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Abstract
Unicellular green algae of the genus Coccomyxa are recognized for their worldwide distri-
bution and ecological versatility. Most species described to date live in close association
with various host species, such as in lichen associations. However, little is known about
the molecular mechanisms that drive such symbiotic lifestyles. We generated a high-
quality genome assembly for the lichen photobiont Coccomyxa viridis SAG 216-4 (for-
merly C. mucigena). Using long-read PacBio HiFi and Oxford Nanopore Technologies in
combination with chromatin conformation capture (Hi-C) sequencing, we assembled the
genome into 21 scaffolds with a total length of 50.9Mb, an N50 of 2.7Mb and a BUSCO
score of 98.6%.While 19 scaffolds represent full-length nuclear chromosomes, two addi-
tional scaffolds represent the mitochondrial and plastid genomes. Transcriptome-guided
gene annotation resulted in the identification of 13,557 protein-coding genes, of which
68% have annotated PFAM domains and 962 are predicted to be secreted.
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Introduction 

Green algae are photosynthesizing eukaryotic organisms that differ greatly in terms of morphology 

and colonize a large variety of aquatic and terrestrial habitats. Phylogenetically, green algae form a 

paraphyletic group that has recently been proposed to comprise three lineages including the 

Prasinodermophyta in addition to the Chlorophyta and Streptophyta (Li et al. 2020). This new phylum 

diverged before the split of the Chlorophyta and Streptophyta that occurred between 1,000 and 700 

million years ago (Morris et al. 2018). While the streptophyte lineage encompasses charophyte green 

algae as well as land plants, the chlorophyte lineage consists of 7 prasinophyte classes, which gave rise 

to 4 phycoplast-containing core chlorophyte classes (Chlorodendrophyceae, Trebouxiophyceae, 

Ulvophyceae, Chlorophyceae) with one independent sister class (Pedinophyceae) (Leliaert et al. 2012; 

Marin 2012). 

The Coccomyxa genus is represented by coccoid unicellular green algae that belong to the class of 

Trebouxiophyceae. Morphologically, Coccomyxa spp. are characterized by irregular elliptical to globular 

cells that range from 6–14 x 3–6 μm in size, with a single parietal chloroplast lacking pyrenoids and the 

absence of flagellate stages (Schmidle 1901). Members of this genus are found in freshwater, marine, 

and various terrestrial habitats where they occur free-living or in symbioses with diverse hosts (Darienko 

et al. 2015; Malavasi et al. 2016; Gustavs et al. 2017). Several Coccomyxa species establish stable, 

mutualistic associations with fungi that result in the formation of complex three-dimensional 

architectures, known as lichens (Jaag 1933; Zoller & Lutzoni 2003; Yahr et al. 2015; Gustavs et al. 2017; 

Faluaburu et al. 2019). Others associate with vascular plants or lichens as endo- or epiphytes, 

respectively (Trémouillaux-Guiller et al. 2002; Cao et al. 2018a; Cao et al. 2018b; Tagirdzhanova et al. 

2023), and frequently occur on the bark of trees (Kulichovà et al. 2014; Štifterovà & Neustupa 2015) where 

they may interact with other microbes. One novel species was recently found in association with 

carnivorous plants, even though the nature of this relationship remains unclear (Sciuto et al. 2019). 

Besides, Coccomyxa also establishes parasitic interactions with different mollusk species affecting their 

filtration ability and reproduction (Gray et al. 1999; Vaschenko et al. 2013; Sokolnikova et al. 2016; 

Sokolnikova et al. 2022).  

Despite this ecological versatility, little is known about the molecular mechanisms that determine 

the various symbiotic lifestyles in Coccomyxa. One short read-based genome is available for C. 

subellipsoidea C-169 that was isolated on Antarctica where it occurred on dried algal peat (Blanc et al. 

2012), whereas another high-quality genome has recently been made available for a non-symbiotic 

strain of C. viridis that was isolated from a lichen thallus (Tagirdzhanova et al. 2023). For Coccomyxa sp. 

Obi, LA000219 and SUA001 chromosome-, scaffold- and contig-level assemblies are available on NCBI, 

respectively, as well as two metagenome-assembled genomes of C. subellipsoidea. To facilitate the study 

of Coccomyxa symbiont-associated traits and their evolutionary origin, we here present the generation 

of a high-quality chromosome-scale assembly of the phycobiont C. mucigena SAG 216-4 using long-read 

PacBio HiFi and Oxford Nanopore Technology (ONT) combined with Hi-C and RNA sequencing. Recent 

SSU and ITS rDNA sequencing-based re-evaluations of the Coccomyxa phylogeny placed the SAG 216-4 

isolate in the clade of C. viridis (Darienko et al. 2015; Malavasi et al. 2016). Hence, this isolate will be 

referred to as C. viridis here and data have been deposited under the corresponding Taxonomy ID.  
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Materials & Methods 

Sample information 

Coccomyxa viridis (formerly Coccomyxa mucigena) SAG 216-4 was ordered from the Culture 

Collection of Algae at the Georg-August-University Göttingen (Sammlung von Algenkulturen der 

Universität Göttingen, international acronym SAG), Germany. The stock culture was reactivated in liquid 

modified Waris-H growth medium (McFadden & Melkonian 1986) with soil extract and 3x vitamins (0.15 

nM vitamin B12, 4.1 nM biotin, 0.3 M thiamine-HCl, 0.8 nM niacinamide), and maintained through 

regular medium replacement. Cultures were grown at  15 μmol photons m-2 s-1 (fluorescent light tubes: 

L36W/640i energy saver cool white and L58W/956 BioLux, Osram, Munich, Germany) in a 14/10 h 

light/dark cycle at 20°C.  

DNA and RNA extraction  

Cells of a 7-week-old C. viridis culture were harvested over 0.8 m cellulose nitrate filters (Sartorius, 

Göttingen, Germany) using a vacuum pump. Material was collected with a spatula, snap-frozen and 

ground in liquid nitrogen using mortar and pestle. The ground material was used for genomic DNA 

extraction with the RSC Plant DNA Kit (Promega, Madison, WI, USA) using the Maxwell RSC device 

according to manufacturer’s instructions. To prevent shearing of long DNA fragments, centrifugation 

was carried out at 10,000 g during sample preparation. Following DNA extraction, DNA fragments 

<10,000 bp were removed using the SRE XS kit (Circulomics, Baltimore, MD, USA) according to 

manufacturer’s instructions. DNA quantity and quality were assessed using the Nanodrop 2000 

spectrometer and Qubit 4 fluorometer with the dsDNA BR assay kit (Invitrogen, Carlsbad, CA, USA), and 

integrity was confirmed by gel electrophoresis. High-molecular weight DNA was stored at 4°C. 

For total RNA extraction, algal cells were collected from a dense nine-day-old culture and ground in 

liquid nitrogen using mortar and pestle. RNA was extracted with the Maxwell RSC Plant RNA kit 

(Promega, Madison, WI, USA) using the Maxwell RSC device according to manufacturer’s instructions. 

RNA quality and quantity was determined using the Nanodrop 2000 and stored at -80°C. 

Pacific Biosciences High-Fidelity (PacBio HiFi) sequencing 

HiFi libraries were prepared with the Express 2.0 Template kit (Pacific Biosciences, Menlo Park, CA, 

USA) and sequenced on a Sequel II/Sequel IIe instrument with 30h movie time. HiFi reads were generated 

using SMRT Link (v10; (Pacific Biosciences, Menlo Park, CA, USA) with default parameters. 

Oxford Nanopore Technologies (ONT) sequencing  

Library preparation with the Rapid Sequencing Kit (SQK-626 RAD004) was performed with ~400 ng 

HMW DNA according to manufacturer’s instructions (Oxford Nanopore Technologies, Oxford, UK). The 

sample was loaded onto an R9.4.1 flow cell in a minION Mk1B device (Oxford Nanopore Technologies, 

Oxford, UK), which was run for 24 h. Subsequent base calling was performed using Guppy (version 630 

3.1.3; Oxford Nanopore Technologies, Oxford, UK). Adapter sequences were removed using Porechop 

(version 0.2.4 with default settings) (Wick 2018), and the reads were self-corrected and trimmed using 

Canu (version 1.8) (Koren et al. 2017). 

Chromosome conformation capture (Hi-C) and sequencing 

C. viridis cells were cross-linked in 3% formaldehyde for 1 hour at room temperature. The reaction 

was quenched with glycine at a final concentration of 250 mM. Cells were collected by centrifugation at 

16,000 g for 10 min. Pellets were flash-frozen in liquid nitrogen and ground using mortar and pestle. Hi-

C libraries were prepared using the Arima-HiC+ kit (Arima Genomics, Carlsbad, CA, USA) according to 
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manufacturer’s instructions, and subsequently paired-end (2x150 bp) sequenced on a NovaSeq 6000 

instrument (Illumina, San Diego, CA, USA). 

RNA sequencing 

Library preparation for full-length mRNASeq was performed using the NEB Ultra II Directional RNA 

Library Prep with NEBNext Poly(A) mRNA Magenetic Isolation Module and 500 ng total RNA as starting 

material, except for W-RNA Lplaty, where library prep was based on 100 ng total RNA as starting material. 

Sequencing was performed on an Illumina NovaSeq 6000 device with 2x150 bp paired-end sequencing 

protocol and >50 M reads per sample. 

Genome assembly 

PacBio HiFi reads were assembled using Raven (v1.8.1) (Vaser & Šikić 2021) with default settings. Hi-

C reads were mapped onto this assembly with Juicer (v2.0) using the “assembly” option to skip the post-

processing steps and generate the merged_nodups.txt file (Durand et al. 2016b). For the juicer pipeline, 

restriction site maps were generated using the DpnII (GATC) and HinfI (GANTC) restriction site profile and 

the assembly was indexed with BWA index (v0.7.17-r1188) (Li & Durbin 2009), and used to polish the 

assembly using 3d-dna (v180922) (Dudchenko et al. 2017). Afterwards, Juicebox (v1.11.08) was used to 

manually curate the genome assembly by splitting contigs and rearranging them according to the Hi-C 

pattern (Durand et al. 2016a). Contigs were merged to scaffolds according to the Hi-C map and Ns were 

introduced between contigs within scaffolds, gaps between contigs were removed and contigs were 

merged. Subsequently, ONT reads were mapped to the assembly using Minimap2 (v2.24-r1122) and 

Samtools (v1.10) and mapped reads were visualized in Integrative Genome Viewer (v2.11.2) (Robinson 

et al. 2011; Danecek et al. 2021; Li 2021). Whenever gaps between contigs were spanned by at least five 

reads with a mapping quality of 30, the contigs were fused in the assembly.  

Potential telomeres were identified using tapestry (v1.0.0) with “AACCCT” as telomere sequence 

(Davey et al. 2020). To check for potential contaminations, Blobtools (v1.1.1) and BLAST (v2.13.0+) were 

used to create a Blobplot including taxonomic annotation at genus level (Camacho et al. 2009; Laetsch 

& Blaxter 2017). To check completeness of the assembly and retrieve ploidy information, kat comp from 

the Kmer Analysis Toolkit (v2.4.2) was used, and results were visualized using the kat plot spectra-cn 

function with the -x 800 option to extend the x-axis (Mapleson et al. 2016). Genome synteny to the closest 

sequenced relative C. subellipsoidea C-169 was determined using Mummer3 (Kurtz et al. 2004; Blanc et 

al. 2012). In detail, the two assemblies were first aligned using Nucmer, followed by a filtering step with 

Delta-filter using the many-to-many option (-m). Finally, the alignment was visualized with Mummerplot.  

Annotation 

To annotate repetitive elements in the nuclear genome, a database of simple repeats was created 

with RepeatModeler (v2.0.3) that was expanded with transposable elements (TE) from the 

TransposonUltimate resonaTE (v1.0) pipeline (Flynn et al. 2020; Riehl et al. 2022). This pipeline uses 

multiple tools for TE prediction and combines the prediction output. For the prediction of TEs in 

Coccomyxa viridis helitronScanner, ltrHarvest, mitefind, mitetracker, RepeatModeler, RepeatMasker, 

sinefind, tirvish, transposonPSI and NCBICDD1000 were used within TransposonUltimate resonaTE and 

TEs that were predicted by at least two tools were added to the database. TEclass (v2.1.3) was used for 

classification (Abrusán et al. 2009). To softmask the genome and obtain statistics on the total TE and 

repetitive element content in the genome, RepeatMasker (v4.1.2-p1)(Smit et al. 2012) was used with 

excln option to exclude Ns in the masking.  

 Gene annotation in the nuclear genome was performed making use of RNA sequencing data. To 

this end, the genome was indexed, and reads were mapped with HiSat2 (v2.2.1) using default settings 

(Kim et al. 2019). Afterwards, BRAKER1 (v2.1.6) was used for transcriptome-guided gene prediction based 
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on the RNA sequencing data with default settings (Hoff et al. 2016). To generate protein and coding 

sequence files the Braker output was transformed with Gffread (v0.12.7) (Pertea & Pertea 2020). PFAM 

domain annotation was performed with InterProScan (v5.61) (Paysan-Lafosse et al. 2023). To estimate 

the number of secreted proteins, SignalP (v6.0) was run in the slow-sequential mode on the annotated 

proteins (Teufel et al. 2022). Finally, BUSCO (v5.3.2) was run with the Chlorophyta database 

(chlorophyta_odb10) to estimate the completeness of the gene annotation (Manni et al. 2021). The circos 

plot visualization of the annotation was created with R (v4.2.0) and Circilize (v0.4.14) (Gu et al. 2014). All 

software and tools used for the genome assembly and annotation are summarized in Table S1. 

Organelle genomes were annotated separately. Scaffolds were identified as organelle genomes 

based on their lower GC content and smaller size. The mitochondrial genome was annotated using 

MFannot (Lang et al. 2023) as well as GeSeq (Tillich et al. 2017) and the annotation was combined within 

the GeSeq platform. The plastid genome was annotated using GeSeq alone. The annotations were 

visualized using the OGDraw webserver (Greiner et al. 2019). 

Results 

The version 1 genome of C. viridis was assembled from 32.2 Gbp of PacBio HiFi reads with a mean 

read length of 15 kb, 0.95 Gbp Nanopore reads with a mean read length of 8.8 kb and 15 million pairs of 

Hi-C seq data. The PacBio HiFi reads were first assembled using Raven (Vaser & Šikić 2021), yielding 27 

contigs. These contigs were scaffolded and manually curated using Hi-C data (Li & Durbin 2009; Durand 

et al. 2016a; Durand et al. 2016b; Dudchenko et al. 2017). To close the remaining gaps between contigs 

within scaffolds, ONT reads were mapped onto the assembly (Danecek et al. 2021; Li 2021) and gaps that 

were spanned by at least 5 ONT reads with a mapping quality >30 were manually closed, finally resulting 

in 21 scaffolds consisting of 26 contigs with a total length of 50.9 Mb and an N50 of 2.7 Mb (Figure 1, Table 

1). Using Tapestry (Davey et al. 2020), telomeric regions (AACCCTn) were identified at both ends of nine 

of the 21 scaffolds (5 repeats) (Figure 1a), suggesting that these represent full-length chromosomes, 

which was confirmed by Hi-C analysis (Figure 1b). Additionally, the Hi-C contact map indicated 

centromeres for some of the chromosomes. However, the determination of exact centromere locations 

on all chromosomes will require ChIP-seq analysis and CenH3 mapping. While Tapestry detected 

telomeric sequences at only one end of eight other scaffolds and none for scaffold 18 and 19, the Hi-C 

map points towards the presence of telomeric repeats at both ends of all scaffolds 1-19 (Figure 1b), 

suggesting that the v1 assembly contains 19 full-length chromosomes that compose the nuclear 

genome. Scaffolds 20 and 21 were considerably shorter with 162 kb and 70 kb and displayed a 

markedly lower GC content at 41-42% (Figure 1a), suggesting that these scaffolds represent the 

chloroplast and mitochondrial genomes, respectively. BLAST analyses confirmed the presence of plastid 

and mitochondrial genes on the respective scaffolds, and the overall scaffold lengths corresponded with 

the sizes of the plastid and mitochondrial genomes of Coccomyxa subellipsoidea C-169 with 175 kb and 

65 kb, respectively (Blanc et al. 2012). Full annotation of scaffolds 20 and 21 showed that they indeed 

represent chloroplast and mitochondrial genomes, respectively (Figure 2).  

To rule out the presence of contaminants, the assembly and PacBio HiFi raw reads were used to 

produce a Blobplot (Camacho et al. 2009; Laetsch & Blaxter 2017), which indicates that 98.76% of the 

reads match only the Coccomyxa genus (Figure 3) and, consequently, that the original sample was free 

of contaminating organisms. Finally, a KAT analysis showed a single peak of k-mer multiplicity based on 

HiFi reads that were represented once in the assembly (Figure 4) (Mapleson et al. 2016), indicative of a 

high-quality, haploid genome.  
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Figure 1 - Genome assembly of Coccomyxa viridis SAG 216-4. (a) An overview of the C. 
viridis genome assembly depicts chromosome-scale scaffolds. Green bars indicate 

scaffold sizes and red bars represent telomeres. Variations in color intensities correlate 
with read coverage. Read coverage per scaffold is determined by mapping PacBio HiFi 
reads onto the assembly. Scaffolds 20 and 21 were identified as chloroplast and 

mitochondrial genomes based on size and low GC contents, and BLAST analyses. (b) Hi-

C contact map showing interaction frequencies between regions in the nuclear genome 

of Coccomyxa viridis. Scaffolds are framed by blue lines while contigs within scaffolds are 
depicted in green. 
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Table 1 - Genome features of C. viridis SAG 216-4 including the mitochondrial and plastid 
genomes. 

Assembly ID C. viridis SAG 216-4 genomes 

Total length (bp) 50,911,578 
No. of contigs  27 
No. of scaffolds 21 
Longest scaffold (bp) 4,477,725 
N50 (bp) 2,669,017 
L50 8 
GC content (%) 54.5 

 

 

Figure 2 - Scaffolds 20 and 21 represent the plastid and mitochondrial genomes of C. 

viridis SAG 216-4. Gene maps of the chloroplast (a) and mitochondrial (b) genomes. The 

inner circles indicate the GC content and mapped genes are shown on the outer circles. 
Genes that are transcribed clockwise are placed inside the outer circles, and genes that 
are transcribed counterclockwise at the outside of the outer circles. 

 

To annotate the nuclear genome, we first assessed the presence of repetitive elements. In total, we 

found 8.9% of the genome to be repetitive (Table 2), comparable to the 7.2% of repetitive sequences 

found in the genome of C. supellipsoidea C-169 (Blanc et al. 2012). These 8.9% repetitive elements were 

annotated as either simple repeats (2.3%) or transposable elements (6.6%). Of the transposable 

elements, 36% were annotated as retrotransposons and 64% as DNA transposons. The distribution of 

the repetitive elements was even across the genome with only a few repeat-rich regions (Figure 5). Next, 

we aimed to produce a high-quality genome annotation using RNA sequencing data. In total 13,557 

genes were annotated with an average length of 3.1 kb (Table 2). The amount of alternative splicing in 

the genome is predicted to be very low, given the average of one transcript per gene model. To confirm 

the actual amount of alternative splicing, however, further analyses will be required. Of the 13,557 genes, 

68% have annotated PFAM domains and 962 are predicted to carry a signal peptide for secretion. A total 

of 1,489 (98.6 %) complete gene models among 1,519 conserved Benchmarking Universal Single-Copy 

Orthologs (BUSCO) (Manni et al. 2021) in the chlorophyta_odb10 database were identified (Table 2), 

suggesting a highly complete genome annotation.  
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Table 2 - Annotation features of the C. viridis SAG 216-4 nuclear genome. 

Genome annotation 

Repeat content (%) 
Retrotransposons 
DNA transposons 
Simple repeats 

8.85 
2.4 
4.2 
2.25 

No. gene models 13,557 
Average gene length (bp) 3146 
No. exons 122,978 
Average no. exons per gene model 9 
Average exon length (bp) 158 
No. transcripts 14,024 
Average no. transcripts/gene model 1 
No. gene models <200 bp length 0 

No. proteins with 1 PFAM domain 9205 

No. proteins with signal peptide 962 
BUSCO (chlorophyta_odb10) C: 98.6% S: 82.5%, D: 16.1%, F: 0.1%, M: 1.3%, N: 1519 

 

 

Figure 3 - Taxonomic annotation indicates absence of contaminations in the genome 
assembly. (b) Taxon-annotated GC coverage scatter plot (Blobplot) of the contigs from 
the genome assembly shows that all scaffolds are taxon-annotated as Coccomyxa and all 

scaffolds that belong to the nuclear genome (N) have similar GC contents (~54%). The GC 

content of the mitochondrial (M) and plastid (P) genomes are considerably lower (~41%). 

(b) In total 98.76% of the reads can be mapped onto the assembly and are therefore 
classified as Coccomyxa reads. 
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Figure 4 - The Coccomyxa viridis SAG 216-4 nuclear genome is haploid. The KAT spectra-
cn plot depicts the 27-mer multiplicity of the PacBio HiFi reads against the nuclear 

genome assembly. Black areas under the peaks represent k-mers present in the reads 
but absent from the assembly, colored peaks indicate k-mers that are present once to 

multiple times in the assembly. The single red peak in the KAT spectra-cn plot suggests 
that Coccomyxa viridis has a haploid genome, while the black peak at low multiplicity 

shows that the assembly is highly complete and that all reads are represented in the 

assembly. 

 

Figure 5 - Circos plot summarizing the nuclear genome annotation of Coccomyxa viridis 
SAG 216-4. From outside to inside the tracks display: GC content (over 1-kb windows), 

gene density (blue) and repetitive element density (red).  
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Until recently, the taxonomic classification and definition of Coccomyxa species was based on 

environmentally variable morphological and cytological characteristics. This classification was reviewed 

based on the phylogenetic analyses of nuclear SSU and ITS rDNA sequences, which resulted in the 

definition of 27 currently recognized Coccomyxa species (Darienko et al. 2015; Malavasi et al. 2016). Dot 

plot analysis of the high-quality genome assembly of C. viridis SAG216-4 with the assembly of the most 

closely related sequenced relative C. subellipsoidea C-169 revealed a lack of synteny since the few 

identified orthologous sequences were < 1 kb and, therefore, do not represent full-length genes (Figure 

6a, Table 2). This lack of synteny was no technical artifact since the C. viridis assembly could be fully 

aligned to itself (Figure 6b), and BLAST analyses with five out of six non-identical ITS sequences 

identified in the C. viridis SAG 216-4 assembly confirmed its species identity. A comparison of the 

assembly of C. subellipsoidea C-169 to that of Chlorella variabilis (Chlorophyte, Trebouxiophyceae) has 

previously identified few syntenic regions which displayed poor gene collinearity (Blanc et al. 2012). 

Future studies will help to clarify whether the absence of synteny between C. viridis and C. subellipsoidea 

is due to the quality of the available assemblies or whether it has biological implications. 

 

Figure 6 - No synteny detected between related Coccomyxa species. (a) Dot plot of 
orthologous sequences in the genome assemblies of C. viridis SAG 216-4 and C. 
subellipsoidea C-169. Violet and blue dots represent orthologous sequences on same and 

opposite strands, respectively. Dot sizes does not correlate with the length of the 

sequences they represent, which were all < 1 kb. The width of each box corresponds to 
the length (bp) of the respective scaffold. (b) Dot plot of the genome assembly of C. viridis 
SAG216-4 against itself. 
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Data availability 

Data for C. viridis SAG 216-4 with the ToLID ucCocViri1 is available via the European Nucleotide 

Archive (ENA) under the study accession number PRJNA1054215. Fastqc reports of raw data can be found 

in (Kraege et al. 2023). 

Acknowledgements 

This genome project is part of the DeRGA pilot study (https://www.erga-biodiversity.eu/pilot-project) 

and we acknowledge coordination and support by Dr. Astrid Böhne and Prof. Dr. Ann-Marie Waldvogel. 

Development of the pilot ERGA Data Portal (https://portal.erga-biodiversity.eu/) was funded by the 

European Molecular Biology Laboratory. We thank the West German Genome Center (WGGC) and the 
Cologne Center for Genomics (CCG) for library generation and quality control as well as their support for 

PacBio Hifi, Hi-C and RNA sequencing. Preprint version 2 of this article has been peer-reviewed and 

recommended by Peer Community In Genomics (https://doi.org/10.24072/pci.genomics.100300; Irisarri 

2024). 

Conflict of interest 

The authors declare no conflict of interest. 

Funding information 

BPHJT acknowledges funding by the Alexander von Humboldt Foundation in the framework of an 

Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education and 

Research and is furthermore supported by the Deutsche Forschungsgemeinschaft (DFG, German 

Research Foundation) under Germany’s Excellence Strategy – EXC 2048/1 – Project ID: 390686111. This 

research was also funded by the Deutsche Forschungsgemeinschaft (DFG, German Research 

Foundation) – SFB1535 - Project ID 458090666. PHS was funded by a DFG ENP grant (grant number: 

434028868), which also funded JK’s position. NG was first funded through a DFG grant to PHS 

(458953049) and subsequently through the European Union’s Horizon Europe Research and Innovation 

program under the Marie Skłodowska-Curie grant agreement No. 101110569. 

Supplementary Information 

Table S1 - Summary of bioinformatics tools used for genome assembly and annotation. 

Assembly Annotation 

Tool  Version Tool  Version 

Raven v1.8.1 RepeatModeler v2.0.3 

Juicer v2.0 TransposonUltimate v1.0 

BWA v0.7.17-r1188 TEclass v2.1.3 

3d-dna v180922 RepeatMasker v4.1.2-p1 

Juicebox v1.11.08 HiSat2 v2.2.1 

Minimap2 v2.24-r1122 Braker v2.1.6 

Samtools v1.10 Gffread v0.12.7 

Integrative Genome Viewer v2.11.2 SignalP v6.0 

Tapestry v1.0.0 BUSCO v5.3.2 

Blobtools v1.1.1 R v4.2.0 

BLAST 2.13.0+ Circilize v0.4.14 

Kmer Analysis Toolkit V2.4.2 InterProScan v5.61 

Mummer C3.23   
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