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Abstract
To improve the assessment of metal toxicity in aquatic organisms, it is important to consider
the different uptake pathways (i.e. trophic or aqueous). The bioaccumulation of dissolved
metals such as Cd and Zn in gammarids is beginning to be well described. However, there
are very few data on the contribution of the dietary pathway, and its associated toxicoki-
netic parameters. Among these, the assimilation efficiency (AE) is an essential parameter for
the implementation of models that take the trophic pathway into account. This study aims
to estimate the assimilation efficiencies and elimination rates of two types of food, i.e. alder
leaves and chironomid larvae, contaminated with three metals (Ag, Cd and Zn) of major con-
cern for theWater Framework Directive (WFD). The pulse-chase-feeding methodwas used.
Gammarids were fed with alder leaves or chironomid larvae previously contaminated with
110mAg, 109Cd or 65Zn, for a short period of time (1 to 5 hours), followed by an elimination
phase of 14 days. At different time points, the gammarids were placed alive on the gamma
detector to individually quantify whole body concentrations of 110mAg, 109Cd or 65Zn. Our
results indicate that: i) Cd has the highest assimilation efficiency (39% for leaves and 19%
for larvae), followed by Zn (15% for leaves and 9% for larvae) and Ag (5% for leaves); ii) for
Cd and Zn, the AE were higher when gammarids were fed with leaves than with larvae;
iii) the elimination rates of metals seem to depend more on the food matrix than on the
metal assimilated; and thus iv) the biological half-life calculated from the kes is 5.1 days for
Ag, between 4.9 and 13 days for Cd and between 3.8 and 13 days for Zn.
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Introduction 

In the past decades, a number of works have demonstrated the strong capacity of some freshwater 
organisms to accumulate contaminants from the aquatic environment (Timmermans et al., 1992; Dutton 
& Fisher, 2011). Consequently, some freshwater invertebrates have been used as bioindicators of good 
ecological status for French freshwater systems, based on the chemical concentrations recorded in the 
whole body (Besse et al., 2012; Pellet et al., 2014; Lebrun et al., 2020). The ubiquitous gammarid 
Gammarus fossarum is widely used for this property, as it accumulates metals as a grazer of leaf litter 
and is an opportunistic predator of invertebrate prey (Kunz et al., 2010; Pellet et al., 2014; Filipović Marijić 
et al., 2016). Although the bioaccumulation processes of dissolved metals have been extensively 
documented (Vellinger et al., 2012; Urien et al., 2017; Gestin et al., 2022, 2023), less is known about the 
dietary assimilation and elimination of metals in this species. As exposure conditions are more difficult 
to standardise than for aqueous exposures, the dietary route in aquatic invertebrates is often poorly 
understood. However, the dietary pathway could account for a significant metal entry in invertebrates 
(Borgmann et al., 1989; Pellet et al., 2014), which highlights the need to consider this contribution in 
order to avoid misinterpretation of recorded metal concentrations in this species (Franklin et al., 2005; 
Besse et al., 2013; Lebrun et al., 2015; Conti et al., 2016; Hadji et al., 2016). 

The few studies focusing on freshwater invertebrates have shown that the uptake from the trophic 
pathway predominates for some metals and metalloids, such as for Cd, Cu and Se in Hyallela azteca 
(Borgmann et al., 2007) or Cd in Gammarus pulex (Pellet et al., 2014). In Daphnia magna, however, the 
uptake from the aqueous pathway predominates for Zn (Memmert, 1987). Previous results suggest that 
metal accumulation, detoxification and elimination, and thus potential toxicity, are strongly dependent 
on the uptake pathway. In this sense, Croteau & Luoma (2009) called for the need to delineate the 
bioaccumulation mechanisms and toxicokinetics in different organisms, as these processes are metal 
and species specific. 

Assimilation efficiency (AE) is one of the most important parameters used to quantify trophic 
transfer. This parameter directly reflects the amount of metals available from food and is a key 
physiological parameter for understanding the trophic transfer mechanisms (Croteau & Luoma, 2009). 
The AE could be partly defined by the fraction of metal in food that crosses the intestinal epithelial 
barrier to accumulate in the body of the consumer (Wang & Fisher, 1999a; Nunez-Nogueira et al., 2006; 
Croteau & Luoma, 2008). AE values can be used to estimate the influence of consumer species, 
contaminants, temperature, etc. (Wang & Fisher, 1999a; Wang & Wong, 2003). Among these, the type of 
food can greatly influence the AE of metals and thus their bioaccumulation efficiency (Wang & Fisher, 
1999a; Nunez-Nogueira et al., 2006; Dubois & Hare, 2009; Pouil et al., 2016). It has already been 
established that metals from plant matrices are less assimilated by organisms than elements of animal 
origin, because the digestion of compounds such as fibres or hemicelluloses is slower and more complex 
(Xu & Pascoe, 1994; Nunez-Nogueira et al., 2006). It is therefore important to consider dietary diversity in 
omnivorous organisms, such as gammarids, in trophic pathway studies. 

The pulse-chase-feeding approach is commonly used to determine the AE values (Calow & Fletcher, 
1972; Warnau et al., 1996; Metian et al., 2007; Pouil et al., 2017) and consists of exposing the organism 
once to a labelled food source and tracking the elimination of the tracer over time (Wang & Fisher, 1999a; 
Pellet et al., 2014). A kinetic modelling approach is applied to the depuration data to determine the 
metal-specific AE and the depuration rates (ke). The pulse-chase-feeding technique is widely used and 
adapted to work with different tools, such as isotopic tracers (stable and radioactive ones) (Wang & 
Fisher, 1999a; Baines & Fisher, 2002; Pouil et al., 2017). In the case of metals, gamma-emitting 
radiotracers are among the most powerful tracers for accurately quantifying small amounts of metal. 
They also allow individual tracking of metal uptake and loss over time, as whole-body gamma detection 
is non-destructive (Wang & Fisher, 1999a). Furthermore, it is conventionally accepted that radioactive 
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isotopes of metals have identical properties to their stable counterparts (Warnau & Bustamante, 2007). 
This confers the ability to assess metal accumulation and elimination rates by measuring only the 
concentrations of radioisotopes, thus avoiding the measurement of the background of stable metals 
(Cresswell et al., 2017). 

A toxicokinetic model for the aqueous pathway has already been developed for zinc and cadmium 
(Gestin et al., 2022). However, to be able to set up this kind of model considering the trophic pathway, it 
is important to have preliminary data concerning the AE of metals. In this framework, the aim of this 
study was to fill the knowledge gap on metal assimilation efficiency in gammarids, by determining the 
AE values and the elimination rates of Ag, Cd and Zn in the amphipod G. fossarum. A pulse-chase-feeding 
method was used, taking into account two contrasting types of food in the gammarid diet: alder leaves 
and chironomid larvae. After a short period of exposure to radiolabelled food, gammarids were 
transferred to depuration conditions and metal loss in tagged individuals was monitored for 14 days. 
Nonlinear least squares (NLS) models were fitted to the experimental data to determine the AE, ke and 
biological half-life of metals in gammarids. The values were then compared to discuss the influence of 
metal and food type on dietary bioaccumulation. 

Material and methods 

2.1 Organisms and alder leaves: origins, collection and maintenance 

Adult male gammarids (Gammarus fossarum: 27.3 ± 5.7 mg wet weight) were sampled from an 
uncontaminated watercress pound (Saint-Maurice-de-Rémens, France) (Gestin et al., 2021). They were 
then transported to the LIENSs laboratory premises (La Rochelle), where they were kept under constant 
bubbling in Evian® water (see characteristics in Table S1) with a dark/light cycle of 8:16h, at a 
temperature of 12.0 ± 0.5°C. They were fed with alder (Alnus glutinosa) leaves ad libitum and kept for a 7-
day acclimation period before the experiments.  

Alder leaves (A. glutinosa) used for trophic exposure were collected from a clean site (Les Ardillats, 
France). They were leached (i.e. soaked in well water for several days, with daily renewal of the water) in 
the ecotoxicology laboratory of INRAE Lyon-Villeurbanne in order to depurate the toxic tannins for 
gammarid. The wet leaves were then cut into discs of 6 mm diameter, avoiding the large veins. Finally, 
the leaf discs were placed in a container filled with well water (see characteristics in Table S1) and 
transferred to the LIENSs laboratory. 

Chironomid (Chironomus riparius) egg masses from the INRAE laboratory were transferred to the 
LIENSs laboratory. The eggs were placed in beakers containing powdered silica and filled with Evian® 
water and kept at room temperature (about 20°C) for few days until hatching. The larvae were then fed 
with fish pellets until the third larval instar. 

2.2 Radiotracers 

Throughout the experiment, the rearing and laboratory materials were decontaminated with 1/10 
diluted detergent (Decon® 90 solution), 1/10 diluted HCl solution (hydrochloric acid S.G. 32%, certified 
AR for analysis; Fischer Scientific®) and distilled water. The radioisotope carrier-free solutions were 
purchased from Eckert & Ziegler Isotope Products Inc., Valencia, USA. The 109Cd and 65Zn solutions were 
in their chloride forms (i.e. CdCl2 and ZnCl2), 0.1M HCl and the 110mAg solution was in its nitrate form 
(i.e. AgNO3), 0.1M HNO3. These three stock solutions were diluted to intermediate solutions to achieve 
appropriate radiotracer concentrations in the experimental setup. These radiotracer additions to the 
media did not change the pH of the water. For each radioisotope, the detectors were calibrated with two 
in-house liquid standards of the appropriate geometry, i.e. a 500 µL "gammarid" geometry and a 10 mL 
“water” geometry. Two NaI detectors coupled to InterWinner 7.0 software (ITECH Instruments®) were 
used to count the radioisotope activities (in Bq, Bq.g-1 or Bq.mL-1) present in all samples. 
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2.3 Contamination of food 

The leaf discs (~ 108 in total, i.e. 36 for each metal) were placed in 10 mL of Evian® water contaminated 
with 2010, 2030 or 2000 Bq.mL-1 of 109Cd, 65Zn and 110mAg, respectively, for 7 days. They were then placed 
in 0.1 L beakers of clean Evian® water for 5 days to remove the weakly adsorbed radioisotopes on the leaf 
walls. At the end of the procedures, 12 discs for each metal were randomly counted by gamma 
spectrometry at the end of these procedures, to follow the radiolabeling of the leaf. 

At the end of the third instar (i.e. L3, when they start to turn red), nine pools of 10 chironomid larvae 
each (i.e. 90 larvae in total) were collected, placed in 100 mL beakers filled with Evian® water (i.e. n=10 
per beaker) and exposed for 4 days to 201, 203 or 200 Bq.mL-1 for 109Cd, 65Zn and 110mAg (3 pools per 
radiotracer). This short exposure time was chosen to avoid the emergence of radiolabelled larvae in 
mosquitoes in the laboratory. At the end of the exposure period, the larvae were gently rinsed (i.e. rapidly 
soaked in 3 successive baths of clean water), then individually frozen and all counted by gamma-ray 
spectrometry. No radiotracer activity was detected in chironomid larvae exposed to 110mAg. 

2.4 Experimental procedure to obtain assimilation efficiencies of gammarids 

The Ag AE value and elimination rate were not determined with chironomids as food source. Prior to 
the pulse-chase feeding experiment, gammarids (n = 22 for each alder leaf/metal condition and n = 14 
for each chironomid/metal condition) were starved for 2 days and then individually placed in 250 mL 
beakers filled with Evian® water (Fig. 1). For each metal, they were then exposed to either two 
radiolabelled leaf discs for 3-5 h, or to one radiolabelled thawed chironomid larva for 1 h (Fig. 1). For the 
leaf-feeding condition, the 14 gammarids that ate the most were whole-body gamma-counted alive 
immediately after the pulse-chase-feeding period. For the larval feeding conditions, all the 14 exposed 
gammarids were gamma-counted.  

Selected gammarids, as described below in section 3.1, (i.e. 13 109Cd-leaf-fed gammarids, 11 109Cd-
chironomid-fed gammarids, 13 65Zn-leaf-fed gammarids, 13 65Zn-chironomid-fed gammarids and 14 
110mAg-leaf-fed gammarids) were then transferred under depuration conditions, i.e. 200 mL beakers filled 
with non-radiolabelled with Evian® water (i.e. closed circuit, constantly aerated, T = 12.0 ± 0.5°C). Each 
beaker contained 7 radiolabelled gammarids individually separated by handmade baskets (i.e., plastic 
mesh 11 cm high and 8.6 cm in diameter, with a mesh size of 0.5 cm; Fig. 1). A non-radiolabelled 
individual was added to each beaker to control for potential recycling of radioisotopes through to 
leaching from gammarid depuration. Gammarids were fed ad libitum with uncontaminated alder leaves 
throughout the depuration period (Fig. 1). 

Whole-body radiotracer activities in gammarids were tracked individually during two weeks of 
depuration (Tables S2 and S3). Individuals were sampled and counted at days 0.5, 1, 1.5, 2, 4, 7, 9, 11 and 
14 (Fig. 1). Gammarids were removed from the beakers using a 10 mL pipette, rinsed with clean water 
and placed in a plastic box (Caubère®, ref 1210) containing 500 µL of clean Evian® water (Fig. 1). Counting 
times of live gammarids varied between 10 and 20 min in order to minimise stress. The counting 
uncertainties did not exceed 5% for Zn for all samples, whereas the uncertainties increased with 
decreasing activities in the gammarid samples, without exceeding 20% and 15% for Cd and Ag, 
respectively. The radiotracer activities in the water were monitored daily and the water was changed at 
least every two days to minimize tracer contamination in the water. Mortality was also monitored daily. 

2.5 Estimation of assimilation efficiencies and depuration parameters of gammarids 

The depuration of radiotracers by gammarids was expressed as the percentage of remaining activity 
(i.e. radioactivity at time t divided by the initial radioactivity measured in the organism at the beginning 
of the depuration period; Tables S2 and S3; see Warnau et al., 1996).  
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Figure 1 - The different steps of the pulse-chase-feeding. 
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The kinetic parameters and the assimilation efficiencies with respect to the food type and metal were 
estimated using a nonlinear least squares (NLS) approach modelling (see the supplementary material 
file for the script), following the two-component exponential equation: 

(1) 𝐴(𝑡)!,# 	= 	 '100 − 𝐴𝐸!,#, × 𝑒$%!",$,%	×	(	 + 𝐴𝐸!,# × 𝑒$%!&,$,%	×	(	 

where 𝐴(𝑡)!,#  is the remaining activity (%) at time 𝑡, with respect to the type of food 𝑓 and  the 
radioisotope 𝑟, 𝐴𝐸!,#  is the assimilation efficiency, 𝑘)*,!,#  and 𝑘)+,!,#  the elimination rates of the first 
short-term phase (i.e. elimination of the non-assimilated metal fraction, which is rapidly depurated) and 
of the second long-term phase (i.e. elimination of the assimilated metal fraction, which is slowly 
depurated), respectively. The indexes 𝑓 correspond to the type of food ingested by the gammarids, with 
𝑓 =1 for alder leaves and 𝑓 =2 for chironomid larvae; and the indexes 𝑟 correspond to the radioisotope 
tested, with 𝑟 =1 for 109Cd, 𝑟 =2 for 65Zn and 𝑟 =3 for 110mAg. 

The biological half-life 𝑇,'(,!,#
 for each metal with respect to the food source was calculated from the 

elimination rate constant (kes or kel), based on the equation: 

(2) 𝑇𝑏'
(,!,#

	= 	 +-.
%!

 

The elimination kinetic parameters and the assimilation efficiencies were estimated using R 
software. 

Results and discussion 

Estimation of metal accumulation efficiencies is an essential first step in understanding 
bioaccumulation mechanisms. Furthermore, AE values are key inputs for the implementation of 
toxicokinetic models to study these mechanisms (Van Campenhout et al., 2009). For the gammarid 
G. fossarum, this study provides estimates of the assimilation efficiency and of the two elimination rates 
of biphasic digestion after the ingestion of food (i.e. of animal or plant origin) contaminated with one of 
the three metals studied here (Ag, Cd and Zn). 

3.1 Data quality evaluation and selection 

The 109Cd is a low energy photon emitter with a gamma ray peak at 88 keV (3.79%), which means that 
a sample must have enough activity to stand out from the background compared to 65Zn (1115 keV) or 
110mAg (658 keV for its main gamma ray). Therefore, in order to obtain organisms that have eaten enough 
and to be able to determine the curve correctly, only individuals that reached a whole-body activity of 
150 Bq and above immediately after the single feeding (t0) were kept to follow the metal loss kinetics 
(Fig. 1 and S1). This means that individuals that did not graze enough during the exposure period due to 
repletion or stress were dismissed. For the gammarids fed with Cd-enriched chironomids (n=11), only 4 
gammarids in a first set of 14 individuals showed a body activity above 150 Bq at t0 (Fig. S1). In a second 
batch of 14 gammarids, 7 individuals ingested more than 150 Bq of 109Cd activities (Fig. S1, Tables S2 and 
S3). For the Cd leaf-feeding condition (n=13), only 1 of 14 gammarids ingested less than 150 Bq of 109Cd 
at t0, and so was therefore removed from the experiment. 

In each condition (n=13) of dietary Zn exposure (i.e. both leaves and larvae as sources), one 
gammarid died during the first day of the experiment. In the leaf-feeding Ag condition (n=14), all 14 
gammarids remained alive throughout the depuration phase. 

6 Ophélia Gestin et al.

Peer Community Journal, Vol. 4 (2024), article e51 https://doi.org/10.24072/pcjournal.426

https://doi.org/10.24072/pcjournal.426


3.2. Metal elimination kinetics patterns 

Kinetic models were fitted to whole body concentrations over time following a pulse-chase-feeding 
of metal-contaminated alder leaves. The metal elimination kinetics showed a biphasic pattern (Fig. 2), 
expressing the presence of two metal pools: a first poorly retained pool characterised by a high rate of 
elimination (kes), and a second slowly eliminated pool (kel). 

 

Figure 2 - Influence of the metal and the type of matrix used for feeding on the 
elimination of metals ingested by the gammarids during the depuration phase, 
expressed as the percentage of activity remaining in the gammarids compared to the end 
of the pulse-chase phase (t0) as a function of the depuration time (hours). Gammarids 
were contaminated by cadmium for a) and b); zinc for c) and d); and silver for e). Food 
corresponded to leaf discs for a), c) and e); and to chironomid larvae for b) and d). 
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Regardless of the metal, gammarids eliminated the highest proportions of ingested trace elements 
during the first 48 h after exposure to contaminated leaves. Elimination rates were similar among metals 
with kes values of 0.18 ± 0.01 h-1, 0.15 ± 0.03 h-1 and 0.14 ± 0.01 h-1 for Zn, Cd and Ag respectively 
(Table 1). Thus, these values imply that, after a 5 h period of grazing, these metal pools had a Tbs1/2 of 4-
5 hours (Table 1). These biological half-lives, which are similar among metals, are consistent with the 
intestinal transit time reported for Gammarus pulex (16 hours; Pellet et al., 2014), suggesting that these 
fractions were not assimilated and were excreted in feces. This hypothesis, stimulated by the ingestion 
of non-radiolabelled alder leaves since the gammarids were placed in depuration conditions, is 
supported by this significant release of radiotracers during the first 48 hours of the elimination phase.  

Table 1 - Parameters estimated by fitting an NLS model from pulse-chase feeding data, 
with EA (%), kel (d-1) and kes (d-1) with their respective standard deviations, t-value, Pr(>ItI) 
and percentiles (95%). Calculated biological half-lives times of metals as a function of 
diet type with their respective standard deviations and percentiles (95%). 

Metal Food type Parameters 

Assimilation efficiencies Biological half-life 

Estimate values t value Pr(>ItI) 
Percentiles Calculated 

values 
Percentiles 

2.5% 97.5% 2.5% 97.5% 

Ag Alder leaves 

kes 0.14 ± 0.01 14 <2E-16 0.12 0.16 5.1 ± 0.4 4.4 5.9 

AE 5.2 ± 1.1 4.8 4.2E-6 3.0 7.3 / / / 

kel 0 / / / / ∞ / / 

Cd 

Chironomid 
larvae 

kes 0.053 ± 0.005 11 <2E-16 0.044 0.063 13 ± 1 11 16 

AE 19 ± 2 11 <2E-16 15 22 / / / 

kel 0 / / / / ∞ / / 

Alder leaves 

kes 0.15 ± 0.03 5.5 3.0e-7 0.09 0.20 4.9 ± 1.0 3.6 7.2 

AE 39 ± 3 12 <2E-16 33 45 / / / 

kel 0.0058 ± 0.0010 5.6 1.8e-7 0.0037 0.0078 124 ± 25 89 185 

Zn 

Chironomid 
larvae 

kes 0.055 ± 0.004 15 <2E-16 0.047 0.062 13 ± 1 11 15 

AE 9.1 ± 1.2 7.3 2.6E-11 6.7 12 / / / 

kel 0 / / / / ∞ / / 

Alder leaves 

kes 0.18 ± 0.01 13 <2E-16 0.16 0.21 3.8 ± 0.3 3.3 4.4 

AE 15 ± 2 8.4 8.0E-14 11 18 / / / 

kel 0.0061 ± 0.0014 4.4 2.3E-5 0.0034 0.0089 120 ± 35 78 203 

 
The second kinetic phase was characterised by a lower elimination rate, with kel values of 

0.0061 ± 0.0014 h-1, 0.0058 ± 0.0010 h-1 and zero for Zn, Cd and Ag, corresponding to kel of 
Tbl1/2 = 120 ± 35 h, 124 ± 25 h and ∞, respectively (Table 1). This longer elimination rate is considered to 
be due to the physiological turnover of the assimilated metal fraction. It is assumed that this pool crosses 
the intestinal barrier, is distributed to different organs and is taken over by detoxification mechanisms, 
as already described for Cd and Zn in invertebrates (Nunez-Nogueira et al., 2006). It is noteworthy that 
the Tbl1/2 of Cd and Zn are equivalent, suggesting that metabolism of both trace elements requires similar 
physiological mechanisms. In contrast, the assimilated pool of Ag was not eliminated by the gammarid, 
which contrasts with a shorter Ag retention time than other metals, such as Cd or Zn, reported in daphnia 
(Lam & Wang, 2006), in cuttlefish and in turbot (Bustamante et al., 2004; Pouil et al., 2015). This 
phenomenon has already been observed in Lymnea stagnalis (kel not different from 0) suggesting that 
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Ag is strongly retained in internal tissues (Croteau et al., 2011). This could be explained by the fact that 
Ag is an element that reacts very strongly with sulphur compounds (Lam & Wang, 2006). In bivalves, Ag 
has indeed been shown to be stored in the epithelial cells of the intestinal cells, as Ag2S (Berthet et al., 
1992), which are already known to be a site of accumulation and detoxification of other metals such as 
Cd and Cu in gammarids (Pellet et al., 2014). In this highly stable Ag2S form, silver is found in the insoluble 
fraction (Berthet et al., 1992), and remains indefinitely sequestered in tissues in a non-metabolically 
available form (Fowler et al., 2004). 

3.3. The AE values of metals after feeding by contaminated alder leaves 

According to the second depuration kinetic components, the assimilation efficiencies of metals in 
alder leaves fed to gammarids were ranked as follows: Cd (39 ± 3%) > Zn (15 ± 2%) > Ag (5.2 ± 1.1%) 
(Fig. 2; Table 1). These contrasting AE values among elements were also found in Daphnia magna, with 
AE of 30-70%, 7-66% and 1-2%, for Cd, Zn and Ag, respectively (Yu & Wang, 2002; Lam & Wang, 2006). 
Consistent with our results, a higher AE for Cd (5-47%) than for Zn (1.4%) was also found in the leaf-fed 
gammarid Gammarus pulex (Xu & Pascoe, 1994; Pellet et al., 2014). To our knowledge, there are no data 
on Ag AE in amphipods, although similar AE values ranging from 3 to 23% have been reported in the 
marine copepods Acartia torua, Acartia hudsonica and Temova longicornis. Compared to the Ag AE 
determined here in G. fossarum, higher AE values were reported for this metal in the cephalopod 
Sepia officinalis (19 ± 3%) (Bustamante et al., 2004) and in the gastropod Lymnaea stagnalis (73 ± 5%) 
(Croteau et al., 2011), whereas it did not exceed 1% in the fish Scophthalmus maximus (0.32%) (Reinfelder 
& Fisher, 1991; Lam & Wang, 2006; Pouil et al., 2015). Thus, all these data show large disparities 
confirming that there are no general rules for predicting AE among metals and biological species (Wang 
& Fisher, 1999a; Pouil et al., 2018).  

3.4. The effect of food type on metal trophic transfer 

The AE values are intrinsically linked to both biotic and abiotic factors that modulate the digestive 
physiology, metal bioavailability and bioaccessibility (Pouil et al., 2018). Among these factors, the type 
of food and its amount significantly influence the AE values, as reported in fish (Pouil et al., 2017), while 
it is less evident in copepods, as reviewed by Wang & Fisher (1999b). More specifically, the AE of Cd in 
Dreissena polymorpha has been estimated to range from 19 to 72% for 8 types of food (Roditi & Fisher, 
1999). The AE of Zn has also been reported to be highly variable in fish, ranging from 2 to 97% (with a 
median of 20%) as a function of the predator species and the food sources (Pouil et al., 2018). 
Mechanistically, these AE variations are thought to be driven by the subcellular distribution of metals in 
food (i.e. the storage form). Theoretically, metals are considered to be trophically available for transfer 
to consumers when they are associated with organelles, enzymes and metal-binding proteins (i.e. 
Trophically Available Metals, abbreviated TAM), i.e. metals found in the soluble fraction. Conversely, 
metals associated with the insoluble fraction (i.e. metal-rich granules or cellular debris) may not be 
assimilated (Wallace & Lopez, 1996; Wallace & Luoma, 2003). Nevertheless, in practice, the relationship 
between TAM and AE is less clear due to the complex organ and subcellular distribution of metals in 
metazoan prey (see Pouil et al., 2016). 

In the present study, the AE of Cd and Zn were 2- and 1.5-fold higher when the ingested food was 
alder leaves (39 ± 3% and 15 ± 2%, respectively; Fig. 2 and Table 1) compared to chironomid larvae 
(19 ± 2% and 9.1 ± 1.2%, respectively; Fig. 2 and Table 1). This is in contrast to what is usually reported 
for omnivorous organisms, where the trophic transfer of metals from plant sources is lower than that 
from animal prey because the digestion process of plant materials is slower and more complex (Xu & 
Pascoe, 1994; Nunez-Nogueira et al., 2006). For example, the shrimp Penaeus indicus fed with Cd-
contaminated algae showed an AE of 42.4 ± 5.1%, a value 1.8 time lower than that reported for shrimp 
fed with Cd-contaminated squid (i.e. 74.6 ± 8.5%). In contrast, the AE of Zn was not dependent on the 
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type of diet (i.e. AE of P. indicus fed with squid = 57.9 ± 7.3%; AE of P. indicus fed with algae = 59.1 ± 8.4%) 
(Nunez-Nogueira et al., 2006). 

Regarding our results, it is noteworthy that live chironomid larvae were contaminated with the 
radiotracers whereas only dead leaves were radiolabelled. More than the plant or animal character, we 
suspect a large passive adsorption of metals on the walls of inert dead leaves compared to a poor 
absorption within the leaf structures. Once ingested, the metal fraction should be easily desorbed under 
a free form ion and thus more bioavailable, increasing the assimilation efficiency for the gammarid. On 
the contrary, metals actively ingested by live chironomid larvae were distributed among tissues, 
incorporated into cells and taken up by detoxification mechanisms, thus binding to various subcellular 
components. Therefore, the higher AE obtained for leaf-fed gammarids than for chironomid-fed 
gammarids could be related to the sorption processes and the TAM fractions in live vs. inert food sources 
rather than to the contrasting efficiencies of digestion of plant and animal materials. 

As found for AE, both kes and kel of Cd and Zn varied more with the food matrix than with the metal 
itself. With Tbs1/2 of 13.0 ± 1.2 and 13.0 ± 0.9 h, for Cd and Zn, respectively, the short-lived metal pool was 
2 to 3 times longer in chironomid-fed gammarids than in leaf-fed gammarids (Table 1). In addition, the 
long-term biological half-life Tbl1/2 tended to infinity for both elements when gammarids were fed with 
chironomids (Table 1). This strong retention of metals is consistent with the previously stated hypothesis 
that the two food sources have different TAM (Rainbow et al., 2011) which, once assimilated, should also 
determine the fate of the metal in the gammarid. Thus, the leaf-adsorbed metal assimilated in a free 
form or in a weak ionic complex is likely to be taken up more rapidly by detoxification and/or elimination 
processes than the assimilated metal strongly bound to components and concretions of chironomid 
cells. Nunez-Nogeira et al (2006) also found a higher ke of Cd in the shrimp P. indicus contaminated with 
squid meat (0.009 ± 0.003 d-1) than when contaminated with algae (0.004 ± 0.001 d-1), confirming that 
Cd assimilated from a vegetable matrix is eliminated more rapidly than from a complex multicellular 
organism. However, Zn was excreted more rapidly after ingestion of animal than plant matrices (Nunez-
Nogueira et al., 2006), contrary to what we found in G. fossarum. These observations suggest that Zn and 
Cd undergo different physiological bioaccumulation processes depending on the type of food ingested, 
hence the importance of better understanding the toxicokinetics of ingested metals and what influences 
it. 

Conclusion 

To better improve and predict the fate of metals in organisms and their potential transfer within food 
webs, it is important to understand the key factor controlling metal bioaccumulation in organisms, such 
as diet as a contamination pathway (Xu & Pascoe, 1994; Hadji et al., 2016). As a first step, the results of 
this study fill in the gaps regarding the critical physiological parameters governing bioaccumulation and 
trophic transfer mechanisms: assimilation efficiency (AE) and elimination rates. Furthermore, AE is a key 
input for the implementation of toxicokinetic models to study bioaccumulation mechanisms and the 
fate of metals in organisms (Van Campenhout et al., 2009). By exposing the gammarid, G. fossarum, to 
food of animal or plant origin contaminated with Ag, Cd and Zn, this study reported that, regardless of 
the type of food, Cd had the highest AE values (39 and 19%, respectively), followed by Zn (15 and 9%, 
respectively) and Ag (5%, determined for plant only). In turn, the food matrix modulated the metal 
elimination rates, as kes and kel for Cd and Zn were higher when metals were ingested via leaves than via 
chironomids. This implies a shorter retention time for metals presumably adsorbed on an inert matrix 
compared to metals metabolically assimilated by live chironomids. These results also question the 
metal subcellular partitioning and its storage form in food that drive the relationship between 
bioavailable metal fractions (e.g. TAM, Rainbow et al., 2011) and AE in order to better predict trophic 
transfer based on food type.  
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Finally, the use of AE data could greatly improve toxicokinetic models to better understand the ADME 
(i.e. Absorption, Distribution, Metabolisation and Elimination) mechanisms of metals in small 
invertebrates. In particular, the data obtained here has enabled us to improve our knowledge and set up 
a toxicokinetic model of Cd accumulation via the trophic pathway. The study of organotropism over time 
in relation to the metal accumulation pathway in gammarids would be an important direction for future 
research to further unravel the bioaccumulation mechanisms (Franklin et al., 2005; Urien et al., 2016) 
and to implement toxicokinetic models.  
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