relying on the popular
and fast Louvain algorithm for graphs (Blondel et al., 2008). More precisely, they do not simply
apply Louvain algorithm on the graph GY-clidue byt rather propose an lteratively Reweighted
Modularity Maximization (IRMM) algorithm where they iteratively apply Louvain on a weighted
clique reduction graph, and compute new hyperedge weights see Algorithm 1 in Kumar et al,,
2020. The hyperedge re-weighting step puts a larger weight on hyperedges which are cut into
more unbalanced partition vectors by the current partition C. For example, a size-s hyperedge
cut into the partition vector p = (s — 1, 1) (meaning a unique node falls in a cluster different
from the majority one) is much more unbalanced than another one cut into the partition vector
p = (s/2,s/2) (namely half of the nodes belong to a first cluster, the other half belonging
to a second cluster) and thus gets a larger weight (see Figure 1 in Kumar et al., 2020). By
getting a larger weight, it is more likely that the unique node in this hyperedge will join the
majority cluster at Louvain’s next step. The function hmod . kumar implements the IRMM algorithm.

The last step refinement (LSR) is an algorithm described in Kaminski et al., 2021. This is a
general method that starting from an initial partition of the nodes, iteratively moves one vertex at
a time (in a random order) to a neighboring cluster whenever it improves Q%s¢, until convergence.
The authors propose to start by running the IRMM on the weighted clique reduction graph, then
the resulting partition is used as initialisation in their LSR procedure, that aims at maximizing Q"s°.
For the specific choices strict, majority and linear of the hyper-parameters ws . described
above, implementations are provided. The modularity Q"¢ is obtained through the function
hmod.modularity from the HyperNetX package and the LSR algorithm is implemented in the
function hmod . last_step from this same package. Both functions contain the 3 different options
for hyper-parameters ws . defined in (4) and the default choice is 1inear. This is this option that
we choose for our comparisons.

strictModularity package. Kaminski et al., 2019a propose a Clauset-Newman-Moore like
(CNM-1ike) algorithm to maximize Q%ict (see Clauset et al., 2004, for the original CNM algo-
rithm). Starting with partition C°"" where each node is in its own part, this algorithm iterates
over the set of hyperedges that are split into more than 2 clusters by the current partition, try-
ing to merge all the parts it touches and looking for a modularity improvement. More precisely,
the algorithm comes in two versions. In the first one, a loop over all hyperedges is taken, so
that at each step all hyperedges are searched and evaluated for merging. In the second one, a
stochastic approach is taken which evaluates at each step just one randomly chosen hyperedge
(see Algorithm 1 in Kaminski et al., 20193, for more details). The stochastic version is compu-
tationally less expensive, especially for larger hypergraphs; however it requires to set a maximal
number of iterations. In what follows, we choose that second version and set the number of iter-
ations to twice the total number of hyperedges. The implementation is available from Kaminski
et al,, 2019b, in a mix of Python and Julia files. More precisely, a script strictModularity.py
contains a “quick” Python implementation that should work on small datasets only, while a Julia
function find_comms is more generally provided to perform the CNM-1ike algorithm. We rely on
the latter in our experiments.

HyperModularity package. Chodrow et al., 2021 propose the Hypergraph Maximum Likelihood
Louvain (HMLL) algorithm to maximize their symmetric modularity (defined in Section A from
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the Supplementary Material) and the simpler and faster AON-HMLL algorithm for maximizing the
specific all-or-nothing Q2°® modularity. Both the HMLL and the AON-HMLL are implemented in
the Julia package HyperModularity (Chodrow et al., 2022). However the current version of the
HyperModularity package does not contain an implementation of an estimation of a general
affinity function Q that is required to compute the symmetric modularity. That is why we focus
on the AON modularity Q@2°™ and the corresponding AON-HMLL algorithm.

The AON-HMLL algorithm is an iterative algorithm that mimics the standard graph Louvain al-
gorithm in that it starts with initial configuration C°*" (each node is in its own part) and at the
first iteration, it greedily moves nodes to adjacent clusters (i.e., clusters that contain incident
nodes) until no more improvement of Q2°" is possible. The subsequent iterations however differ
from Louvain’s approach and instead of considering a weighted graph on “supernodes”, it greed-
ily moves entire clusters to adjacent ones whenever this improves Q*°". Note that the option
startclusters from Simple_AON_Louvain_mod determines which initial partition is used to es-
timate the parameters Bs, Js. We rely on startclusters == "cliquelouvain" that gives the
best results in general.

Table 1 - Summary of functions (with package name and reference) for clustering hy-
pergraphs through modularity-based approaches. We indicate which modularity is max-
imized by the function (second column), the corresponding algorithm (third column), the
implementation language (fourth column) and our option choices (fifth column).

Function (package or  Modularity Algorithm Language Options choices

script)
hmod . kumar QW-clique IRMM Python  Init: COW"
(HyperNetx, PNNL Lab,
2023)
hmod .last_step QMinear LSR Python Init: Output(IRMM), wg .=
(HyperNetx, PNNL Lab, linear
2023)
find_comms (Kaminski Qstrict CNM-1like Julia Init: C°WN, Stochastic ver-
et al., 2019b) sion
Simple_AON_Louvain Qaen AON-HMLL Julia Init: C°W", startclusters
(HyperModularity, == "cliquelouvain"

Chodrow et al., 2022)

2.4. Synthetic models for binary and modular hypergraphs

To compare the different modularity-based approaches for clustering hypergraphs nodes, it
is mandatory to rely on simulations of modular hypergraphs where ground truth clusters are
known. As mentioned earlier, there is no single standard method for generating modular hyper-
graphs, and, to our knowledge, there are two main approaches. The first approach is based on
hypergraph stochastic block models, with several variants proposed in the literature. The second
approach involves a generalization of the LFR model for graphs (Lancichinetti et al., 2008). We
chose to consider two variants of the first approach and the only one that we are aware of in
the second approach. A summary of these models is given in Table 2. We highlight the similar-
ities and differences between those different generating models and the characteristics of the
hypergraphs generated by those approaches.
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In all those models, we fix a number of nodes n, either fix or randomly generate a true num-
ber of clusters K (that might depend on n) as well as a true partition of the nodes Ct"'¢ =
(Cfrue, ..., CHY®) and a maximal size S of hyperedges.

Hypergraphs with HSBM. We consider datasets simulated under a simple (binary and non-
multiset) Hypergraph Stochastic Blockmodel (HSBM, see Brusa and Matias, 2022b) generated
through the R package HyperSBM (Brusa and Matias, 2022a). In this model, we fix the true num-
ber of clusters K, their proportions = = (1, ..., k) such that 7, € (0,1) and }°, mx = 1 and the
following parameters, forany 2 < s < S,

as =Ple e &[T < k < K, e C Ci™e),
Bs=Ple c &EIVI < k< K,e ¢ CI'®),

so that o (resp. f3s) is the probability for a s-tuple of nodes to form a hyperedge given that they
belong to the same cluster (resp. given that they are not all in same cluster). The parameters
should be chosen in order to ensure that the generated hypergraphs are modular. To this aim,
we consider the ratios ps of the number of within-cluster size-s hyperedges over the number of
between-clusters size-s hyperedges obtained as:

_ G Zszl Ty

Bo(l =iy mg)
In our simulations, we impose ps > 1, with larger values corresponding to more modular hy-
pergraphs. Note that in this setting, the total number of size-s hyperedges is random and has
expected value

Ps

E(&) = () [askz: 40 (1- 3 x)

We simulate hypergraphs with decreasing values E(|€s|) when s increases, which is more realistic
than the constant case.

Hypergraphs with DCHSBM-like. We consider datasets simulated under the DCHSBM-like gen-
erating model proposed by Chodrow et al., 2021. This model relies on a fixed true number of
clusters K, balanced clusters |C{™¢| = ... = |CK!®| = n/K and equal numbers of size-s hyper-
edges for 2 < s < S; so that for each size s, a total of |£|/(S — 1) hyperedges are drawn. With
probability ps, such a hyperedge is placed on a s-tuple of (distinct) nodes within the same cluster
and with probability 1 — ps, it is placed on any s-tuple of (distinct) nodes.

The ratio ps of within-cluster over between-clusters size-s hyperedges is random and its
expectation is

B = Ptopdes o KO K/ KD(n/K] — 9)

(T p)1—cs)’ o nl(N — s)!

Note that the DCHSBM-like generating model has been originally proposed for multisets
hypergraphs, where nodes may be repeated in hyperedges, and hyperedges may be multiple.
In practice, as we consider sparse hypergraphs where the number of hyperedges is linear wrt
the number of nodes, multiple hyperedges are rare. Section C from the Supplementary Material

contains some further considerations on the links between parameters in HSBM and DCHSBM-
like.
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h-ABCD benchmark dataset. Recently, Kaminski et al., 2023b proposed a hypergraph artificial
benchmark for community detection, called h-ABCD, together with a code for generating these
modular hypergraphs (Kaminski et al., 2023a). This generating model is an appropriate candidate
to compare modularity approaches. In this model, we fix the number of nodes n and we either
input a sequence of node degrees or it is sampled from a power-law distribution with some in-
put exponent v € (2,3) and input minimum/maximum degree values. The true clusters sizes
are also either input or sampled from a power-law with some input exponent g € (1,2) and
minimum/maximum sizes values. In our case, we choose to fix the cluster sizes so that the num-
ber of clusters is fixed rather than random. The model requires a sequence q¢ = (qi, ..., gs) of
weights summing to 1 such that S is the maximal hyperedge size and g is the fraction of size-s
hyperedges. For instance fixing g; = 0 prohibits self-loops. The script abcdh. j1 also handles the
proportion of homogeneous hyperedges, where homogeneity is the concept discussed in Sec-
tion 2.2 when introducing Q%=¢. We recall that a homogeneous hyperedge has more than half
of its nodes within the same (majority) cluster. Let w. s denote the fraction of homogeneous hy-
peredges of size s that have exactly ¢ > |s/2]| nodes belonging to their majority cluster, so that
Y c=|s/2]+1Wes = 1. This notation is not to be confused with the weights ws ¢ introduced in (4).
To link it to previously introduced quantities, we remark that we s = Y oce. S0 e (CEVe) /|Es-
The current implementation handles 3 different options: linear, strict, majority, corre-
sponding to the following choices

([s/2])~r  if majority,

_ 2cl{c>s/2} T T
We,s = (s+[s/2]+1)[s/2] if I|near,
I{c=s} if strict.

Thus in the majority setting, a homogeneous hyperedge is randomly drawn among all hyper-
edges with more than half of their nodes in their majority cluster, while in the strict setting,
homogeneous hyperedges are exactly within-cluster hyperedges (i.e., all nodes belong to the
majority cluster). The 1linear setting spreads the homogeneous hyperedges in a linear fashion
across the different values ¢ of the number of nodes in the majority cluster. In that setting,
there is thus a larger number of homogeneous hyperedges showing a larger number of nodes
in their majority cluster. Having set which hyperedges are homogeneous ones, a mixing param-
eter £ € (0,1) controls for the proportion of the degree of each node that is assigned to non-
homogeneous hyperedges. In this generating model, the total number of hyperedges is random

and equals
€] = 2vev dEgH(V)'
Zs 54s
In the strict setting, we can also express the ratio ps of within-cluster over between-cluster size-s
hyperedges as
Ps = 1g§ for the strict setting of h-ABCD.

3. Experiments
3.1. Scenarios

General principles and base case scenario. Our simulations explore various settings in order to i)
highlight the global behaviors of the methods and compare their performances; ii) explore which
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Table 2 - Summary of synthetic models for modular hypergraphs and their characteristics.
In all the models, the number of nodes n and the maximal hyperedge size S are chosen

by the user. The numbers of clusters K and hyperedges |€| (

can either be fixed or random.

resp. size-s hyperedges &;)

Synthetic Parameters Characteristics
model
HSBM K; clusters proportions 7; within- and random clusters sizes; ran-

between-clusters probabilities as, S5
DCHSBM- K; |£|; probability ps that a hyperedge is placed
like on a s-tuple of within-cluster nodes

h-ABCD degrees (power-law distribution or fixed values);
cluster sizes (power-law distribution or fixed
values); proportions gs of size-s hyperedges;
setting of homogeneous hyperedges (majority,
linear or strict); proportion ¢ of node degree
assigned to homogeneous hyperedges

dom |&], ..., |Es]
balanced clusters; equal nb
of size-s hyperedges |&;| =

=& =E]/(S - 1)
random number and
cluster sizes; random
&2, ... |Es]

hypergraphs characteristics most impact those performances. In all the settings, we choose to fo-
cus on sparse hypergraphs, for which the number of hyperedges grows linearly with the number

of nodes, as this is a most realistic setting.

We start with “base case” scenarios, called scenarios A, that we defined in the 3 different
generating models (HSBM, DCHSBM and h-ABCD). Then we explore other scenarios (called
B to F and Z), simulated under the most convenient model to do so, and in which we mod-
ify only one characteristic at a time wrt the base case. Each scenario is composed of sub-
cases with different samples sizes, comprising in general cases 1 to 6 corresponding to n €
{50, 100, 150, 200, 500, 1000}. Moreover, in each scenario explored, we randomly generated 25
hypergraphs. Table 3 gives a summary of the scenarios considered and the empirical character-
istics of the 25 hypergraphs generated for each of them. In this table, each simulation is sum-
marized through its differing characteristic wrt the base case (namely, scenarios A). For example,
ScenB-DCHSBM is a simulation of hypergraphs less sparse than the base case.

Table 3 - Simulation settings and empirical descriptors of the 25 simulated hypergraphs
in each scenario (line): number of clusters (K), maximal hyperedge size (S), within-cluster
over between-clusters size-s hyperedges ratio (p,), number of nodes (n), mean number

of size-s hyperedges (\fs|), mean node degree (d) and maximum node degree (max(d)).

Simulation Scenario  n A &3] d  max(d)
ScenA-HSBM Al 50 198 85 13 32
(base case) A2 100 397 178 13 26
K=S5=3 A3 150 592 265 13 28
balanced clusters A4 200 795 354 13 28
ps = 1.7;1&|/|E| ~ 0.7 A5 500 1990 885 13 28
ScenA-DCHSBM Al 50 194 89 13 26
(base case) A2 100 400 174 13 29
K=S5=3 A3 150 604 263 13 29
balanced clusters A4 200 804 345 13 32
E(ps) = 1.7 A5 500 2015 860 13 30
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Table 3 - continued from previous page

Simulation Scenario  n &5 &3] d  max(d)
|E2]/|E| ~ 0.7 Ab 1000 4030 1720 13 31
ScenA-hABCD Al 50 42 12 24 31
(base case) A2 100 80 24 2.3 32
K=5=3 A3 150 117 37 2.3 32
balanced clusters A4 200 157 51 2.3 32
ps = 1.7 A5 500 394 132 2.3 32
|E2]/|E] ~ 0.75 Ab 1000 782 266 2.3 32
ScenB-DCHSBM B1 50 554 245 37 74
(less sparse) B2 100 1117 483 37 61
K=5=3 B3 150 1680 720 37 59
balanced clusters B4 200 2242 958 37 61
E(ps) =17 B5 500 5614 2386 37 63
|E2]/1E| ~ 0.7 Bé6 1000 11198 4802 37 62
ScenC - HSBM C1 50 227 100 15 31
(unbalanced clusters) C2 100 460 208 15 37
K=5=3 C3 150 690 313 15 40
m=(1/6,1/3,1/2) c4 200 929 423 15.5 35
ps = 1.7 C5 500 2319 1063 15.5 39
ScenD-DCHSBM D1 50 84 199 15 32
(1&] > |&2)) D2 100 173 402 15 33
K=5=3 D3 150 258 607 16 31
balanced clusters D4 200 344 805 16 31
E(ps) =1.7 D5 500 860 2015 16 32
|E2]/]1E] ~ 0.3 D6 1000 1722 4028 16 36
ScenE-DCHSBM E1l 50 195 88 13 28
(larger p) E2 100 403 172 13 26
K=5§=3 E3 150 605 262 13 27
balanced clusters E4 200 805 344 13 27
E(ps) =2 ES 500 2008 867 13 29
|E2|/|E| ~ 0.7 E6 1000 4040 1710 13 31
ScenF-DCHSBM F1 50 199 84 13 27
(smaller p) F2 100 408 167 13 26
K=5=3 F3 150 605 262 13 30
balanced clusters F4 200 811 334 13 27
E(ps) =1.4 F5 500 2004 871 13 31
|E2]/1E| ~ 0.7 F6 1000 4024 1726 13 30
ScenZ-hABCD Z1 100 49 18 1.5 10
(default h-ABCD) Z2 150 72 27 1.5 10
K random, S = 3 Z3 200 96 37 1.5 10
unbalanced clusters Z4 500 239 94 1.5 10
linear setting Z5 1000 478 187 1.5 10
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We started from a first series of scenarios, called scenarios A, that play the role of a reason-
able sparse case for the methods to work. To explore the robustness of our conclusions, these
scenarios are presented under the 3 different generating models (HSBM, DCHSBM and h-ABCD)
relying on similar settings for sample size n and number of hyperedges |£|. We set the numbers
of hyperedges such that they grow linearly with the number of nodes n (sparse setting). We gen-
erated K = 3 clusters with equal size or probability (depending on the generating model) and the
maximum hyperedge size S = 3. This latter choice ensures both reasonable computing times and
simplicity of model parametrization. The ratio |£>]/|E| = |€2|/(|E2|+|€3]) is set to 0.7 (on average)
to reflect the fact that we expect larger sizes hyperedges to be less frequent than smaller-sizes
ones. The within-cluster over between-cluster hyperedge ratio is constant wrt size s € {2, 3}
and set to ps = 1.7 (either exactly or on average), in order to obtain modular hypergraphs.

For this scenario A, we first generated hypergraphs under HSBM with a number of nodes
n up to 500, the algorithm becoming too slow for n = 1000. Under DCHSBM, we went up to
sample size n = 1000. Finally we generated samples under h-ABCD again up to a number of
nodes n = 1000. In this latter model, we considered the strict setting regarding homogeneous
hyperedges and choose the parameter ¢ such that the resulting ps = 1.7 and we set |&;| = 3|&3],
which is approximately the case in the other 2 models. The degree distribution is scale-free with
~ = 2.07 and minimum and maximum value set to 1 and 32, respectively (the observed values
in the other 2 models). Note that the range of v € (2, 3) did not allow us to select mean degrees
with similar values than with the other 2 models. In this sense, this scenario A under h-ABCD
generating model diverges from the other ones (under HSBM and DCHSBM).

Variant scenarios. We further contrasted scenarios A by varying one characteristic at a time,
keeping all others fixed. As our conclusions on scenarios A were globally robust against the
choice of the generating model (at least among HSBM and DCHSBM, see next Section 4), we
explored those variations in the most convenient model to do so. In scenario B, we decrease
the sparsity of the model by generating more hyperedges (keeping all other parameters identical
as in scenario A). In scenario C, we explore the effect of unbalanced clusters, while in scenario
D, we explore the effect of varying the proportions of size-2 and size-3 hyperedges, namely
considering more size-3 than size-2 hyperedges. Scenarios E (resp. F) considers the case where
the within-cluster over between-cluster hyperedge ratio ps is increased (resp. decreased) wrt
scenario A. Finally, because we obtained pretty bad results for all modularity clustering methods
relying on hypergraphs generated by h-ABCD (see next Section 4), we explored in scenario Z the
author’s default values of that model to generate modular hypergraphs. Note that in this case,
the true number of clusters K is random and the ratio ps; cannot be obtained from the model
parameters.

3.2. Quality assessment

We now describe the different properties explored to assess the quality of each method.
These properties are summarized in Table 4.

We first consider accuracy of the clustering, relying on the Adjusted Rand Index ARI, Hubert
and Arabie, 1985 that measures similarity between € and C*™¢ (up to label switching). It is upper
bounded by 1, where a value of 1 indicates perfect agreement between the clusterings, and
negative values indicate less agreement than expected by chance. Then we consider running
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times (expressed in seconds) of each method. The results have been obtained on a computer
with a AMD EPYC 7542 32-Core processor, 128 CPU (2 sockets of 32 double threads cores;
we used just one core for each job as none of the procedure is parallelized) and 675Gb RAM.
We already mentioned that modularity maximization is far from trivial because of the size of the
search space. Thus, an important question is whether the method at stake indeed maximizes
its objective. To assess this, we measure the relative error between the ground truth modularity
Qe = Q(H, C'™) and the resulting value Q = Q(H, €) at the estimated classification ¢, namely

Q(H,C™°) — Q(H.C)
Q(H, Ctrue)

A method that reaches its objective (modularity maximization) without being able to recover
the true modular clusters would reveal that it is based on a definition of modularity that is not
appropriate. Also note that this error has a sign, with negative values indicating that ground truth
modularity is not the maximum value. The mean values and standard deviations for ground truth
modularity Q'™ are also reported (Table 1 in the Supplementary Material), since values close to
zero could induce unstable errors.

We finally also consider the estimated number of clusters K wrt its true value K. In general
we present a barplot of the estimated values, to be compared to the true and fixed one. Only for
scenarios Z where the true value K is random, we plotted the difference K — K.

error =

Table 4 - Quality assessment.

Question Measure
Is the classification correct? ARI(C ; Ctrue)
Is the method fast ? Running times
Is the modularity maximized? Relative error between Q¢ and @
Is the number of clusters correct ? distribution of K wrt K
4. Results

General comparison. We first analyze the results under the simplest scenarios (nhamely scenarios
A, which represent our base case) and the HSBM generating model. Results are presented in
Figure 2. First, the CNM-1ike algorithm does not recover the ground truth clusters, with ARI
values around O (Figure 2, top left). In fact, the algorithm did not improve over its initialization at
Co"" = ({1}, ..., {n}) and the number of estimated clusters corresponds to the actual number of
nodes (bottom right). Its relative error on modularity is constant and corresponds to the relative
difference between the modularity of Ct™® and that of CO"". It is positive, so that the modularity
maximization goal is clearly not achieved here. The other 3 methods successfully recover the
true clusters. For those 3 methods, median ARI values are above 0.7 (top left) and the number of
estimated clusters varies between 3 and 6 (bottom right). While the AON-HMLL globally obtains
the best ARI results (top left), it is also the fastest method (top right) and it attains its objective
of modularity maximization (relative error around 0, see bottom left). The LSR algorithm was
proposed to improve over the IRMM. While its relative error on modularity (bottom left) seems
in general improved over the latter (with smaller values), Table 1 in the Supplementary Material
shows that the modularity Q%-¢li4u¢ optimized by IRMM is close to O for the ground truth clusters,
thus giving unstable errors; while Q'¢2" optimized by LSR is strictly positive at those ground
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truth clusters. Most importantly, from the clustering point of view, ARl is not improved (top left)
and computing times are much larger (top right). This seems to indicate that the LSR places too
much emphasis on maximizing modularity at the expense of clustering recovery. As the number
of nodes n increases, we observe that ARI values globally have a lower dispersion, but do not
seem to overall improve (top left). This might be due to our setting where the within-cluster over
between-cluster hyperedge ratio ps is kept constant when n varies.
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Figure 2 - Datasets HSBM, scenarios Al to A5. Comparison by increasing the number of
nodes from n € {50, 100, 150, 200, 500}: Adjusted Rand Index (top left), time in seconds
(top right), relative error on modularity (bottom left) and estimated number of clusters
(bottom right, true value is 3). The IRMM and (consequently) the LSR methods both gave an
error on one dataset in scenario A5. Outlier points have been removed: from the relative
error plot (bottom left), 1 value below -500 concerning the IRMM method in scenario A1l.
Moreover, one dataset from scenario A5 gave an error with the IRMM and (consequently)
the LSR methods; corresponding results were removed from the plots.

Let us now compare these results with those obtained on scenarios A generated under
DCHSBM and presented in Figure 3. From these simulations, we confirm the previous conclu-
sions: the AON-HMLL is globally the best method and the CNM-1ike algorithm has very low perfor-
mance for clustering recovery (ARl values very small). The other 2 methods successfully recover
the clusters but the LSR does not improve on the IRMM and has a much larger computing time.
Computing times are similar in this simulation and the former one; to see this, we choose to
remove computing times for the LSR method in scenario Aé (Figure 3, top right). Indeed, those
values are all above 15,000 seconds and including them would have changed the y-scale in a
way preventing from any possible comparison. As a consequence, we conclude that our analysis
is robust against the choice of HSBM or DCHSBM generating model.
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Figure 3 - Datasets DCHSBM, scenarios Al to A6. Comparison by increasing the number
of nodes from n € {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for the LSR
method in scenario Aé range between 15,796 and 22,350 seconds and are not shown.
Outlier points have been removed from the relative error plot (bottom left): 1 value above
300 concerning the IRMM method in scenario A4.

To finish with these settings from scenarios A, we consider Figure 4 where the results for
hypergraphs generated under the h-ABCD benchmark method are provided. Let us recall that
while we tried to mimic as much as possible the characteristics of the scenarios A obtained
under HSBM and DCHSBM,, it was impossible to obtain similar node degrees within that h-ABCD
generating process (see Table 3) and the ones obtained here are much smaller. We observe that in
this setting, none of the proposed methods is able to reconstruct the true clusters: ARI values are
generally lower than 0.3 (see Figure 4, top left) and the number of estimated clusters is too large
(bottom right). Nonetheless, the modularity maximization seems to work as the relative error
between the ground truth modularity and its estimation is small (bottom left). Note also that the
LSR algorithm seems to find a clustering with larger value of the Q""" modularity than at the
ground truth clusters (negative errors). Overall, our conclusions raise the following question: are
these datasets indeed modular? We will come back to this later when discussing scenarios Z.

We now explore additional insights on the methods performances provided by other scenar-
ios.

Impact of sparsity. In scenario B, we decreased the sparsity wrt to scenario A (note that the hy-
pergraphs remain nonetheless sparse, see Table 3). Results are presented in Figure 5. Here again,
we removed from the time plot (top right) all values for the LSR method in scenario B6. Their
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Figure 4 - Datasets h-ABCD, scenarios Al to A6. Comparison by increasing the number
of nodes from n € {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). Outlier points have been removed: from the rel-
ative error plot (bottom left), 3 values at 25, -50 and -55 concerning the IRMM method
with in scenarios A6, A2 and A3 respectively.

range between 16,961 seconds and 17,895 seconds would have changed the y-scale. We mostly
observe that while the above conclusions are still valid, the performances of the 3 “working”
methods (AON-HMLL, IRMM and LSR)increase wrt to scenario A. Indeed, except for the CNM-1ike
algorithm, the methods exactly recover the true number of clusters (bottom right) and ARI val-
ues are almost equal to 1 (top left). Relative errors on modularity are also almost zero for those
3 methods, indicating that the local maximization of the modularity works. We note that the
CNM-1like method has relative error equal to 1. This comes from the fact that the maximized
modularity is zero while the ground truth modularity is not zero. Also note that the computing
time for this method in scenario B6 becomes significantly larger.

Impact of unbalanced clusters. Let us now turn to scenario C where we explore the impact of
unbalanced clusters. Results are presented in Figure 6, where we removed from the time plot
(top right) all values for the LSR method in scenario C5 as they range between 2,646 and 3,842
seconds. We observe that the overall performances of the methods have decreased wrt scenario
A: ARl values are quite low (top left) and the number of clusters is over-estimated (bottom right).
Contrarily to scenario A, increasing the number of nodes n degrades the performance of ARI. This
is quite counter intuitive, as we expect that with larger values of n, the clusters sizes increase
and thus should be easier to detect.
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Figure 5 - Datasets DCHSBM, scenarios B1 to B6. Comparison by increasing the number
of nodes from n € {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time in
seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for the LSR
method in scenario B6 range between 16,961 and 17,895 seconds are not shown.

Impact of proportions of size-s hyperedges. In scenario D, we explore the impact of the proportions
of size-s hyperedges. More precisely, while scenario A relied on a realistic setting of a smaller
number of size-3 than size-2 hyperedges (namely, |£2| > |€3]), we explore here the converse
setting where |E3] > |&|. Results are presented in Figure 7, where again, we removed from the
time plot (top right), all values for the LSR method in scenario D6 for comparison purposes, as
their range is between 17,153 and 22,377 seconds. Here, we observe as in scenario B that the
performances of the 3 methods AON-HMLL, IRMM and LSR increase wrt to scenario A. Indeed,
the AON-HMLL and the IRMM have ARI values equal or close to 1 (top left) and find (almost always)
the correct number of clusters (bottom right), indicating (almost) perfect clustering recovery.
Relative errors on modularity are also almost zero for those 3 methods, indicating that the local
maximization of the modularity works. From that simulation we conclude that clustering via
modularity maximization is easier for datasets with a larger proportion of large-size hyperedges
and conversely, more difficult in the realistic setting where larger sizes hyperedges are in smaller
proportion.

Impact of within-cluster over between-cluster hyperedges ratio. Scenario E (resp. F) rely on a larger
(resp. smaller) value for the within-cluster over between-cluster hyperedge ratio ps (still constant
with hyperedge size s) compared to scenario A. The results of this simulation are presented in
Figure 8 (resp. Figure 9). In those figures again, time values for the LSR method in scenarios E6
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Figure 6 - Datasets HSBM, scenarios C1 to C5. Comparison by increasing the number of
nodes from n € {50, 100, 150, 200, 500}: Adjusted Rand Index (top left), time in seconds
(top right), relative error on modularity (bottom left) and estimated number of clusters
(bottom right, true value is 3). From the time plot (top right), values for the LSR method in
scenario C5 range between 2,646 and 3,842 seconds and are not shown. Outlier points
have been removed: from the relative error plot (bottom left), 2 values concerning the
IRMM method, one above 30 in scenario C3 and the second below -60 in scenario C4.

and Fé6 respectively have been removed. We can observe that the modularity based methods
are sensitive to this parameter p, with better clustering results obtained when this ratio is large.
As expected, the more modular the hypergraphs are, the easier it is to recover the clusters.

Exploring possible bias from generating models. The bad results obtained by all methods on the
datasets generated from scenarios A under h-ABCD model raised the question whether those
hypergraphs are indeed modular. As we choose the settings of this simulation to mimic the ob-
servations obtained under HSBM and DCHSBM but did not completely succeed in that task, one
could wonder whether our parameter choices make sense for this model. That is why we con-
sider scenarios Z under h-ABCD, relying on the authors of the model default parameter choices.
Note that we started at sample size n = 100 because n = 50 did not work. The results obtained
on these datasets are presented in Figure 10. Here, we observe that again, none of the meth-
ods is able to recover the ground truth clusters (top left plot shows ARI values around O and
bottom right plot shows difference between estimated and true number of clusters quite large).
This seems to indicate that h-ABCD is not an appropriate benchmark method to test community
detection algorithms.

Overall, we could wonder whether the generating models DCHSBM and HSBM could be
favoring the AON-HMLL method. This could be particularly the case for the DCHSBM model as
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Figure 7 - Datasets DCHSBM, scenarios D1 to D6. Comparison by increasing the num-
ber of nodes from n € {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time
in seconds (top right), relative error on modularity (bottom left) and estimated number of
clusters (bottom right, true value is 3). From the time plot (top right), values for the LSR
method in scenario D6 range between 17,153 and 22,377 seconds and are not shown.
Outlier points have been removed: from the time plot (top right), 1 value above 2,800
seconds concerning the LSR method in scenario D5 and from the relative error plot (bot-
tom left): 1 value larger than 14 and 1 smaller than -11 concerning the IRMM method in
scenario D5.

this model and the AON-HMLL method both derived from the same article (Chodrow et al., 2021).
However, we can argue against that claim that the modularities Q*°™ and Q*"i°® maximized
by the methods AON-HMLL and CNM-1ike, respectively (see summary in Table 1) both focus on
contributions by within-clusters hyperedges only. More precisely, the difference in @*°" and
Q"™ict |ies only on adaptive weights included in the former, the latter appearing as a special
choice of those weights. We thus conclude that our simulations that partly focused on the
ratio of within-clusters over between-clusters hyperedges is not especially in favor of the
AON-HMLL method.

As a final note, we notice that in our experiments, the IRMM method sometimes shows some
very large values for the relative modularity error (points that we called “outliers” and removed
to preserve y-scales in the plots). Looking at Table 1 in the Supplementary Material, we observe
that the ground truth modularity Q¥-c!iau¢ js close to zero, explaining this unstable behaviour of
the relative error.
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Figure 8 - Datasets DCHSBM, scenarios E1 to E6. Comparison by increasing the num-
ber of nodes from n € {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time
in seconds (top right), relative error on modularity (bottom left) and estimated number
of clusters (bottom right, true value is 3). From the time plot (top right), values for LSR
method in scenario E6 range between 15,833 and 20604 seconds and are not shown.
Outlier points have been removed from the relative error plot (bottom left): 2 values con-
cerning the IRMM method, one larger than 100 in scenario E3 and the other smaller than
-21 in scenario E4.

5. Discussion

Let us now summarize the main findings of this study:

e Globally, the best modularity-based approach is the AON-HMLL, as it often recovers the
ground truth clusters and is among the fastest approaches;

e The IRMM algorithm has often good results at recovering ground truth clusters, but it is
less fast than the AON-HMLL;

e Though the LSR algorithm is specifically designed to improve on the IRMM, it does not
improve the clustering problem at stake;

e The CNM-1like algorithm does not recover the ground truth clusters in any simulation
setting;

e We did not observe any algorithm for which the modularity Q would be correctly maxi-
mized (relative error in modularity close to zero) while clusters would not be recovered
(low ARI values). Nonetheless, the modularity Q%i°t from Kaminski et al., 2019a is not
fully maximized by the CNM-1ike method, which leaves open the question of whether it
is able to capture communities in hypergraphs.
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Figure 9 - Datasets DCHSBM, scenarios F1 to F6. Comparison by increasing the num-
ber of nodes from n € {50, 100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time
in seconds (top right), relative error on modularity (bottom left) and estimated number
of clusters (bottom right, true value is 3). From the time plot (top right), values for LSR
method in scenario F6 range between 22,891 and 39,967 seconds and are not shown.
Outlier points have been removed from the relative error plot (bottom left): 3 values con-
cerning the IRMM method, with 2 values smaller than -40 and -680 and 1 value larger
than 22 in scenarios F1, F4 and Fé6 respectively.

In the following, we concentrate on commenting the results of the “working methods”,
namely the AON-HMLL, IRMM and the LSR:

e The working methods tend to have better results when the densities of the hypergraphs
increase, though still in a sparse setting (i.e., when the number of hyperedges increases,
see scenarios B);

e The methods are sensitive to the balance in the cluster sizes, with better results when
clusters are balanced (see scenarios C);

e The methods tend to have better results when we observe a larger proportion of larger-
size hyperedges (i.e., when |£3| becomes larger than |&;|, see scenarios D);

e The methods are sensitive to the ratio ps of within-cluster over between-cluster size-s
hyperedges, with better results when this ratio is larger (thus the hypergraph is more
modular, see scenarios E and F).

Another conclusion from our study is that the h-ABCD benchmark model (Kaminski et al.,
2023b) does not seem appropriate to generate modular hypergraphs, or at least that none
of the current modularity-based approaches is able to detect the simulated clusters in those
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Figure 10 - Datasets h-ABCD, scenarios Z1 to Z5. Comparison by increasing the num-
ber of nodes from n € {100, 150, 200, 500, 1000}: Adjusted Rand Index (top left), time
in seconds (top right), relative error on modularity (bottom left) and difference between
estimated number of clusters and true value (bottom right). Outlier points have been re-
moved: from the time plot (top right), 4 values above 900 seconds concerning the LSR
method in scenario Z5 and from the relative error plot (bottom left), 1 value below -28
concerning the IRMM method in scenario Z4.

hypergraphs.

Our work is a first building block in gaining a better understanding of modularity in hyper-
graphs, yet it comes with certain limitations that warrant attention in future research. One con-
straint arises from computational limitations in both the generating models and modularity max-
imization methods, restricting our exploration to relatively small graphs (with a number of nodes

n <

1,000). Consequently, we constrained ourselves to a limited number of clusters (K < 3),

as larger values might lead to clusters too small for effective detection. Our focus was on bi-
nary hypergraphs, which already encompass a vast array of higher-order interactions. However,
weighted hypergraphs are also of significant interest. Additionally, our approach relied on simu-
lated hypergraphs with characteristics dictated by methodological constraints (e.g., the number
of nodes, number of clusters) and others chosen to align with what we believe to be realistic (e.g.,
sparse hypergraphs, |E>] > |€3], ...). Lee et al., 2021 examined 13 real-world hypergraphs with
heterogeneous sparsity (ratios |£|/n ranging from as small as 0.5 to around 50) and an average
hyperedge size s generally less than 3.9, with two exceptions (hypergraphs related to drug chem-
icals). Despite this attempt, the literature still lacks a large-scale study on the characteristics of

real-

world hypergraphs that could inform and support simulations.
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There remain numerous unresolved questions that extend beyond the scope of the present
contribution. Realistic characteristics, influenced by parameter choices in the generating models,
are intricately tied to the issue of detectability thresholds. Specifically, under what circumstances
is it possible to effectively recover clusters in a hypergraph? While this question has garnered
attention for uniform hypergraphs (Angelini et al., 2015; Chien et al., 2019; Stephan and Zhu,
2022; Zhang and Tan, 2023), real-world hypergraphs, which are non-uniform, remain largely un-
explored in this context. Furthermore, moving beyond clustering recovery, it would be valuable
to investigate the discriminative power of modularities. Specifically, understanding how discrim-
inative each proposed modularity measure is could provide insights on their design. Examining
the distribution of modularity values across a diverse set of hypergraphs, including non-modular
ones, holds significant importance. In a similar vein, whether hypergraph modularities are uni-
modal or not is an important question. Characterizing the behavior of modularities across the
entire spectrum of node clusterings would aid in designing suitable modularity-based methods
for community detection in hypergraphs.
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