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Abstract
How many reticulations are needed for a phylogenetic network to display a given setof k phylogenetic trees on n leaves? For k = 2, Baroni et al. [Ann. Comb. 8, 391-408(2005)] showed that the answer is n − 2. Here, we show that, for k ≥ 3 the answeris at least (3 /2 − ε)n. Concretely, we prove that, for each ε > 0, there is some n ∈ Nsuch that three n-leaf caterpillar trees can be constructed in such a way that any net-work displaying these caterpillars contains at least (3 /2 − ε)n reticulations. The case ofthree trees is interesting since it is the easiest case that cannot be equivalently formu-lated in terms of agreement forests. Instead, we base the result on a surprising lowerbound for multilabelled trees (MUL-trees) displaying the caterpillars. Indeed, we showthat one cannot do (more than an ε) better than the trivial MUL-tree resulting from asimple concatenation of the given caterpillars. The results are relevant for the develop-ment of methods for the Hybridization Number problem on more than two trees. Thisfundamental problem asks to construct a binary phylogenetic network with a minimumnumber of reticulations displaying a given set of phylogenetic trees.
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1. Introduction
A fundamental task of evolutionary analysis is to construct a phylogeny for a set of taxa de-

picting their ancestral relations.While many biological studies are content with the simplification
that this phylogeny is a tree, there are circumstances, such as the presence of horizontal gene
transfer (observed in many bacteria; Dagan et al., 2008) or hybridization (common among plant
species and also observed among animals; Mallet, 2005), that require constructing phylogenetic
networks which, in contrast to trees, allow modeling such “reticulate” evolution. Mathematically,
a rooted phylogenetic network is a directed acyclic graph (DAG) with a single root and leaves bi-
jectively labelled by the elements of a set X , modeling the considered taxa. In this paper, we will
only consider phylogenetic networks that are rooted and binary. In such networks, the indegree-
2 nodes represent reticulate evolutionary events and are called reticulations.

The construction of the most parsimonious (that is, containing the least amount of reticula-
tions) network that is still “compatible” with a given set of trees is modeled by the Hybridization
Number problem, which is well understood for the special case of having exactly two input
trees (Baroni et al., 2005a,b; Bordewich and Semple, 2007; van Iersel and Kelk, 2011; Kelk et al.,
2012). To formalize this problem, we say that a network displays a tree if this tree can be obtained
from a subgraph of the network by suppressing nodeswith exactly one incoming and exactly one
outgoing arc. The Hybridizat ion Number problem then asks for a smallest network (in terms
of the number of reticulations) displaying all input trees. Throughout this paper, we will focus on
the simplified version of this problem where all input trees and the output network are required
to be binary and all have the same set of leaf labels.

Unfortunately, many observations made for this case do not generalize to more than two
input trees. One such observation is that for any two trees with n leaves, there is always a net-
work with n − 2 reticulations displaying the two trees. This bound is tight because two “inverse”
caterpillar trees need exactly n − 2 reticulations (Baroni et al., 2005b). In this work, we show
that, for three or more trees, at least (3/2 − ϵ)n reticulations may be required, even if the trees
are caterpillars. See Fig. 1 for an example of our construction. This result represents a first lower
bound for more than two trees that improves upon the n − 2 bound. In particular, it refutes the
tempting conjecture that n reticulations are sufficient to display any set of three phylogenetic
trees. If the bound of n had held, it would have had positive consequences for the development
of methods for the Hybridizat ion Number problem, by bounding the worst-case complexity
of subnetworks that need to be considered inside an algorithm.

To prove the (3/2 − ϵ)n bound, we fist derive a corresponding bound for “multilabelled trees”
(MUL-trees), that is, trees in which each leaf has one label, but each label may be used more
than once. Again, the goal is to find a smallest (in terms of the number of leaves) MUL-tree
displaying all input trees. Surprisingly, we show that, given at most three caterpillars, one cannot
do better (up to an ϵ) than the trivial MUL-tree that simply concatenates the given caterpillars.
More precisely, we show that, for each ϵ > 0 and t ≤ 3, there is some n ∈ N, and t caterpillars
with n leaves, such that any MUL-tree displaying the caterpillars has at least (t − ϵ)n leaves. This
is very close to the upper bound of t · n for any set of t trees, which holds because the t trees
can simply be concatenated into a single MUL-caterpillar with t · n leaves.

Upper bounds on the number of reticulations needed to display a set of trees follow from
results on “universal tree-based” networks (Bordewich and Semple, 2018), which are, roughly
speaking, networks that can be obtained from any tree on the same set of leaves by subdividing
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Figure 1 – Three caterpillar trees with 9 leaves, resulting from Construction 1 for n =
3i = 9. Lemma 2 implies that any MUL-tree displaying these caterpillars needs at least 19leaves. Lemma 3 further implies that any network displaying these caterpillars needs atleast 2 reticulations. While this second number does not seem particularly surprising, thestrength of Lemma 3 is in the asymptotic bound it provides for growing n.

arcs of the tree and adding arcs between subdividing nodes (Francis and Steel, 2015; Hayamizu,
2016; Zhang, 2016). Bordewich and Semple (2018) showed that such a network has Θ(n log n)

reticulations. The lower bound does not (directly) carry over to our question, but the upper bound
does. Concretely, Bordewich and Semple (2018) proved that any network displaying all phyloge-
netic trees on n leaves needs at least O(n log n) reticulations.

The structure of this paper is as follows. After the preliminaries in Section 2, we prove the
bound for MUL-trees in Section 3 and the bound for networks in Section 4, concluding with
some open problems in Section 5.

2. Preliminaries
We will deal with sequences of letters over an unspecified alphabet. To differentiate such

letters from variable names (even those referring to letters), we will typeset them in typewriter
font such as a, 3, B. For all sequences s ′ that can be produced from s by removing zero or more
letters, we say that s ′ is a subsequence of s and we write s ′ ⊴ s . We use ◦ to denote the usual
concatenation operator on sequences, where s ◦ s ′ denotes the result of writing out s ′ after s .
For letters a and b, we write a ≤s b if the last occurence of a preceeds the first occurence of b
in s , that is, some prefix of s contains all occurences of a but no occurence of b.

We also deal with (binary, phylogenetic) MUL-networks, which are directed, acyclic graphs
(DAGs) with only the following types of nodes: (1) a unique source (called the root) with out-
degree zero or two; (2) sinks (called leaves) with in-degree at most one, labeled using a func-
tion L from the set of leaves to some set of labels; (3) in-degree one and out-degree two nodes
(tree nodes); and (4) in-degree two, out-degree one nodes (reticulation nodes or reticulations). A
MUL-tree is a MUL-network without reticulations. A network is a MUL-network whose labelling
function L is injective. A tree is a network without reticulations. A caterpillar tree (or just a cater-
pillar) is a tree in which each node is either a leaf or the parent of a leaf. If X is a MUL-network,
a subset of nodes in a MUL-network, or a sequence, then L(X ) is the set (not the multiset) of
labels/letters occurring in X . If X is a MUL-network, then n(X ) denotes the number of leaves in
X . If X is a sequence, then n(X ) denotes its length.

We use the following correspondence between sequences and caterpillars. We say that se-
quence s corresponds to caterpillarP if the elements of s are exactly the leaf labels of P and these
labels are ordered in s by decreasing distance from the root in P . Observe that each caterpillar
has exactly two corresponding sequences since it has exactly two leaves with the same distance
from the root. Conversely, each sequence has exactly one corresponding caterpillar. See Fig. 1
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for an example of three caterpillars with corresponding sequences abc123ABC, CABcab312 and
231BCAbca.

Let N be a MUL-network and let u be a node of N . If u has a descendant v in N (that is, N
contains a directed u-v-path), then we write v ≤N u and we call u an ancestor of v . Note that
the “≤X ”-relations forMUL-networks and sequences X naturally extend to sets of nodes/letters,
that is, P <X Q if p <X q for all p ∈ P and q ∈ Q . For a set L of nodes of N , the MUL-network of
N induced by L (written N[L]) is the result of removing all nodes u of N that have no descendant
in L followed by the exhaustive contraction of indegree-one outdegree-one nodes onto their
respective parents (this last operation is also called “supression”). If L is a set of labels, then
N[L] is the MUL-network of N induced by all nodes with a label in L. The result of removing all
nodes x from N with x ≰N u is denoted by Nu and, if u is a reticulation and Nu does not containany reticulations of N , then u is called a lowest reticulation. If N is a MUL-tree and x and y are
nodes in N , then the lowest common ancestor (LCA) of x and y in N is the unique minimum with
respect to “≤N” of all nodes u of N such that Nu contains both x and y .

An embedding of a MUL-network T into a MUL-network N is a function ϕ that maps the
nodes of T to nodes of N and the arcs of T to directed paths in N such that

(1) the paths in the image of ϕ are arc-disjoint;
(2) for each arc uv of T , ϕ(uv) starts in ϕ(u) and ends in ϕ(v) in N .

We say that MUL-network N displaysMUL-network T if there is an embedding of T into N .
The backbone of a caterpillar is the path containing all edges not incident to a leaf. The back-

bone of an embedding ϕ of a caterpillar P in a MUL-network N is the path obtained by merging
the paths ϕ(e) for all edges e on the backbone of P .

3. Lower Bound on MUL-Trees
In this section, we construct a family C of triples of caterpillars such that for any ϵ > 0,

the familiy C contains a triple (C1,C2,C3) of n-leaf caterpillars (where n depends on the choice
of ϵ) such that any MUL-tree displaying all three caterpillars has at least (3 − ϵ)n leaves. As a
byproduct, we show the existance of a family of pairs of caterpillars with a (2− ϵ)n lower-bound
on the leaf-number in any displaying MUL-tree.

A relabeling is a function mapping a label to another label and we allow applying relabelings
to sets of labels, sequences and (MUL-)trees in the natural way.
Construction 1. Let C0 = (X0,Y0,Z0) denote the triple of sequences on a single label λ. For each
i > 0, we recursively construct a triple Ci = (Xi ,Yi ,Zi ) of sequences of length 3i as follows: Let r1, r2,and r3 be relabelings defined on the labels of Ci−1 with disjoint images. Then,

(1) Xi := r1(Xi−1) ◦ r2(Xi−1) ◦ r3(Xi−1)(2) Yi := r3(Yi−1) ◦ r1(Yi−1) ◦ r2(Yi−1)(3) Zi := r2(Zi−1) ◦ r3(Zi−1) ◦ r1(Zi−1)

Note that L(r1(Xi−1)), L(r1(Yi−1)) and L(r1(Zi−1)) are identical and we refer to this set by Ai . Simi-larly, we abbreviate Bi := L(r2(Xi−1)) and Ci := L(r3(Xi−1)).
It turns out that sequences constructed by Construction 1 have very short common subse-

quences.
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i 0 1 2 3
Xi λ a1A abc123ABC abcdefghi123456789ABCDEFGHI
Yi λ Aa1 CABcab312 IGHCABFDEighcabfde978312645
Zi λ 1Aa 231BCAbca 564897231EFDHIGBCAefdhigbca

Figure 2 – Example of Construction 1. For i = 1, the functions r1, r2, and r3 map λ to a,
1, and A, respectively. For i = 2, they map {a, 1, A} to {a, b, c}, {1, 2, 3}, and {A, B, C}, re-spectively. In particular, sequence X2 is given by r1(a1A) ◦ r2(a1A) ◦ r3(a1A) = abc123ABC,while Y2 is given by r3(Aa1) ◦ r1(Aa1) ◦ r2(Aa1) = CABcab312. For i = 3, r1 maps
{a, b, c, 1, 2, 3, A, B, C} to {a, b, c, d, e, f, g, h, i}, and analogously for r2, r3.

Proposition 1. Let i > 0 and let (Xi ,Yi ,Zi ) be a triple of sequences constructed by Construction 1.Let k ∈ {1, 2, 3} and let sk be a common subsequence of any k of the three sequences. Then, |sk | ≤
(4 − k)i .
Proof. Clearly, the claim trivially holds for k = 1 so we consider k ∈ {2, 3} in the following.

Case 1: k = 3. The proof is by induction on i . For i = 0, all three sequences contain a single
label λ so the claim is trivially true. Suppose in the following that the claim holds for i − 1. Let s3be a common subsequence of Xi , Yi , and Zi . Since all labels in the image of r1 preceed all labels inthe image of r3 in Xi and all labels in the image of r3 preceed all labels in the image of r1 in Yi , weknow that s3 does not contain labels of the images of both r1 and r3. Similarly, it can be seen that
s3 cannot contain labels of any two of r1, r2, and r3. Thus, without loss of generality, s3 consistsonly of labels of r1, implying that s3 is a common subsequence of the result of removing all labels
of r2 and r3 from Xi , Yi , and Zi , that is, s3 is a common subsequence of r1(Xi−1), r1(Yi−1) and
r1(Zi−1). But then, r−1

1 (s3) is a common subsequence of Xi−1, Yi−1 and Zi−1 and, by induction
hypothesis, the length of s3 is 1.Case 2: k = 2. Again, the proof is by induction on i and the induction base case i = 0 is
trivially true, so we will suppose that the claim holds for i − 1. By symmetry, we can further
suppose without loss of generality that s2 is a common subsequence of Xi and Yi . If s2 only useslabels from the image of one r ∈ {r1, r2, r3}, then r−1(s2) is a common subsequence of Xi−1 and
Yi−1 so the claim holds by induction hypothesis. Otherwise, s2 uses labels of at least two of r1, r2,and r3. Since all labels of r3 succeed all labels of r1 and r2 in Xi but preceed them in Yi , we knowthat s2 uses labels of r1 and r2 but not of r3. Thus, s2 admits two subsequences s ′ and s ′′ such that
s ′ and s ′′ contain only labels of r1 and r2, respectively, and |s ′| + |s ′′| = |s2|. Then, however, s ′ is
a subsequence of the result of removing all labels of r2 and r3 from Xi and Yi , that is, of r1(Xi−1)and r1(Yi−1) (see Construction 1). Thus, r−1

1 (s ′) is a common subsequence of Xi−1 and Yi−1 and,by induction hypothesis, |s ′| ≤ 2i−1. An analogous argument shows that |s ′′| ≤ 2i−1 and, thus,
|s2| = |s ′| + |s ′′| ≤ 2i . □

In the following,we prove lower bounds on the number of leaves in anyMUL-tree displaying k
of the caterpillars in Ci for k ∈ {1, 2, 3} and i ∈ N. We denote these bounds by N(k)

i and we note
that, by the concatenation argument, N(3)

i ≤ N
(2)
i + N

(1)
i and N

(2)
i ≤ 2N

(1)
i and N

(1)
i = n(Xi ) =

n(Yi ) = n(Zi ) = 3i .
Lemma 1. Let i ∈ N and let T be any MUL-tree displaying Xi and Yi . Then, n(T ) ≥ 2 · 3i − 2i .
Proof. The proof is by induction on i . For the induction base, observe that all of X0, Y0 and T

consist of a single leaf and n(T ) = 2 − 1 = 1. For the induction step, suppose that the lemma
holds for all j < i . Let TA, TB and TC denote the subtrees of T induced by labels in Ai , Bi and Ci ,
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respectively, and observe that their label multisets are a partition of the label multiset of T since
Ai , Bi and Ci are disjoint. In the following, we show that at least one of TA, TB and TC contains
2N

(1)
i−1 leaves. Since, by definition, the other two contain at least N(2)

i−1 leaves, we have
n(T ) = n(TA) + n(TB) + n(TC ) ≥ 2N

(2)
i−1 + 2N

(1)
i−1

Ind. Hyp.
≥ 2(2 · 3i−1 − 2i−1) + 2 · 3i−1 = 2 · 3i − 2i .

Towards a contradiction, assume that TA, TB and TC contain less than 2N
(1)
i−1 leaves. For all

F ∈ {Ai ,Bi ,Ci}, let χF and ψF be respective embeddings of Xi [F ] and Yi [F ] into TF and note
that, by assumption, TF contains strictly less than 2N

(1)
i−1 = n(Xi ) + n(Yi ) leaves, implying that

some leaf ℓF in TF is mapped-to by both χF and ψF . In particular, the label of each ℓF occurs only
once in TF and, thus, in T , which allows us to use ℓF and its label interchangeably. Now, since
Ai <Xi

Bi <Xi
Ci we know that LCA(ℓAi

, ℓCi
) is a strict ancestor of LCA(ℓAi

, ℓBi
) in Xi and, since

T displays Xi , this also holds in T . But since Ci <Yi
Ai <Yi

Bi we also know that LCA(ℓAi
, ℓBi

) is
a strict ancestor of LCA(ℓAi

, ℓCi
) in T , which is clearly a contradiction. □

Corollary 1. Let ϵ > 0. Then, there is some n ∈ N and two caterpillar trees of the same set of n labels,
such that any MUL-tree displaying them has at least (2 − ϵ)n leaves.
Proof. Let i ∈ N such that (2/3)i ≤ ϵ and, hence, 2i ≤ 3iϵ = nϵ. Let T be any MUL-tree displaying
Xi and Yi . Then, by Lemma 1, n(T ) ≥ 2 · 3i − 2i ≥ 2n − nϵ = (2 − ϵ)n. □

Lemma 2. Let i ∈ N and let T be any MUL-tree displaying Xi , Yi and Zi . Then, n(T ) ≥ 3i+1 − 2i+1.
Proof. The proof is by induction on i . For the induction base, observe that all of X0, Y0, Z0, and
T consist of a single leaf and n(T ) = 3 − 2 = 1. For the induction step, suppose that the lemma
holds for all j < i . Let TA, TB and TC denote the subtrees of T induced by labels in Ai , Bi and
Ci , respectively, and observe that their label multisets are a partition of the label multiset of T
since Ai , Bi and Ci are disjoint. If any of TA, TB , and TC contains 3N(1)

i−1 = 3i leaves, then
n(T ) = n(TA) + n(TB) + n(TC ) ≥ 2N

(3)
i−1 + 3N

(1)
i−1

Ind. Hyp.
≥ 2(3i − 2i ) + 3i = 3i+1 − 2i+1.

Further, if any two of TA, TB , and TC contain N
(2)
i−1 + N

(1)
i−1

Lem 1
≥ 2 · 3i−1 − 2i−1 + 3i−1 = 3i −

2i−1 leaves, then
n(T ) = n(TA)+n(TB)+n(TC ) ≥ N

(3)
i−1+2(N

(2)
i−1+N

(1)
i−1)

Ind. Hyp.
≥ 3i −2i+2(3i −2i−1) = 3i+1−2i+1

Thus, in the following, suppose that neither of the two cases holds. In particular, at least two
trees among TA, TB , and TC contain strictly less than N

(2)
i−1+N

(1)
i−1 leaves. By symmetry, suppose

these are TA and TB . For each F ∈ {A,B,C}, let χF , ψF , and ϕF denote the respective embed-
dings of Xi [Fi ], Yi [Fi ] and Zi [Fi ] into TF and let us say that two among them overlap if TF has
a leaf that is assigned-to by both. Note that removing the n(Xi [Ai ]) = n(Xi−1) = N

(1)
i−1 leaves

of TA that are mapped-to by χ results in a MUL-tree with strictly less than N
(2)
i−1 leaves and, byLemma 1, this MUL-tree cannot display both Yi [Ai ] and Zi [Ai ]). Thus, χA overlaps one of ψAand ϕA and the analog holds for ψA and ϕA. By pigeonhole principle, one among the three em-

beddings overlaps both others (while the other two may not necessarily overlap). Let ℓA and kAdenote the corresponding leaves (possibly ℓA = kA if all three embeddings assign to ℓA). Sincethe same argument holds for B , we define ℓB and kB analogously (see Fig. 3 for an illustration).
Now, since TC contains strictly less than 3N

(1)
i−1 leaves by assumption, we know that two of χC ,
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T T T

Xi [A]

Yi [A]

Zi [A]

ℓA

kA
Xi [B]

Yi [B]

Zi [B]

ℓB

kB Yi [C ]

Zi [C ]

Xi [C ]

ℓC

Figure 3 – Illustration of the five leaves handled in the proof of Lemma 2. The three partsdepict possible embeddings of Xi [F ], Yi [F ], and Zi [F ] for all F ∈ {Ai ,Bi ,Ci}. We assumethat the embedding ψA of Yi [Ai ] overlaps χA in kA and ϕA in ℓA (left part) and, likewise for
B . For C , only χC and ϕC overlap, in ℓC (right part). WhileT is not necessarily a caterpillar,drawing T linearly like that may help understand the situation.

ψC , and ϕC overlap in a leaf ℓC ofTC . Next, we consider the relative positions of these five leavesin T .
In the following, a leaf a in TA with parent t is said to be above a leaf b in TB (written a⇝ b)

if b <T t , and analogously for any pair chosen from the combined leaf-set of TA, TB and TC . Athird leaf ℓ is said to be between a and b if a⇝ ℓ⇝ b. For all leaves a whose parent is an ancestor
of b in TA, we have that a is above both a and b and, likewise, for TB and TC . By symmetry,
suppose that ℓF ⇝ kF for all F ∈ {A,B}

Now, as C <Yi
A and C <Zi

A, all leaves of ψC and ϕC are below all leaves of ψA and ϕA.Since ℓC is contained in the former and both ℓA and kA are contained in the latter, we have
that ℓA and kA are both above ℓC . Further, as B <Xi

C and B <Zi
C , we have ℓC⇝ ℓB . Thus,

ℓA⇝ kA⇝ ℓC⇝ ℓB⇝ kB , in particular both of ℓA, kA are above both of ℓB , kB . However, the cater-pillar Xi contains at least one leaf mapped to ℓA or kA, and at least one leaf mapped to ℓB or kB .But since A <Xi
B , this implies that at least one of ℓB and kB is above one of ℓA and kA, contra-dicting ℓA⇝ kA⇝ ℓB⇝ kB . □

Corollary 2. Let ϵ > 0. Then, there is some n ∈ N and three caterpillar trees of the same set of n labels,
such that any MUL-tree displaying them has at least (3 − ϵ)n leaves.
Proof. Let i ∈ N such that (2/3)i ≤ ϵ/2 and, hence, 2i+1 ≤ 3iϵ = nϵ. Let T be any MUL-tree
displaying Xi , Yi and Zi . Then, by Lemma 2, n(T ) ≥ 3i+1 − 2i+1 ≥ 3n − nϵ = (3 − ϵ)n. □

4. Lower Bound on Networks
In this section, we build on the lower bound developed for MUL-trees in Section 3 to prove

that, for any ϵ > 0 and large enough n, any single-labeled phylogenetic network displaying the
three n-leaf caterpillars constructed in Construction 1 has at least (3/2− ϵ)n reticulations. To this
end, wewill give an algorithm that transforms any network displaying the caterpillars into aMUL-
tree displaying the caterpillars by “unzipping” (or “duplicating”) subtrees. Then, we show that, if
the network had fewer than (3/2 − ϵ)n = (3/2 − ϵ)3i reticulations, then the resulting MUL-tree
has fewer than 3i+1 − 2i+1 leaves, contradicting Lemma 2.

Leo van Iersel et al. 7

Peer Community Journal, Vol. 4 (2024), article e54 https://doi.org/10.24072/pcjournal.419

https://doi.org/10.24072/pcjournal.419


r

⇒ z

Nz

z ′

N ′
z

Figure 4 – Illustration of the operation of “unzipping” (N,ϕ) at a lowest reticulation. Theembedding of the three caterpillarsXi ,Yi andZi is depicted as green solid, red dashed andblue dotted lines, respectively, within the network outlined in gray. Note that all leavesof Nz into which ϕ embeds leaves of Xi as well as at least one of Yi and Zi , are duplicatedin the process. Note also that not all three caterpillars are necessarily embedded in Nz ,as previous unzip operations may have split a caterpillar off Nz .

4.1. Transforming the Network into a MUL-tree
In the following, we present a transformation acting on a given embedding of the three cater-

pillars into a multi-labeled network. Each application of our transformation rule will reduce the
number of reticulations by one at the cost of creating new leaves. Hence, exhaustive application
will result in an embedding of the three caterpillars into aMUL-tree. The rule acts on the subtree
below a lowest reticulation and also manipulates a reservoir of virtual “tokens” which will help
in the amortized analysis of how many new leaves are created in the process.

In the following, we work with pairs (N,ϕ), where N is a MUL-network with 3i distinct la-
bels and ϕ is an embedding of the caterpillars Xi , Yi and Zi (as constructed by Construction 1)
into N such that all arcs of N are used by the embedding ϕ. We call such pairs caterpillar em-
beddings. Note that the assumptions that all arcs of N are used is satisfied by any embedding of
the caterpillars into a network with smallest reticulation number. We make use of the fact that
no embedding of any caterpillar can use both arcs incoming to any reticulation r of N , so the
caterpillars with leaves embedded below r can be divided into two groups, depending on which
incoming arc of r is used in their embedding. We call this the parity of a caterpillar with respect
to r . We say that a caterpillar that does not have leaves below r has parity ⊥ with respect to
r . Note that, since all arcs of N are used by ϕ, there are two caterpillars with different non-⊥
parity with respect to r . Let Nr be the subnetwork of N rooted at r . We say that the backbone
of a caterpillar Q is embedded in Nr (or below r ) if ϕ maps a non-leaf of Q into Nr . Note that this
is the case if and only if at least two leaves of Nr are used by the embedding of Q into N . The
central operation in the transformations “unzips” (N,ϕ) at r (see Fig. 4).
Definition 1. Let (N,ϕ) be a caterpillar-embedding, let r be a reticulation in N with child z such that
the subnetworkNz of N rooted at z does not contain reticulations. Let xr and yr denote the incoming
arcs of r with x ̸= y . The operation of unzipping N at r consists in the following steps:

(1) Remove the node r from N .
(2) Add a copy N ′

z of Nz with root z ′ to N and add the arcs xz and yz ′.
(3) For each caterpillar Q such that ϕ embeds Q using the arc yr , replace all nodes u of Nz bytheir copy u′ in N ′

z in the embedding of Q .
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(4) repeatedly remove all leaves of the resultingMUL-network that are not used by the embedding,
and suppress indegree-one outdegree-one nodes.

Observation 1. Let (N,ϕ) be a caterpillar embedding and let (N ′,ϕ′) be the result of unzipping N at
a reticulation r . Then, (N ′,ϕ′) is a caterpillar embedding. In particular, all arcs of N ′ are used by ϕ′.

The rest of this section depends on an arbitrary number q ∈ N, whichwewill pick “sufficiently
large” in the proof of the main theorem (we assume q ∈ N for ease of presentation, but all proofs
also work for q ∈ R). Further, we also suppose that our input caterpillars are “sufficiently large”
with respect to q, that is, their length n satisfies
(1) n > 12qnlog3 2.

Transformation Rule 1. Let (N,ϕ) be a caterpillar-embedding, let r be a lowest reticulation inN , and
let Q denote the set of caterpillars whose backbone is embedded in Nr . Then,

(1) unzip N at r ,
(2) create three tokens in the token reservoir, and
(3) for each leaf ℓ below r inN and each pair of different-parity caterpillars inQwhose embedding

uses ℓ, remove 2q tokens from the token reservoir.
As we will see, we never need to remove more tokens than are contained in the reservoir.

Lemma 3. LetN be a network with n leaves, let (N,ϕ) be a caterpillar embedding, let k be the number
of reticulations of N , and let (T ,ϕ′) be the result of applying Transformation Rule 1 exhaustively to
(N,ϕ). Then, T has at most n + 4(q+1)k/3q leaves.
Proof. Intuitively, the proof is based on the observation that, whenever the transformation cre-
ates many new leaves for only a single reticulation it removes, then we can use half of these
leaves to construct a common subsequence of two caterpillars. Then, Proposition 1 implies that
this cannot happen too often.

Formally, we consider a series of “configurations” C0,C1, ... ,CΩ, each consisting of a cater-
pillar embedding and a token reservoir where C0 := ((N,ϕ), t0 = 0) and CΩ = ((T ,ϕ′), tΩ)for some tΩ and each Cj results from an application of Transformation Rule 1 to the previous
configuration Cj−1. To show Lemma 3, we assign a “weight” ω to each Ci . We prove that ω
is monotonically non-increasing with respect to Transformation Rule 1. This implies an upper
bound on the number of leaves of the MUL-tree T displaying all three caterpillars. For a config-
uration C := ((Γ,ψ), t),

(1) let #Γ
r denote the number of reticulations in Γ,

(2) let#Γ
i denote the number of leaves of Γ that are used by the embedding of exactly i cater-

pillars,
and define
(2) ω((Γ,ψ), t) :=

∑

i∈{1,2,3,r}
ci · #Γ

i + ct · t

where c1 := c3 := 3q, c2 := 4q, cr := 4(q + 1), and ct := 1. We will omit the superscript Γ when
it is clear from the context and we abbreviate the total number of leaves as#Γ :=

∑
i∈{1,2,3} #

Γ
i .

Claim 1. ω is monotonically non-increasing with respect to Transformation Rule 1.
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Proof. We consider the following cases:
Case 1: No caterpillar has its backbone embedded in Nr . Then Nr has at most three leaves.
Case 1a: Nr contains two or three leaves, each with a single caterpillar embedded into it.

Then, the numbers #i do not change for any i , so ω increases by ∆ω = 3ct − cr ≤ 0.
Case 1b: Nr contains two leaves, a leaf ℓ1 with a single caterpillar embedded into it and a

leaf ℓ2 with two caterpillars embedded into it. If the two caterpillars whose embedding uses ℓ2have the same parity, then #i does not change for any i , see Case 1a. Otherwise, #1 grows
by two and #2 decreases by one, implying that ω grows by ∆ω = (2c1 + 3ct) − (c2 + cr ) =

6q + 3 − 8q − 4 ≤ 0.
Case 1c:Nr contains a single leaf ℓwith exactly two caterpillars embedded into it (their parity

must differ in this case). Then,#1 grows by two and#2 decreases by one, implying that ω grows
by ∆ω = (2c1 + 3ct) − (c2 + cr ) = 6q + 3 − 8q − 4 ≤ 0.

Case 1d: Nr contains a single leaf ℓwith three caterpillars embedded into it. Then,#1 and#2each grow by one and #3 decreases by one, implying that ω grows by ∆ω = (c1 + c2 + 3ct) −
(c3 + cr ) = 7q + 3 − 7q − 4 ≤ 0.

Case 2: Exactly one caterpillar Q has its backbone embedded in Nr . Let LQ denote the set of
all (at least two) leaves below r that leaves of Q are embedded into.

Case 2a: All caterpillars with a leaf embedded into a leaf of LQ have the same parity as Q
(note that this case applies regardless of the parity of any caterpillar whose leaves are not em-
bedded into any leaf of LQ , even if they have a leaf embedded below r ). Then, the numbers #ido not change for any i , so ω increases by ∆ω = 3ct − cr ≤ 0.

Case 2b: Exactly one leaf ℓ of LQ is used to embed a leaf of a caterpillar with different par-
ity than Q . If ℓ is used by exactly one caterpillar with different parity than Q , then #1 grows
by two and #2 decreases by one, implying that ω grows by ∆ω = (2c1 + 3ct) − (c2 + cr ) =

6q + 3 − 8q − 4 ≤ 0. If ℓ is used by all three caterpillars, at least one of which has different
parity than Q , then #1 and #2 grow by one and #3 decreases by one, implying that ω grows by
∆ω = (c1 + c2 + 3ct) − (c3 + cr ) = 7q + 3 − 7q − 4 ≤ 0.

Case 2c: Two leaves ℓ and ℓ′ of LQ are used to embed a leaf of a caterpillar with different
parity than Q . Then, #1 grows by four and #2 decreases by two, implying that ω grows by
∆ω = (4c1 + 3ct) − (2c2 + cr ) = 12q + 3 − 12q − 4 ≤ 0.

Case 3: Exactly two caterpillars Q and Q ′ have their backbone embedded in Nr and their
parity is the same. Let LQ and LQ′ denote the sets of leaves in Nr that leaves in Q and Q ′, re-
spectively, are embedded into.

Case 3a:No leaf of the third caterpillar is embedded in any leaf in LQ∪LQ′ . Then, the numbers
#i do not change for any i , so ω increases by ∆ω ≤ 3ct − cr ≤ 0

Case 3b: Exactly one leaf of the third caterpillar is embedded in a leaf ℓ in LQ ∪ LQ′ . If
ℓ /∈ LQ ∩ LQ′ , then #1 grows by two and #2 decreases by one, implying that ω grows by
∆ω = (2c1+3ct)−(c2+cr ) = 6q+3−8q−4 ≤ 0. If ℓ ∈ LQ ∩LQ′ , then#1 and#2 grow by one and
#3 decreases by one, implying thatω grows by∆ω = (c1+c2+3ct)−(c3+cr ) = 7q+3−7q−4 ≤ 0.

Case 4: Exactly two caterpillarsQ andQ ′ have their backbone embedded in Nr and their par-ity is different. Let LQ and LQ′ denote the sets of leaves inNr that leaves inQ andQ ′, respectively,
are embedded into. Further, let m := |LQ ∩ LQ′ |.
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Case 4a: The embedding of the third caterpillar uses no leaf in LQ ∪ LQ′ . Then #1 grows by
2m, #2 decreases by m, and the token reservoir shrinks by 2qm − 3 tokens. Thus, ω grows by
∆ω = (2mc1 + 3ct) − (mc2 + cr + 2mqct) = (6mq + 3) − (4mq + 4q + 4 + 2mq) = −4q − 1 ≤ 0.

Case 4b: The embedding of the third caterpillar uses a leaf of LQ ∩ LQ′ . Then, #1 grows
by 2m − 1, #2 decreases by m − 2, #3 decreases by one, and the token reservoir shrinks by
2qm − 3 tokens. Thus, ω grows by ∆ω = ((2m − 1)c1 + 3ct) − ((m − 2)c2 + c3 + cr + 2mqct) =

(6mq − 3q + 3) − (4mq − 8q + 3q + 4q + 4 + 2mq) = −2q − 1 ≤ 0.
Case 4c: The embedding of the third caterpillar uses a leaf of LQ \ LQ′ . If the third caterpillar

has the same parity asQ , then this is identical to Case 4a. Otherwise,#1 grows by 2(m+1),#2 de-creases bym+1, and the token reservoir shrinks by 2qm−3 tokens. Thus,ω grows by∆ω = (2(m+

1)c1+3ct)−((m+1)c2+cr +2mqct) = (6mq+6q+3)−(4mq+4q+4q+4+2mq) = −2q−1 ≤ 0.
Case 4d: The embedding of the third caterpillar uses a leaf of LQ′ \ LQ . This case is identicalto Case 4c.
Case 5: All three caterpillars have their backbone embedded in Nr . Let L2 be the set of leavesbelow r such that each leaf of L2 is used by the embeddings of exactly two caterpillars and these

caterpillars have different parity. Let L3 be the set of leaves below r that are used in the embed-
dings of all three caterpillars, and observe that each such leaf causes us to remove 4q tokens
from the reservoir. Further, abbreviate m2 := |L2| and m3 := |L3|. Then, #1 grows by 2m2 +m3,
#2 grows by m3 − m2, #3 shrinks by m3 and the token reservoir shrinks by 2qm2 + 4qm3 − 3.
Thus, ω grows by∆ω = ((2m2 +m3)c1 +m3c2 +3ct)− (m2c2 +m3c3 + cr + (2qm2 +4qm3)ct) =

(6qm2 + 7qm3 + 3) − (6qm2 + 7qm3 + 4q + 4) ≤ 0. ■

Claim 2. For all configurations Cj , the token reservoir tj is non-negative.
Proof. We show that, when the first withdrawal from the token reservoir happens, the number
of tokens accumulated in the reservoir exceeds the total number of tokens ever to be removed
from it. To this end, consider what happens when Transformation Rule 1 is applied to a lowest
reticulation r in N j for some iteration ((N j ,ϕj), tj). Recall that tokens are removed only if, for
some caterpillars P and Q whose backbones are embedded below r and that have different par-
ity below r , P and Q share some leaf ℓ below r . In such a case, we call r bad with respect to
(P,Q), and ℓ is called r -badwith respect to (P,Q) (we omit the prefix if r is unknown). Note that
no leaf is r-bad with respect to (P,Q) for more than one r , since, after applying Transformation
Rule 1 to r , all r-bad leaves are “unzipped” and no longer shared by P and Q .

Now, fix P and Q , and consider only those leaves and reticulations that are bad with respect
to (P,Q). In the following, we simply refer to such leaves and reticulations as “bad”. Note that,
since the embeddings of P and Q are subgraphs of the network N and the backbones of P and
Q are embedded below each bad reticulation, the ancestor relation between bad reticulations is
the same in the embedding of P as in the embedding of Q (otherwise, N contains a cycle). Since
P and Q are caterpillars, there is a unique linear ordering r0, r1, ... , rm of the bad reticulations
such that ri+1 is an ancestor of ri in both P and Q for all i .

In the following, we construct a common subsequence of P and Q containing at least half of
all bad leaves, which will imply the claim through use of Proposition 1. To this end, for each i , let
si denote the sequence of ri -bad leaves in P . Recalling that the ri occur on the backbone of Q in
the same order as they do in P , it suffices to show that a subsequence ofQ can be obtained from
si by removing at most one leaf and retaining at least one leaf. To this end, we conduct a closer
inspection of the configuration Cj = ((N j ,ϕj), tj) in which Transformation Rule 1 is applied to ri .
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Suppose that there are at least two ri -bad leaves since, otherwise, si is already a subsequence
of Q . Let u denote the lowest node of the tree N j

ri that still has the backbones of both P and
Q embedded in it. Clearly, all ri -bad leaves that are not below u form a suffix of si that is alsoa subsequence of Q . By definition of u, it is not a leaf of N j and u has children vP and vQ in N j

such that at most one leaf ℓQ below vP is used in the embedding of Q and at most one leaf ℓPbelow vQ is used in the embedding of P . But then, removing ℓP from si yields a subsequence
of Q . Note that the removal of ℓP is necessary to form a subseqence of Q since the sequences
corresponding to P and Q may disagree on the relative ordering of ℓP and ℓQ .Now, the concatenation s of all subsequences of Q corresponding to the si is a common sub-
sequence of P and Q and it contains at least half of all bad leaves (recall that we only remove a
leaf from si if it contains at least two leaves). Then, by Proposition 1, the number of bad leaves
is at most 2 · 2i = 2 · 2log3 n = 2 · nlog3 2, where n = 3i is the number of leaves in N . Summing over
all three caterpillar pairs, we get an upper bound of 6nlog3 2 bad leaves overall.

Next, we show that the first token retraction is preceeded by the creation of enough tokens
to compensate for all retractions. To this end, consider the first configuration Cj = ((N j ,ϕj), tj)such that applying Transformation Rule 1 to a reticulation r in N j incurs a withdrawal from the
token reservoir. In particular, this implies the existance of two different-parity caterpillars P and
Q such that their backbone is embedded below r and both their embeddings use a common leaf ℓ
below r . However, by construction of P and Q , none of the labels occuring in the lowest third of
P occurs in the lowest third of Q and, thus, ℓ is preceeded by at least n/3 leaves in either P or Q;
without loss of generality, supposeQ . Since the backbone ofQ is embedded below r , there are at
least n/3 leaves below r used by the embedding of Q , but not that of P . However, since all leaves
in N are used by all three caterpillars, all these n/3 leaves were “unzipped” in previous operations.

Since Cj is the first configuration in which P and Q have different parity and “share” a leaf,
we know that in all previous “unzip” operations, either (a) P andQ have the same parity or (b) the
embeddings of P and Q share no leaves below the corresponding reticulation or (c) the embed-
ding of at least one of P and Q uses only one leaf below the corresponding reticulation. Clearly,
in cases (a) and (b), the unzip operation does not “separate P from Q” in any leaf, that is, the
unzip operation does not reduce the number of leaves used by the embeddings of both P and
Q . In case (c), each unzip operation can “separate P from Q” in at most one leaf, implying that
Cj is preceeded by at least n/3 unzip operations, each creating 3 tokens in the reservoir. Thus,
by the time the first withdrawal is made from the reservoir, it contains at least n tokens which
is sufficient to cover all withdrawals (recall that we withdraw 2q tokens for each of the at most
6nlog3 2 bad leaves) since n > 12qnlog3 2 by (1). ■

With Claim 1 and Claim 2 we can now prove the bound on the number of leaves#T in T in
the number n of leaves in N and the number k of reticulations in N . To this end, note and recall
that (a) t0 = 0, (b) all leaves in N are used by the embeddings of all three caterpillars, and (c) T
has no reticulations. Then,

c1 · #T = c1
∑

i∈{1,2,3}
#T

i ≤
∑

i∈{1,2,3,r}
ci · #T

i

Claim 2
≤

∑

i∈{1,2,3,r}
ci · #T

i + ct · tΩ (2)
= ω(CΩ)

Claim 1
≤ ω(C0)

(2)
=

∑

i∈{1,2,3,r}
ci · #N

i + ct · t0 = c3 · #N
3 + cr · #N

r = 3qn + 4(q + 1)k

= c1(n + 4(q+1)k/3q).

Thus, T has at most n + 4(q+1)k/3q leaves. □
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Lemma 3 tells us that if we can construct a network with few reticulations that displays our
caterpillars, then we can also construct a MUL-tree with few leaves that displays our caterpillars.
Since Corollary 1 says that such MUL-trees do not exist, we conclude that such networks do not
exist.
Theorem 1. Let ϵ > 0. Then, there are three caterpillar trees, each with n ∈ N leaves, such that any
network displaying all three caterpillars has at least (3/2 − ϵ)n reticulations.
Proof. Let δ := 2ϵ/3 and choose q large enough so that β := δ − 1/q+1 > 0. Finally, choose i such
that β ≥ (1−1/q+1)(2/3)i . Let N be a network displaying Xi , Yi and Zi , that is, there is a caterpillarembedding (N,ϕ). Let (T ,ϕ) be the result of applying Transformation Rule 1 exhausively to
(N,ϕ) and note that, by Observation 1, (T ,ϕ) is a caterpillar embedding, that is, T displays Xi ,
Yi , and Zi . Further, by Lemma 2, T has at least 3i+1 − 2i+1 leaves. Let k denote the number of
reticulations in N . Then,

3i+1 − 2i+1
Lemma 2

≤ #T

Lemma 3
≤ n + 4(q+1)k/3q = 3i + 4(q+1)/3q · k

and, thus,
k ≥ (2 · 3i − 2i+1) · 3q/4(q+1) = 3/2 · q/q+1 · (n − 2i )

= 3/2(1 − 1/q+1)(n − 2i )

≥ 3/2((1 − 1/q+1)n − βn)

= 3/2(1 − δ)n = (3/2 − ϵ)n. □

5. Discussion and Open Problems
We have shown that, for each ϵ > 0 and t ≤ 3, there is some n ∈ N, and t caterpillars with n

leaves, such that any MUL-tree displaying the caterpillars has at least (t − ϵ)n leaves. Whether
this result can be generalized to t ≥ 4 remains an interesting open question, even more so for
networks, where the question would be to generalize our lower bound of (3/2− ϵ)n reticulations
required to display three caterpillars to t ≥ 4 caterpillars.

Note that Theorem 1 can be stated more precisely as “there is some function α(n) ∈ o(1)

such that, for each n, there are three caterpillars with n leaves that cannot be displayed by any
network with fewer than (3/2 −α(n))n reticulations”. This raises the question how the “smallest”
functions α for which this statement still holds, may look like (other than being in o(1)). In the
MUL-tree case, a closer inspection of our proofs gives α(n) ≤ 2 · (2/3)log3 n. If we force the
MUL-tree displaying the t trees to be a caterpillar, the question is equivalent to the question
of the shortest supersequence that any collection of t permutations over {1, ... , n} may have.
This can be shown (Hunter, 2023) to be at least (t − O(n−1/2))n, implying α(n) ∈ O(n−1/2) ⊂
o((2/3)log3 n). If there is always a MUL-caterpillar among the optimal MUL-trees displaying the
t caterpillars, then this would imply a stricter bound for both MUL-trees and networks than
what we showed here. Apart from improving the function α(n), it is interesting whether the
factor of 3/2 can be improved. In other words, is there a family of triples of phylogenetic trees for
which more than 3n/2 reticulations are needed?We do know that all triples of phylogenetic trees
can have a network with 2(n − 2) reticulations that display them: the network can be obtained
from a tree on two leaves by inserting each remaining leaf using two reticulations. However, the
same three trees might also be displayed by a network with strictly fewer reticulations. The best
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possible bound for three trees is therefore between (3/2 − ϵ)n and 2(n − 2). More generally, the
best possible bound for t ≥ 3 trees is between (3/2 − ϵ)n and (t − 1)(n − 2). Can this gap be
closed or narrowed? As our results are for caterpillars, we expect that trees of varying topology
can be used to prove such tighter bounds.

The last two questions beg the, somewhat philosophical question of whether reticulations
are strictly more powerful than multiple leaves? For MUL-trees, we know that we cannot do
much better than the trivial upper bound of t · n. Is the same true for networks, can we not do
much better than the trivial upper bound of (t − 1)(n− 2), or are networks really more powerful
than MUL-trees in this sense?

Finally, our original motivation for considering this problem came from the Hybridizat ion
Number problem. However, the bounds proven in this paper do not have direct formal conse-
quences for that problem. Hence, another interesting direction for future research is to see if our
bounds can be used to prove a negative result regarding exact algorithms for Hybridizat ion
Number, e.g. parameterized by treewidth (van Iersel et al., 2022).
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