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Abstract
Pangenomics is the study of related genomes collectively, usually from the same speciesor closely related taxa. Originally, pangenomes were defined for bacterial species. Af-ter the concept was extended to eukaryotic genomes, two definitions of pangenomeevolved in parallel: the gene-based approach, which defines the pangenome as the unionof all genes, and the sequence-based approach, which defines the pangenome as the setof all nonredundant genomic sequences. Estimating the total size of the pangenome fora given species has been subject of study since the very first mention of pangenomes.Traditionally, this is performed by predicting the ratio at which new genes are discovered,referred to as the openness of the species. Here, we abstract each genome as a set ofitems, which is entirely agnostic of the two approaches (gene-based, sequence-based).Genes are a viable option for items, but also other possibilities are feasible, e.g., genomesequence substrings of fixed length k (k-mers). In the present study, we investigate theuse of k-mers to estimate the openness as an alternative to genes, and compare theresults. An efficient implementation is also provided.
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Introduction
With the advent of high throughput sequencing technologies, the number of genomes that

we have at our disposal has been steadily increasing. When a reference genome is available, se-
quencing and genome analysis usually involve comparing the nucleotide sequences to that ref-
erence. However, a single reference sequence can hardly account for all the variability present
in nature and can not truly represent a whole species (The Computational Pan-Genomics Con-
sortium, 2018).

In 2005 the term pangenome was used by Tettelin et al. (Tettelin et al., 2005) to describe the
set of all distinct genes present in a species: either present in all genomes, defined as core genes,
or present in just some, called dispensable genes. One goal was to predict how many additional
genomes should be sequenced to fully describe a bacterial species. While the concept of pange-
nomes was later extended beyond bacteria, to plants and animals, one of the most outstanding
discoveries at the time was that some species possess an open pangenome and others a closed
pangenome.

For an open pangenome, the predicted number of genomes that need to be sequenced in
order to get a full picture of the species is large or even undetermined. New distinct genes are
found each time a newly sequenced genome is added. A closed pangenome, instead, needs
much fewer genomes to portray the species. A binary classification of pangenomes into open
and closed categories often proves to be challenging and multiple studies have argued against
such a definitive separation (Gautreau et al., 2020; Cummins et al., 2022; Tonkin-Hill et al., 2023).
We refer to openness to describe this variability and resort to use the terms open or closed only
for historical reasons or comparison with other works.

In this paper, we define a genome as a set of abstract items. Possible choices of items include,
but are not limited to, genes, ORFs or genome intervals of fixed size. The pangenome is defined
as the union of these sets. The estimation of the pangenome openness requires the computation
of the pangenome growth (Tettelin et al., 2008).

The pangenome growth is computed starting with one genome and sequentially performing
the union with new genomes from the set until all genomes have been considered. It follows
that the final total size of the pangenome is independent of the ordering in which we choose
the genomes, but the pangenome growth is not. To make it independent of the order, we can
compute the pangenome growth for every possible order of the genomes, and then calculate an
average pangenome growth. This procedure can be simplified by computing the average over all
possible combinations of m genomes, where m goes from one to the total number of genomes.
While it is possible to compute the average pangenome growth (hereafter referred to simply as
pangenome growth) for a small number of genomes – e.g., with the eight isolates of Streptococ-
cus agalactiae used in (Tettelin et al., 2005) – it is clear that the computation cannot scale with
bigger datasets. Even if a more complex solution has been proposed to minimize the number
of combinations to consider (Zhao et al., 2014), the most common and practical solution is to
randomly sample multiple permutations of the ordering of genomes.

In this work, we investigate the use of k-mers, short genome intervals of constant length k , as
items for determining pangenome openness and compare to the gene-based approach. Express-
ing genomic sequence content through k-mers is a well-established approach and examples of
their use can be found in many different applications, like genome assembly (Compeau et al.,
2011), read mapping (Xin et al., 2013) and metagenomics (Wood and Salzberg, 2014). One of
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the advantages of using k-mers is that they require only the genome sequence, avoiding several
potentially expensive and erroneous preprocessing steps needed by the gene-based approaches.
For example, genome assemblies must be available or computed when using a gene-based ap-
proach, while k-mers can be extracted directly from sequencing reads. Moreover, in the absence
of genome annotation, each sample must be annotated in silico. Lastly, the comparison between
gene sequences requires an adequate definition and computation of homology, and, based on
that, a definition and computation of gene families. In summary, the lack of preprocessing steps,
coupled with the existence of fast algorithms for handling k-mers (Cheng et al., 2021; Kokot et
al., 2017; Marçais and Kingsford, 2011), make the estimation of the openness based on k-mers
fast and straightforward.

The remainder of this paper is organized as follows. Section “Related work” motivates our
choice of the gene-based methods for the estimation of the openness for comparison, detailing
the clustering methods employed by the tools: Roary (Page et al., 2015), Pantools (Sheikhizadeh
et al., 2016) and BPGA (Chaudhari et al., 2016). Section “Methods” defines the pangenome
growth function, gives an efficient method for its computation, and presents our implementa-
tion, Pangrowth. Section “Results” contains the empirical results of the k-mer-based and three
gene-based approaches on twelve bacterial pangenomes to compare their predicted openness.
Section “Conclusion” concludes the text.

Related work
A number of approaches have been published to compute pangenome growth. Vernikos

(2020) provides a useful starting point, enumerating an extensive list of tools and highlighting
five notable ones: BPGA (Chaudhari et al., 2016), Roary (Page et al., 2015), LS-BSR (Sahl et al.,
2014), PanOCT (Fouts et al., 2012), and PGAP (Zhao et al., 2012). From this selection, we in-
corporated BPGA and Roary into our analysis. LS-BSR and PanOCT were excluded due to their
considerably slow running times (see running times comparison in Page et al. (2015)). PGAP, de-
spite its relevance in the analysis of microbial genomes, was also excluded as it does not directly
support the openness analysis.

Among the remaining tools, we decided to not use PANINI (Abudahab et al., 2019), a web-
based application for pangenome analysis that relies on Roary’s output, to avoid redundancy.
Similarly, PanGP (Zhao et al., 2014), despite offering an improved method to calculate the aver-
age of the permutation, was not included as it requires the pan-matrix – a binary matrix with
presence absence of genes in each genome – as input. PanX (Ding et al., 2018), while being de-
signed for pangenome analysis, lacks of explicit support for pangenome openness. PGAT (Brit-
tnacher et al., 2011), a web-based tool for the analysis of microbial genomes, even if it supports
database queries to identify genes that are present or absent in the pangenome, also does not
directly report the openness. Moreover, PanACEA (Clarke et al., 2018), a pangenome tool to
explore chromosome and plasmids, was excluded for the same reason. On the other hand, we
decided to include in our study Pantools (Sheikhizadeh et al., 2016) since it directly supports the
computation of the openness.

Therefore, hereafterwe describe the clusteringmethods used in Roary, Pantools andBPGA in
more detail, in particular how they cluster genes into gene families, which is the main difference
between gene-based methods for pangenome growth estimation.
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Roary
The gene clustering approach chosen in Roary consists of four steps. First, coding sequences

translated from each genome are clustered using CD-HIT (Fu et al., 2012). In this step, CD-HIT is
applied iteratively with decreasing similarity thresholds. At each iteration, every cluster of genes
that contains as many genes as genomes is filtered out. The clustering process of CD-HIT goes
as follow. First, sequences are decreasingly sorted based on their length. The first sequence is
defined to be the representative of the first gene cluster. Each sequence is then compared to
all the previous gene representatives. If it is similar enough to one of these genes, it is added
to the cluster, otherwise a new gene cluster is created with this sequence as the representative.
Similarities between sequences are calculated using local alignment on amino acid sequences.
All the proteins that are not filtered out after the last CD-HIT iteration are further processed in
the second and third step. In these two steps, an all versus all comparison is performed using
BLASTP, and the calculated scores are used to cluster the proteins using MCL (Enright et al.,
2002). The final step of Roary is to post process the clusters, for example distributing paralogs
into separate groups.

Pantools
Similar to Roary, Pantools clusters proteins by computing their local alignments and then run-

ning MCL. To reduce the number of comparisons, an alignment is explicitly computed only when
the number of shared hexamers (substrings of length six) of the two proteins can guarantee a
minimum alignment score. If the similarity score of the local alignment, normalized to be inde-
pendent of the length, is greater than a second threshold, an edge between the two proteins is
added to a similarity graph. For each connected component in the resulting graph, a similarity
matrix is computed. Each score is further scaled based on the species of origin of the considered
proteins. MCL is then applied to each similarity matrix.

BPGA
BPGA provides three options for clustering: USEARCH (Edgar, 2010) (which is the default),

CD-HIT (Fu et al., 2012) or OrthoMCL (Li et al., 2003). Specifically, USEARCH uses the UCLUST
algorithm (Edgar, 2010) to group genes into clusters. Within BPGA, the cluster_smallmem com-
mand is executed, a memory-efficient variant of UCLUST. The algorithm focuses on identifying
centroids, which are sequences selected to represent a gene family. Other sequences that align
with a centroid at or above a predefined threshold are assigned to that centroid’s family. In BPGA,
genes must be converted into amino acids before clustering and are subsequently sorted by de-
creasing length. This ensures that the longest sequences are likely to be chosen as centroids. As
UCLUST processes the genes, it constructs a database of centroids. Sequences within this data-
base are prioritized based on the number of unique substrings of fixed length they share with
the query sequence. This increases the probability of obtaining a strong match early in the list of
sequences. The algorithm terminates after a fixed number of rejections or accepted sequences.
The similarity between sequences is computed by aligning each string with a seed extension
technique and banded dynamic programming to improve performance.
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Methods
In this section, we abstract the notion of genome to a set of items. Items have to be of the

form that genomes may share items, while items can also be unique to genomes. Genomes are
described as a subset of the universal set of itemsK present in a species, or other taxonomic rank.
The set K contains the union of all the items appearing in the pangenome plus all the unseen
items that may appear in some genomes not included yet. The problem of estimating the size
of K can be reduced to a well studied problem in information theory, where the increment in
the total number of items is studied as a function of the number of objects (here, genomes)
contemplated. This function is known to follow a power law, referred to as Heaps’ law (Heaps,
1978). The exponent of the power law defines the openness of the species (Tettelin et al., 2008).
Definitions

Let G = {G1, ... ,Gn} be a set of genomes, P(G) the power set representing all possible sub-
sets of G, and Gm = {G′ ∈ P(G) | |G′| = m} the set of subsets of G of cardinality m. Let M be a
binary matrix possessing a column for each genome and a row for each item. If item x is present
in genome i thenMx ,i = 1, otherwiseMx ,i = 0.M is usually referred to as pan-matrix.

In order to study the openness of a species, we want to examine the size of the union of
genomes when considering more and more of the species’ genomes. Moreover, to be indepen-
dent of the order in which genomes are added, we are interested in the average total size ftot(m)

of the union for each possible species subset of size m, where 1 ≤ m ≤ n,
(1) ftot(m) =

1(n
m

)
∑

G′∈Gm

∣∣∣
⋃

G∈G′
G

∣∣∣.

For convenience, we also define the average number fnew(m) of new genes that are added when
adding the m-th genome as:

(2) fnew(m) =




0 if m = 0

ftot(m) − ftot(m − 1) otherwise
The function fnew is known to follow a power law distribution, referred to as Heaps’ law (Tet-

telin et al., 2008), of the form Km−α where K and α are positive, and the openness is defined
based on the value of α. Since ftot is defined as the cumulative sum over fnew, we have that ftotfollows

∫
Kx−αdx = C +

K

1 − α
m1−α = C +

K

γ
mγ , where γ = 1 − α.

When α < 1, the function grows indefinitely as m goes to infinity, corresponding to an open
pangenome. Conversely, when α > 1, γ becomes negative, such that ftot rapidly approaches a
constant value,C , resulting in a closed pangenome. The estimation of the pangenome’s openness
is performed by fitting Km−α on fnew.The original definition of openness provided by Tettelin et al. (2008) differs from this, having
C = 0 and thus 0 ≤ γ ≤ 1. This results in a contradiction, as it implies that α can never exceed
one, suggesting that a closed pangenome is impossible.

To illustrate the concept of openness we show Figures 1 and 2 representing the fitting for
some real genomedata:H. pylori in red andC. jejuni in blue. Both datasets comprises 234 genomes
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each, have nearly identical genome lengths (H. pylori: 1.63Mbp; C. jejuni: 1.68Mbp), and contain
a similar number of gene families (H. pylori: 1500; C. jejuni: 1700). Despite these similarities, H.
pylori appears to be the more open of the two, with its pangenome containing two to three times
more items than C. jejuni.

In our analysis, k-mers were counted in their canonical form, i.e., a k-mer and its reverse
complement are considered equivalent.
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Figure 1 – Comparison of the average number of new items fnew(m) for 234 genomes ofHelicobacter pylori (red) and for 234 genomes of Campylobacter jejuni (blue) using differ-ent tools: (a) Pangrowth, (b) Roary, (c) Pantools and (d) BPGA. The lines show the fittedfunctions Km−α.

Obtaining ftot efficiently
The computation of ftot(m) requires taking the average of (n

m

) values when performed as
formulated in Equation (1), making it prohibitive to compute even for relatively small n. The most
common solution is to approximate ftot(m) selecting a subset of all the possible permutations of
the order of the genomes, as suggested in (Tettelin et al., 2008). Although this works well for
gene-based approaches, it does not scale for k-mers. The reason is that the number of k-mers
that can appear in a species can be two to four orders of magnitude higher than the number of
genes (Table 1). This, in turn, slows down drastically the computation of the union of genomes
which is linear in the number of items.

Here we describe a more efficient, exact way to calculate ftot(m), without computing (n
m

)

subsets for each average. This method has been known for several decades in the field of ecol-
ogy (Heck et al., 1975) but it seems to have gone unnoticed in the fields of pangenomics and
linguistics (Chacoma and Zanette, 2020). Let h(i) be the number of items that occur in exactly i

of the n input genomes, 1 ≤ i ≤ n. We consider the contribution of each item of multiplicity i

based on the number of subsets G′ ∈ Gm in which the item will be counted. This can be done by
subtracting from the number of subsets in Gm, (n

m

), the number of subsets that do not contain an
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Figure 2 – Comparison of the pangenome growth ftot(m) for 234 genomes of Helicobac-ter pylori (red) and for 234 genomes of Campylobacter jejuni (blue) using different tools:(a) Pangrowth, (b) Roary, (c) Pantools and (d) BPGA. The lines show the fitted functions
C + K

γ m
γ .

item of multiplicity i , (n−i
m

). We can then rewrite Equation (1) as follows:
ftot(m) =

1(n
m

)
∑

G′∈Gm

∣∣∣
⋃

G∈G′
G

∣∣∣ = 1(n
m

)
n∑

i=1

h(i)
((n

m

) − (n−i
m

))

=
n∑

i=1

h(i)
(
1 − (n−i

m

)
/
(n
m

))
=

n∑

i=1

h(i)
(
1 − (n − i)!(n − m)!

(n − i − m)!n!

)

=
n∑

i=1

h(i)
(
1 − (n − i)m

nm

)
,(3)

where nm is the falling factorial defined as nm = n(n − 1)(n − 2) · · · (n − m + 1). Observe that
nm = 0 if m > n, since there is a zero in the product.
Estimating the pangenome openness

Our procedure for the estimation of the pangenome openness is divided into three steps.
First, the values h(i) must be computed or provided. As a matter of computing, they can be ex-
tracted directly from the pan-matrix by counting the number of rows that sum up to i . More
efficient solutions can be considered based on the item of choice as shown in the following
subsection. In the second step, ftot is calculated according to Equation (3). We can rewrite Equa-
tion (3) as ftot(m) =

∑n
i=1 h(i)− 1

nm
∑n−m

i=1 h(i)(n− i)m and compute (n− i)j+1 = (n− i − j)(n− i)j ,
where (n− i)1 = (n− i). In practice, we can store the values (n− i)j reducing the time complexity
of the calculation of ftot from Θ(n3) to Θ(n2), with the same space complexity, Θ(n). Lastly, fnewis computed from ftot using Equation (2), and the function Km−α is fitted on fnew, estimating the
parameter α for the pangenome openness.
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Implementation using k-mers as items
We have implemented the estimation of the pangenome openness that uses k-mers as items

in a software called Pangrowth. The code is available as a Gitlab project at https://gitlab.ub.
uni-bielefeld.de/gi/pangrowth.

For the computation of h(i) we modified the k-mer counting tool yak (Cheng et al., 2021).
Since storing k-mers in the pan-matrix is not efficient in terms of memory, yak uses multiple
hash tables for different suffixes of k-mers, reducing access time and enabling parallelization. To
prevent counting the same k-mer twice in the same genome, we associate a variable to each k-
mer representing the last genome it was found in. Only if this is different from the genome that
is currently read, the counter is incremented. The histograms for H. pylori and C. jejuni are shown
in Figures 3(a) and 3(b), respectively. Next, we compute ftot following the approach outlined in
the ’Obtaining ftot efficiently’ subsection, determine fnew and estimate α. Figure 1 reports fnewcomputed on the two datasets with their fitting for each of the four tools under study.
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Figure 3 – Percentage of items in histogram h(i) in (a) 234 genomes of Helicobacter pyloriand in (b) 234 genomes of Campylobacter jejuni for the tools Pangrowth, Roary, Pantoolsand BPGA. The y-axis displays the normalized values of the histogram, while the x-axisrepresents the percentage of genomes in which the items appear, with values binnedtogether in 5% increment, for visual clarity.

Results
Weanalysed twelve bacterial pangenomeswith the three gene-based approaches, Roary (Page

et al., 2015), Pantools (Sheikhizadeh et al., 2016) and BPGA (Chaudhari et al., 2016), and with
our k-mer-based approach, Pangrowth. To rule out sampling as a possible source of difference
in the results, we used Equation (3) on the pan-matrix generated by each gene-based tool. Pan-
tools is capable of directly producing the pan-matrix, thus avoiding the sampling across multiple
genome orders. However, Roary and BPGA do not offer this functionality. We altered Roary’s
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code to end the process right after the pan-matrix is generated. Conversely, BPGA requires a
minimum of 20 permutations of genome orders and only after completing this task it outputs
the pan-matrix. Since BPGA comes in binary format, we could not modified it.

Genomes of each species were downloaded from NCBI RefSeq with the filter “Assembly
level: Complete genome". Annotations have been carried out by Prokka (Seemann, 2014) ver-
sion 1.14.6 with standard parameters. The pipeline was wrapped in a Snakemake workflow for
reproducibility and parallelization with the exception of BPGA, for which we provide a separate
bash script. The number of genomes for each species can be found in Table 1 while the value of
α for each tool is reported in Table 2. Both the Supplementary Material and the data with scripts
can be accessed at Zenodo (Supplementary Material: https://zenodo.org/record/8233908,
data and scripts: https://zenodo.org/record/8256094).

Table 1 – Total number of distinct canonical k-mers found by Pangrowth and the totalnumber of genes found by Roary (Page et al., 2015), Pantools (Sheikhizadeh et al., 2016)and BPGA (Chaudhari et al., 2016) for each species. Column “gene names” shows thetotal number of distinct gene names from the in silico annotation of Prokka (Seemann,2014). In Pangrowth, the value chosen for k is 19 for all the species, except for Buchneraaphidicola, where k is 17.
species n Pangrowth Roary Pantools BPGA gene names

1 Bacillus cereus 83 47 161 713 36 794 37 532 43 014 29112 Buchnera aphidicola 35 12 341 389 13 441 13 240 13 571 2953 Campylobacter jejuni 234 6 633 011 7097 7278 8196 9024 Clostridium botulinum 50 32 016 575 27 528 25 948 28 982 23195 Coxiella burnetii 13 2 491 601 3433 2932 2767 2426 Francisella tularensis 57 3 741 156 5137 3819 3726 7677 Helicobacter pylori 234 18 430 113 14 708 22 774 31 672 7908 Prochlorococcus marinus 9 12 502 284 13 088 12 612 13 300 4219 Rhodopseudomonas palustris 8 21 985 762 15 135 14 678 15 841 78810 Streptococcus pneumoniae 88 6 518 728 6375 6902 7059 81811 Streptococcus pyogenes 247 7 420 059 7055 7138 7894 67412 Yersinia pestis 56 4 917 598 6087 5612 5362 889

Table 2 – Values of K and α for Pangrowth, Roary, Pantools and BPGA for each species.The values of K were approximated to the nearest integer.
K α

species Pangrowth Roary Pantools BPGA Pangrowth Roary Pantools BPGA
1 Bacillus cereus 5 756 858 3354 3503 4215 0.77 0.68 0.68 0.692 Buchnera aphidicola 755 172 642 651 653 0.30 0.20 0.21 0.203 Campylobacter jejuni 640 315 487 560 473 0.87 0.76 0.78 0.694 Clostridium botulinum 4 120 907 3109 3218 3496 0.71 0.66 0.70 0.685 Coxiella burnetii 200 334 499 374 288 0.91 0.87 0.92 0.836 Francisella tularensis 301 531 412 272 211 0.76 0.71 0.73 0.647 Helicobacter pylori 1 160 492 442 873 1069 0.68 0.49 0.54 0.508 Prochlorococcus marinus 1 958 786 2206 2212 2228 0.24 0.29 0.32 0.299 Rhodopseudomonas palustris 5 139 651 2992 2874 3312 0.53 0.49 0.49 0.5110 Streptococcus pneumoniae 549 066 516 651 541 0.74 0.73 0.77 0.6911 Streptococcus pyogenes 472 284 570 457 418 0.74 0.81 0.74 0.6812 Yersinia pestis 70 781 381 172 156 0.85 0.87 0.62 0.64
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Choice of parameters
Roary was run using its default parameters. For Pantools, the mandatory relaxation parame-

ter, which ranges from one to eight, was set to one. This parameter controls how similar two gene
sequences must be to be considered part of the same gene family, with a value of one requiring
the sequences to be closely related1. In BPGA, we used the default clustering method, USE-
ARCH, since CD-HIT and MCL were already employed in Roary and Pantools, thereby adding a
new clustering method to the list. The sequence similarity threshold was set to 0.95. We note
that a subsequent run with a threshold of 0.97 did not lead to significant changes in the reported
values of α.

In our method, the only parameter is k for which we used a similar heuristic to what was
proposed in (Sheikhizadeh Anari et al., 2018): Given the length of the genome, the value of k is
chosen to be the smallest that ensures the probability of a random k-mer to occur in a genome
is below 0.0001, rounded to the next odd integer. On the considered datasets, this heuristic
suggests k = 19 for almost all species, since the scale of the size of bacterial genomes is similar,
with the exception of Buchnera aphidicola, where k = 17 is proposed due to its smaller genome
size. Even though inversions and other rearrangements that affect the direction of substrings
within the genome can be accounted as variability between genomes, we are more interested
in new items (genes or k-mers). For this reason we chose to look at canonical k-mers and only
k-mers that span rearrangement breakpoints are affected.
Fitting Heaps’ law

The reported values for α were determined by applying a linear model to the log-log scale
of fnew. Figures S1, S2, S3 and S4 illustrate the adjusted R2 values for the fitting of Heaps’ law
across various species at different starting positions 2 ≤ m0 ≤ 10. This is shown for our k-mer-
based approach as well as for the three gene-based approaches. In the k-mer-based approach,
Yersinia pestis is the most influenced by the starting position of the fit, initially not being very
well described by Heaps’ law (R2 = 0.91) and increasingly fitting better with higher starting
positions (R2 > 0.99 for m0 ≥ 6). Similarly, Rhodopseudomonas palustris shows an R2 for m0 = 2

between 0.92 and 0.95 for the gene-based approaches, that also increases with higher m0. Forthe remaining species, and across all tools, the power law seems to consistently provide a good
fit (R2 = 0.96 for m0 = 2 and R2 > 0.99 for m0 ≥ 6), with the value of α not significantly altered
when m0 is changed (Figures S5, S6, S7 and S8).

That the fit improves when m0 is increased is in line with the pattern commonly observed in
other phenomena where only the tail of the function follows the power law (Clauset et al., 2009).
Depending on the interest, the fit can be adjusted for the tail, if estimating the average number
of newly discovered items for newly sequenced genomes is the goal, or the fit can be done as
early as possible, to estimate the species’ openness. For example, in Tettelin et al. (2008) they
start at m0 = 3, while most tools begin at m0 = 2 (Sheikhizadeh et al., 2016; Snipen and Liland,
2015). In this paper, we are interested in the latter approach. Therefore, unless otherwise stated,
all the reported values of α are fitted with m0 = 2.
1We communicated with the authors of Pantools after an initial discrepancy in the results. The divergence arosefor two reasons: we set the gene homology parameter too high (relaxation was set to 4 instead of 1), and becausePantools fits Heaps’ law across all data points obtained from the permutations of the order of genomes, rather thanfitting it over the average or the median.
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Overall comparison
Figure 4 displays a pairplot comparing the α values across the tools considered. The gene-

based tools show consistent results, especially between Pantools and BPGA, where they report
nearly identical values. Similarly, Roary and BPGA, as well as Roary and Pantools, agree on their
values, except for Y. pestis. In this case, Pantools and BPGA converge on one value around 0.630,
while Roary reports 0.868. Our k-mer-based approach, Pangrowth, shows strong correlationwith
the gene-based tools, with a Pearson correlation coefficient ρ > 0.92, and reports similar values
of α with respect to all three gene-based tools.
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Figure 4 – Pairplot illustrating the comparison of estimated openness values across the12 bacterial species and the four tools. The lower triangle shows the comparison of αvalues for each species, with the diagonal dashed line representing the equality. Theupper triangle depicts the Pearson correlation coefficient, where ‘***’ signifies a p-value
< 0.001. The diagonal line contains the distribution of theα valueswith the y-axis rangingfrom 0 to 4.

To estimate how sensible the openness is to the choice of k , we computed α for different
values of k (Figure 5). While more open species appear to be more influenced by k , the relative
order of the species stabilizes for k ≥ 21.

We compared the running time and space consumption of our tool against the three gene-
based tools and show the results in Figure 6. All computations and measurements were con-
ducted on our server machine, equipped with 28 Intel Xeon Processors (2.6 GHz) and 64 GB
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Figure 5 – Values of α for different choices of k .
of RAM. Every tool had 28 threads at disposal. In terms of running times, our method is one to
three orders of magnitude faster then any of the gene-based methods, with Prokka annotations
given. Note that both Roary and BPGA have potential for speed improvements. They could be
optimized by focusing solely on generating the pan-matrix or, more effectively, a histogram sim-
ilar to that of Pangrowth. In terms of memory, Pangrowth uses less than 1 GB of memory for
each of the species, similarly to Roary and BPGA, while Pantools requires more memory, proba-
bly due to the vast features of the tool. Prokka consistently uses less than 100 MB of memory
for each species and takes between 4minutes and 1 hour to annotate, depending on the dataset,
running on a single thread.
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Figure 6 –Wall clock time (left) andMaximumResident Set Size (right) measured for eachspecies and across all tools.
To evaluate Pangrowth’s scalability, we conducted a series of benchmarks on a set of 8000

Escherichia coli genomes, incrementally increasing the sample size across tests. Due to the low
resources needed, these tests were run on a portable computer furnished with 12 Intel Core
i7-8750H processors (2.20 GHz) and 16 GB of RAM. The wall clock times for these tests are
presented in Figure 7 for k = 19. Although the construction of the pangenome growth has a
complexity quadratic in the number of genomes, the pangenome growth of a histogram of 8000
E. coli genomes can be computed in under a second, requiring below 4 MB of memory. This
indicates that the bottleneck is in the calculation of the histogram, rather than in the growth
computation. Even so, this step runs linear in practice with respect to the number of genomes.
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On average, the calculation took approximately 19 minutes for 8000 genomes and consumed
around 3.5 GB of memory.
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Figure 7 – User timemeasured by the /usr/bin/time command, across different samplesizes of 8000 genomes of Escherichia coli. The measurements are reported separatelyfor the two distinct stages of Pangrowth: (left) the generation of the histogram h, and(right) the subsequent calculation of the pangenome growth based on this histogram.Each point represents the average over 10 runs.
Overall, results show similar trends in the estimated openness over multiple species between

the k-mer-based and the gene-based methods. Combined with the absence of outliers and the
fast computation time, they support the use of k-mers as a reasonable and practical alternative
to genes in the estimation of the openness.
Closeness

In our analysis, we did not deliberately exclude closed pangenomes but found none that met
the criteria for being closed as defined by Tettelin et al. (2008).While other studies have reported
closed pangenomes, it is important to recognize the complexity in comparing these findings, as
numerous variables can influence whether a pangenome is classified as closed or not.

Firstly, the use of various fitting methods, such as different starting points, fitting over all
points or over the median, combined with a lack of goodness-of-fit, can lead to different conclu-
sions.

Secondly, certain species were initially considered closed in the early stages of pangenomics
due to limited genome availability. For example, Tettelin et al. (2008) identified Staphylococcus
aureus as having a closed pangenome. However, this was later revised to open by Bosi et al.
(2016).

Lastly, some pangenomes are reported as closed with α values just below one. For instance,
the study byArgemi et al. (2018) declared the pangenomeof Staphylococcus lugdunensis as closed
with α = 0.96. Even though their method of fitting a power law over ftot and reporting α as 1− γ

cannot return a closed pangenome, we obtain the same α by taking the pangenome growth they
provided, compute fnew, and fit α = 0.91 (R2 = 0.96). Using Pangrowth on this set of genomeswe
obtain α = 0.92 (R2 = 0.97). Despite observing an α considerably smaller than 1, S. lugdunensis
was classified by Argemi et al. (2019) as closed also due the high similarity of their genomes.
Following the same rationale, Yersinia pestis can be classified as closed, which is in line with
other studies (Cui and Song, 2016).

We found that Coccolitovirus (Phycodnaviridae) shows a mathematically closed pangenome.
Using the pan-matrix reported by Lobb et al. (2023), we computed the pangenome growth and
calculated α. As reported in their manuscript, Coccolitovirus is closed with α = 1.21 (R2 = 1.00)
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(in their manuscript they report 1.22 based on 1000 permutations). Using Pangrowth on the
same genomes of Coccolitovirus we obtain even α = 1.94 (R2 = 0.94).

Conclusion
The use of k-mers to process pangenomes is common practice. In fact, k-mers are almost

ubiquitous when processing and analysing genetic sequences. The main focus of this manuscript
is the comparison of genes and k-mers when computing the pangenome openness. We showed
that the values of α resulting from the k-mer-based approach in bacterial species is similar to
the results obtained with a gene-based approach.

One of our motivations for the use of k-mers is the possibility to assess the openness also
for non-bacterial species. The concept of openness can be naturally extended to non-bacterial
genomes as a measure of the richness of items present in a species. While bacterial genomes are
notoriously composed mostly of protein coding regions, this is not true for eukaryotic genomes.
Given the significant role that non-coding regions play in eukaryotic genomes, sequence-based
approaches such as k-mer analysis may be more effective in capturing the full genomic content.

To test our method with a non-bacterial dataset, we applied our tool to 100 randomly se-
lected human genomes from the 1000 Genomes Project (1000 Genomes Project Consortium,
2015), containing only autosomes. The construction of the histogram took around 1 hour and
15 minutes on our server, while the time for the construction of the pangenome growth from
the histogram was around 10 milliseconds. For this dataset we observed α = 0.789.

Our experiments show that different gene homology definitions can vary the prediction of
the openness. Our k-mer approach does not require gene homology but it still needs a proper
choice of k . However, except for small values of k where almost all k-mers appear, the values of
α are not very sensible to the choice of k .

Another common pangenome analysis is the identification of the pangenomic core. Equa-
tion (3) can be promptly modified to estimate the size of the core. Similarly to the computation
of ftot, the core estimation requires taking the average number of shared items. The only re-
quired modification in ftot is the use of the intersection of each genome instead of the union. We
can also relax the definition of core items to count the items present in a subset of the set of
genomes, e.g., items present in 90% of the genomes.

Acknowledgements
We would like to thank the reviewers for their careful reading and helpful suggestions to

improve the manuscript. In particular, we extend our gratitude to Reviewer Guillaume Marçais
for his insightful review and for providing a valuable definition of open and closed pangenome.

Preprint version 4 of this article has been peer-reviewed and recommended by Peer Com-
munity In PCI Math Comp Biol (https://doi.org/10.24072/pci.mcb.100185; van Iersel,
2024).

Fundings
This project received funding from the European Union’s Horizon 2020 research and inno-

vation programme under the Marie Skłodowska-Curie grant agreement No 956229. It was also
supported by the BMBF-funded de.NBI Cloud within the German Network for Bioinformatics

14 Luca Parmigiani et al.

Peer Community Journal, Vol. 4 (2024), article e47 https://doi.org/10.24072/pcjournal.415

https://doi.org/10.24072/pci.mcb.100185
https://doi.org/10.24072/pcjournal.415


Infrastructure (de.NBI) (031A532B, 031A533A, 031A533B, 031A534A, 031A535A, 031A537A,
031A537B, 031A537C, 031A537D, 031A538A).

Conflict of interest disclosure
The authors declare that they comply with the PCI rule of having no financial conflicts of

interest in relation to the content of the article.
Data, script, code, and supplementary information availability

Data are available online (https://zenodo.org/record/8256094; Parmigiani et al., 2023a);
Script and codes are available online (https://zenodo.org/record/8256094; Parmigiani et al.,
2023a); Supplementary information is available online (https://zenodo.org/record/8233908;
Parmigiani et al., 2023b); Pangrowth is available online at https://gitlab.ub.uni-bielefel
d.de/gi/pangrowth.

References
1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature

526, 68–74. https://doi.org/10.1038/nature15393.
Abudahab K, Prada JM, Yang Z, Bentley SD, Croucher NJ, Corander J, Aanensen DM (2019).

PANINI: pangenome neighbour identification for bacterial populations. Microbial Genomics 5,
e000220. https://doi.org/10.1099/mgen.0.000220.

Argemi X,HansmannY, Prola K, PrévostG (2019).Coagulase-negative staphylococci pathogenomics.
International Journal of Molecular Sciences 20, 1215. https://doi.org/10.3390/ijms20051
215.

Argemi X, Matelska D, Ginalski K, Riegel P, Hansmann Y, Bloom J, Pestel-Caron M, Dahyot
S, Lebeurre J, Prévost G (2018). Comparative genomic analysis of Staphylococcus lugdunensis
shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genomics 19,
621. https://doi.org/10.1186/s12864-018-4978-1.

Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ (2016). Comparative genome-scale mod-
elling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to
pathogenicity. Proceedings of the National Academy of Sciences 113, E3801–E3809. https:
//doi.org/10.1073/pnas.1523199113.

Brittnacher MJ, Fong C, Hayden H, Jacobs M, Radey M, Rohmer L (2011). PGAT: a multistrain
analysis resource for microbial genomes. Bioinformatics 27, 2429–2430. https://doi.org/10
.1093/bioinformatics/btr418.

Chacoma A, Zanette DH (2020). Heaps’ Law and Heaps functions in tagged texts: evidences of their
linguistic relevance. Royal Society Open Science 7, 200008. https://doi.org/10.1098/rsos
.200008.

Chaudhari NM, Gupta VK, Dutta C (2016). BPGA-an ultra-fast pan-genome analysis pipeline. Sci-
entific Reports 6, 24373. https://doi.org/10.1038/srep24373.

Cheng H, Concepcion GT, Feng X, Zhang H, Li H (2021). Haplotype-resolved de novo assembly
using phased assembly graphs with hifiasm. Nature Methods 18, 170–175. https://doi.org
/10.1038/s41592-020-01056-5.

Luca Parmigiani et al. 15

Peer Community Journal, Vol. 4 (2024), article e47 https://doi.org/10.24072/pcjournal.415

https://zenodo.org/record/8256094
https://zenodo.org/record/8256094
https://zenodo.org/record/8233908
https://gitlab.ub.uni-bielefeld.de/gi/pangrowth
https://gitlab.ub.uni-bielefeld.de/gi/pangrowth
https://doi.org/10.1038/nature15393
https://doi.org/10.1099/mgen.0.000220
https://doi.org/10.3390/ijms20051215
https://doi.org/10.3390/ijms20051215
https://doi.org/10.1186/s12864-018-4978-1
https://doi.org/10.1073/pnas.1523199113
https://doi.org/10.1073/pnas.1523199113
https://doi.org/10.1093/bioinformatics/btr418
https://doi.org/10.1093/bioinformatics/btr418
https://doi.org/10.1098/rsos.200008
https://doi.org/10.1098/rsos.200008
https://doi.org/10.1038/srep24373
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.24072/pcjournal.415


Clarke TH, Brinkac LM, Inman JM, Sutton G, Fouts DE (2018). PanACEA: a bioinformatics tool
for the exploration and visualization of bacterial pan-chromosomes. BMC Bioinformatics 19, 246.
https://doi.org/10.1186/s12859-018-2250-y.

Clauset A, Shalizi CR, Newman MEJ (2009). Power-Law Distributions in Empirical Data. SIAM Re-
view 51, 661–703. https://doi.org/10.1137/070710111.

Compeau PE, Pevzner PA, Tesler G (2011). How to apply de Bruijn graphs to genome assembly.
Nature Biotechnology 29, 987–991. https://doi.org/10.1038/nbt.2023.

Cui Y, Song Y (2016). Genome and Evolution of Yersinia pestis. In: Yersinia pestis: Retrospective
and Perspective. Ed. by Ruifu Yang and Andrey Anisimov. Dordrecht: Springer Netherlands,
pp. 171–192. https://doi.org/10.1007/978-94-024-0890-4_6.

Cummins EA, Hall RJ, McInerney JO, McNally A (2022). Prokaryote pangenomes are dynamic en-
tities. Current Opinion in Microbiology 66, 73–78. https://doi.org/10.1016/j.mib.2022
.01.005.

DingW, Baumdicker F, Neher RA (2018). panX: pan-genome analysis and exploration.Nucleic Acids
Research 46, e5. https://doi.org/10.1093/nar/gkx977.

Edgar RC (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26,
2460–2461. https://doi.org/10.1093/bioinformatics/btq461.

Enright AJ, Van Dongen S, Ouzounis CA (2002). An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Research 30, 1575–1584. https://doi.org/10.1093/nar/30
.7.1575.

Fouts DE, Brinkac L, Beck E, Inman J, Sutton G (2012). PanOCT: automated clustering of orthologs
using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely re-
lated species. Nucleic Acids Research 40, e172. https://doi.org/10.1093/nar/gks757.

Fu L, Niu B, Zhu Z, Wu S, Li W (2012). CD-HIT: accelerated for clustering the next-generation se-
quencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics
/bts565.

Gautreau G, Bazin A, Gachet M, Planel R, Burlot L, Dubois M, Perrin A, Médigue C, Calteau A,
Cruveiller S, et al. (2020). PPanGGOLiN: depicting microbial diversity via a partitioned pange-
nome graph. PLoS Computational Biology 16, e1007732. https://doi.org/10.1371/journa
l.pcbi.1007732.

Heaps HS (1978). Information retrieval: Computational and theoretical aspects. Academic Press,
Inc.

HeckKL, BelleG, SimberloffD (1975). Explicit Calculation of theRarefactionDiversityMeasurement
and the Determination of Sufficient Sample Size. Ecology 56, 1459–1461. https://doi.org/1
0.2307/1934716.

Kokot M, Długosz M, Deorowicz S (2017). KMC 3: counting and manipulating k-mer statistics.
Bioinformatics 33, 2759–2761. https://doi.org/10.1093/bioinformatics/btx304.

Li L, Stoeckert CJ, Roos DS (2003). OrthoMCL: identification of ortholog groups for eukaryotic
genomes. Genome Research 13, 2178–2189. https://doi.org/10.1101/gr.1224503.

Lobb B, Shapter A, Doxey AC, Nissimov JI (2023). Functional Profiling and Evolutionary Analysis of
a Marine Microalgal Virus Pangenome. Viruses 15, 1116. https://doi.org/10.3390/v15051
116.

16 Luca Parmigiani et al.

Peer Community Journal, Vol. 4 (2024), article e47 https://doi.org/10.24072/pcjournal.415

https://doi.org/10.1186/s12859-018-2250-y
https://doi.org/10.1137/070710111
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1007/978-94-024-0890-4_6
https://doi.org/10.1016/j.mib.2022.01.005
https://doi.org/10.1016/j.mib.2022.01.005
https://doi.org/10.1093/nar/gkx977
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1093/nar/gks757
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1371/journal.pcbi.1007732
https://doi.org/10.1371/journal.pcbi.1007732
https://doi.org/10.2307/1934716
https://doi.org/10.2307/1934716
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1101/gr.1224503
https://doi.org/10.3390/v15051116
https://doi.org/10.3390/v15051116
https://doi.org/10.24072/pcjournal.415


Marçais G, Kingsford C (2011). A fast, lock-free approach for efficient parallel counting of occur-
rences of k-mers. Bioinformatics 27, 764–770. https://doi.org/10.1093/bioinformatics
/btr011.

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane
JA, Parkhill J (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31,
3691–3693. https://doi.org/10.1093/bioinformatics/btv421.

Parmigiani L, Wittler R, Stoye J (2023a). lucaparmigiani/Pangenome-Openness: Pangenome- Open-
ness. Version v1.0.0. https://doi.org/https10.5281/zenodo.8256094.

Parmigiani L, Wittler R, Stoye J (2023b). Supplementary Material – Revisiting pangenome openness
with k-mers. https://doi.org/10.5281/zenodo.8233908.

Sahl JW, Caporaso JG, Rasko DA, Keim P (2014). The large-scale blast score ratio (LS-BSR) pipeline:
a method to rapidly compare genetic content between bacterial genomes. PeerJ 2, e332. https:
//doi.org/10.7717/peerj.332.

Seemann T (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.
https://doi.org/10.1093/bioinformatics/btu153.

Sheikhizadeh S, Schranz ME, Akdel M, Ridder D, Smit S (2016). PanTools: representation, storage
and exploration of pan-genomic data. Bioinformatics 32, i487–i493. https://doi.org/10.10
93/bioinformatics/btw455.

Sheikhizadeh Anari S, Ridder D, Schranz ME, Smit S (2018). Efficient inference of homologs in large
eukaryotic pan-proteomes. BMC Bioinformatics 19, 340. https://doi.org/10.1186/s12859-
018-2362-4.

Snipen L, Liland KH (2015). micropan: an R-package for microbial pan-genomics. BMC Bioinformat-
ics 16, 79. https://doi.org/10.1186/s12859-015-0517-0.

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree
J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IM, Peterson
JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, et al. (2005). Genome analysis of multi-
ple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”.
Proceedings of the National Academy of Sciences of the United States of America 102, 13950–
13955. https://doi.org/10.1073/pnas.0506758102.

Tettelin H, Riley D, Cattuto C, Medini D (2008). Comparative genomics: the bacterial pan-genome.
Current Opinion in Microbiology 11, 472–477. https://doi.org/10.1016/j.mib.2008.09
.006.

The Computational Pan-Genomics Consortium (2018). Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics 19, 118–135. https://doi.org/10.1093
/bib/bbw089.

Tonkin-Hill G, Gladstone RA, Pöntinen AK, Arredondo-Alonso S, Bentley SD, Corander J (2023).
Robust analysis of prokaryotic pangenome gene gain and loss rates with Panstripe. Genome Re-
search 33, 129–140. https://doi.org/10.1101/gr.277340.122.

van Iersel L (2024). Faster method for estimating the openness of species. Peer Community inMathe-
matical and Computational Biology, 100185. https://doi.org/10.24072/pci.mcb.100185.

Vernikos GS (2020). A Review of Pangenome Tools and Recent Studies. In: The Pangenome: Diversity,
Dynamics and Evolution of Genomes. Springer, pp. 89–112. https://doi.org/10.1007/978-
3-030-38281-0_4.

Luca Parmigiani et al. 17

Peer Community Journal, Vol. 4 (2024), article e47 https://doi.org/10.24072/pcjournal.415

https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/https10.5281/zenodo.8256094
https://doi.org/10.5281/zenodo.8233908
https://doi.org/10.7717/peerj.332
https://doi.org/10.7717/peerj.332
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/bioinformatics/btw455
https://doi.org/10.1093/bioinformatics/btw455
https://doi.org/10.1186/s12859-018-2362-4
https://doi.org/10.1186/s12859-018-2362-4
https://doi.org/10.1186/s12859-015-0517-0
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1016/j.mib.2008.09.006
https://doi.org/10.1016/j.mib.2008.09.006
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1101/gr.277340.122
https://doi.org/10.24072/pci.mcb.100185
https://doi.org/10.1007/978-3-030-38281-0_4
https://doi.org/10.1007/978-3-030-38281-0_4
https://doi.org/10.24072/pcjournal.415


Wood DE, Salzberg SL (2014). Kraken: ultrafast metagenomic sequence classification using exact
alignments. Genome Biology 15, R46. https://doi.org/10.1186/gb-2014-15-3-r46.

Xin H, Lee D, Hormozdiari F, Yedkar S, Mutlu O, Alkan C (2013). Accelerating read mapping with
FastHASH. BMC Genomics 14, S13. https://doi.org/10.1186/1471-2164-14-S1-S13.

Zhao Y, Jia X, Yang J, Ling Y, Zhang Z, Yu J, Wu J, Xiao J (2014). PanGP: a tool for quickly analyzing
bacterial pan-genome profile. Bioinformatics 30, 1297–1299. https://doi.org/10.1093/bi
oinformatics/btu017.

Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J (2012). PGAP: pan-genomes analysis pipeline. Bioinfor-
matics 28, 416–418. https://doi.org/10.1093/bioinformatics/btr655.

18 Luca Parmigiani et al.

Peer Community Journal, Vol. 4 (2024), article e47 https://doi.org/10.24072/pcjournal.415

https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/1471-2164-14-S1-S13
https://doi.org/10.1093/bioinformatics/btu017
https://doi.org/10.1093/bioinformatics/btu017
https://doi.org/10.1093/bioinformatics/btr655
https://doi.org/10.24072/pcjournal.415

