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Abstract
In many animals, male weapons are large and extravagant morphological structures that
typically enhance fighting ability and reproductive success. It is generally assumed that
growing and carrying large weapons is costly, thus only males in the best condition can
afford it. In the European earwig, males carry weapons in the form of forceps-like cerci,
which can vary widely in size within populations. While long forceps appear to increase
male’s access to females, it is unknown whether it also correlates with other important
male life-history traits. This information is important, however, in determining the po-
tential reliability of forceps length as an indicator of male quality and the stability of this
signalling system. Here, we tested whether forceps length is associated with six impor-
tant behavioural and physiological traits in males of the European earwig. We sampled
hundreds of males from two populations, selected 60 males with the longest and short-
est forceps from each population, and thenmeasured locomotor performance, boldness,
aggregation behaviour, survival under harsh conditions, sperm storage, and survival af-
ter pathogen exposure. Contrary to our predictions, we detected no main association
between forceps length and the traits measured. This lack of association was consistent
between the two populations, although there were population-specific levels of bold-
ness, aggregation and survival in harsh conditions (for long-forceps males only). Overall,
these results challenge our current understanding of the function and quality signal of
forceps length in this species and raise questions about the evolutionary drivers that
could explain the maintenance of weapon size diversity within and between popula-
tions.
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Introduction 

Animal reproduction often requires males to engage in physical competition and courtship to attract 

females in search of mates (Davies et al., 2012). From vertebrates to arthropods, these two needs have 

often led to the evolution of male weapons and ornaments through sexual selection (Emlen, 2008; 

McCullough et al., 2016; Goldberg et al., 2019). These weapons and ornaments are typically large and 

extravagant morphological structures that can grow on different parts of the male's body, take a variety 

of forms (such as antlers, horns, spurs, fangs and tusks), and work to enhance the male’s fighting ability 

and/or attractiveness to females (Emlen, 2008). Textbook examples of this enhancement can be found 

in the white-tailed deer Odocoileus virginianus, where males growing the largest antlers are more likely 

to win fights with other males and have higher annual breeding success (Newbolt et al., 2017), and in the 

stalk-eyed flies Cyrtodiopsis whitei and C. dahnanni, where females prefer to mate with males exhibiting 

the longest eye stalks (Wilkinson et al., 1998). 

However, not all males display extravagant weapons or ornaments (Emlen, 2008; McCullough et al., 

2016; Goldberg et al., 2019), as the development and maintenance of these sexually selected traits often 

comes at a cost to males. This cost can arise from the fact that carrying heavy, bulky weapons (or 

ornaments) makes males less mobile and more visible to both predators and prey (Oufiero & Garland, 

2007). For example, males with experimentally-enlarged wing spots have lower survival rates due to 

increased conspicuity to both visually orienting predators and visually orienting prey in the rubyspot 

damselfly Hetaerina americana (Grether, 1997). The cost of carrying large morphological structures can 

also arise because it may impose investment trade-offs with physiological functions ranging from 

metabolism to muscle development and spermatogenesis, which can be crucial for male fitness and 

survival (Emlen, 2001). For example, males with the largest hind leg weapon pay the highest resting 

metabolic rate and energy costs in the Hemiptera Leptoscelis tricolor (Somjee et al., 2018). Similarly, 

growing large mandibles come with low flight-muscle mass in the stag beetle Cyclommatus metallifer 

(Mills et al., 2016), and males who invest in extravagant sexual displays show a more rapid decline in 

spermatogenesis than males who invest less in these displays in the houbara bustard Chlamydotis 

undulata (Preston et al., 2011). As a result, only the males in the very best condition are expected to 

possibly afford the development and maintenance of extravagant weapons and ornaments (Otte & 

Stayman, 1979; Emlen & Nijhout, 2000). Determining the reliability of these morphological structures as 

indicators of the male quality is therefore crucial to understanding the stability of these signalling 

systems (Berglund et al., 1996). 

Earwigs (Dermaptera) are textbook examples of insects with males displaying a sexually selected 

weapon. In this taxonomical group, females have relatively short, straight and hardened forceps-like 

cerci typically used to defend the clutch against predators (Meunier, 2024a), whereas males display 

elongated, curved and hardened forceps-like cerci (hereafter referred to as forceps) involved in mating 

courtship and fights against other males (Briceño & Eberhard, 1995; Walker & Fell, 2001; Kamimura, 

2014). There are several lines of evidence to suggest that long forceps provide males with benefits in 

terms of mating success (Eberhard & Gutierrez, 1991; Tomkins & Brown, 2004; Kamimura, 2014). For 

example, males with long forceps are more likely to win fights with other males by squeezing them 

between their cerci, and thus gain better access to females in the toothed earwig Vostox apicedentatus 

(Moore & Wilson, 1993). In the European earwig Forficula auricularia, male forceps are also used in male-

male contests as a weapon to deter competitors prior to mating (Styrsky & Rhein, 1999) or to interrupt 

mating individuals by non-copulating males (Forslund, 2000, 2003; Walker & Fell, 2001). Long-forceps 

males are also generally more aggressive, more readily accepted by females for mating and copulate 

longer compared to short-forceps males (reviewed in Kamimura, 2014). Although forceps are involved in 

male courtship (Walker & Fell, 2001), females do not seem to select their mate exclusively on the basis of 

forceps length (Radesäter & Halldórsdóttir, 1993; Forslund, 2000, 2003; Walker & Fell, 2001). 
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While the relationship between male forceps length and mating success has been well documented 

in earwigs (reviewed in Kamimura, 2014), it remains unclear whether having long or short forceps is 

associated with other important life-history traits in these males. However, this is important information 

to determine the potential reliability of forceps length as an indicator of male quality and the stability of 

this possible signalling system. The very few studies that have addressed this question focused on male 

immunity in the European earwig F. auricularia (Rantala et al., 2007; Körner et al., 2017). On the one hand, 

they show that males with long forceps have lower basal levels of certain components of the immune 

system, such as lysozyme activity and hemocyte concentrations. This suggests that having long forceps 

comes with an immune cost for males. On the other hand, they show no association between forceps 

length and other components of the immune response, such as encapsulation rate and phenoloxidase 

activity. Taken together, these findings suggest that the immune costs of having long forceps may be 

relatively limited and raise the question of whether other important life-history traits can be associated 

with forceps length. 

Here, we investigated whether long and short forceps are associated with six important behavioural 

and physiological traits in males of the European earwig. We sampled hundreds of males in two natural 

populations of earwigs separated by 400 km and in each population, we selected the 30 males with the 

longest and the 30 males with the shortest forceps. We then measured their level of expression of three 

important behaviours, their survival rate in two distinct harsh conditions and their sperm quantity. The 

first behaviour was their locomotor performance (Cheutin et al., 2024), which reflects the ability of males 

to walk long distances (to forage, hide or find a mate) while carrying long and heavy (or short and light) 

appendages. The second behaviour was their likelihood to flee after a physical disturbance (i.e., 

boldness), which shows how males react when disturbed by a predator attack (Thesing et al., 2015). The 

third behaviour was their propensity to aggregate with conspecifics. This is an important parameter in 

this gregarious species, as adults typically live in groups of up to several hundred individuals and social 

isolation can have detrimental effects on their physiology (Kohlmeier et al., 2016; Van Meyel & Meunier, 

2022). We also measured their survival rate in a harsh condition where they were isolated with no access 

to a food source for 31 days, and then their survival rate after exposure to the common 

entomopathogenic fungus Metarhizium brunneum (Vogelweith et al., 2017). Finally, we measured the 

level of sperm storage in seminal vesicles of each male, a parameter that is often important in the context 

of male-male competition for mating (Shuker & Simmons, 2014). If forceps length is a reliable signal of 

good quality, we predict that long forceps males would 1) have higher locomotor performance, 2) be 

bolder and thus less likely to flee after a simulated attack, 3) be more social and thus more likely to 

aggregate with conspecifics, 4) be more resilient to harsh environmental conditions and thus have a 

higher survival rate after 31 days of starvation, and/or would 5) have higher immune defences and thus 

survive better after a pathogen infection than short-forceps males. We also predict that 6) long-forceps 

males would produce more sperm and contain more sperm in their seminal vesicles than short forceps 

males. This last prediction would be consistent with the longer duration of copulation reported for the 

long-forceps males (Kamimura, 2014), even if this longer duration may also reflect other male mating 

strategies, such as mate guarding. 

Material and methods 

Animal rearing and selection 

In July 2022, we field sampled 3000 males and females in a cultivated peach orchard near Valence, 

France (Lat 44.9772790, Long 4.9286990) and 400 males and females in a non-cultivated area at the edge 

of a forest near Cinais, France (Lat 47.1606970, Long 0.1763663). All these individuals belong to Forficula 

auricularia Linneaus, 1758, also called Forficula auricularia clade A (González-Miguéns et al., 2020). 

Immediately after field sampling, we distributed them by population of origin into 50 plastic terrariums 
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(37 × 22 × 25 cm, balanced sex ratio) to homogenize nutrition, habitation, and access to mates for the 

males (Körner et al., 2017). Three months later (i.e., at the end of the reproductive season), we removed 

the females from all the terrariums to mimic their natural dispersal. One month later, for each 

population, we visually selected the 30 males with the longest forceps and the 30 males with the shortest 

forceps (Körner et al., 2017) and isolated them in individual Petri dishes (diameter 5 cm) for later use in 

behavioural and physiological measurements (A timeline of the experimental design and the detailed 

sample sizes can be found in Figure 1). Two days after isolation, we confirmed the robustness of our two 

forceps categories by measuring the mean of the left and right outer forceps of the 120 males. These 

measurements were done to the nearest 0.001 mm using the Leica Application Suite 4.5 software (Leica 

Microsystems, Wetzlar, Germany) on pictures taken under a binocular scope (Leica, MZ 12.5). These 

measurements confirmed that there was no overlap between the two male categories (Figure 2). All the 

remaining males and females that were not used in this experiment were involved in other experiments 

that are not presented here. 

 

Figure 1 – Timeline of the experimental design and evolution of sample size over the 

course of the experiment. The observed decrease in sample size over time reflects their 

mortality during isolation and in the absence of any food source. Males are distributed 
according to their forceps length category and population of origin. 

From field sampling to isolation, we fed animals with artificial food containing mostly pollen, carrots, 

and cat food (see details in Kramer et al. 2015). During these three months, we offered this food ad 

libitum to homogenise the nutritional condition of the males when we started our measurements. We 

then kept the isolated males without access to food from the day they were isolated until 31 days after 

their isolation (Figure 1) to test whether resistance to both starvation and social isolation (i.e., harsh 

environmental conditions) were population and/or forceps-length specific, while ensuring that good 

rearing conditions did not mask any potential investment trade-offs between forceps length and other 

life history traits. We then provided food to males after day 31 to measure their survival following 

pathogen exposure. We kept all animals on a 12h:12h light:dark schedule at 18°C, and both the terrarium 

and Petri dishes contained a layer of moist sand. 

Behavioural measurements 

From the 5th to the 24th day after isolation, we measured three behaviours in the 120 isolated males: 

the locomotor performance, the likelihood of fleeing after a physical disturbance, and the level of 

aggregation. All these measurements followed standard protocols for earwigs (Merleau et al., 2022; 

Honorio et al., 2023). 

First, we measured male’s locomotor performance 5 days after isolation. On that day, we transferred 

each male to a 3D-printed circular arena (Open field; diameter = 8 cm, height 0.4 cm) with a cover made 

of glass, placed on an infrared table and kept in complete darkness. We then video recorded males’ 
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locomotion for 20 minutes (Camera: BASLER BCA 1300, Germany; Media Recorder v4.0, Noldus 

Information Systems, Netherland) and subsequently analyzed the resulting videos with the software 

Ethovision XT 16 (Noldus Information Systems, Netherland). We defined the locomotor performance of 

each male as the total distance he walked (in cm) during the entire recording (Merleau et al., 2022; 

Honorio et al., 2023).  

 

Figure 2 – Forceps length distribution of the 120 selected males with short (orange) and 
long (blue) forceps in Cinais (A) and Valence (B) populations. Dashed lines show the mean 
values per forceps category for each population 

Second, we measured the likelihood of fleeing after a physical disturbance 10 days after isolation. 

On that day, we carefully opened each Petri dish, pricked the male on the pronotum with a glass capillary 

and then recorded whether or not the male's first reaction was to move more than one body length away 

from its initial position (i.e., flee).  

Finally, we measured the level of aggregation of each male 24 days after isolation. We placed each 

male in a 3D-printed arena used in Van Meyel & Meunier, 2022, consisting of four linearly aligned circular 

chambers (diameter 4 cm). Three of the chambers were connected by 0.5 cm wide corridors allowing 

earwigs to move between chambers. The width of the corridor connecting to the fourth (outer) chamber 

was reduced to 0.15 cm, which prevented earwig movement while allowing the circulation of odours and 

antennal contacts between individuals on both sides (Van Meyel & Meunier, 2022). We started the 

experiment by placing two naive males and one female from the same population (but not involved in 

any other experiment or measurement) in this isolation chamber, and the tested male in one of the 

connected chambers. We recorded whether the tested male was in the chamber next to the group of 

conspecifics (yes or no) and repeated this measurement by taking pictures every hour for 48 hours using 

infrared cameras and the software Pylon Viewer v5.1.0 (Basler©, Ahrensburg, Germany). For each tested 
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male, we thus obtained an aggregation score ranging from 0 to 48, which was defined as the total 

number of pictures in which a male was in the chamber next to the group of conspecifics. After the 48h 

of aggregation test, we returned each male to its Petri dish until its use for subsequent measurements 

(see below). For ease of handling, all manipulated earwigs were anaesthetised with CO2 during the set-

up of this last measurement.  

Sperm storage measurement 

Of the 91 males still alive on day 31 after isolation (Figure 1), we used a random subset of 39 to 

measure sperm storage as the number of sperm present in their seminal vesicles (Figure 1). This counting 

occurred about two months after the males were separated from the females, which is probably long 

enough for the males to rebuild their sperm reserves, regardless of their previous mating rate. We 

counted sperm numbers following the protocol detailed in Damiens et al. (2002). In brief, we dissected 

each male under a dissecting microscope, placed their seminal vesicles on a slide with 15 µL of 1x 

Phosphate Buffered Saline and then pierced it to release all the sperm. We subsequently dried the plate 

on a heating block, after which the smear of sperm was sealed with a 70% ethanol solution and allowed 

to dry again at ambient temperature. The slides were then stored at 3°C. Two days later, we deposited 

20µL of DAPI dye (concentration = 10 µmol/L) on the smear, covered it with a small piece of plastic wrap 

to allow the dye to infiltrate the cells while not drying out, and 10 minutes later, we replaced the plastic 

wrap with a glass slide cover. The slide was then viewed under the microscope at 20x magnification, and 

we took pictures of 5 different fields of the smear. Using an Olympus micrometre calibration slide and 

the software Image J (Schneider et al., 2012), we then counted the number of spermatozoa in all 5 fields 

for each male. Finally, we used all these numbers to calculate the number of spermatozoa per millimetre 

square and multiplied this number by the total area of the smear to obtain the total number of sperm 

per male. It should be noted that sperm storage was measured in males that survived 31 days in isolation 

without access to food, so that this value represents the sperm storage of individuals best adapted to 

these two stressful conditions. 

Survival in harsh environments and after exposure to pathogens  

We measured male survival under two types of harsh conditions. The first type of harsh condition 

was the absence of any food source (starvation) combined with social isolation, which is known to have 

detrimental effects on this gregarious species (Kohlmeier et al., 2016; Van Meyel & Meunier, 2022). We 

assessed the male survival rate under these conditions by recording whether each of the 120 males 

tested was still alive on day 31 after isolation (Figure 1). 

The second type of harsh condition was exposure to pathogens. We measured survival rate after 

pathogen exposure in the 52 males that were still alive on day 31 and were not used to measure sperm 

storage (Figure 1). We exposed each male to spores of the entomopathogenic fungus Metharizium 

brunneum (formerly M. anisopliae). This fungus is a natural and lethal pathogen of F. auricularia (Günther 

& Herter, 1974; Arcila & Meunier, 2020; Coulm & Meunier, 2021). The infection followed a standard 

protocol detailed in Kohlmeier et al. (2016). In brief, we immersed each male in an Eppendorf tube 

containing 1.5 mL of a conidiospore suspension of M. brunneum diluted in 0.05% Tween 20 (Sigma P-

1379) at a concentration of 106 spores/mL. We then gently swirled the tube from side to side for 4 

seconds, removed the male and placed it back in its original Petri dish with standard food (see above) 

that was changed twice a week. We then kept the infected males at 20°C on a 12:12 light:dark schedule. 

We checked them daily for mortality over the course of 45 days. As with sperm storage, survival after 

pathogen exposure was measured in males that survived 31 days in isolation without access to food, so 

that it represents the survival rate of individuals best adapted to these two stressful conditions. 
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Statistical analyses 

We conducted all statistical analyses using the software R v4.3.2 (https://www.r-project.org/) loaded 

with the packages DHARMa (Hartig, 2020), car (Fox & Weisberg, 2019), survival (Therneau, 2020) and 

emmeans (Lenth, 2022). We analysed locomotor performance, sperm count and aggregation score using 

three general linear models (lm in R), while we analysed the likelihood to flee (yes or no) and whether 

males were dead 31 days after isolation (yes or no) using two generalized linear model (glm in R) with 

binomial error distributions. Finally, we analysed the survival rate of the pathogen-exposed males using 

a Cox proportional hazard regression model allowing for censored data (Coxph in R), i.e., males still alive 

45 days after exposure to the pathogen. In these six models, we entered the type of forceps length (long 

or short), the population of origin of the males (Cinais or Valence) and the interaction between these two 

variables as explanatory factors. Overall, we checked that all model assumptions were met (e.g., 

homoscedasticity and normality of residuals) using the DHARMa package. To this end, we log-

transformed male locomotor performance and log+1-transformed the aggregation scores. In the model 

where we found a significant interaction, we conducted pairwise comparisons using the estimated 

marginal means of the models and we corrected P values for multiple testing using the Tukey method, 

as implemented in the emmeans R package. Finally, we conducted power analyses for each of our 

statistical models using the packages pscl (Jackman et al., 2024), pwr (Champely et al., 2020) and 

powerSurvEpi (Qiu et al., 2021).  

Results 

Overall, we detected no main association between forceps length and the six traits measured (Table 

1). This applied to male locomotor performance, likelihood of fleeing after a physical disturbance, 

aggregation score, sperm storage and survival after pathogen infection (Figure 3; Table 1).  

Table 1 – Effects of male forceps length and population of origin of the three 
physiological and three behaviours measured in this study. Significant p-values are in 

bold. 

 

There was also no difference between males with short and long forceps in terms of survival under harsh 

environmental conditions, although males with long forceps survived better when they came from 

Valence compared to Cinais (this trend was not present in males with short forceps; Figure 3; interaction 

in Table 1; pairwise comparisons: Long forceps Cinais vs Valence: Z = -3.311; P = 0.005; Short forceps 

 

Population 
of origin 

Forceps 
length 

Interaction 
 

Statistical 
power 

Locomotor performance 
F1,115 = 0.21 
P = 0.648 

F1,115 = 1.14 
P = 0.287 

F1,115 = 1.25 
P = 0.265 

0.241 

Likelihood of fleeing away 
after a physical 
disturbance 

LR χ2
1 = 8.74 

P = 0.003 
LR χ2

1 = 1.06 
P = 0.303 

LR χ2
1 = 0.57 

P = 0.450 
0.239 

Aggregation score 
F1,88 = 3.83 
P = 0.054 

F1,88 = 0.004 
P = 0.948 

F1,88 = 0.02 
P = 0.878 

0.347 

Survival rate under harsh 
environmental conditions 

LR χ2
1 = 7.88 

P = 0.005 
LR χ2

1 = 0.02 
P = 0.885 

LR χ2
1 = 4.22 

P = 0.039 
0.447 

Sperm count 
F1,35 = 0.42 
P = 0.522 

F1,35 = 0.19 
P = 0.667 

F1,35 = 0.75 
P = 0.391 

0.155 

Survival rate after 
infection 

LR χ2
1 = 0.02 

P = 0.891 
LR χ2

1 = 0.15 
P = 0.695 

LR χ2
1 = 0.46 

P = 0.496 
0.432 
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Cinais vs Valence: Z = -0.611; P = 0.929). Regardless of forceps length, males from Valence were overall 

more likely to flee after a physical disturbance and less gregarious than males from Cinais (Table 1). 

These differences between the two populations were absent for all other traits measured (Table 1). There 

was no interaction between the population of origin and forceps length for any of the traits measured, 

except for survival under harsh environmental conditions (Table 1). The statistical power of each analysis 

ranges from 0.155 (sperm count) to 0.447 (survival in harsh environments; Table 1). These values suggest 

that the likelihood of detecting statistically significant effects based on the values reported in this study 

was sometimes relatively low, particularly given the large variance obtained for certain traits. Larger 

sample sizes, particularly for sperm count, may therefore be needed to confirm the absence of effects 

more robustly. 

 

Figure 3 – Association between forceps length and male (A) locomotor performance, (B) 
likelihood of fleeing after a physical disturbance, (C) propensity to aggregate with 

conspecifics, (D) likelihood of being alive after 31 days in social isolation and without 

food access, (E) sperm storage in the vesicle and (F) survival rate after pathogen infection. 
Different letters P <0.05. 
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Discussion 

The display of large, extravagant weapons often comes at a cost to the males (Emlen, 2008; 

McCullough et al., 2016; Goldberg et al., 2019). It is therefore expected that only males in the best 

condition can afford them and thus that these large weapons signal good male quality (Otte & Stayman, 

1979; Emlen & Nijhout, 2000). Here, we tested this prediction in the European earwig by investigating 

whether male forceps length is associated with six important behavioural and physiological traits. 

Contrary to predictions, our experiment did not allow us to detect an association between forceps length 

and locomotor performance, boldness (i.e., likelihood to flee after a physical disturbance), aggregation 

behaviour, sperm production, and male survival after pathogen infection. These findings were 

consistent between the two populations, although some of the traits measured were population 

specific: males from Cinais were generally bolder, less gregarious and (only if they carried long-forceps) 

had a better chance of surviving in harsh conditions than males from Valence. 

Our results contrast with much of the literature reporting associations between sexually selected 

male attributes and physiological, behavioural or immunological traits in arthropods (Emlen, 2008; 

McCullough et al., 2016; Goldberg et al., 2019). However, the European earwig is not the only case where 

such associations appear to be lacking (Emlen, 2008; Swallow & Husak, 2011). For example, carrying 

giant claw is not associated with the efficiency of escape behavior and the level of metabolic costs in two 

fiddler crabs (Tullis & Straube, 2017; Pena & Levinton, 2021). Similarly, bearing large horns does not 

reflect male growth, mobility, or immunity in the rhinoceros beetle Trypoxylus dichotomus (McCullough 

& Emlen, 2013; McCullough & Tobalske, 2013). It has been suggested that this apparent lack of general 

association may be due to the fact that the performance of each weapon size depend on the 

environment in which the weapons are used and/or because weapon sizes reflect alternative 

reproductive tactics (McCullough & Emlen, 2013; McCullough et al., 2016). This could be the case with 

the European earwig (Tomkins et al., 2005). In this species, males with large forceps have been suggested 

to be more active in guarding of females, while males with small forceps are more active in sneaking into 

copulations (Tomkins & Brown, 2004; Kamimura, 2014). Having long forceps should therefore be 

rewarded more frequently when the encounter rate between competitors is high (Hunt & Simmons, 

2001), such as in high population densities. Consistent with this prediction, Tomkins & Brown (2004) 

found that the proportion of long forceps males increased with population densities across 46 island and 

mainland sites in the UK. Another possible explanation for our results is that the association between 

male forceps length and the six traits measured could have been masked by differences in the amount 

of resources available to each male and/or used by each male for these traits (van Noordwijk & de Jong, 

1986). In our study, all males were kept under identical laboratory conditions and fed ad libitum for three 

months prior to our measurement. This explanation would therefore suggest that the variation in 

resources influencing investment decisions is determined prior to field sampling, e.g. during 

development or early adulthood. Previous data suggest that it could be the case in the European earwig. 

In this species, early life conditions have long-term effects on the physiology and behaviour of adults 

(Wong & Kölliker, 2014; Thesing et al., 2015; Raveh et al., 2016) and inter-individual variation in female 

condition can mask investment trade-off between egg quantity and quality (Koch & Meunier, 2014). 

Overall, our findings call for future studies to confirm whether males with short or long forceps have 

alternative reproductive tactics, whether their reproductive success depends on population densities 

and whether early life conditions can affect the likelihood to detect the association between forceps 

length and the six traits measured. They also call for further research to quantify other potential costs of 

carrying long forceps in this species, for example in terms of predation rates and ability to fly (Crumb & 

Eide, 1941). These notwithstanding, our findings emphasize that forceps size is not a good predictor of 

the six behavioural and physiological traits measured in males. 

While we found no overall difference between short- and long-forceps males, our data reveal 

population differences in terms of males’ boldness, aggregation level and resistance to starvation. Cinais 
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had males that were generally bolder, more gregarious, as well as males with long forceps that survived 

food deprivation less well than Valence. These effects are unlikely to reflect a plastic response to the 

direct environment of the males tested (e.g. population differences in terms of nutritional status), as they 

were all reared under common laboratory conditions for months prior to the start of our experiments. 

Instead, it could reflect population idiosyncrasies that have affected their development, such as climatic 

conditions (Valence is warmer than Cinais), environmental conditions and/or exposure to phytosanitary 

products (e.g. Valence is a cultivated orchard, whereas Cinais is an uncultivated forest edge), or 

population-specific genetic background. In line with this hypothesis, several life history traits of the 

European earwig are known to be shaped by the duration of cold during egg development, the level of 

warm temperatures during nymph development and, more generally, by seasonal parameters 

encountered by offspring during development (Körner et al., 2018; Tourneur & Meunier, 2020; Coulm & 

Meunier, 2021). Similarly, recent studies have shown that the European earwig can be sensitive to 

exposure to even low levels of pesticides, which can lead to populations specificities in terms of earwig 

physiology, morphology and behaviour (Malagnoux, Capowiez, et al., 2015; Malagnoux, Marliac, et al., 

2015; Le Navenant et al., 2019; Meunier et al., 2020; Mauduit et al., 2021; Fricaux et al., 2023). Regardless 

of the nature of these population idiosyncrasies, our study shows that they do not affect the (lack of) 

association between forceps length and the six traits measured. 

Overall, our findings questions the robustness of our understanding of forceps length diversity in 

terms of function, maintenance and use as a possible quality signal in the European earwig (McCullough 

et al., 2016). To date, our knowledge of these questions is exclusively based on laboratory experiments 

in which females were presented to one or two males (reviewed in Kamimura, 2014). While the results of 

these studies suggest that males can gain fitness benefit from growing longer forceps (Radesäter & 

Halldórsdóttir, 1993; Styrsky & Rhein, 1999; Forslund, 2000, 2003; Walker & Fell, 2001), they contain two 

important limitations. First, they considered mating success (i.e., success in gaining copulation) and not 

reproductive success (i.e. success in producing offspring). As these two parameters are not necessarily 

related (Thompson et al., 2011), it cannot be excluded that short forceps males have a similar or even 

higher reproductive output than their counterparts. This could be because mating is more efficient in 

short compared to long forceps males (Brown, 2006), or because short forceps males have alternative 

reproductive tactics to long forceps males (see above; Tomkins & Brown, 2004). One study used a genetic 

approach to study reproductive success and found no association between male forceps length and the 

number of offspring sired (Sandrin et al., 2015). However, this study only focused on length variation 

within short forceps males. The second limitation is that all these studies have examined mating success 

in groups of a maximum of two males. This number is far less than the hundreds of individuals that 

typically constitute earwig aggregates (Meunier, 2024a) and thus cannot rule out the possibility that the 

apparent advantage of long-forceps males in pairs or trios may disappear or even become a 

disadvantage under different demographic conditions (Hunt & Simmons, 2001; Tomkins & Brown, 2004; 

Oliveira et al., 2008). Hence, our current understanding of the relationship between forceps length and 

male fitness should be treated with caution in the European earwig. Our results thus call for future 

studies to determine the function and reliability of male forceps length under natural conditions, and 

the evolutionary drivers that explain the maintenance of its diversity within and between populations.  
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