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Abstract

We investigate how elimination of variables can affect the asymptotic dynamics and
phenotype control of Boolean networks. In particular, we look at the impact on minimal
trap spaces, and identify a structural condition that guarantees their preservation. We
examine the possible effects of variable elimination under three of the most popular ap-
proaches to control (attractor-based control, value propagation and control of minimal
trap spaces), and under different update schemes (synchronous, asynchronous, general-
ized asynchronous). We provide some insights on the application of reduction, and an
ample inventory of examples and counterexamples.
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2 Elisa Tonello & Loic Paulevé

1. Introduction

In the investigation of complex systems where quantitative data is scarce, one can resort
to tracking only the absence or presence of the interacting entities. Their interplay can be ab-
stracted through logical rules, resulting in the creation of a model usually known as a Boolean
network (Kadelka et al., 2024; Pusnik et al., 2022; Schwab et al., 2020). As models become larger
and more elaborate, reduction techniques are adopted to curb the model complexity (see e.g. Ar-
gyris et al. (2023), Naldi et al. (2009), Veliz-Cuba et al. (2014), and Zafiudo and Albert (2013)).
Among these, variable elimination is quite popular and natural. It consists in the removal of an
intermediate component, and a consequent rewiring of the influence diagram to account for reg-
ulations that were mediated by this component. The effects of such modifications are sometimes
not intuitive, even in discrete dynamics. For instance, while fixed points are always preserved,
the removal of a simple intermediate variable in a linear chain of variables of arbitrary length can
change the number of asynchronous cyclic attractors (Schwieger and Tonello, 2024). Here we
make further investigations on the impact of elimination of variables on objects of interest in
the analysis of Boolean networks. We look specifically at the effects on attractors, minimal trap
spaces, and phenotype control strategies.

Attractors are often the first entities that are identified when building a model, as they should
capture the stable behaviours. The consequences of variable elimination on attractors have been
previously studied mostly in the asynchronous dynamics case (Naldi et al., 2009, 2011; Schwieger
and Tonello, 2024; Veliz-Cuba, 2011), that is, under the update scheme where only one compo-
nent can be updated in each transition. Here we look also at other update choices. The synchro-
nous update requires all changes to happen at the same time and, as we will see, behaves more
poorly than other updates with respect to variable elimination. Besides the synchronous and
asynchronous updates, we consider the general asynchronous dynamics, which allows the simul-
taneous update of any possible subset of the variables that can be updated, and in particular
contains all transitions of both the synchronous and asynchronous dynamics. Even richer than
the general asynchronous dynamics is the most permissive dynamics, which accounts for all pos-
sible behaviours that can be generated by multilevel versions of the Boolean network (Paulevé
et al., 2020).

Minimal trap spaces are interesting because they generally provide good approximations for
attractors (Klarner and Siebert, 2015), and at the same time are not as challenging to compute
for Boolean biological models (Moon et al., 2022; Trinh et al., 2022). Under the most permissive
semantics, attractors and minimal trap spaces coincide (Paulevé et al., 2020). Here we describe
a simple structural property that guarantees preservation of minimal trap spaces (Theorem 3.3).
By “structural” we mean a condition on the interaction graph which does not depend on the
update chosen to generate the dynamics. This particular condition requires that the variable
being eliminated and its targets have no regulators in common. When this condition is satisfied,
we call the variable being eliminated a mediator.

Identification of control strategies is one of the main objectives of logical modelling of bio-
logical systems (Glass and Kauffman, 1973; Plaugher and Murrugarra, 2023; Zafiudo and Albert,
2015). Even in this rather niche context, control can be interpreted and approached in many
ways, e.g., by controlling nodes or edges, considering permanent, temporal or sequential inter-
ventions, etc. (see for instance Biane and Delaplace (2018), Sordo Vieira et al. (2020), and Su and
Pang (2020b)). Here we focus on phenotype control achieved via permanent node interventions.
The objective is to find restrictions on the values of some variables that are able to steer the dy-
namics towards a desired asymptotic behaviour. We further distinguish between three type of
interventions. We consider attractor control strategies (Akutsu et al., 2012; Cifuentes Fontanals
etal., 2020; Cifuentes-Fontanals et al., 2022; Su and Pang, 2020a; Zafiudo and Albert, 2015) that
ensure that all attractors are contained in the desired phenotype; a second type of control strat-
egy, that guarantees that the minimal trap spaces are in the target phenotype (Paulevé, 2023;
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Riva et al., 2023); and a stronger class of interventions, which we call strategies by value propaga-
tion, requiring that the fixed values propagate in the network until the phenotype variables are
fixed (Samaga et al., 2010). Control strategies belonging to the latter category are probably the
most popular, for the following reasons: they are control strategies also under the other two def-
initions, they apply independently of the update scheme, and can be identified quite efficiently
for example with Answer Set Programming (Kaminski et al., 2013).

After providing the formalization and notation required to address reduction and control in
Boolean networks (Section 2), we make preliminary observations about the effect of elimination
of network components on attractors and minimal trap spaces (Section 3), instrumental to the
discussions about control in the last section (Section 4). We organise our investigations around
two main questions: if a control strategy exists for a given phenotype in a Boolean network,
is a control strategy guaranteed to exist for a reduced version of the Boolean network? And
if a reduced Boolean network can be controlled for a given phenotype, can we find a control
intervention for the original network? We consider the questions for all the aforementioned dy-
namics and control types, for eliminated components that are mediators and in the general case.
We find that control strategies by value propagation are more robust to component elimination:
the first question can be answered always positively (Theorem 4.6), and the second only partially
(Examples 4.7 and 4.16 and Theorems 4.8 and 4.9). Removal of mediator nodes works well for
control of minimal trap spaces (Theorem 4.3), but is not a guarantee for good behaviour in the
general attractor case, as clarified by many counterexamples.

2. Definitions and background

WesetB = {0, 1}. Boolean networks on n components (or variables) are maps from B" to itself,
used to model, for instance, the qualitative behaviour of interacting biological species (Pusnik
et al., 2022; Schwab et al., 2020). B" is called the state space of networks on n components. We
write [n] = {1, ..., n} for brevity. The neighbour state of a state x € B” in direction i € [n] is
denoted by x'. Given a set | C [n] and a state x € B", x; € B/ denotes the projection of x on
the components in /. For a set A C B", A, denotes the set of states x; with x € A, and 7(A) is
the image of A under f (f(A) = {f(x) | x € A}). Given a subset A of B"~!, we write A* for the
largest subset of B” that satisfies Afnfl] = Afthatis, A* = {x € B"|xp—1) € A}).

Consider a subset of / of [n] andamap c: | — {0, 1}. The subset of B” consisting of all states
x such that x; = ¢(i) for all i € I is called a subspace of B". Variables in / are said to be fixed
in the subspace, while the other components are free. It is convenient to represent a subspace
as an element of " = {0, 1, x}", where « indicates that a component is free. For example, the
subspace S = 01 € ¥3is the set {001, 101}, the first component is free (S; = ), and the second
and third are fixed (S, = 0, S3 = 1). Note that, if S C B"! is a subspace, then S* is also a
subspace.

Dependencies between components as defined by their associated Boolean functions are
captured by the so-called interaction or influence graph. This is a directed signed graph with set of
nodes being the components [n], and admitting an edge from node i to node j of signs € {—1,1}
if, for some state x € B", f;(x) # f;,(x/), and s = (f;(x') — £(x))(x! — x;). In this case we say that
jis regulated by /. In case of j = i, j is said to be autoregulated.

In the following, the examples of Boolean networks are specified with propositional logic,
using V for or, while the symbol for and is omitted.

2.1. Update schemes

We define dynamics of a Boolean network f on n components as directed graphs with set
of nodes being the state space B". The edges, called transitions, are defined depending on the
update scheme as follows.
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Figure 1 - (a) Interaction graph and state transition graphs of a Boolean network in 3
components. States in boxes are representative states w.r.t. the component n = 3, which
is not autoregulated. (b) Interaction graph and state transition graphs of the Boolean net-
work obtained from the network in (a) by elimination of component 3. AD(p(f)), SD(p(f))
and GD(p(f)) coincide. The transitions 110 — 010 and 110 — 011 are lost in the reduc-
tion.

e In the synchronous dynamics (SD(f)) each state that is not fixed has exactly one succes-
sor, defined by its image under f, that is, the set of transitions is given by {x — y | x #
v,y =f(x)}

e In the asynchronous dynamics (AD(f)) only transitions that involve the update of one
component are considered: the set of transitionsis {x — y | Ji € [n] : y = X', y; = fi(x)}.

e The general asynchronous dynamics (GD(f)) allows for the update of any combination
of possible components, and has therefore edge set {x — y | x £ y,Vi € [n] : yi # x; =
yi = fi(x)}.

Observe that all transitions in AD(f) and SD(f) are transitions in GD(f).

Other definitions of dynamics are possible. For instance, the most permissive dynamics coin-
tains all transitions that are achievable in a multivalued refinement of f (Paulevé et al., 2020), and
contains in particular all transitions that are in GD(f). Although we do not consider the most per-
missive semantics explicitly here, the results about control of minimal trap spaces have a bearing
on most permissive dynamics, because minimal trap spaces and attractors coincide in this case.

In the examples, we draw the transitions in asynchronous dynamics as normal arrows, while
the transitions found in synchronous dynamics are dashed (if not drawn as asynchronous), and
transitions in general asynchronous are dotted (if not drawn as asynchronous or synchronous).

Example 2.1. Fig. 1 (a) displays the interaction graph and the synchronous, asynchronous and
general asynchronous state transition graphs of a Boolean network in 3 components. For in-
stance, the state 100 has one successor (110) in all three dynamics, whereas the state 110 has
one successor (011) in the synchronous, two successors (010 and 111) in the asynchronous, and
three successors in the general asynchronous dynamics.

2.2. Trap sets, trap spaces, attractors

Given a state transition graph, a trap set is a subset of the state space that admits no outgoing
transitions.

A trap set that is minimal with respect to inclusion is called an attractor. Attractors that con-
sist of a single state are called fixed points or steady states. Other attractors are called cyclic or
complex.

A subspace that is also a trap set is called a trap space, In other words, a subspace T € X" is
atrap spaceif f(T) C T,thatis, if f;(T) = T; forall i € [n] such that T; € {0,1}. A trap space T
is minimal if, given T’ trap space, T C T implies 7" = T.

Fixed points and trap spaces are independent of the update scheme. Minimal trap spaces
are objects of particular interest. By definition, each minimal trap space contains at least one
attractor. On the other hand, empirical studies of Boolean models of biological networks found
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Figure 2 - Schematics summarizing the idea behind elimination of a non-autoregulated
component (component n in the figure). (a) Effect on the update functions: all instances
of x,, are substituted with the update function f, of n. (b) Effect on the interaction graph:
paths of length two that are mediated by n become direct interactions or can disappear
with the reduction. (c) Effect on the asynchronous dynamics: o(x) is the representative
state of (x, x,). Only transitions that start from a representative state are guaranteed to
be preserved.

that minimal trap spaces are generally in one-to-one correspondence with attractors of asyn-
chronous dynamics (Klarner and Siebert, 2015). There are also classes of networks for which
the one-to-one correspondence between attractors and minimal trap spaces is guaranteed by
structural properties of the interaction graph (Naldi et al., 2023). Moreover, minimal trap spaces
are exactly the attractors in most permissive dynamics.

Example 2.2. The Boolean network in Fig. 1a has four trap spaces: xxx, 0x%, 00%, 000. There is
only one minimal trap space, 000, which is a fixed point, and there are no cyclic attractors in any
dynamics.

The network in Fig. 1b has a fixed point (00) and a cyclic attractor ({10, 11}). They coincide
with the minimal trap spaces.

2.3. Reduction: elimination of components

We recall the definition for elimination of non-autoregulated components (Naldi et al., 2009,
2011; Veliz-Cuba, 2011). For convenience and without loss of generality, we consider the elimi-
nation of the last component n.

Since n is not autoregulated, for each x € B"~! the equality f,(x, 0) = f,(x, 1) holds. We call
the state (x, f,(x, 0)) the representative state of {(x,0), (x, 1)} for the elimination of component
n. It will also be convenient to refer to (x, f,(x, 0)) as the representative state of x.

The reduction p(f): B"~! — B"~! of the Boolean network f by elimination of component n
is then defined, for each component i # n, as f; applied to the representative states: for each
x e B,

p(F)i(x) = filx, fo(x,0)) = Filx, fulx, 1)).

Equivalently, denoting o: B"~! — B” the map that associates to each state x the representa-

tive state of x, we can write

(1) p(f)i=fioo.
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Intuitively, when the update function for component n does not depend on nitself, one can re-
place all instances of x,, in the update functions of other components with 7, obtaining a Boolean
network that does not involve n (Fig. 2a). The relationships between the resulting dynamics and
interaction graphs and the original dynamics and interaction graphs have been studied in par-
ticular in (Naldi et al., 2009, 2011; Veliz-Cuba, 2011). In terms of regulatory structure, while
interactions can disappear with the reduction (Fig. 2b) the existence of a path of sign s in the
interaction graph of p(f) implies the existence of a path of the same sign in the interaction graph
of f. Concerning the dynamics, one can easily derive the following:

(1) For all x € B", there is a transition from o(x)" to o(x) in AD(f) and GD(f) (but not
necessarily in SD(f)).
(2) For J C V\ {n} and x € B", for any dynamics D, there exists a transition in D(p(f)) from

x to X7 if and only if there is a transition in D(f) from o(x) to o(x)".
(3) As a consequence, x € B" is a fixed point for p(f) if and only if o(x) is a fixed point for f,

and there is a one-to-one mapping between the fixed points of f and the fixed points of

p(f).
Looking at observation (2) we can state that a transition that starts at a non-representative state
is not represented in the reduced dynamics, unless a parallel transition exists that starts at its
corresponding representative state (Fig. 2c). Note how point (1) creates a difference between
the synchronous dynamics and the other dynamics. This distinction is at the source of many
limitations that arise in the application of elimination of components to synchronous dynamics.
We will later take a closer look at what happens to trap spaces (Section 3.1), and discuss cyclic
attractors (Section 3.2).

Example 2.3. In Fig. 1a, the representative states for the elimination of component 3 are in
boxes. For instance, since f3(110) = 1, the representative state of 110 and 111 is the state 111.
The Boolean network resulting from the elimination is shown in Fig. 1b. We can observe that
the transition from 111 to 101 results in a transition from 11 to 10 in the reduction (111 is a
representative state), while the transitions from 110 to 010 or to 011 are not preserved by the
reduction, since no similar transitions exist with source the representative state 111 of 110.

2.4. Control strategies

In this work, a control strategy to be applied on a Boolean network f: B" — B" is identified
with a subspace of B". Informally, the application of a control strategy consists in fixing the value
of a subset of the components.

The result of the application of control strategy S to f will be denoted by C(f,S), and is
defined as another Boolean network from B” to itself.

For each component i, we set:

cs1- |

f;, ifiisfreein S,
S;, otherwise.

Remark 2.4. The interaction graph of C(f, S) is a subgraph of the interaction graph of f.

Example 2.5. For the network in Fig. 3a, applying the control defined by S = %1 means changing
the update function f(x1, x2) = x3 to C(f, S)2(x1, x2) = 1 (Fig. 3b).

One can observe that the elimination of a component and the application of a control strategy
commute, provided that the eliminated component is not fixed in the control strategy. This is
stated by the following proposition.

Proposition 2.6. Suppose that nis free in S. Then C(p(f), S;5—1)) = p(C(f, S))

Proof. If iis fixed in S, then both C(p(f), S,—1))i and p(C(f, S)); equal S;. If iis free in S, then its
update function is not changed by the application of the control strategy, thus C(p(f), Sj,—1))i =
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01—11 S 01— 11 S
00 10 00 10 0 1 0—1
(@) f(x1, %) = (xaVx2, x1) (b) C(f,S)(x1, %) = (x1Vx2, 1) @ p(A(x)=x1 () p(C(f,S))(x)=1

Figure 3 - Example illustrating that, if S, # x, then C(p(f), Sj,—1)) and p(C(f, S)) can
differ.

p(f)iand C(F, S); = . Hence, C(F, S), = f,,and therefore p(C(f, S))i = p(f)i = C(p(F), Spn1))i-
0

Now, consider the removal of a component that is fixed in S. The application of the control
S to f and the elimination of the component, when performed in a different order, can result in
a different Boolean network.

For example, the restriction of f(xi, x2) = (x1Vx2, x1) to S = «1 gives C(f,S) = (x1Vx2, 1)
and p(C(f, S))(x1) = 1, whereas p(f)(x1) = x1 = C(p(f), Sj1) = *)(x1) (see Fig. 3).

In light of this latter remark, we restrict the analysis of control strategy behaviour under reduction
to the removal of components that are free in the control strategy:

(A) Sy = *.

2.4.1. Phenotype control. The objective of control is typically the redirection of the asymptotic
behaviour towards a phenotype of interest. For the purpose of this work, a phenotype is defined
as a subspace, i.e,, it is identified by fixing some components to specific values.

We can think of components that are fixed in a phenotype as readouts of the model; pheno-
types are often defined using output components (components that are not regulators of any
other component). Control strategies instead work on components that can be modified, and
control often focuses on (but is not necessarily limited to) input components, meaning compo-
nents that are not the target of any regulator. Since components that are fixed in phenotypes or
in control strategies fulfill two opposite roles, it is reasonable to limit the control strategies under
consideration to subspaces S that do not fix any component that is fixed in the target phenotype P:

(B) i € [n], P; € {O, 1} = 5 = *.

Assumption B gives a restriction on the possible control strategies that can be investigated for
a given phenotype, adding to assumption A, which imposes that components being eliminated
must be free in the control strategy. Note that we do not make any restriction on P, that is, we
do not assume that the eliminated component is free in the phenotype. In fact, we will analyse
the two cases separately (n free in P and n fixed in P). In both of these cases, as per assumption
A, nis not allowed to be targeted by the control strategy.

We distinguish between three types of phenotype control here (see Fig. 5). The first looks
at ensuring that all attractors are in the desired phenotype, and depends on the dynamics of
interest.

Fix a Boolean network f on n variables and a phenotype P € X".

Definition 2.7. (Phenotype control for attractors) A subspace S is an attractor-control strategy for
(f, P) under dynamics D if all the attractors of the dynamics D(C(f, S)) are contained in P.

A different approach focuses on controlling minimal trap spaces only, and is therefore inde-
pendent of the dynamics.

Definition 2.8. (Phenotype control for minimal trap spaces) A subspace S is an MTS-control strat-
egy for (f, P) if all the minimal trap spaces of C(f, S) are contained in P.
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Figure 4 - S = B2 is an attractor-control strategy for P = 0% for an asynchro-

nous dynamics (case (a)), for a synchronous dynamics (case (b)). On the other hand,
S is not an MTS-control strategy. (c): S = B3 is an MTS-control strategy for P =
O+, since the unique minimal trap space is the fixed point 000. S is not an attractor-
control strategy in any of the three dynamics, given the existence of the attractor
{001,010, 011, 100, 101, 110}.

Control of minimal trap spaces is neither strictly stronger nor strictly weaker than attractor
control, as illustrated by the following examples. In figures, the gray boxes cover states belonging
to the target phenotype.

Example 2.9. (Attractor-control strategy that is not an MTS-control strategy) Consider the asyn-
chronous dynamics for the Boolean network f(x1, x2, x3) = (x2x3, x3X2, x2Vx3) (Fig. 4a). Take
P = 0xx. Since the unique attractor of AD(f) ({000,001, 011}) is contained in P, S = *k* is
an attractor-control strategy for (f, P). However, f admits only one trap space, the full state
space. Hence, S is not an MTS-control strategy for (f, P). Similarly, S = *x* is an attractor-
control strategy for the synchronous dynamics of f(xi, x2, x3) = (x2x3, x3, X3), with P = 0%
(Fig. 4b), S = x*xx is an attractor-control strategy for the general asynchronous dynamics of
f(Xl, X2, X3, X4) = (X2X3X4, X4(X2\/)_<1)_(3), )_<1(X2X3\/)_<2)_<4), X3)_<1) and the phenotype P = O (graph
not shown).

Example 2.10. Since attractors can exist outside of minimal trap spaces, MTS-control strategies
are not necessarily attractor-control strategies. An example of such situation is given in Fig. 4c.

It should be noted that there are situations where MTS-control strategies are guaranteed
to be also attractor-control strategies. This is the case for instance for asynchronous dynamics
of networks that admit a linear cut (Naldi et al., 2023), for which all asynchronous attractors
are contained in minimal trap spaces. Control of minimal trap spaces also translates to attractor
control for most permissive dynamics (Paulevé et al., 2020).

To discuss a third phenotype control scenario, we need an additional definition.

We call propagation (or percolation) function for f the map ®;: ¥" — Y. " that associates to
each subspace S € X" the minimal subspace, under inclusion, that contains f(S).

Note that, if S € X" is a trap space, ®¢(S) is also a trap space, and f(S) C S. Therefore, in
this case there exists k < n such that ®%(S) = ®k/(S) for all i € N. We write ¢(f) = ®2(B") for
simplicity.

Definition 2.11. (Phenotype control by value propagation) A subspace S is a control strategy by
(value) propagation for (f, P) if ¢(C(f, S)) is contained in P.

S is a control strategy by propagation if fixing the components as defined by S induces other
components to get fixed under f and so forth, until all the components fixed in the phenotype P
are fixed to their value in P. Clearly all minimal trap spaces and all attractors of f, in any dynamics,
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attractor
/ control
control by 212

value propagation \ 2.9 2.10

212 \ control of
minimal trap spaces

Figure 5 - Relationship between the three different approaches to phenotype control
studied in this paper. The black double-lined arrows indicate total inclusion of pheno-
type control: any control by value propagation is an attractor-control and MTS-control
strategy. Gray double-lined arrows with a slash indicate that the relationship is not al-
ways true. A reference to a counterexample is provided.

are contained in ¢(f). As a consequence, a control strategy by propagation is an attractor-control
strategy in any dynamics, and an MTS-control strategy. The converse is not true.

Example 2.12. The control strategies given in Example 2.9 are attractor-control strategies but
not control strategies by value propagation. For the example in Fig. 4c, «x% is an MTS-control
strategy and not a control strategy by value propagation. For the Boolean network in Fig. 1 (a),
the full space S = x*x is an attractor-control strategy under all dynamics and an MTS-control
strategy for (f, P) with P = 0%, but not a control strategy by value propagation.

Control strategies by value propagation have the desirable property of working indepen-
dently of the dynamics considered, as happens for MTS-control strategies. Control strategies
by value propagation can be thought of as particularly “robust” since they allow control of all
attractors in all updates.

3. Consequences of reduction on asymptotic dynamics

It is well known that elimination of components affects the asymptotic dynamics of Boolean
networks. The map described in Fig. 1 shows an example of reduction having an impact on the
number of minimal trap spaces and the number of attractors in all update modes. In this sec-
tion we first consider the effect of component elimination on minimal trap spaces, and identify a
structural condition for their preservation: elimination of mediator components, i.e., components
having regulators distinct from the regulators of their targets. Then we clarify some differences
and commonalities on the effects of reduction on the asymptotic behaviour under different up-
date schemes.

3.1. Minimal trap spaces
We first list some general observations about trap spaces and elimination of components.

Proposition 3.1. Suppose that T ¢ X" is a trap space for f. Then:
(i) Tin—q) is a trap space for p(f).
(i) if T is a minimal trap space and T, € {0, 1}, then Tip—1jisa minimal trap space.
(iii) if T is a minimal trap space and T; € {0, 1} for all targets i of n, then Ty,_y is a minimal trap
space.

Proof. (i) For all x € Tin—1y and forall i # n, if T;isin {0, 1}, then by Eq. (1), since o(x) isin T, we
have p()i(x) = fi(o(x)) = T

(ii) Tj,—q) is a trap space by the first point. Suppose that 7' C Tj,_y; is a trap space. Take
i # nsuch that T/ is in {0, 1}, we want to show that T; = T/. For any state x € T we have
fi(x) = f(Xin-1), Tn) = F(X(a—1), fa(x)) = p(F)i(Xn-17) = T

(iii) Suppose that T" C Tj,_y; is a trap space. Take i # n such that T} isin {0, 1}, we want to
show that T; = T/. For any state x € T:
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e if iis not atarget of n, then f;(x) = fi(x"), therefore fi(x) = fi(o(x(n—1])) = P(F)i(X[(n—1]) =
T/

e if i is a target of n, then, since T; isin {0, 1} and representative states of states in T are
in T, we have T,' = f,(X) = f,'(U(X[,,,ll)) = ,O(f),'(X[nfl]) = Ti/'

O

For each minimal trap space T of f, the reduction p(f) admits at least one minimal trap
space contained in Tp,_y). The reduced network can also admit “new” trap spaces outside of
projections of minimal trap spaces of f. We introduce some terminology to relate the set of
minimal trap spaces of a network to the set of minimal trap spaces of its reduction.

Definition 3.2. The minimal trap spaces of f are strictly preserved by the reduction if, for each
minimal trap space T’ of p(f) there exists a minimal trap space T of f such that T’ = Tin-1-

The form of preservation introduced by the definition is rather strong. If the minimal trap
spaces are strictly preserved by the reduction, it is easy to see that, given T minimal trap space
for f, Tj,—1) is @ minimal trap space for p(f). Therefore the minimal trap spaces of f and p(f) are
in one-to-one correspondence.

The following result gives a sufficient condition for the preservation of minimal trap spaces.

Theorem 3.3. Suppose that no regulator of n regulates a target of n. Then the minimal trap spaces
of f are strictly preserved by the elimination of n.

Proof. Consider T’ minimal trap space for p(f). Suppose that there is no minimal trap space T
for f such that T" = Tj,_1). We show that there exists a regulator j of n that regulates a target /
of n.

Write T for the smallest trap space for f that satisfies 7' C Tin-1-

If T" = Tj,—1, then, by hypothesis, T is not a minimal trap space. That s, T contains a smaller
trap space T”. By definition of T, T[’,’1_1] does not contain T[’n_l]. By Proposition 3.1 T[’,’1_1] is
therefore a trap space for p(f) strictly contained in T’, in contradiction with the minimality of
T'.Hence T' # Tj,_y).

Now consider the subspace S € X" that satisfies S; = T for i # nand S, = T,,.

Suppose that T, isin {0,1}. Then, since S is contained in T, for any x € S we have f,(x) =
Sn = Tn. Therefore for i fixed in T" we have fi(x) = fi(x(p—1], Tn) = p(f)i(x(n—1]), and since x(,_q
isin T' we find fi(x) = T; = S;. Therefore S is a trap space that satisfies 7" C S,_y; strictly
contained in T, contradicting the definition of T.

We therefore have that S, = T, = «. S is strictly contained in T, and is not a trap space
by definition of T. Therefore there exists a component / that is fixed in S such that f; is not
constantly equal to S; on S. Since T is a trap space for p(f) and i is fixed in T’, we have that
p(f)i(x[nfl]) = i(U(X[nfl])) = §;forall x € S.

Now suppose that f, is constant on S and equal to a. Consider the subspace S’ = SN{x, = a}
which is contained in S. Then f,(x) = a = x, for all x € §’, and for all j fixed in S we have
fi(x) = fi(xp—1,a) = fi(o(xp-11)) = Sj» and S’ is a trap space strictly contained in T that
satisfies T’ C S[/n—l]’ a contradiction.

We can therefore apply Lemma 3.4 to f and the subspace S. Since i is fixed in S, the lemma
gives the existence of a component j # i that regulates both n and i. O

Lemma 3.4. Suppose that there exists a subspace S with S, = x such that f; and f,, are not constant
on S and p(f); is constant on Sj,_y). Then there exists a component j # n such that S; = x that is a
regulator of both nand i.

Proof. If i does not depend on n on S, then for all x € S we have fi(x) = p(f)i(xjp—1)) and f;
is constant on S, contradicting the hypothesis. Therefore, i is a target of n, and there exists a
state w € S such that w # o(wj,_y)), fi(o(wj,—1))) = aand fi(w) = 1 — a. Set b = w,, so that
fa(w) =1— b.
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Since f, is not constant on S, there exists a state y € S such that £,(y) = b. We can assume
o(y{n—1]) = y, thatis, y, = b. Because y is a representative state, we have fi(y) = a.

Summarizing, we have

Wn =Yn= b,
fa(w) =1—b, fo(y) = b,
filw)=1-a fi(y) = a.

Observe that w and y are different states. Take the closest pair of states w, y in S that satisfy
these conditions.

Take a neighbour z = @/ of w in S closer to y than w (z might coincide with y). Observe that
Zn = Wp = yn = b,and j # n.

If f,(z) = b # fu(w) (in particular, z is representative), then, by the hypothesis on p(f); = fioo,
fi(z) = a # fi(w), and j is a regulator of both i and n.

If instead 7,(z) = 1 — b, then z # y and, since the distance from w to y is minimal, again
we must have fj(z) = a # f;(w), and j is a regulator of i. Now consider v = . If f,(v) = b,
then f;(v) = a, contradicting the minimality of the distance between w and y. Therefore, f,(v) =
1 — b # f,(y) and j regulates n, which concludes. O

The theorem gives a simple structural condition for selecting components to eliminate with-
out affecting the minimal trap spaces. We have shown in particular that, if T is a minimal trap
space for f and T' is a minimal trap space for p(f) strictly contained in Tin—1), then any compo-
nent / that is fixed in 7’ and not in T is regulated by n, as well as by at least one regulator of n
distinct from /.

We say that a component is linear if it has exactly one regulator and one target. A linear me-
diator component is therefore a particularly simple intermediate whose role is just to mediate
the regulation between two components. In investigating mediator components, we considered
whether an added assumption of linearity might guarantee better results in terms of preserva-
tion of control strategies than the more general mediator assumption, and found no additional
benefits. In the examples that investigate the impact of removal of mediator components, we
will consider in particular the elimination of linear mediator components, in order to illustrate
that even a seemingly minor modification of the interaction graph can have consequences on
the controllability of a network.

3.2. Attractors

Contrary to trap spaces, attractors are dependent of the update scheme. The impact of re-
duction on attractors has been studied mostly under asynchronous dynamics (Naldi et al., 2009,
2011; Schwieger and Tonello, 2024; Tonello and Paulevé, 2023; Veliz-Cuba, 2011). Here we
make some observations that highlight some differences between synchronous dynamics and
other updating schemes.

We first observe that trap sets are converted to trap sets in the reduction, except in the
synchronous dynamics.

Lemma 3.5. For D in {AD, GD}, if A C B" is a trap set for D(f), then A,_yj is a trap set for D(p(f)).
Moreover, o(x) isin Afor all x € Aln-1)-

Proof. The last observation follows from the fact that, for x € A(,_y), either o(x) or o(x)"isin A,
and the first is a successor of the second.

Suppose that x € A[,_1; and that D(p(f)) contains a transition from x to y # x. We want to
show that y is in Af,_y). Call / the set of indices such that x'=y.

Foralli € I, p(f)i(x) = fi(o(x)) # xi, therefore there is a transition in D(f) from o(x) to o(x) .
Since the representative state o(x) belongs to A, (x)l is also in A, and (X)fnfl] =xI=yisin
A[n—l]- U
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Example 3.6. Take f(x1, x2, x3) = (x1X3, 0, 0), which reduces to p(f)(x1, x2) = (x1,0) under elim-
ination of x3. The states 000 and 111 both map to 000, hence A = {000, 111} is a trap set for
SD(f).

In SD(p(f)), 00 maps to 00 but 11 maps to 10, hence Aj,_;; = {00, 11} is not a trap set.

Lemma 3.7. For D in {AD, GD}, if Ais an attractor for D(f), then Af,_q) contains at most one attrac-
tor for D(f).

Proof. Take a state x in Aj,_y;. Then either (x)" or o(x) belongs to A. Since in D(f) there is a

transition from o(x)" to o(x), if o(x)" belongs to an attractor, then o(x) belongs to the same
attractor. (]

Consequence of Lemmas 3.5 and 3.7 is that in asynchronous and generalized asynchronous
dynamics the number of attractors cannot decrease with the reduction.

As happens for Lemma 3.5, Lemma 3.7 also fails for the synchronous dynamics, since a state
and its representative are not always linked by a transition.

Example 3.8. Consider the map f(x1, x2) = (x2, x1) and the elimination of the second component.
In the synchronous dynamics, there is no transition from state 01 to its representative 00, and
from state 10 to its representative 11.

The dynamics has three attractors: the steady states 00 and 11, and the cycle A = {01, 10}.
The cycle projects to Aj,_;; = {0,1}, and Afnfl] contains three attractors.

In the previous section we proved that, if the component being eliminated and its targets have
no regulator in common, then to each minimal trap space of the original network corresponds
a unique minimal trap space of the reduced network (Theorem 3.3). In particular, under these
conditions the attractors of the most permissive dynamics of f and the attractors of the most
permissive dynamics of p(f) are in one-to-one correspondence. The same conclusion does not
hold, in general, for attractors in other dynamics. An illustration of such scenario is given in Fig. 7.

4. Phenotype control and reduction

Recall that, for the purpose of this work, a control strategy is a subspace on which the dy-
namics can be restricted to cause some desired effects on the asymptotic dynamics.
Given a Boolean network f and a phenotype P, we ask the following questions:

Question 1. If S is a control strategy for (f, P), is the subspace Sia—1] @ control strategy for
(p(f), Pjn—1))? More generally, does (p(f), P,—1)) admit a control strategy?

Question 2. If there exists is a control strategy for (p(f), Pj,—1j), does (f, P) admit a control
strategy?

We look at answering these questions, in the general case and in the case of removal of a
mediator node. As explained in Section 2.4, we only consider control strategies where compo-
nent n is free (assumption A) and that do not fix any component that is fixed in the phenotype
(assumption B), while n can be free or fixed in the phenotype. The results that we present in this
section are summarized in Table 1. We start by discussing the cases that have a positive answer.

4.1. Control of minimal trap spaces

Proposition 4.1. Consider an MTS-control strategy S for (f, P) with S,, = x. Suppose that for each
minimal trap space T’ of p(C(f, S)) there exists a minimal trap space T of C(f,S) such that T’ C
Tin—1)- Then Sy,_qy is an MTS-control strategy for (p(f), Pp—1))-

Proof. By Proposition 2.6, C(p(f), S;,—17) = p(C(f, S)). Since all minimal trap spaces of C(f,S)
are contained in P, we find that all minimal trap spaces of C(p(f), Sj,—1;) are contained in Py,_y;.
O
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Table 1 - Summary of results about phenotype control and reduction, for (a) n fixed in
the target phenotype P and (b) n free in the target phenotype P. We studied whether
the existence of a control strategy (CS) in the initial (resp. reduced) network always im-
plies the existence of a control strategy in the reduced (resp. initial) network. Control
strategies target attractors in asynchronous (AD), general asynchronous (GD), and syn-
chronous (SD) dynamics, as well as minimal trap spaces (MTS). VP stands for control by
value propagation. In each case, we considered any network, and networks where nis a
mediator node (no regulator of node n regulates a target of n). The checkmark (v') indi-
cates that the property is always true, whereas the cross (X) indicates the existence of
counterexamples.

3 CS for (f, P) = 3 CS for (p(f), Pin—1p)
3 CSfor (p(f), Pn-11) = 3 CS for (f, P)
I - 7 - J / 1;77/3 J
AD
oD xExa10| ¥ Ex- 411 XEx. 412 | XEx. 4.13
MTS v Thm. 4.3
VP v Thm. 4.6
(a) n fixed in P
3CS for (f, P) = 3 CSfor (p(f), Pin—1)
3 CS for (p(f), Pn—1)) = 3 CS for (f, P)
/ ﬁ\;zj J / ﬁ\;zj J
AD XEx. 4.18
GD XEx. 4.15 XEx. 4.18
sp | XX 414 XExZ.18
MTS v Thm. 4.3 XEx. 4.17 v Thm. 4.3
X VP, SD Ex. 4.7,4.16
VP v Thm. 4.6 v AD, GD Thm. 4.8 v Thm. 4.9

(b) n freein P

The proposition gives a possible strategy to answer Question 1 positively. To answer Ques-
tion 2 positively, we need to ensure that minimal trap spaces cannot “shrink” with the reduction,
possibly leading to emergence of some new MTS-control strategies.

Proposition 4.2. Consider a Boolean network f, a phenotype P with P, = x and an MTS-control
strategy S for (p(f), Pj,—1))- Suppose that, for each minimal trap space T for C(f,S*), Tj,_qjisa
minimal trap space for p(C(f, $*)). Then the subspace S* is an MTS-control strategy for (f, P).

Proof. Since n is free in §*, by Proposition 2.6, C(p(f), Siho1 = S) = p(C(f,S*)). Given a min-
imal trap space T for C(f, S*), Tin—1) is @ minimal trap space contained in P[,_y). Therefore, by
definition of S*, T is contained in P. O

Observe that, given any subspace S, by Remark 2.4, if n is a mediator node for f, then n is
a mediator node also for C(f, S). Therefore, combining the results above with Theorem 3.3, we
have the following.

Theorem 4.3. Consider a Boolean network f and a phenotype P. Suppose that no regulator of n
regulates a target of n.
(i) If S is an MTS-control strategy S for (f, P) with S, = %, then Sy,_) is an MTS-control strategy
for (p(f), Pla—11)-
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(@) f(x1, x2, x3) = (x1XeVx1X3Vx2x3X1, X1X3, X1) (b) p(F)(x1, x2) = (x1%2, 0)

Figure 6 - Figure for Example 4.7. Sp) is a control strategy by value propagation, while
Sis not. S is, however, an attractor-control strategy for asynchronous and general asyn-
chronous dynamics and an MTS-control strategy.

(ii) If S is an MTS-control strategy S for (p(f), P,—1)) and P, = %, then the subspace S* is an
MTS-control strategy for (f, P).

4.2. Control by value propagation

Control strategies by value propagation are the strongest. It is not surprising then that some
correspondence can be established between these strategies and strategies of reduced net-
works. We start with a lemma.

Lemma 4.4. If S is a trap space and CD’; (S) is contained in a subspace P for some k > 1, then
d)’p‘(f)(S[,,,l]) is contained in Pp,_qj.

Proof. We show, by induction on k, that ® (S{,-1)) is contained in (®£(S))[,—1-

Forall x € Sj,_q), o(x) isin S, and p(f)(x); = fi(o(x)) for all i # n. Therefore, ®,r)(Sjp—1)) is
contained in (®£(5))[p—1)-

Now suppose that ® (Si,—1)) is contained in (®£(S))[,-1- We show that ¢§(+f§(5[n_1]) is
contained in (®§*1(S))[,_1). Since o(x) is in ®%(S) for all x in &% 11(S[a-11), we have again that

d>’;(f%(5[n_1]) = ) (®X ) (Sn-1])) is contained in (OF(S))n-1)- O
If S is not a trap space, then the lemma might fail, as shown in this simple example.

Example 4.5. Take f(x1,x2) = (x1x2, x1), reducing to p(f)(x1) = x1 by removal of the second
component. Consider S = 0, which is not a trap space. Clearly, ®¢(S) is contained in P = Ox.
We have S,_;; = %, and p(f)(1) = 1 which is not contained in Pj,_;; = 0.

Theorem 4.6. Suppose that S is a control strategy by value propagation for (f, P), and that p(f) is
obtained from f by removing a component that is free in S. Then Sj,_y; is a control strategy by value
propagation for (p(f), Pp—1))-

Proof. We need to show that ¢(C(p(f), Sj,—1))) is contained in Py,_y;. By Proposition 2.6, we have
that ¢(C(p(f), Sjn—1))) = #(p(C(f, S))). By hypothesis, ¢(C(f, S)) € P, meaning ¢’g(f’5)(]B%”) C
P for k sufficiently large. By Lemma 4.4, ¢’p‘(c(f’5))(183”‘1) C Py,_q for k sufficiently large, which
concludes. O

The meaning of the result is that, if we are interested in control by propagation, a component
that is not a candidate target for control can be eliminated, without loss of control strategies.

Example 4.7. The existence of a control strategy by value propagation for (p(f), P,—1)) does
not imply the existence of a control strategy by value propagation for (, P). For example, take
f(Xl, X2, X3) = (Xl)_(z\/Xl)_(3\/X2X3)_(1, X1)_<3,X1), which reduces to p(f)(Xl,Xz) = (Xl)_<2, 0) For P =
O, there are no control strategies by value propagation (S = x1x is an MTS-control strategy
and an attractor-control strategy for asynchronous and general asynchronous dynamics).

On the other hand, *1 is a control strategy by value propagation for (p(f), 0x) (Fig. 6).
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We now consider Question 2 and show that the existence of a control strategy by value
propagation in a reduced network implies the existence of a control strategy for the original
network, which can be computed from the former (Theorem 4.8). As shown by the last example,
the control strategy for the original network needs not be a control strategy by value propagation.
The existence of a control strategy by value propagation for the original network is guaranteed
however if the component being eliminated is a mediator (Theorem 4.9).

Theorem 4.8. If nis free in P and there is a control strategy by value propagation for (p(f), P,_1)),
then there exists an MTS-control strategy and an attractor-control strategy for (f, P) under dynamics
AD and GD.

Proof. By hypothesis, there exists S € £"1 such that ¢(C(p(f), S)) C Pp,_q)- Call I the set of
components fixed in P. Take any state y in an attractor of C(p(f), S). Consider the subspace Y
defined as follows: Y; = % for i € 1 U {n}, Y; = y; otherwise. In particular, for all / fixed in S, Y;
equals S; (so Y{,_y) € S), and if a component j ¢ I 'is fixed in ¢(C(p(f), S)), then it is fixed in
Y to its propagation value ¢(C(p(f), S));. As a consequence, the subspace ¢(C(p(f), Ys—11)) is
contained in ¢(C(p(f), S)), and all the attractors of C(p(f), Y],—y)) are contained in Pp,_y.

By Lemma 3.5 and Proposition 2.6, under dynamics AD and GD, if Ais an attractor of C(f, Y),
there exists at least one attractor A’ for p(C(f, Y)) = C(p(f), Yjp—1]) In Ajp—qj and, forall u € A,
o(u) is in A. Since all attractors of C(p(f), Y[,—1)) are in Pj,_y), this means that all attractors of
C(f,Y) intersect with P.

Consider any attractor A of C(f, Y) and take a state z in AN P. In particular, zisin PNY,
and for each j fixed in ¢(C(p(f), S)), z; equals ¢(C(p(f), S));-

Now take the representative state w of z, which is alsoin PN Y (since P, = Y, = %) and part
of the same attractor. Recall that the only free components in Y are n and the components in /.
Since f(w) = w, (w is representative) and fi(w) = p(f)i(wj,—1)) = Pi = w; forall i € | (wj,_q
isin ¢(C(p(f), S)) € Pp—q)), w is a fixed point. Therefore w and z coincide, all the attractors of
C(f,Y) are fixed points, and all attractors and minimal trap spaces of C(f, Y') are contained in
P. O

Theorem 4.9. Consider a subspace P with P, = . If S is a control strategy by value propagation
for (p(f), Pia—1)) and no regulator of n regulates a target of n, then S* a control strategy by value
propagation for (f, P).

Proof. Set g = C(f,S*). Then by Proposition 2.6 we have p(g) = C(p(f),S). Define ¥ =
P(C(p(f), S)) = d(p(g)) € Pioyyand Z = ¢(C(f, S*)) = ¢(g).

By Lemma 4.4, Y is contained in Z,_;). We assume that the subspace Y is strictly smaller
than Zj,_y; and show that there is a regulator of n that regulates a target of n.

By definition of Z, we have ®,(Z) = Z. On the other hand, ¢ ,.)(Z[,—1]) is strictly contained
in Zj,_1}, meaning that there exists i fixed in Y and not in Z such that p(g); is constant on Z,_
and g; is not constant on Z. This means in particular that Z, is not fixed.

If g, is constant on Z, then ®,(Z) is strictly contained in Z, a contradiction.

Therefore, we can conclude by applying Lemma 3.4 on g and the subspace Z and invoking
Remark 2.4. O

4.3. Counterexamples, elimination of components fixed in the phenotype

In the following we show that Question 1 and Question 2 posed at the start of the section
have negative answers in all the cases not covered by the previous results, for the removal of a
component fixed in the phenotype (Table 1a).

4.3.1. The projection of a control strategy is not a control strategy for the reduction.

Example 4.10. Consider first Question 1. Take the Boolean network in Fig. 1 (a), with target
phenotype P = 0«0. Since the fixed point 000 is the unique attractor of f (in all state transition
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Figure 7 - The network on the left has only one attractor, the fixed point 0100. The
full space is an attractor- and MTS-control strategy for P = 0«x0. The reduced network,
on the right, has an additional attractor in the asynchronous, synchronous and general
asynchronous dynamics, and no attractor-control strategy.

graphs), the full space S = %+« is an attractor-control strategy under all dynamics and an MTS-
control strategy for (f, P).

Now consider the elimination of the third component (Fig. 1 (b)). The target phenotype be-
comes Py = Ox. The state transition graphs of p(f) now admit two minimal trap spaces and two
attractors, and applying the (trivial) control Spp] = *+ does not guarantee that both minimal trap
spaces and both attractors fall in the target phenotype. The other possible subspaces x0 and x1
are also not control strategies.

Observe that S is not a control strategy by value propagation (we saw in Theorem 4.6 that
control strategies by propagation behave well under elimination of components, even when the
component being eliminated is fixed in the target phenotype).

Example 4.11. We can reconsider Question 1 with the additional condition that n is a linear
mediator node.

Take the network f(Xl, X2, X3, X4) = (X3\/X1X2\/)_<1)_<2, X4V X2X1, X3X1 VX1 X2, X3) which reduces to
the network p(f)(x1, x2, x3) = (x3Vx1x2VX1X2, X3VXx2X1, x3X1 VX1 X2) (Fig. 7). All dynamics of f have
only one attractor, the fixed point 0100, while the asynchronous, synchronous and general asyn-
chronous dynamics of p(f) have an additional attractor.

The attractor of f is contained in the subspace P = 0xx0. However, the reduction p(f) does
not admit any attractor-control strategy for 'D[n—l] = Ox*.

On the other hand, both f and p(f) have only one minimal trap space, contained in the pheno-
type: by Theorem 4.3, in the case of removal of a mediator node, the existence of an MTS-control
strategy for f guarantees the existence of an MTS-control strategy in the reduced network.

4.3.2. New control strategies in reduced networks.

Example 4.12. Consider Question 2, and again the Boolean network in Fig. 1. This time take
P = x01. To find a control strategy, we can consider three possible subspaces: xxx, 0xx and
1xx. The first is clearly not a control strategy, since the unique attractor 000 is outside P. The
attractors of the state transition graphs defined by C(f, 0xx) and C(f, 1xx) are also not contained
in P. On the other hand, S = 0x is an attractor-control strategy, an MTS-control strategy and a
control strategy by propagation for (p(f), Pp) = *0).

For a minimal example, we could take the simple network 7 (x1, x2) = (0, 0). Clearly, no control
strategy exists if we consider P = x1. On the other hand, p(f) = 0 and Pj1) = %, so that the full
state space S = « is trivially a control strategy (it is an attractor-control strategy, an MTS-control
strategy and a control strategy by propagation).

Example 4.13. For an example where the component being removed is a linear mediator com-
ponent, consider f(x1, x2, x3) = (x2x3, 0, x1) and P = 0x1 (Fig. 8). Without fixing any component,
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(a) f(x1, x2, x3) = (x2x3, 0, x1) (b) p(f)(x1, %) = (x1x2, 0)

Figure 8 - B? is a control strategy for (p(f), Ppj = 0x) (under all definitions considered
here) and there are no control strategies for (f, P = 0x1).

the reduced network is controlled to Py = 0x; on the other hand, there are no control strategies
for P in the original network.

4.4. Counterexamples, elimination of components not fixed in the phenotype
The examples in this section cover the negative cases in Table 1b.

4.4.1. The projection of a control strategy is not a control strategy for the reduction. If S is an
MTS-control strategy for (f, P), then Sp,_y) is an not necessarily an MTS-control strategy for

(p(f), Pia—1))-

Example 4.14. Take again the Boolean network in Fig. 1, this time with P = 0xx. Clearly, S = %%
is an MTS-control strategy and an attractor-control strategy in all dynamics for (f, P), but there
are no control strategies for (p(f), Py = 0x).

Example 4.15. For the network in Fig. 7 (a), where n = 4 is a linear mediator component, S =
**k* is an attractor-control strategy for P = Oxxx in SD(f), AD(f) and GD(f), as well as an
MTS-control strategy (0100 is the unique attractor).

For the network in Fig. 7 (b) obtained by eliminating the last component, S = s*x is an MTS-
control strategy for Pz = Oxx (as guaranteed by Theorem 4.3), but not an attractor-control
strategy in SD(f), AD(f) or GD(f). One can verify that there are no attractor control strategies

for (p(f), P[3]).

4.4.2. New control strategies in reduced networks. Here we show that, if S is a control strategy
for (p(f), Pjp—1)), then the subspace S* is not necessarily a control strategy for (f, P). The idea
is that an attractor or minimal trap space that in the original network is not fully contained in P
might get reduced to one that is contained in P,_1). We first look at an example in dimension 3.

Example 4.16. Consider the map with dynamics represented in Fig. 9 left, and its reduction after
the elimination of the third component, on the right. Take P = x0x. Then Py = %0, and B2 is
a control strategy by value propagation for (p(f), Ppy). However, B3 is not a control strategy by
value propagation for (f, P), nor an attractor- or MTS-control strategy. The subspaces xx0 and
*%1 also do not define control strategies for (f, P).

Note that Oxx and 1xx are attractor-control strategies for AD(f) and GD(f), as well as MTS-
control strategy for (f, P), in line with Theorem 4.8, despite their union not being a control
strategy. They are not control strategies by value propagation or attractor-control strategies for
SD(f).

We have seen in Theorem 4.8 that the existence of a control strategy by value propagation in
the reduced network guarantees the existence of an attractor-control strategy and MTS-control
strategy for the original network. In the following examples, the reduced network admits an
MTS-control strategy which is also an attractor-control strategy for AD(f) and GD(f); on the
other hand, no control strategy exists for f.
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Figure 9 - The Boolean network on the left reduces to the one on the right by elimina-
tion of the third component. The dotted transitions are part of the asynchronous and
generalized asynchronous dynamics. The dashed transitions are found in the synchro-
nous and in the generalized asynchronous dynamics. All other transitions are common
to all dynamics. x* is a control strategy by value propagation for (p(f), %0), while xxx is
not a control strategy for (f, x0x).

subspace attractors
0110 ——— 1110 0111 +—2> 1111 Jxxx \ {0100, 0101,
-
0110, 1000, 1010} 01l 111
k0 {000}, {111} \ /
Jokx 1 {110}
O {001}, {110} oody 101
+x00 {oo}, {11} ﬂ J
01 {00}, {11} 000 ¢— 100
xlx {000}, {101} / \
0100 —— 1100, _ 0101 ———————— 1101 #*10 {oo} {11}
11 {10} 010 —— 110
(a) (XQ)_<3 V X2X4V X3Xa X2, X1 X3V X1 X4, (b) Subspaces and (C) (Xz)_<3\/X1X3)_(2, X1X3,
X1X4V X4 X1, X2 X3V X1 X0 \/)_(2)_(3) attractors induced. X1X2X3V X2 X3X1 \/)_(1)_(2)_(3)

Figure 10 - (a) Asynchronous dynamics of a Boolean network. (b) Subpaces that can be
considered as candidate control strategies for target 00x*, and attractors and minimal
trap spaces obtained. (c) Asynchronous dynamics of the Boolean network obtained from
the network in (a) by elimination of the fourth component.

Example 4.17. Here we consider a map with 4 components, as in Fig. 10, where again the last
component is removed. For clarity, Fig. 10 (a) and (c) only show the asynchronous dynamics, but
the observations also apply to the general asynchronous dynamics.

Take P = 00xx as target, which becomes Pj3 = 00« in the reduction. P coincides with
the unique attractor and the unique minimal trap space of p(f), s0 S = »xx = B3 is an attractor-
control strategy and MTS-control strategy for (p(f), Pj3)). Observe that S is not a control strategy
by value propagation.

On the other hand, it can be verified that no attractor-control and no MTS-control strategy
exist for (f, P). »xxx is not a control strategy, because it is the unique minimal trap space, and
the unique attractor has states outside P. The other subspaces to consider, and the attractors
they generate, are as in Fig. 10 (b).

Example 4.18. Attractor-control strategies can be introduced in the reduction under the hy-
potheses of Theorem 4.3, even when linear mediator components are removed.

For asynchronous dynamics, take the network
f(x1, x2, X3, Xa) = (X1x2VX1X3VX3X1 X2, XoX3V X2 X3X1, X3X4, X2),

with P = Ox%*. For general asynchronous, with P = Ox¥xx, a counterexample is given by the
network

f(x1, %2, X3, Xa, X5) = (X1X3VX1 X3V X4X1X3, X2, X2V X5, X1 X2 X3V X1 X3X4 V X2 X3X4, X4.),
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and for synchronous with P = 0xx, by the network

f(x1, x2,x3) = (X1X2VX2X1, X0 X3, X1).

5. Conclusion

We performed an extensive analysis of the relationship between phenotype control and
Boolean network reduction by component elimination. We provided examples that clarify that
component elimination can disrupt control in most situations. We also observed that this reduc-
tion technique behaves better in relation to control strategies that work independently of the
update scheme. In particular, we proved that, if the values fixed by the control strategy propagate
through the network until the phenotype subspace is reached, then the same control strategy
works in the reduced network (Theorem 4.6). Vice versa, if a control strategy by value propaga-
tion exists in a reduced network, under the appropriate conditions (component being removed
not fixed in the phenotype) a control strategy exists for the original network, although it might
not necessarily work by propagating the fixed values (Theorems 4.8 and 4.9). In addition, we
considered the elimination of components under stricter conditions, that is, when the compo-
nent being eliminated is not regulated by regulators of its targets. Under this hypothesis, we
demonstrated that minimal trap spaces are preserved by the reduction (Theorem 3.3), and thus
their control in the original and reduced networks are also related (Theorem 4.3). Further work
could address the preservation of other properties related to the global structure of trap spaces.

We limited our analysis to the classical elimination of non-autoregulated components. Other
types of reduction could be considered, for instance, elimination of negatively regulated compo-
nents, which generalizes the elimination of components considered here (Schwieger and Tonello,
2024). The analysis can be extended to other types of control, for example temporal control or
control that acts on interactions (Biane and Delaplace, 2018; Su and Pang, 2020b). All models
imply a trade-off between complexity and level of detail attained, while the consequences of
simple differences in modelling choices are often difficult to predict. Given the popularity of the
reduction method analysed here, these types of investigations can serve as useful references in
the context of logical modelling.
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