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Abstract
Geographic space is a fundamental dimension of evolutionary change, determining howindividuals disperse and interact with each other. Consequently, space has an importantinfluence on the structure of genealogies and the distribution of genetic variants overtime. Recently, the development of highly flexible simulation tools and computationalmethods for genealogical inference has greatly increased the potential for incorporat-ing space into models of population genetic variation. It is now possible to explore howspatial ecological parameters can influence the distribution of genetic variation amongindividuals in unprecedented detail. In this study, we explore the effects of three specificparameters (the dispersal distance, competition distance and mate choice distance) onthe spatial structure of genealogies. We carry out a series of in silico experiments usingforwards-in-time simulations to determine how these parameters influence the distancebetween closely- and distantly-related individuals. We also assess the accuracy of themaximum likelihood estimation of the dispersal distance in a Gaussian model of disper-sal from tree-sequence data, and highlight how it is affected by realistic factors such asfinite habitat size and limited data. We find overall that the scale of mate choice in par-ticular has marked patterns on short and long terms patterns of dispersal, as well as onthe positions of individuals within a habitat. Our results showcase the potential for link-ing phylogeography, population genetics and ecology, in order to answer fundamentalquestions about the nature of spatial interactions across a landscape.
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Introduction
From nutrient-fixing bacteria in the digestive system, to pollen carried on the legs of bees,

all living organisms must deal with the particularities of the range that they inhabit. At each gen-
eration, individuals tend to disperse from their parents, often carrying their genes across great
geographic distances. Geographic space is also a major determinant of mate choice and com-
petition for finite resources such as food and water, which can, in turn, influence how genetic
relatedness decays as a function of the distance between individuals (Wright, 1943). The con-
nection between genetic differentiation and geography has indeed been the focus of numerous
theoretical models (for instance Charlesworth et al., 2003; Hardy and Vekemans, 1999; Robledo-
Arnuncio and Rousset, 2010; Rousset, 1997) and empirical studies (Aguillon et al., 2017; Jenkins
et al., 2010; Sexton et al., 2014). Overall, it is now clear that genetic data can hold information
about the geographic distribution of individuals in the past (Aguillon et al., 2017; Novembre et
al., 2008).

Biologists often seek to understand the rate at which individuals of a given species move
across space. One way to approach this problem is by focusing on the “dispersal distribution”:
a probability distribution over the parent-offspring distance (Kot et al., 1996) i.e. how far away
a particular offspring mates compared to its birthplace. The shape of the dispersal distribution
for different species has been of great interest in ecology. In particular, long-distance dispersal
is predicted to strongly affect patterns of relatedness across a species (Smith and Weissman,
2023), as well as population genetic processes such as allele surfing (Paulose and Hallatschek,
2020) and ecological phenomena including the spread of invasive species and host-parasitoid
interactions (Clark, 1998; McCann et al., 2000).

The dispersal distribution is often summarized via a “dispersal distance” parameter, σ, which
predicts how far away an offspring tends to be from its parents. More precisely, σ should be
seen as an “effective” dispersal parameter, which absorbs several stages of mate choice and
parent or offspring migration, to predict how far a successfully reproducing offspring moves
from its birth location (Bradburd and Ralph, 2019; Smith et al., 2023). Over multiple generations
— for example, over branches in a phylogeny — this determines the speed at which two lineages
move away from one another after descending from a common ancestor (Rousset, 2001). It is
known that the rate of geographic dispersal affects genetic variation (Charlesworth et al., 2003).
Conversely, it is possible to learn σ from genotype data with some accuracy (Ringbauer et al.,
2017; Rousset, 1997; Smith et al., 2023).

One way to estimate the parameters of the dispersal distribution in a real population is to
track the exact locations of all individuals in a pedigree. However, this is often difficult or expen-
sive (Cayuela et al., 2018). While non-recombining genetic sequences can be easily recorded
in a genealogy or coalescent tree (Castillo et al., 2011; Markov et al., 2009; Miles et al., 2009),
the full history of recombining genomes cannot. Instead, this may be represented as a network,
known as the Ancestral Recombination Graph (ARG) (Griffiths and Marjoram, 1996, 1997; Hud-
son et al., 1990), which fully encodes the history of coalescence and recombination of a set of
sampled genomes. An alternative representation is an ordered set of coalescent trees, each de-
scribing the history of a section of the genome in the samples (a “tree sequence”, Kelleher et al.,
2019). Adjacent genealogies are separated by recombination events, and tend to be more highly
correlated than those representing distant genomic tracts. A tree sequence can encode the full
ARG, if it contains certain annotations (Rasmussen et al., 2014).
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Genome-wide tree sequences are an ideal object on which to perform phylogeographic in-
ference, and are already beginning to be used for such analyses (for example, Wohns et al.,
2022). Recent computational developments have made it tractable to approximately infer tree
sequences for a given genome panel (Hubisz and Siepel, 2020; Kelleher et al., 2019; Speidel et
al., 2019). However, both estimating and working with full tree sequences comes with substan-
tial computational burden. One approach to this problem, which has been used in recent work
(Osmond and Coop, 2021), is to “thin” the full sequence of trees covering the entire chromo-
some into a set of approximately independent genealogies. Although these genealogies do not
wholly capture the complexity of the full tree sequence, we believe that the insights obtained
from them are an important basis for understanding how spatial dispersal affects recombining
genomes.

In recent years, new software for generating spatially explicit, forwards-in-time simulations
have enabled researchers to explore genetic variation under a wide range of population histo-
ries. The recently developed software slendr (Petr et al., 2023), which uses the powerful software
SLiM as one of its simulation engines (Haller et al., 2019; Haller and Messer, 2019) provides a
particularly approachable way to model, visualize and simulate mate choice, dispersal and spa-
tial interactions in continuous space. These simulators can bridge the gap between a lack of
theoretical results and the desire to build realistic spatial models of species.

Two types of interactions which people often use to model populations in geographic space
are mate choice and competition for resources. Both of these can be understood via a distance
parameter. The mate choice distance controls the scale at which individuals tend to find each
other to produce an offspring. The competition distance determines how far individuals can be
separated for them to compete for resources. The effects of these parameters on dispersal and
genetic diversity have not been the main focus on previous studies. However, there is some
evidence from simulations that the scale of mating has more impact on effective dispersal than
that of competition (Smith et al., 2023). The lack of work in this area is particularly troublesome
for any users of forwards-in-time simulators such as SLiM, where they are required to specify
these dynamics explicitly.

Motivated by these issues, here we set out to understand properties of geographically anno-
tated sequences of genealogies along a genome, using a simulation-based approach.We leverage
slendr to carry out forwards-in-time simulations with non-overlapping generations, and study
how ecological parameters affect the spatial distribution of individuals, and the structure of ge-
nealogies relating them over time.

First, we explore the effects of varying the mode and scale of mating and dispersal on the
realised distances between parents and their offspring. We show that, in some cases, these dis-
tances closely match their theoretical distribution. We find that the scale of mate choice is an
important determinant of the shape of dispersal distributions and the overall rate of dispersal.
Then, we illustrate a case in which the realised distribution closely matches a theoretical model
which explicitly includes the radius ofmate choice. Finally, we test the efficacy of amaximum like-
lihood estimator of the mean distance between parent and offspring, using distances recorded
in the branches of a phylogeny under a commonly used Gaussian mode of dispersal.

Our work serves to show that a sound understanding of the geographic parameters of a
species, with respect to the dispersal distribution and to ecological factors (such as competition
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Figure 1 – The mechanics of dispersal in our simulations. In our forwards-in-time simula-tions, two parents p1 and p2 are chosen. The distance between them (red line) must beless than the user-specified mating distance. The offspring (o) is then dispersed from p1(blue line) according to a specifiedmode of dispersal parametrized via a dispersal function(DF ) and distance (which we call σ). These mechanics imply that a given one-generationdispersal may either be a direct observation of a draw from the DF (the p1 − o distance,blue line) or it may be a composite of mate choice and dispersal (the p2−o distance, greyline).
for resources and mate choice), is key to carrying out reliable phylogeographic inference in real
populations.

Results
Dispersal patterns in spatially-tagged genealogies

Table 1 – The parametrization of parent-offspring distances via the dispersal distance.We parametrized the dispersal distribution through a parameter σ, such that the theoret-ical variance increased with σ2, and the mean with σ (this does not apply to the Cauchydistribution, which has undefined mean and variance; here, σ was the scale parameter).Further details are given in Methods section 1.1.1.
Dispersal Func-tion Parametrization TheoreticalMean TheoreticalVariance
Brownian Distance in x and y dimen-sions drawn independentlyfrom N(0,σ2). Distance followsRayleigh(σ)

σ
√

π/2 σ2(4 − π)/2

Cauchy Angle drawn uniformly,distance drawn fromCauchy(scale=σ,location=0)
undefined undefined

Exponential Angle drawn uniformly, dis-tance drawn from Exp(1/σ) σ σ2

Half-Normal Angle drawn uniformly, dis-tance drawn from N(0,σ2). Dis-tance follows folded normaldistribution

σ
√
2/π σ2 − 2

π σ2

Uniform Angle drawn uniformly, dis-tance drawn from U(0,σ) σ/2 σ2/12

We were interested in learning the relationship between the observed parent-offspring dis-
tances in a (perfectly inferred) genealogy and the underlying dispersal function in a population.

4 Mariadaria K. Ianni-Ravn et al.

Peer Community Journal, Vol. 4 (2024), article e75 https://doi.org/10.24072/pcjournal.439

https://doi.org/10.24072/pcjournal.439


In our simulations, a dispersal function (DF ) and its scale parameter, σ, determine how the sim-
ulator decides where to place offspring compared to the gestating parent (p1). More details on
this process are described in the Methods 1.1.1, and a schematic of these mechanics is shown
in Fig. 1. The range of DF s and their parametrization are summarised in Table 1 and plotted in
Fig. 2. Although the interpretation of σ with respect to the DF varied for each distribution, our
parametrization was such that increasing σ increased the variance of parent-offspring displace-
ment. In essence, the larger σ, the further an offspring tends to be from its parents and the faster
genetic lineages spread across the habitat.

Two other important parameters in our simulations are the competition andmating distances.
The competition distance serves to parametrize competition for resources within a neighbour-
hood. Essentially, the simulator counts the number of neighbours an individual has within a ra-
dius of the competition distance and down-scales their fitness proportionally to this number
(see Methods 1.1.1). The mate choice radius, or mating distance, determines the maximum ra-
dius within which a parent can choose a mate. In slendr V0.5.1, mates are chosen uniformly at
random from within this distance.

We simulated a single, non-recombining locus in a population of 100 individuals in a habitat
of size 50 × 50 units. We used a range of dispersal functions and σ values, and also varied the
mating and competition distances. After 50 generations, we sampled all individuals and recon-
structed the genealogy connecting them. In these genealogies, we stored all individuals, rather
than coalescent nodes only (this corresponds to a tskit “unsimplified” tree), so that we could
observe dispersal at every generation. For each condition, we ran 20 replicates. We will call
the distribution of realised parent-offspring distances in these trees the D̂D (empirical distance
distribution).

We compared parent-offspring distances sampled from the simulations (the D̂D) to the the-
oretical probability distributions from which p1-offspring distances were drawn (the DF ). The
shape of the D̂D tended to mirror that of the DF (Fig. 2). For example, when parameterizing the
DF as Cauchy, we observed a higher frequency of long D̂D dispersal values, compared to other
DF distributions, when the parameter σ was kept constant. This is consistent with the heavy tail
of the theoretical Cauchy distribution, compared to other distributions (uniform, half-normal,
exponential or Rayleigh).

There was not a perfect correspondence between D̂D andDF , as the other ecological param-
eters (namely competition distance and mate choice radius) in the simulation also influenced the
realized distance between parent and offspring. We quantified this effect of these parameters
on effective dispersal by measuring the excess variance of the D̂D , compared to the DF (Fig. 4).
Increasing the mating distance caused the D̂D to accumulate much excess variance, and the D̂D
to acquire a flat “shoulder”, which we model in the next section (section ).

In contrast, varying the competition distance had a weaker effect on excess variance (the
difference between the variance of the D̂D and the DF , brought about by mate choice and
competition). Excess variance tended to increase with competition distance; however, when the
competition distance was 100 (twice the width of the habitat), the effect on the excess variance
was small. This was expected, since a radius of 100 spans the entire 50×50 habitat we simulated,
and therefore is equivalent to no competition at all (since every individual’s fitness is down-
scaled by the same factor, the total population size, leading to equal relative fitness across the
population — for details, see Methods 1.1).

Mariadaria K. Ianni-Ravn et al. 5

Peer Community Journal, Vol. 4 (2024), article e75 https://doi.org/10.24072/pcjournal.439

https://doi.org/10.24072/pcjournal.439


Overall, the relationship between the theoretical and realized parent-offspring distributions
— under varying competition and, in particular, mating distances — suggests that these ecological
parameters may be important determinants of the scale of dispersal of individuals in the wild.

To further investigate the nature of the effects of mating and competition, we examined the
positions of individuals throughout the simulations.When themating distancewas small, individ-
uals tended to group together and move cohesively throughout the landscape (as shown in Fig.
4). As the mating distance increased, the population broke into discrete clusters which appeared
to “repel” each other. Varying the competition distance had little effect on spatial clustering.

We next examined how the dispersal, competition and mating distance affected a set of sum-
mary statistics for the genealogies (Fig. 8). We computed Sackin’s index, as well as twomeasures
of diversity: the average number of pairwise differences (Tajima’s estimator of diversity) and the
number of segregating sites for each of the trees, as described in Methods section 1.1.4.

The average number of pairwise differences decreased with the dispersal distance, and the
number of segregating sites showed the same pattern. This suggests that limited dispersal range
preserved diversity in the population, although it appears to be inconsistent with thewell-known
Wahlund effect, the decrease in diversity brought about by population structure (the Wahlund
effect,Wahlund, 1928). Interestingly, increasing the mating distance instead led to an increase in
diversity and the number of segregating sites, which is instead in agreement with the Wahlund
effect. The average number of pairwis and number of segregating sites showed no clear pattern
with increasing competition distance.

Furthermore, the Sackin index exhibited a reduction with increasing dispersal distance, while
it remained constant when altering mating and competition distances. Sackin’s index, a measure
of tree balance, is defined as the sum of the number of ancestors for each tip of a tree (Lemant
et al., 2022). A higher Sackin index signifies a less balanced tree, indicating that certain clades
tended to give rise to more descendants than others. Consequently, this pattern suggests that
short-range dispersal introduced some imbalance into the branching structure of the genealo-
gies.

Modelling dispersal patterns
Inspired by these observations, we developed a theoretical model of parent-offspring dis-

tances combining σ and the scale of mating, given a mode of dispersal where distances were
drawn from a Gaussian distribution (which here we term “Brownian”, as described in Methods
1.1.1) using the uniformmodel of mate choice implemented in slendr. This also represents amore
general example of a species for which mate choice and dispersal distances are not drawn from
the same distribution, or at the same scale.

The distribution of parent-offspring distances is an equally weighted mixture of dispersals
from a “gestating” parent p1 and a non-gestating parent, p2. If the parent-offspring distance is y ,
its density given a dispersal distance parameter σ and a mate choice radius rb is

gy |σ,rb(y |σ, rb) =
1

2

y

σ2
e− y2

2σ2 +
1

2
fy |σ,rb(y |σ, rb)(1)

The first term reflects the density given a standard Rayleigh distribution (between the gestating
parent and its offspring) with scale σ, while the second term models the distance between the
non-gestating parent and the offspring.

6 Mariadaria K. Ianni-Ravn et al.

Peer Community Journal, Vol. 4 (2024), article e75 https://doi.org/10.24072/pcjournal.439

https://doi.org/10.24072/pcjournal.439


dispersal function brownian cauchy exponential half−normal uniform

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
distance

de
ns

ity

Sampled from spatial simulations

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
distance

de
ns

ity

Theoretical

0.0000

0.0025

0.0050

0.0075

0.0100

4 5 6 7 8
distance

de
ns

ity

Sampled from spatial simulations

0.0000

0.0025

0.0050

0.0075

0.0100

4 5 6 7 8
distance

de
ns

ity

Theoretical
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If we assume a uniformly distributed mate choice radius, then the density function of the

distance between the non-gestating parent and the offspring is given by
fy |σ,rb(y |σ, rb) =

∫ rb

0

∫ ∞

0

1

π
× 1

rb
× a

σ2
e

−a2

2σ2 × y

ab

√
1 −

(
a2+b2−y2

2ab

)2
da db(2)
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Where a is the distance between the gestating parent (p1) and its offspring, and b is the distance
between parents. This derivation is elaborated in theMethods section 1.3.We verified that these
equations matched the simulated distances (Fig. 5) across the parameter range we examined.

If the mate choice distance is instead modeled more simply as a Rayleigh distribution (see
Methods section 1.3), the density function between the offspring and the (unknown) parent can
be analytically solved:

gy |σ,τ (y |σ, τ) = 0.5
y

σ2
e− y2

2σ2 + 0.5
y

σ2 + τ2
e

− y2

2(σ2+τ2)(3)
where τ is scale of the Rayleigh distribution governing the mate choice distance.

This formulation also leads to a simple result for themean parent-offspring distance. Since the
expected p1-offspring distance isσ

√
π/2 and the expected p2-offspring distance is√

σ2 + τ2
√

π/2,
the expected parent-offspring distance is √

π(σ+
√

σ2+τ2)
2
√
2

. If we were to measure the distances
along branches of a genealogy, we would eventually expect to see generation-scaled distances
follow a Gaussian with mean √

π(σ+
√

σ2+τ2)
2
√
2

. This may be interpreted as a many-generation “ef-
fective” dispersal distance parameter.
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Estimating dispersal distances from spatially tagged genealogies
Finally, we sought to test how accurately σ could be estimated, given a perfectly inferred

spatial tree sequence. Under a Gaussian mode of dispersal (what we term “Brownian”), and neg-
ligible mate choice distance, the maximum likelihood estimator of σ is

σ̂ML =

√√√√ 1

2N

N∑

i=1

d2
i

li
(4)
where the index i denotes each of N branches in a genealogy, with geographic distance di andbranch-length in generations li (see Methods 1.4). It is worth noting that our method of esti-
mation is naïve, since it ignores the fact that branches are shared between pairs containing the
same individual — indeed, we actually maximize the composite likelihood, rather than the full
likelihood (as instead is used in Osmond and Coop, 2021, where covariance between pairs is ap-
propriately taken into account). However, with enough data, the maximum likelihood estimate
of σ should be the same in both cases, and we use this as a simple bench-mark approach.

We sampled 100 genomes across 5 simulation replicates from a population of sizeN = 2, 000,
and set the mating distance to be small (0.2 units) to minimize its effect on dispersal. We first
obtained maximum likelihood estimates of σ from the set of all parent-offspring distances. We
next emulated a situation where the geographic positions of tree tips and internal nodes are
known, but those of the individuals along lineages in the tree are not known (labelled “simplified”
in our plots). Lastly, to mimic a more realistic scenario, we extracted the distances between all
pairs of tips, which corresponds to a situation where only present-day individuals have a known
location (“tips only”). The results are shown in Figure 6.

While the estimates of σ from the full set of parent-offspring distances were accurate, the
estimates from longer tree branches generally were smaller than the true parameter. To investi-
gate whether limited world size was responsible for this observation, we adopted the approach
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Figure 6 – Estimating the dispersal distance under a Brownian dispersal kernel. Each dotis the ML σ̂, from each of 5 simulation replicates. The violin plots show all branch-wise
σ̂ values and the grey lines show the true σ, 1 unit. The diagrams below illustrate thelineages used in each case. Excluding older branches, as in Osmond and Coop (2021),increased the estimated dispersal distance for the simplified tree and the tip-only dis-tances. We suggest that this is because more ancient, longer branches in the genealogyare biased due to limited habitat size. In each case, the mating distance was 0.2 units andthe competition distance was 0.2 units.

detailed in Osmond and Coop (2021) and eliminated branches which were more than 100 gener-
ations old. In the “simplified” and “tips only” case, this amounted to retaining sub-trees for which
the tMRCA lived less than 100 generations in the past. Pruning the trees caused the distribution
of branch-wise distances to more closely resemble that of the simplified trees, and correspond-
ingly caused an increase in the estimated σ. This suggests that distances accumulated over long
branches in a given genealogy tended to be shorter than expected: a phenomenon probably
caused by the fact that long-range dispersal is limited in a finite habitat. This pattern was consis-
tent across a range of dispersal distances (Fig. 9).

We also tested whether assuming an incorrect dispersal kernel could affect estimates of σ.
This might be applicable in a situation where, for example, a population follows power-law dis-
persal, but we assume parent-offspring distances to be Gaussian and attempt to estimate the
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Figure 7 – Estimating the dispersal distance under a misspecified model. Left: increasingthe mating distance increases the effective dispersal distance. Right: in these simulations,the dispersal function was Cauchy with scale and location 1 unit, but we naively usedmaximum likelihood estimator of σ for the Brownian mode of dispersal. In this setting,increasing the mating distance led to further inflation of σ̂. The dots show the result ofeach of five replicates, and the lines are smoothed rolling means.
variance parameter. Another way to interpret this, is to estimate the net effective dispersal pa-
rameter which results from a Cauchy DF . To mimic this situation, we simulated under a mode
of dispersal where a random angle was drawn from a uniform distribution and a distance from
a Cauchy distribution with scale and location of 1 unit. The Cauchy distribution is more heavy-
tailed compared to a Rayleigh distribution with the same scale. In agreement with this, the es-
timated σ was larger than the true parameter (Fig. 7). We also varied the scale of mate choice
to see what synergy large mating distances might have with a misspecified dispersal kernel. As
expected, the estimates of σ increased as with the scale of mate choice. Interestingly, there
appeared to be a steeper increase in σ̂ with mating distance when the DF was Cauchy.

Discussion
In this study, we explore the effects of three important ecological parameters (dispersal dis-

tance and distribution, competition distance and mate choice distance) on the geographic dis-
tances captured in a geographically tagged genealogy.

We show that altering the kernel of parent-offspring dispersal can have strong effects on
the diffusion captured within a genealogy, and in particular on the tails of the realised parent-
offspring distance distribution. For example, the Cauchy distribution, which is a text-book ex-
ample of a “heavy-tailed” distribution, did indeed produce a greater proportion of long-distance
dispersals.

There was some difficulty in choosing a common parametrization for these dispersal distribu-
tions, especially since slendr implements two different mechanics of parent-offspring dispersal
(one where a random distance and angle are chosen, and another where latitudinal and longi-
tudinal distances are chosen, see Methods 1.1.1). We suggest that a pragmatic solution for the
sake of simulation might be to encode a dispersal distribution where the height of the tail may be
controlled more directly. An example may be the Pareto distribution, where the tail probability
is particularly sensitive to the shape parameter, and does not directly depend on the variance (in
contrast to, for example, the normal distribution).
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Figure 9 – Estimating the dispersal distance with Brownian dispersal, across a range of
σ values. The grey line shows the true σ. We found that the pattern of bias shown in(a) was replicated across the range of σ values tested. In these simulations, the matingdistance was 0.2 and the competition distance was 0.2.
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The mate choice radius caused distinctive patterns in the distribution of a population within
its landscape. In particular, close-range mating led to clustered groups of individuals, which may
be a practical nuisance to simulation users, and lead to unwanted geographic structure. We sug-
gest that this is the same phenomenon described in Felsenstein (1975). As Felsenstein describes,
the intuition behind this behaviour is that, when either mate choice or dispersal distances are
small, individuals each seed a “clump” of descendants. Due to the constraint of constant pop-
ulation size, several of these clumps are destined to die out. The small mating distance forbids
mating between these clumps, so the remaining ones become larger and further apart. This is
particularly cumbersome because relatively small mating distances are required for the average
parent-offspring dispersal to match p1-offspring dispersal. Although not possible in the most re-
cent version of slendr (Petr et al., 2023), allowing for less generally constrained simulations with
fluctuating population size might alleviate these factors. However, this would require the devel-
opment of dedicated software for the analysis of tree sequences produced by such dynamics
(known as “non-Wright-Fisher”) in slendr.

We also observed that the distances within a genealogy increased dramatically if the scale of
mate choice was large. Mating is often not explicitly modelled — yet the step of mate allocation
is essential in forwards-in-time, agent-based genetic simulators such as slendr and SLiM. Further-
more, the dynamics of mate choice and parent-offspring dispersal may differ starkly in natural
populations: for example, the samemodel of dispersal may not apply to the dynamics with which
pollen and seeds spread. Our results support that this is an important parameter, and absorbing
mating and parent-offspring dispersal dynamics into one step may not always be appropriate.

Aside from changing the distances in the genealogy, the scale of mate choice also changed
the shape of the distribution of parent-offspring distances. To illustrate a case where this may be
modelled, we described the theoretical distribution of parent-offspring distances under uniform
mate choice, and found a closematch between the this and simulated distances. The natural next
step would be to use these results in an inference framework, by deriving analytical solutions
for the maximum-likelihood or method-of-moments estimators for the dispersal and mating dis-
tances.

Rather than the theoretical dispersal distance itself, a parameter that may be more liable to
inference is an effective dispersal distance parameter, which incorporates both the mate choice
and dispersal processes. The distance between parents and offspring over many generations
should follow a normal distribution in the limit of infinite generations, due to the central limit
theorem. Therefore, if we were to take the distances along branches of a phylogeny and scale
them by the respective number of generations (as inferred from genetic data), the distribution
of distances would approach a Gaussian distribution, centred around this effective dispersal dis-
tance. Specifically, this is an equally weighted mean of the expected distances of the offspring
from either parent (see Methods 1.3). For example, in the Methods section 1.3.1, we show that
under a model with Gaussian dispersal (with scale σ) andmate choice (with scale τ ), this effective
dispersal distance can be easily calculated as π(σ+

√
σ2+τ2)

2
√
2

.
This compound parameter is in effect what is estimated when mate choice dynamics are not

explicitly modelled in phylogeographic studies. We therefore motivate distinguishing between
spatial models intended for few generations, where the stages of mating and dispersal should
be treated as distinct, from those for phylogenetic time-scales, where they may be absorbed
into one parameter. We also note that, over long time-scales, dispersal was limited by finite
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population ranges. In our results, this led to estimates of the mean dispersal distance which
were smaller than expected, illustrating that deep coalescent branches should only be used with
caution for inference, as illustrated by Osmond and Coop (2021).

This study has focused on single-locus genealogies, which is comparable to studying approx-
imately independent genealogies from a tree sequence. Such an approach, followed for example
in Osmond and Coop (2021), greatly reduces the computational burden of analysing the full tree
sequence, yet retains the ability to uncover variation in dispersal and geographic ancestry across
the genome. However, we expect that ignoring the correlation structure which exists between
trees in a tree sequence leads to some loss of information — specifically, in a fully annotated
tree sequence, it is possible to identify nodes which are shared between trees. This information
could be used, for example, to constrain the positions of shared internal nodes based on infor-
mation coming from several trees. We note that, since SLiM and slendr are able to run spatial
simulations of recombining genomes, they might be valuable tools to begin to investigate how
much information is lost when we “thin” tree sequences.

Another aspect of complexity which we have not investigated is the bias which might arise
from using estimated genealogies, rather than known ones. There is recent evidence that cur-
rently available methods (Argweaver, Relate and tsinfer + tsdate) tend to underestimate the time
of deep coalescences, and vice versa (Brandt et al., 2022). This is a form of a well-known phe-
nomenon in phylogenetics called “long branch attraction”. We expect that would lead to biases
in inferences of dispersal (longer-range than reality towards internal nodes, and shorter than ex-
pected at the tips). Again, this could be aptly studied in slendr by post-hoc adding mutations onto
the simulated genealogies, and adding a genealogy estimation step to the analyses.

In cases where we are interested in untangling the mating and dispersal distances, uni -
parentally inherited genetic material could be of use. Mitochondrial DNA only moves via mother-
offspring dispersals, the direct manifestation of the dispersal function (when the mother is p1).
Conversely, the Y-chromosome alwaysmoves according to a convolution of mating and dispersal
distances. Comparing their respective rates of diffusion could help us identify cases in which the
between-parent distance might be masking the underlying mother-offspring dispersal dynamic.

At the moment, slendr is not able to model sex differences. Yet, mother-offspring dispersal
and mate choice may span different scales if dispersal is strongly sex-biased. Theoretical results
across a range of animals suggest that this is the case when the limiting resource differs between
males and females (Li and Kokko, 2019). In linewith this, field observations and genetic data have
pointed to a breadth of matrilocal and patrilocal behaviours across animal species (for example
Liebgold et al., 2011; Oota et al., 2001; Schubert et al., 2011). These sex-biased processes might
be an intriguing direction for further investigation.

Another exciting direction for further study is selection. A positively selected allele will often
have more descendants than a neutral one, resulting in excess branching. This means that pos-
itively selected loci, and genomic regions in linkage disequilibrium with them, are expected to
havemore descendant lineages which can explore space and travel faster than neutral ones. This
result is similar to Fisher’s travelling wave model, where the velocity of spread is proportional to
the square root of the selection coefficient (Fisher, 1937; Muktupavela et al., 2021; Steiner and
Novembre, 2022). For the purpose of inference, we often assume that the coalescent branch-
ing process and geographic location are independent (although this is not the case, see Wilkins
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and Wakeley, 2002). How far do we deviate from this assumption, for example, when selection
pressures are local?

Overall, it is clear that accuratelymodelling the dispersal of a given speciesmay require sound
understanding of a variety of ecological parameters. From our simulations, we observed that geo-
graphic distances captured within a geographically tagged genealogy captured these compound
effects. These are not yet theoretically well-understood, andmay become confounding factors in
joint analyses of geographic space and genetic diversity. Simulations will be key to approaching
these issues.

Methods
1.1. Spatial simulations

We used the software SLiM (Haller and Messer, 2019) via its R interface slendr (Petr et al.,
2023) to simulate populations in space and time.

Generations were discrete and non-overlapping, and there was no modelled age structure or
sex-based differentiation. We chose to keep populations at a constant size in order to focus on
fundamental aspects of dispersal without confounding effects from demographic size changes.

At each generation and for every individual, the program counted the number of neighbours
within a radius of the competition distance (let this be n). Then, the fitness was down-scaled by
this number to model competition for resources (fitness ∝ 1/n).

Individuals were chosen randomly, weighted by their fitness, to be the parents of the next
generation. Pairs of mates were chosen within a radius of the mating distance, with uniform
probability. Within each of these pairs, one parent at random was set to be p1, which is some-
times called the “gestating parent”. However, note that this is purely a label — it may also be that
p2, whether it be the mother or the father, migrates to p1’s position to raise the offspring.

In this set-up, the location at which individuals mate is also that at which their fitness is
evaluated. These are the coordinates recorded in our simulations. This means that p1 − o dis-
placement can be seen as the net of parents moving to have the offspring, and the migration
over the offspring’s lifetime from their birthplace to their mating location.

In slendr, a user specifies a model and its parameters. These are passed to a SLiM backend,
which executes the simulation. After this, among the data which can be recovered from a sim-
ulation are the locations of all individuals, the times at which they lived and the phylogeny and
pedigree connecting them.
1.1.1. Encoding dispersal. We simulated under several modes of p1-offspring dispersal, coming
under two categories:

(1) Angle-distance dispersal: in these, the absolute distance is controlled by a given distribu-
tion. An angle is drawn randomly from a uniform distribution between 0 and 2π, and a
distance d was drawn from one of the following distributions:

• Uniform: the p1-offspring distance is uniformly distributed between 0 and σ, d ∼
U(0,σ). The mean absolute distance is σ/2 and the variance is (1/12)σ2.

• Half-Normal: the p1-offspring distance is Gaussian distributed, with mean 0 and vari-
anceσ2.When a distance is below zero, the offspring is effectively ejected backwards.
The mean of the resulting folded normal distribution (specifically, a half-normal) is
σ(

√
2/π) and the variance is σ2.
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• Exponential: the p1-offspring distance is exponentially distributed, with rate param-
eter 1/σ, d ∼ Exp(σ). The mean is σ and the variance is σ2.

• Cauchy: the p1-offspring distance is Cauchy distributed, with location 0 and rate
parameter σ, d ∼ Cauchy(0,σ). The mean and variance of this distribution are unde-
fined.

(2) Brownian: here, the axial distances are controlled. Random distances in the x and y di-
mensions (dx and dy ) are each drawn from a Gaussian with mean 0 and variance σ2,
dx ∼ N (0,σ2), dy ∼ N (0,σ2). This means that the absolute distance then follows a
Rayleigh distribution with scale σ, which has mean σ(

√
π/2) and variance 4−π

2 σ2. This
mode is named “Brownian” due to its conceptual relation to a 2-dimensional Brownian
motion.

1.1.2. Tree recording and manipulation. We simulated a single locus in order to focus on funda-
mental geographic dynamics which act on single trees. After a simulation run, we retrieved the
simplified and unsimplified trees. Simplified trees, which are the same as standard coalescent
trees, consist of nodes representing coalescence events, and edges connecting them. These
edges implicitly record many individuals. In contrast, an unsimplified tree records all individu-
als along edges. Such a tree is useful to directly observe the dispersals which occurred at every
generation along a long branch. We processed and analysed these via the slendr interface to the
tskit library (Kelleher et al., 2018). tskit is a powerful framework for storing and manipulating
trees and tree-sequences with close-to-optimal space usage. We also converted these trees to
the “phylo” R object class, which allowed us to analyse them via the phylogenetics package ape
(Paradis and Schliep, 2019).
1.1.3. Geo-spatial analyses. slendr integrates with the spatial package sf (Pebesma et al., 2018),
and this allowed us to extract a variety of spatial features from the trees, including the positions
of individuals, the vectors connecting nodes and the distances between them.
1.1.4. Computing tree statistics. We computed the normalized Sackin’s index using the R pack-
age, apTreeshape (Bortolussi et al., 2006). In order to compute the number of segregating sites,
we used slendr’s ts_segregating function in “branch” mode. To compute the diversity (the average
pairwise difference between sequences), we added mutations to the genealogies post-hoc with
ts_mutate, and then applied the ts_diversity function.
1.2. Statistics and Plotting

Wecalculated statistics in base R, aswell aswith the packagesVGAM (Miranda and Yee, 2022)
and moments (Komsta and Novomestky, 2015). We evaluated numerical integrals in Mathemat-
ica (Wolfram, 1991). We produced plots with ggplot2 (Gómez-Rubio, 2017) and auxiliary pack-
ages.
1.3. Derivation of the probability density of the distribution of parent-offspring distances

A diploid individual carries two genome copies, each inherited from a parent. These have a
distinct genealogy and in any given tree, we follow themovement of one of these copies through
individuals over time and space. We can therefore break down the dispersals which occur in one
generation into two categories:
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Figure 10 – A schematic of parent-offspring dispersal. When we observe dispersal from
p2, the observed parent-offspring distance (y ) is a convolution of the distance between
p1 and p2 (b, in red), and the dispersal between p1 and the offspring (a, in blue). Thecosine rule gives us an expression for y in terms of a, b and the angle between them θ. Ifwe know the probability distributions of a, b and θ, we can obtain that of y via a changeof variables.

(1) Genetic parent is the “mother”, p1. We observe p1-offspring dispersal, (which in slendr is
directly encoded).

(2) Genetic parent is the “father”, p2. We observe a convolution of p1-offspring dispersal
and the p1 − p2 distance.

We can draw a triangle which connects both parents and offspring, as shown in Fig. 10. In
case (1), we observe side ã. In case (2), we observe side ỹ . b̃ is the distance which separates the
two parents, and the angle between sides ã and b̃ is θ̃. ã ∼ Rayleigh(σ), if we have Brownian
dispersal. Since in slendr, parents are chosen with uniform probability from a specified radius rb(the mating distance), b̃ ∼ Unif (0, rb) where rb is the mating distance. The angle between these
sides is free to range between zero and π, so θ̃ ∼ Unif (0,π).

We can calculate the length of the side y from a, b and θ:
y =

√
a2 + b2 − 2ab cos θ

We aim to derive the probability density function (pdf) of y , using the pdfs of a, b and θ. This
can be achieved with a change of variables:

fy ,a,b(y , a, b) = fa(a)fb(b)fθ(θ) × 1

det(J)
(5)

J is the jacobian matrix of partial derivatives:

J =




∂y
∂θ

∂y
∂a

∂y
∂b

∂a
∂θ

∂a
∂a

∂a
∂b

∂b
∂θ

∂b
∂a

∂b
∂b


 =




∂y
∂θ

∂y
∂a

∂y
∂b

0 1 0

0 0 1




The determinant of this matrix is

Mariadaria K. Ianni-Ravn et al. 17

Peer Community Journal, Vol. 4 (2024), article e75 https://doi.org/10.24072/pcjournal.439

https://doi.org/10.24072/pcjournal.439


det(J) =
∂y

∂θ
=

ab

√
1 −

(
a2+b2−y2

2ab

)2

y
(6)

Which goes back into equation (5):

fy ,a,b(y , a, b) = fa(a)fb(b)fθ(θ) × 1

det(J)
(7)

= fa(a)fb(b)fθ(θ) × y

ab

√
1 −

(
a2+b2−y2

2ab

)2
(8)

This is the joint pdf of the three sides of the triangle. Now, we integrate out the parameters
a and b in order to get a fully marginalised fy .

fy (y) =

∫

b

∫

a
fa(a)fb(b)fθ(θ) × y

ab

√
1 −

(
a2+b2−y2

2ab

)2
da db(9)

This holds for any distribution of a and b. Let’s consider the case where a is Rayleigh dis-
tributed (as it is under the Brownian mode of dispersal), and mate choice is random within a
radius rb (as encoded in slendr). θ and b are uniform random variables, so have a constant prob-
ability of 1/π and 1/rb respectively. We also know that a has a Rayleigh pdf of (a/σ2)e(−a2/2σ2).
Replacing these in the function above:

fy (y) =

∫ rb

0

∫ ∞

0

1

π
× 1

rb
× a

σ2
e

−a2

2σ2 × y

ab

√
1 −

(
a2+b2−y2

2ab

)2
da db(10)

This is the fully marginalised pdf of y . This integral is challenging to solve analytically, but we
can obtain the approximate shape of the pdf by numerical integration.

Finally, we can write out the pdf of the distance between a randomly chosen parent and its
offspring. Let’s call this pdf gy (y). With probability P = 0.5, the parent is the mother (p1) and
y simply follows a Rayleigh distribution with scale σ. When the genome is inherited from the
father (p2), which again occurs with P = 0.5, the pdf of y is the distribution shown above. This
leads to the final pdf gy (y) of the parent-offspring distance,

gy |σ,rb(y |σ, rb) =
1

2

y

σ2
e− y2

2σ2 +
1

2
fy |σ,rb(y |σ, rb)(11)

From this expression, we can obtain any moment of the distribution. The expectation of the
distance y is:

E[y |σ, rb] =
∫

0
y

[
1

2

y

σ2
e− y2

2σ2 +
1

2
fy |σ,rb(y |σ, rb)

]
dy

=

∫ ∞

0

[
y2

2σ2
e− y2

2σ2

]
dy +

∫ ∞

0

[
y

2
fy |σ,rb(y |σ, rb)

]
dy(12)

=
1

2
σ

√
π

2
+

∫ ∞

0

[
y

2
fy |σ,rb(y |σ, rb)

]
dy(13)
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which is a half-weighted average of the distance expected from the parent-offspring distance
kernel, and from mate choice.
1.3.1. A simpler model with Gaussian mate choice. There are simple scenarios that lead to a more
analytically tractable pdf. For example, let us suppose that the distance between parents is also
generated in a similar way to Brownian dispersal, from independent normal distributions in x and
y dimensions with variance τ2. In this case, the father-offspring distance in each dimension is a
sum of two Gaussian random variables and is itself normally distributed with variance σ2 + τ2.
This gives rise to a Rayleigh distribution with scale √

σ2 + τ2 for the norm of the distance, y . In
that case, the final pdf is then:

gy |σ,τ (y |σ, τ) = 0.5
y

σ2
e− y2

2σ2 + 0.5
y

σ2 + τ2
e

− y2

2(σ2+τ2)(14)
As noted in Battey et al. (2020), if the scale of dispersal and mate choice are the same (if

σ = τ ), the spatial diffusion process becomes Gaussian with an overall variance 3σ2/2.
1.4. Maximum likelihood estimation of σ

When the mating distance is small, and dispersal is “Brownian”, distances in latitude and
longitude at each generation are drawn from independent N (0,σ2), and the dispersal over many
generations may be modelled as a Brownian motion. Given a genealogy with N branches i , of
length li and geographic distance di , the log likelihood of the distances is

ℓ(σ) =
N∑

i=1

log
di√
li

− 2n log σ − 1

σ2

N∑

i=1

(di/
√
li )

2

2

Here,we have divided each branch distance di by√
li to account formulti-generation branches.

The absolute distance should increase proportionally to the square root of the number of gener-
ations, since dispersal is Gaussian in two dimensions.

The gradient of the likelihood function with respect to σ is
d

dσ
ℓ(σ) =

−2n

σ
+

2

σ3

N∑

i=1

d2
i

li

The maximum likelihood estimator of σ, which solves d
dσ ℓ(σ) = 0, is given by

σ̂ML =

√√√√ 1

2N

N∑

i=1

d2
i

li
(15)

We may also wish to survey how each branch is contributing to the estimate. Since E[di ] =√
liσ

√
π
2 , we define σ̂branch = di√

liπ

2

.

Data, scripts and code
The functions used (which are not included in slendr or other packages) are available as an

R package treesinspace (https://github.com/mkiravn/treesinspace/, https://doi.org/10.
5281/zenodo.10402649, Ianni-Ravn, 2023). We include all relevant scripts, with which the sim-
ulations and plots included may be reproduced.
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