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Abstract
PSMC estimates of Neanderthal effective population size (Ne) exhibit a roughly 5-folddecline across the most recent 20~ky before the death of each fossil. To explain thispattern, this article develops new theory relating genetic variation to geographic pop-ulation structure and local extinction. It argues that the observed pattern results fromsubdivision and gene flow. If two haploid genomes are sampled from the same subpop-ulation, their recent ancestors are likely to be geographic neighbors and therefore coa-lesce rapidly. By contrast, remote ancestors are likely to be far apart, and their coalescentrate is lower. Consequently, Ne is larger in the distant past than in the recent past. Newtheoretical results show that modest rates of extinction cause substantial reductions inheterozygosity, Wright’s FST, and Ne.
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1. Introduction
A variety of statistical methods use genetic data to estimate the history of effective popula-tion size,Ne (Li and Durbin, 2011; Rogers, 2019, 2022; Schiffels andDurbin, 2014; Terhorst et al.,2017). In a subdivided population, these estimates depend not only on the number of individu-als but also on gene flow between subdivisions (Nei and Takahata, 1993; Whitlock and Barton,1997; Wright, 1943). Not only does Ne change in response to changes in gene flow (Mazet et al.,2016; Rodríguez et al., 2018; Wakeley, 1999), it may also exhibit a prolonged decline even whenthere has been no change either in the number of individuals or in the rate or pattern of geneflow (Mazet and Noûs, 2023; Rodríguez et al., 2018).With this in mind, consider the data in Fig. 1, which replots previously-published estimatesof archaic population histories (Mafessoni et al., 2020). This figure zooms in on an interval of30 ky before the death of each fossil. PSMC estimates are famously unreliable over this timescale (Li and Durbin, 2011). It is therefore unsurprising that the Denisovan curve swings wildlyup and down, a pattern consistent with statistical error. On the other hand, the three Nean-derthal curves seem to tell a consistent story—one of a roughly 5-fold decline in population sizeacross 20 thousand years. The consistency of the Neanderthal curves is surprising and demandsexplanation.In what follows, I ask whether this pattern may reflect geographic subdivision within theNeanderthal population rather than either statistical noise or a real decline in the number ofNeanderthals.

2. Methods
2.1. Archaic PSMC data

The data in Fig. 1 were published by Mafessoni et al. (2020) and were provided by thoseauthors. I used psmcdata to extract data from PSMC output files.
2.2. Coalescent hazard and effective population size

The effective population size,Ne(t), at time t is defined in terms of the corresponding hazard,
h(t), of a coalescent event. To understand this latter quantity, suppose that we sample two genesfrom a population at time 0 and trace the ancestry of each backwards in time. Eventually, the twolineages will coalesce into a common ancestor (Hudson, 1990; Tavaré, 1984). The hazard, h(t),of a coalescent event at time t is the conditional coalescent rate at t given that the two lineages

Figure 1 – PSMC estimates of the recent history of population size based on three Nean-derthals (Vindija33.19, Chagryskaya, and Altai) and a Denisovan (Mafessoni et al., 2020).Horizontal axis measures time in thousands of years before the date of each fossil. Mu-tation rate is 1.4 × 10−8 per base pair per generation; generation time is 29 y.
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did not coalesce between 0 and t (Kalbfleisch and Prentice, 1980, p. 6). In a randomly-matingpopulation of constant size N , this hazard is h = 1/2N per generation. In a population of morecomplex structure, this formula doesn’t hold. Nonetheless, we can define an effective populationsize as half the reciprocal of the hazard (Laporte and Charlesworth, 2002; Rousset, 2004, p. 144).
(1) Ne(t) =

1

2h(t)

This quantity has also been called the inverse instantaneous coalescent rate (IICR) (Chikhi et al.,2018; Mazet et al., 2016; Mazet and Noûs, 2023; Rodríguez et al., 2018). That alternative nameemphasizes that change in Ne (or IICR) need not imply change in the size of the population oreven in the rate or pattern of mobility within it. Furthermore, this quantity depends not only onthe characteristics of the population but also on those of the sample. Thus, the conventionalterm—effective population size—may be misleading. Nonetheless, I adhere to that convention inthis article.Because so little is known about subdivision and gene flow within the Neanderthal popula-tion, we cannot hope to build a realistic model. Instead, I use simple models to explore the effectof subdivision, gene flow, and local extinction (or extirpation). Extinction is important becausealthough the Neanderthal population was widespread and shows evidence of geographic struc-ture, it had low heterozygosity (Mafessoni et al., 2020). If demes never went extinct, populationstructure would tend to inflate heterozygosity (Wright, 1943, p. 133; Nei and Takahata, 1993).But the opposite happens when demes occasionally go extinct and are then replaced by immi-grants from another deme (Wright, 1940, p. 244; Slatkin, 1977; Maruyama and Kimura, 1980;Whitlock and McCauley, 1990; Whitlock and Barton, 1997). Thus, the low heterozygosity ofNeanderthals suggests that local extinctions may have been common.
2.3. The finite island model with local extinction

Consider first the finite island model, which assumes that demes of equal size exchange mi-grants at equal rates (Carmelli and Cavalli-Sforza, 1976; Mazet et al., 2016; Rodríguez et al.,2018). In reality, a gene beginning in one deme may need to traverse many intervening demes toreach one that is far away. There is no such necessity under the island model: a gene can movefrom one deme to any other in a single generation. Consequently, this model converges rapidlytoward its asymptote for any given level of gene flow.The finite islandmodel assumes d demes of effective sizeN . Pairs of lineages within the samedeme coalesce at rate 1/2N ; pairs in different demes cannot coalesce. Migration occurs at rate
m per gene per generation. When a migration occurs, the gene moves to one of the d − 1 otherdemes. In addition to these standard assumptions, I also assume that demes occasionally goextinct and are then immediately replaced with immigrants from some other deme. In backwardstime, extinctions look likewholesalemigration: all lineageswithin the dememigrate together to adifferent deme, which is chosen at random. Extinctions occur at rate x per deme per generation.As we trace the history of a pair of genes, we need only keep track of whether the twolineages are colocal (in the same deme) or in different demes. Extinction can be ignored for a pairof colocal lineages. It is not that extinctions don’t happen. As we view a pair of colocal lineagesat the time of an extinction, they move together to another deme, but in that new deme they arestill colocal. The state of the system is thus unchanged. On the other hand, extinction does affectpairs in different demes. At the time of the extinction, one lineage moves to a different deme,and this new deme may be the one occupied by the other lineage. Thus, extinction increases therate at which separated lineages become neighbors.Other models of local extinction (e.g. Slatkin, 1977) have included temporary reductions inpopulation size (bottlenecks) at the time of recolonization, which reduce the effective size ofeach deme. Rather than modelling these explicitly, I absorb them into effective deme size, N . Ifbottlenecks are frequent, N will be smaller than the average size of a deme.To study this model, let us formulate it as a Markov chain in continuous time. At a giventime in the past, the two sampled lineages will be in one of three states: S , they are in the samedeme; D , they are in different demes; and C , they have coalesced into a single lineage. Once
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the process reaches state C , it never leaves, so the probability of this state increases throughtime. Such states are said to be absorbing. States S and D , on the other hand, are transient; theirprobabilities will eventually decline toward zero. Let qij denote the rate of transitions from state
i to state j . In other words, qij δt is approximately the probability that the process is in state j attime t + δt given that it is in state i at time t , provided that δt is small. The matrix of transitionrates looks like




S D C

S −2m − 1/2N 2m 1/2N
D 2(m + x)/(d − 1) −2(m + x)/(d − 1) 0
C 0 0 0




Here, 2m is the rate of transition from S to D (because there are two lineages, each of whichmigrates at rate m), and 1/2N is the rate of transition from S to C . In other words, it’s the rateof coalescence for two lineages in the same deme. Note that x (the rate of extinction) doesnot contribute to transitions from state S . On the other hand, extinction and migration bothcontribute to the rate of transition from D to S . These transitions occur at rate 2(m+ x)/(d −1),because although 2(m + x) is the combined rate of migrations and extinctions, only a fraction
1/(d −1) of these events results in one lineage joining the other in the same deme. The diagonalentries in a transition rate matrix are the negative of the sum of the other entries in that row.(See Sukhov and Kelbert (2008, sec. 2.1) for a discussion of transition rate matrices.) If x = 0,this matrix is equivalent to that of Rodríguez et al. (2018, p. 668).We can simplify this model in two ways. First, because the absorbing state, C , does notcontribute to the probabilities of the other states, we can delete the third row and column toform a subintensity matrix (Bladt and Friis Nielsen, 2017, p. 125). Second, we can reexpress allrates using 2N generations as the unit of time. This involves multiplying all entries of the matrixabove by 2N . The result is

Q =

( S D

S −M − 1 M
D (M + X )/(d − 1) −(M + X )/(d − 1)

)

where M = 4Nm is the migration rate per pair of lineages per 2N generations, and X = 4Nx isthe corresponding rate of extinction. Let τ = t/2N represent time in units of 2N generations, andlet p(τ) = (p1(τ), p2(τ)) represent the row vector of probabilities that the process is in states Sand D at time τ . It equals
(2) p(τ) = p(0)eQτ

where p(0) is the vector of initial probabilities, and eQτ is a matrix exponential (Cox and Miller,1965, p. 182). Because we have sampled two genes from the same deme, p(0) = (1, 0), and p(τ)is the first row of eQτ .As τ increases, both entries of p(τ) will eventually decline toward zero, because it becomesincreasingly unlikely that the two lineages have not yet coalesced. We are interested, however,in the conditional probability that the two are in the same deme, given that they have not yetcoalesced. At time τ , this conditional probability is
s(τ) =

p1(τ)∑
pi (τ)

,

where the sum is across the transient states, excluding state C . The coalescent hazard is theproduct of s(τ) and the hazard for two lineages in the same deme. Returning now to a time unitof one generation, that product is h(t) = s(t/2N)/2N , and effective population size is
(3) Ne(t) = N/s(t/2N)

This differs from previously published results on the IICR (Mazet et al., 2016, Eqn. 16; Rodríguezet al., 2018, p. 669) only in that it adds the effect of local extinctions.
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2.4. The circular stepping stone model with local extinction
One-dimensional stepping stone models describe a population whose demes are arranged ina line and exchange genes only with their immediate neighbors (Kimura and Weiss, 1964). Theyare abstractions of real-world situations in which demes are arrayed across a landscape, andneighboring pairs of demes are less isolated from each other than are pairs separated by largedistances. I will follow the common practice of assuming that the ends of the line of demes arejoined to form a circle of d demes, each of effective size N , and that each pair of neighboringdemes exchangesmigrants at the same rate (Carmelli and Cavalli-Sforza, 1976;Maruyama, 1970,1977).When local extinctions occur, the lost deme is immediately replacedwith immigrants froma single donor deme. The donor deme is equally likely to be either of the two adjacent demes.The circular arrangement is for convenience only. It simplifies things, because it implies that nodeme is more central or peripheral than any other.
Each lineage migrates at rate m per generation in backwards time, and when it does so itis equally likely to move one step clockwise or one step counterclockwise around the circle ofdemes. Because we are studying the history of a pair of genes, the migration rate is 2m pergeneration orM = 4Nm per unit of 2N generations, provided that the two lineages have not yetcoalesced. Similarly, if two lineages are in different demes, 2x is the rate per generation at whichextinction affects one of them or the other, and X = 4Nx is the rate per 2N generations.
As in the island model, this process has one absorbing state, C , in which the ancestors ofthe two sampled genes have coalesced. Two lineages are separated by 0 steps if they are in thesame deme, by 1 step if they’re in adjacent demes, and so on. The maximum separation is ⌊d/2⌋,the largest integer less than or equal to d/2. For example, ⌊d/2⌋ = 3 if d is either 6 or 7. Thetransient states in the model correspond to these distances: 0, 1, ... , ⌊d/2⌋. These states labelthe rows and columns of the subintensity matrices below. The matrix is

Q =




0 1 2 3

0 −M − 1 M 0 0
1 (M + X )/2 −M − X (M + X )/2 0
2 0 (M + X )/2 −M − X (M + X )/2
3 0 0 M + X −M − X




for d = 6 and

Q =




0 1 2 3

0 −M − 1 M 0 0
1 (M + X )/2 −M − X (M + X )/2 0
2 0 (M + X )/2 −M − X (M + X )/2
3 0 0 (M + X )/2 −(M + X )/2




for d = 7. In each matrix, row 0 refers to the case in which the two lineages are in the samedeme. The only positive entry in that row equalsM , because extinction can be ignored, and anymigration in state 0 will move the process to state 1. The “–1” in the left-most entry accounts forcoalescent events. In rows 1 and 2, the two positive entries equal (M+X )/2, because in states 1and 2, migration and extinction are equally likely to increase by 1 or to reduce by 1 the distancebetween lineages. The entries in row 3 depend on whether d is even or odd. If it is even, thereis only one deme that is ⌊d/2⌋ steps away from any given deme. Consequently, any migration orextinctionmust reduce the distance by 1 step, and the transition rate isM+X . On the other hand,if d is odd, there are two demes ⌊d/2⌋ steps away. Half of migration and extinction events willmove a lineage from one of these to the other without changing the distance between demes.The other half reduce that distance by 1, so the transition rate is (M + X )/2. Ne(t) is calculatedfrom Q as before, using Eqns. 2–3.
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2.5. Genetic variation within and among groups
The “within-group heterozygosity,” HW , is the probability that two genes drawn at randomfrom the same deme differ in state. The appendix shows that

(4) HW ≈ θ

(
Md + X

M + X

)

under either of the two models described above. If X is similar in magnitude to M or is larger,extinction produces a substantial reduction in heterozygosity. When X = 0, this reduces to awell-known result for models without extinction (Slatkin, 1987; Strobeck, 1987).The appendix also derives formulas for Wright’s FST under each model. For the island model,
(5) FST ≈ 1

(Md + X )d/(d − 1)2 + 1

When X = 0, this reduces to a well-known formula for FST under the island model (Slatkin,1991). For the circular stepping-stone model,
(6) FST ≈ 1

6(Md + X )/(d2 − 1) + 1

When X = 0, this result is equivalent to that of Wilkinson-Herbots (1998, p. 582), whose resultssuggest a caveat. She presents two results. One (which Eqn. 6 generalizes) is an approximation forweakmutation (Wilkinson-Herbots, 1998, p. 582). The other (Wilkinson-Herbots, 1998, Eqn. 34)is a more accurate formula that includes a mutation rate. With a realistic mutation rate and amodest number demes, her two formulas give nearly identical results. But as the number, d , ofdemes increases, the two formulas diverge. For large d , the process apparently generates suchlong coalescent times that the weak-mutation approximation breaks down. This is probably alsotrue of my Eqn. 6.
2.6. The magnitude of change in Ne(t)

For both of the models discussed above, Ne(t) increases toward an asymptote in backwardstime. The asymptotic value, Ne(∞), can be obtained from the left eigenvector of Q associatedwith the largest eigenvalue. This eigenvector is proportional to the asymptotic value of p(τ), sowe can use it to calculate Ne(∞), just as we used p(τ) to calculate Ne(t). If p̃i is the i ’th entryof this eigenvector, then the asymptotic value is Ne(∞) = N
p̃1/

∑
p̃i
, where p̃1 is the first entry of

the eigenvector and corresponds to state in which both lineages are in the same deme. Mazetet al. (2016) derived an explicit formula for the asymptote under the island model. The maximumproportional increase as we move backwards in time is
Ne(∞)/Ne(0) =

∑
p̃i/p̃1

2.7. Computer simulations
Computer simulations were done using Msprime (Baumdicker et al., 2021; Kelleher et al.,2016). This software has no support for random extinctions, so my program runs its own sim-ulation to generate a list of extinctions and recolonizations, which is then used to build thedemographic model of Msprime. Each run of Msprime uses a different, randomly-generated listof extinctions and recolonizations.

3. Results
This section asks whether geographic population structure can account for the Neanderthalpattern in Fig. 1. To this end, it fits each of the models described above to four observations.The first two of these come from Fig. 1: (1) a decline in Ne over a period of about 20 ky, end-ing at the time of the Neanderthal fossil; and (2) the ratio of early to late Ne is roughly 5 or 6.In addition: (3) Neanderthals had very low heterozygosity, as discussed below; and (4) FST invertebrate species is usually less than 0.5 (Sexton et al., 2014). Having shown that all of theseobservations can be explained by population structure, I then ask whether the pattern in Fig. 1can be explained as an artifact of sampling or as a real decline in the number of Neanderthals.
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Figure 2 – Time path of Ne in models with extinction, assuming that two genes are sam-pled from the same deme and that the generation time is 29 y. The horizontal gray lineshows the metapopulation size, Nd .
To constrain the models, let us begin with heterozygosity. Mafessoni et al. (2020, table S8.2)list values between 1.5 × 10−4 and 2 × 10−4 for four archaic genomes. I take the upper endof this range as representative of Neanderthal heterozygosity. I also assume a mutation rate of

1.4 × 10−8 per nucleotide site per generation. If local demes never went extinct (i.e., if X = 0),we could plug these assumptions into Eqn. 4 and find that the sum of effective sizes of Nean-derthal subpopulations was only about 3600. This value seems implausibly low for a populationas widespread as Neanderthals, so I will assume that X equals the migration rate,M . This valueis large enough to roughly double the implied size of the metapopulation. Nonetheless, it is stilla modest rate of extinction, as discussed below. With these assumptions, one can set HW equalto observed heterozygosity and solve for d , the number of demes, as a function of deme size, N .For any choice of N and d , we can make graphs like those in Fig. 2. These graphs (and manyothers not shown) all exhibit declines in Ne , which do not reflect any real decline in the numberof individuals. Instead, they are the effect of sampling two haploid genomes from a single demewithin a structured population. The rate of decline depends onM , and within each graph we willbe interested in the value ofM that most closely matches the 20-ky decline seen in Neanderthaldata (Fig. 1). This suggestsM = 6 for the island model andM = 20 for the stepping-stone model.These choices generate declines in Ne over the right interval. These declines also have roughlythe right magnitude: Ne(∞)/Ne(0) ≈ 7 for the island model and 6 for the circular stepping-stone model. Finally, they imply reasonable FST values: 0.11 for the island model and 0.08 forthe circular stepping-stone model.Let us re-express the inferred rates of migration and extinction in terms that are easier tointerpret. For the island model, M = 6 means that each deme receives M/4 = 1.5 immigrantsper generation. Because N = 600 in these models, X = 6 means that the extinction rate is
X/4N = 1/400 per deme per generation and that the mean interval between extinction eventsis 400 generations. For the circular stepping-stone model, the corresponding values are 5 immi-grants per deme per generation and 120 generations between extinction events. These are mod-est rates of extinction, and the true rate may have been larger. If so, the Neanderthal metapop-ulation would have been larger than the value implied here. It would have been larger still iflocal groups experienced frequent bottlenecks, perhaps associated with recolonization events.Such bottlenecks would make effective deme size, N , smaller than census size. Consequently,the census size of the metapopulation would be larger than Nd .There are many other choices of parameter values that also fit the data. For example, Fig. 3looks at two versions of the island model, one with no extinction (X = 0) and the other witha high rate (X = 10M ). Both fit the data best if we assumue that M = 6, but the two modelshave drastically different implications for the total size, Nd , of the metapopulation: that size is3600 if we assume no extinction but 33,000 if we assume a high rate of extinction. Even with an
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Figure 3 – Island model with low (X = 0) and high (X = 10M ) rates of extinction. For
M = 6, FST is 0.10 on the left and 0.12 on the right. Ne(∞)/Ne(0) is 6.7 on the left and7.4 on the right. The sum, Nd , of effective deme sizes is 3600 on the left and 33,000 onthe right. The horizontal line in the left panel is the sum, Nd , of effective deme sizes.

Figure 4 – PSMC estimates of Ne based on simulated data. Simulations used Msprime(Baumdicker et al., 2021; Kelleher et al., 2016) and assumed 11 demes of size 600.Genomes comprised 10 pairs of chromosomes, each 107 base pairs in length. Rates ofmigration and extinction (M = X = 6 for island model and M = X = 20 for steppingstone) were chosen using Fig. 2 to produce a decline in Ne over about 20 ky.

extinction rate this high, the interval between extinction events is still 40 generations—slightlymore than 1000 y—and does not seem implausible. Thus, the low Neanderthal heterozygositydoes not imply that their global population was small.There is nothing special about the island and circular stepping-stonemodels. These representvery different assumptions about isolation by distance—one in which it is absent and another inwhich it takes an extreme form. Because both models are consistent with the data, it seemslikely that others would also work. The present results tell us only that the Neanderthal data areconsistent with geographic population structure.What other mechanisms might explain the data?We should worry first about statistical error.PSMC is notoriously unreliable (Li and Durbin, 2011) over the short time scale graphed in Fig. 1.Perhaps the data are a statistical fluke. This hypothesis is hard to reconcile with the consistencyof the three Neanderthal curves. On the other hand, consistency is to be expected under thehypothesis of population structure. Each panel of Fig. 4 shows three simulated replicates, whichare quite similar to each other, and also to the curves in Fig. 1.On the other hand, perhaps the pattern in Fig. 1 reflects a real decline in Neanderthal popula-tion size. The problem with this hypothesis is that the three Neanderthal fossils lived at differenttimes. The youngest (Vindija) lived 60 ky after the oldest (Altai) (Mafessoni et al., 2020, p. 1532).
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If these PSMC curves were recording the same decline in the size of the Neanderthal metapopu-lation, the declines should not appear simultaneous in Fig. 1; they should be separated by 60 ky.This is obviously not the case, so it seems unlikely that the observed pattern reflects a real de-cline in the Neanderthal metapopulation. The synchrony of these curves is not a problem underthe hypothesis of population structure. That hypothesis implies that Ne will increase gradually inbackwards time, beginning at the date of each fossil. The similar rates of increase suggest thatsimilar rates of gene flow prevailed for all three Neanderthal fossils.
4. Discussion

Other authors (Chikhi et al., 2018; Mazet et al., 2016; Mazet and Noûs, 2023; Rodríguezet al., 2018) have emphasized that a decline in effective population size, Ne , may result fromgeographic population structure, even without any change in census population size or in therate or pattern of gene flow. Figs. 2 and 3 show how this works in the context of two theoreticalmodels. The declines in Ne reflect the fact that we have sampled two genes from a single deme.In the recent past, it is likely that the two ancestors of these genes are still neighbors. Coalescenthazard is therefore high andNe is small. As wemove farther into the past, ancestors are less likelyto be neighbors, coalescent hazard declines, and Ne increases toward an asymptote.The position of this asymptote depends on rates of migration and extinction. If demes nevergo extinct, the asymptote, Ne(∞), is even larger than Nd , the size of the metapopulation. (Seethe horizontal gray line in the left panel of Fig. 3.) Why should the asymptote be so large? Amongall possible histories of a pair of genes, the subset that has not yet coalesced at time t will beenriched with histories in which the two lineages haven’t spent much time together in the samedeme. This implies that when t is large, the two lineages are less likely to be in the same demethan are two genes drawn at random from the population as a whole. Consequently, coalescenthazard is less than 1/2Nd , and Ne(∞) > Nd . This excess is pronounced if the migration rate,M ,is small but disappears asM grows large. On the other hand, if demes do occasionally go extinct,the asymptote is smaller, and Ne(∞) may be smaller that Nd , as seen in Fig. 2. In this figure, theextinction rates are such that demes persist for hundreds of generations. In the right panel ofFig. 3, the extinction rate is higher so that demes persist only for 40 generations. In such cases,the metapopulation is dramatically larger than the Ne that we estimate.It seems likely that population structure underlies the apparent decline in Neanderthal Neshown in Fig. 1. Alternative explanations are unable to account for the consistency of the threeNeanderthal curves or for the fact that they all begin at the same point on the horizontal axis.This conclusion supports that of Mafessoni et al. (2020), who use runs of homozygosity to arguethat the Neanderthal population was geographically structured.Although the Denisovan curve in Fig. 1 does not exhibit the decline characteristic of popula-tion structure, I would not argue that this population lacked structure. In spite of the consistencyof the curves in Fig. 4, such simulations do generate aberrant curves reasonably often.We shouldnot read too much into a single empirical curve. Furthermore, there is convincing evidence thatthe Denisovan population was structured (Jacobs et al., 2019).
5. Conclusions

PSMC estimates of Neanderthal population size exhibit a consistent roughly 5-fold declineduring the most recent 20 kyr. The consistency of these estimates is surprising, both becausePSMC is thought to be unreliable on this time scale and also because we are measuring timebackwards from three fossils that lived at very different times. The observed pattern does notseem to be an artifact of sampling, nor is it likely to reflect a real decline in the size of the Nean-derthal metapopulation. Instead, it supports a hypothesis of geographic population structure.This article presents mathematical theory describing the effect of geographic populationstructure and local extinctions on Ne , FST , and heterozygosity. This theory shows that if ex-tinction rates were such that local Neanderthal populations persisted for only 1000 y or so, theglobal Neanderthal population would have been dramatically larger than its effective size.
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Appendix A. Two models of geographic population structure
This section studies two models of geographic population structure: the finite island modeland the circular stepping stone model. Both assume a metapopulation of d demes, each of ef-fective size N . Time is measured in units of 2N generations. On this time scale, pairs of lineagesin the same deme coalesce at rate 1. If each lineage mutates at rate u per generation, then 2Nuis the rate per 2N generations. When we trace the history of a pair of lineages in continuoustime, we can ignore the possibility that both lineages mutate in the same instant. When muta-tion occurs, one lineage or the other is affected, and this happens at rate θ = 4Nu—twice therate of an individual lineage. Similarly, if m is the rate of migration per lineage per generation,then M = 4Nm is the rate per 2N generations for a pair of lineages. If x is the extinction rateper deme per generation, then X = 4Nx is the rate per 2N generations for a pair of lineages inseparate demes.To explore the two models below, I use Slatkin’s approximation (Slatkin, 1991), which ex-presses heterozygosity or gene diversity in terms of mean coalescence time. This approximationis based on the following idea. If f (t) is the probability density that two genes coalesce at time

t , then they are identical in state with probability
G =

∫ ∞

0
e−θt f (t)dt

where t is time in units of 2N generations, and e−θt is the probability that neither lineage mu-tates in the interval between 0 and t . If θ is small, then e−θt ≈ 1 − θt , and G ≈ 1 − θt̄ , where
t̄ =

∫ ∞
0 tf (t)dt is the mean coalescence time. Under this approximation, heterozygosity withindemes—the probability that two genes sampled from the same deme differ in state—is

(7) HW ≈ θt̄0

where t̄0 is the mean coalescence time for pairs of genes sampled within a single deme. Wright’s
FST , a measure of differentiation among demes, is (Slatkin, 1991, p. 169)
(8) FST ≈ t̄ − t̄0

t̄

where t̄ is the mean coalescence time for two genes drawn from the population as a whole.
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A.1. The finite island model with extinction
In this section, t̄0 represents the expected coalescence time, in units of 2N generations, fora pair of genes sampled from the same deme. For pairs sampled from different demes, the anal-ogous quantity is t̄1. Pairs in the same deme coalesce at rate 1 and migrate at rateM per unit of

2N generations. Extinction can be ignored for pairs in the same deme. Thus,
t̄0 =

1

1 +M
+

M

1 +M
t̄1

The first term on the right is the expected time until an event of either type. If that event isa coalescence, then we are done: there are no further contributions to t̄0. But with probability
M/(1 + M), the event is a migration, the two lineages are now in separate demes, and theirexpected coalescence time becomes t̄1.Pairs in different demes cannot coalesce but are affected bymigration (rateM ) and extinction(rate X ). When either of these events occur, the two lineages end up in the same deme withprobability 1/(d − 1). Thus, two separated lineages join each other in the same deme at rate
(M + X )/(d − 1) and

t̄1 =
d − 1

M + X
+ t̄0

Here, the first term is the expected time until a pair in different demes moves into the samedeme. Substitute the formula for t̄0 into this expression and solve for t̄1. The result is
t̄1 =

d − 1

M + X
+

Md + X

M + X

Comparison of the two expressions for t̄1 shows that t̄0 = (Md +X )/(M +X ). Substituting thisinto (7) gives Eqn. 4. The mean coalescence time of two genes drawn at random from the entiremetapopulation is
t̄ = t̄0/d + (1 − 1/d)t̄1 =

Md + X

M + X
+

(d − 1)2

d(M + X )

Substituting into (8) gives Eqn. 5.
A.2. Circular stepping-stone model with extinction

If two lineages are i steps apart around the circle of demes, (d − i)i/(M +X ) is the expectedtime, in units of 2N generations, until they are in the same deme (Slatkin, 1991, p. 170). Thus,the mean coalescence time for a pair of lineages i steps apart is
(9) t̄i = t̄0 +

(d − i)i

M + X

A pair in the same deme is not affected by extinction but can coalesce. Their expected coales-cence time is
t̄0 =

1

1 +M
+

M

1 +M
t̄1

=
1

1 +M
+

M

1 +M

(
t̄0 +

d − 1

M + X

)

Solving for t̄0 gives
t̄0 =

Md + X

M + Xjust as in the island model.To calculate FST , we need t̄ = E [t̄i ], which depends on E [(d − i)i ], where i is the distancebetween two genes drawn at random from the entire population. Suppose the first gene is fromdeme 0. The second is equally likely to come from demes 1, 2, ... , d , where the demes are num-bered clockwise around the circle, and deme d is the same as deme 0. If i represents the “clock-wise distance” between demes, then the shortest distance fromdeme i to deme 0 is theminimumof i and d − i . Because we are averaging (d − i)i , it doesn’t matter whether we interpret i as
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the clockwise distance or the shortest distance: (d − i)i will be the same in either case. Forconvenience, I take i as the clockwise distance. The expectation of (d − i)i is
E [(d − i)i ] =

1

d

d∑

i=1

(d − i)i

=
d∑

i=1

i − 1

d

d∑

i=1

i2

=
d(d + 1)

2
− (d + 1)(2d + 1)

6

= (d2 − 1)/6

Substitute this for (d − i)i in Eqn. 9 to obtain
t̄ = t̄0 +

d2 − 1

6(M + X )

Now Eqn. 8 gives
FST ≈ (d2 − 1)/6

Md + X + (d2 − 1)/6which is equivalent to Eqn. 6 above.
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