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Abstract
Pathogen transmission studies require sample collection over extended periods, which can be chal-lenging and costly, especially in the case of wildlife. A useful strategy can be to collect pooled samples,but this presents challenges when the goal is to estimate prevalence. This is because pooling can intro-duce a dilution effect where pathogen concentration is lowered by the inclusion of negative or lower-concentration samples, while at the same time a pooled sample can test positive even when some ofthe contributing samples are negative. If these biases are taken into account, the concentration of apooled sample can be leveraged to infer the most likely proportion of positive individuals, and thusimprove overall prevalence reconstruction, but few methods exist that account for the sample mixingprocess. We present a Bayesian multilevel model that estimates prevalence dynamics over time usingpooled and individual samples in a wildlife setting. The model explicitly accounts for the completemixing process that determines pooled sample concentration, thus enabling accurate prevalence esti-mation even from pooled samples only. As it is challenging to link individual-level metrics such as age,sex, or immune markers to infection status when using pooled samples, the model also allows theincorporation of individual-level samples. Crucially, when individual samples can test false negative, apotentially strong bias is introduced that results in incorrect estimates of regression coefficients. Themodel, however, can account for this by leveraging the combination of pooled and individual samples.Last, the model enables estimation of extrinsic environmental effects on prevalence dynamics. Usinga simulated dataset inspired by virus transmission in flying foxes, we show that the model is able toaccurately estimate prevalence dynamics, false negative rate, and covariate effects. We test modelperformance for a range of realistic sampling scenarios and find that while it is generally robust, thereare a number of factors that should be considered in order to maximize performance. The modelpresents an important advance in the use of pooled samples for estimating prevalence dynamics in awildlife setting, can be usedwith any biomarker of infection (Ct values, antibody levels, other infectionbiomarkers) and can be applied to a wide range of host-pathogen systems.
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Introduction
When monitoring and studying pathogen transmission over time, it is essential to estimateprevalence dynamics. Prevalence, defined as the proportion of individuals in a population thattests positive for the current (e.g., presence of a pathogen or its genetic material) or past (e.g.,antibody presence) presence of an infectious organism, is a key metric, yet can be difficult to es-timate. The reason for this is that it is almost never feasible to test every individual in population,which means prevalence needs to be estimated from a population subset. As a result, methodsare needed to estimate prevalence from imperfect data due to constraints in the number andquality of samples.Sampling will depend on constraints (logistical, technical, individual availability, monetary),and different sampling strategies can be used to maximize the number of individuals being sam-pled (Restif et al., 2012; Truscott et al., 2019). One such strategy is to pool samples, either bycombining samples collected from different individuals (which reduces resource investments intesting and collection; Dorfman, 1943), or by collecting samples that already consist of materialfrom multiple individuals (e.g., monitoring of SARS-CoV-2 in sewage; McMahan et al., 2021). Instudies of wildlife disease this latter approach is relatively common, for example when collectingfecal droppings in a den or cage containing multiple animals (Truscott et al., 2019), or when col-lecting water samples in a lake or in wastewater (Dalu et al., 2011). An important drawback ofthe latter approach to pooling is that the sample cannot be linked to individual-level data, exceptindirectly under certain controlled conditions (McMahan et al., 2017).Individual samples provide the highest-resolution information, as they allow additional indi-vidual-level data to be collected, including body measurements, estimates of sex and age class,and a wide range of biomarkers such as antibodies, blood proteins or other infections. Theseadditional data are highly valuable as they can be used to learn more about correlates and dri-vers of infection. Depending on the study system, however, there can be several challenges tocollecting and interpreting individual samples. A first is that the collection and processing ofindividual samples can be costly — in terms of effort, time or monetary resources — which lim-its sample sizes and temporal/spatial resolution. It can also be difficult to capture and sampleindividuals, for example when dealing with species that are elusive or live in low-density popu-lations. Another challenge can arise when individuals do not shed a pathogen continuously butintermittently because of fluctuating pathogen concentrations. For example, the rodent Masto-mys natalensis is known to shed arenavirus in varying concentrations (Borremans et al., 2015).Intermittent shedding means that it is possible to collect a negative sample or a sample withan undetectable pathogen concentration even though the individual can be considered infec-tious, leading to false negative results with regards to determining whether or not an individualis infectious.A powerful study approach is to optimize the trade-off between sampling cost and data res-olution by collecting both pooled and individual-level samples. This is commonly done in batpathogen studies, where samples are collected from individual bats using net captures — whichenables the collection of high-quality samples and associated individual variables — as well asfrom multiple bats simultaneously using plastic sheets placed under roosts (Burroughs et al.,2016; Field et al., 2015; Giles et al., 2021). This approach is particularly useful when the goal isto estimate prevalence dynamics.When estimating prevalence, the use of pooled samples presents twowell-known challenges,both resulting from the fact that multiple individuals contribute to the same sample. The firstchallenge is that a pooled sample can test positive regardless of how many of the contributingindividual are actually positive. As a result, the proportion of positive pooled samples can be bi-ased upwards, leading to over-estimates of prevalence (Giles et al., 2021). The second challengeis the opposite of the first, and is the fact that a pooled sample can test negative even whenone or multiple contributing individuals are positive. This can arise when the sample is dilutedby negative samples, causing the concentration of the positive sample(s) to lower and fall be-low a detection threshold (which is called the dilution effect in pooled/group/composite testingliterature; Wein and Zenios, 1996). Assay sensitivity will be an essential factor in how low the
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diluted concentration can be before it can no longer be detected. Several approaches have beensuggested to deal with these two challenges (Cleary et al., 2021; Wein and Zenios, 1996), themost recent of which presents a Bayesian mixture model approach that can account for both atthe same time under certain conditions (Self et al., 2022). Most studies on the analysis of pooledsamples focus on testing protocols for cost reduction, with the goal of eventually identifying thepositive individuals (Aldridge et al., 2019; Dorfman, 1943; Mutesa et al., 2021). Perhaps for thisreason, fewmethods have been developed for explicitly using pooled samples to estimate preva-lence in the population (Cleary et al., 2021; Colón et al., 2001; Giles et al., 2021; Hoegh et al.,2021; Scherting et al., 2023), and even fewer have attempted to use the actual concentrationof the infectious agent (or another biomarker like antibody concentration) in the pooled sampleto estimate how many of the contributing individuals are positive (Cleary et al., 2021; Self et al.,2022; Zenios andWein, 1998). A particular challenge arises when the underlying distribution oftest values does not follow a standard-family (e.g. Gaussian) distribution, even though this is themost common situation, especially for wildlife populations (Edson et al., 2019; Nhat et al., 2017).Few methods exist that can incorporate such distributions, and to our knowledge none providea method for numerically calculating the full probability distribution of test values, instead usingapproximation methods (Self et al., 2022; Zenios and Wein, 1998). Leveraging the informationpresent in the concentration of the infectious agent in pooled samples instead of only usingbinary negative/positive information can lead to significant improvements in the estimation ofprevalence, particularly in the case of disease surveillance in wildlife populations.We present a multilevel Bayesian modeling approach to estimate infection prevalence simul-taneously from both individual and pooled samples, explicitly using the concentration of the in-fectious agent in pooled samples and thereby accounting for the biological mixing process thatgenerates pooled sample concentrations. The model presents two key advances: first, the abilityto estimate the false negative rate ensures that the effect coefficients of infection covariatescan be estimated correctly, as these can otherwise be strongly affected by the presence of falsenegative samples. The second is the introduction of an algorithm that enables the full numericalcalculation of the probability density function of concentrations in pooled samples.Model use and performance is presented using simulated data inspired by a bat-pathogenstudy system, but we highlight that this approach can be used for any situation in which preva-lence fluctuations are estimated from pooled samples with a known (or estimated) number ofcontributing individuals, especially when combined with individual samples. To illustrate thebroader relevance, and test how the model performs under different conditions, we included rel-evant scenarios that each resemble a realistic biological situation. The approach presented hereis particularly useful when the goal is not to identify which specific individuals are positive but todetermine prevalence in the population, because there is no need to re-test de-pooled samples.Examples includemonitoring SARS-CoV-2 prevalence (Cleary et al., 2021; Scherting et al., 2023),estimating prevalence in wastewater if the number of contributing individuals can be estimated(Dalu et al., 2011), assessing pathogen prevalence in the animal production industry (Evers andNauta, 2001), or estimating pathogen prevalence in wildlife populations (Fontoura-Goncalveset al., 2023). Note that while the example presented here focuses on infection prevalence, themodel can also be applied to other biomarkers such as antibodies.
Methods

Themain goal of this study is to estimate the true, unknown, proportion of pathogen-positiveindividuals over time, from both pooled and individual samples. Each of these types of samplespresents a challenge for estimating prevalence, but also an opportunity, as outlined in Table1. Note that the focus is on "naturally" pooled samples, where collection was not done directlyfrom individuals, as opposed to "technically" pooled samples that were pooled intentionally aftercollection from individuals.Here, we simulated data inspired by existing studies on flying foxes for research on temporalvirus dynamics (Burroughs et al., 2016; Field et al., 2015; Giles et al., 2021). For the reasonsmentioned above, bat virus studies often use field sampling designs that rely heavily on the
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Table 1 – Sample types and their different challenges and advantages for estimatingprevalence.
Sample type Challenge Advantage Example
Pooled. Number of positivesunknown; Number ofcontributors possiblyunknown; Dilution ef-fect.

Sample multiple indi-viduals at once. Lowercollection/testingcost per individual.

Blood sample pooling to re-duce testing costs; Urine col-lected from sheets under a batroost.
Individual. False negatives possi-ble. Additional individualmeasurements Samples collected in combina-tion with individual data suchas sex, age and body weight;Urine, blood samples and bodymeasurements collected fromcaptured bats.

collection of pooled urine and fecal samples under bat roosts (Field et al., 2015). A samplingdesign that incorporates pooled samples will be more beneficial for some wildlife species thanfor others, but there are no inherent limitations to which species this approach could be appliedto. We chose to use simulated data only, as the goal of this study is to present and test a modelto estimate prevalence, which can be done optimally when all underlying parameters are knownand different scenarios can be generated. Thismakes it possible to determine howwell themodelis able to estimate the known parameters and prevalence dynamics for a range of scenarios. Thesimulated datasets are described below at the end of the Methods section.The model is described in three parts, representing the multilevel/hierarchical nature of themodel (1). The two main parts, a model for estimating prevalence from individual samples anda model for estimating prevalence from pooled samples, are linked by a third model of true,unobserved prevalence dynamics.We used a Bayesianmultilevel model (also called a hierarchicalmodel), as this provides a solid framework for linking the different model components, modelingunobserved latent parameters, incorporating prior knowledge through prior distributions, andproviding posterior distributions of parameter estimates that show the uncertainty. While notdone here, it would be straightforward to include an additional observation model that takesinto account observation/measurement errors.
Modeling individual samples

Individual (i ) test result (negative or positive for biomarker presence) was modeled as a binaryvariable yi (0 = negative, 1 = positive) using a Bernoulli distribution:
(1) yi ∼ Bernoulli

(
(1 − ψ)

1

1 + exp(−(βt[i ] + X · β))

)
,

where ψ is the false negative rate that accounts for the lower prevalence resulting from the pres-ence of false negative samples, and the remainder of the equation is a logistic regression, where
βt[i ] is a varying intercept specific to each time at which individuals were sampled, X is a n x kmatrix containing k covariates of n individuals, and β is a 1 x k matrix of regression coefficients.The logistic regression component allows estimating the correlation between individual-level co-variates (e.g., biomarkers, age, body weight) and infection status. Prevalence θindt at each timepoint can in theory be calculated by taking the integral of logit−1(βt[i ]+X ·β) over all covariates,but because this becomes highly computationally expensive when there is more than one co-variate it is much more efficient to use a numerical approximation. Here, we used Monte Carlointegration (Gelman et al., 2013), where z random samples are generated for each covariate fromtheir distribution and the mean of the logistic function calculated at all sample combinations is
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Figure 1 – Multilevel model. A Gaussian Process model of prevalence (A) ensures thatprevalence is estimated smoothly over time, using information about prevalence fromthe two other models (highlighted in red). Model (A) is able to test correlations betweenprevalence fluctuations and other variables such as temperature and precipitation.Model(B) illustrates the model that estimates prevalence from pooled samples, using the Ctvalue and number of contributing individuals as input data. Model (C) uses individual-level data to estimate prevalence, and enables estimating correlates of infection status.
the prevalence estimate θindt for time t:
(2) θindt =

∫

X
logit−1(βt[i ] + X · β)p(X) dX ≈ 1

z

z∑

j=1

logit−1(βt[i ] + Xj · β).

Random samples for each covariate are generated from their respective distributions. Here,covariates were modeled using a normal distribution, where the mean and standard deviationare included as parameters in the model. Finally, θindt is used to estimate overall prevalence θt(as shown below in the section describing the true prevalence model).The probability of an individual being positive, even when testing (false) negative, can becalculated using the inverse logit function,
(3) P+

i =
1

1 + exp(−(βt [i ] + Xβ))
,

where individual shedding probability is informed by an individual’s covariate value(s) andprevalence at the time it was sampled. When there is a correlation between shedding status andone or more individual-level covariates, the predicted infection status can be used to identifywhich individuals may have tested false negative.The prior distribution for ψ can be a beta distribution as it is bounded by 0 and 1. Becausein many cases low false negative rates will be more likely, this could be a weakly informativedistribution such as Beta(1, 2). The prior for βt can be a weakly normal distribution such as
Normal(0, 10). The prior distributions for the regression coefficients β will depend on the covari-ate and the way in which their correlation with shedding status is modeled, but in many casesthis can be a weakly informative normal distribution such as Normal(0, 10) when using scaledcovariates.
Modeling pooled samples

The goal of this model is to estimate the proportion of positive bats using the Ct value ofa pooled sample. The analysis of pooled samples can be challenging, leading to a large body of
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studies on pooled testing (also called group testing or composite testing, depending on the field)addressing the different problems related to pooled samples (Cleary et al., 2021; Self et al., 2022;Wein and Zenios, 1996). Most studies have focused on pooled testing in the context of labora-tory assay cost reduction, where the main challenge is to find the optimal number of samples topool given an expected proportion of positives (Dorfman, 1943). An evolving challenge that ismore applicable for understanding transmission dynamics is how to estimate the proportion ofpositive individuals. A number of approaches have been proposed for this, with many based onthe model presented by Colón et al. (2001):
π = (1 − (1 − θ)n),where π is the probability that a pooled sample tests positive, θ is prevalence, and n is thenumber of samples in the pool. Parameter π can then be used to model Z ∼ Bernoulli(π), where

Z is a binary observed variable indicating whether or not the pooled sample is positive. Thisimplementation has, for example, been proposed as a way to model prevalence dynamics overtime for SARS-CoV-2, in combination with individual data (Scherting et al., 2023). This approachhas two key limitations however. A first is that above a certain combination of pool size andprevalence (around 50%), most pooled samples will be positive, resulting in large uncertaintyintervals surrounding the prevalence estimates. A second weakness is that this approach doesnot account for the fact that the concentration of pathogen is diluted by samples containing alower concentration, including negative samples. This dilution effect has proven to be particularlydifficult to address (Zenios and Wein, 1998).To date, most approaches have used binary test data for estimating prevalence using pooledsamples (Colón et al., 2001; Hoegh et al., 2021; Mutesa et al., 2021). Most assays, however, pro-vide quantitative data, which are then turned into a binary negative/positive result based on athreshold value, and the additional information provided by the quantitative assay is lost. Thisquantitative information offers opportunities, however, that can address both limitations of thebinary approach. Although few studies have developed methods to use the full quantitative testresults for estimating prevalence from pooled samples (Cleary et al., 2021; Zenios and Wein,1998), the work by Self et al. (2022) in particular has shown how promising this approach canbe. They used a Bayesian mixture model approach to estimate prevalence, taking into accountthe dilution effect based on the distribution of biomarker values (e.g. pathogen concentration)of negative and positive samples. A crucial part of these approaches is the use of a probabilitydensity function of positive test values. The methods in Cleary et al. (2021) and Self et al. (2022)provide a useful approach for estimating these. To complement these approaches, we providean algorithm to numerically calculate this probability density function so that it covers all possi-ble combinations of numbers of positive and negative individuals while taking into account theunderlying distribution of test values in the population.We modeled pooled samples using their cycle threshold (Ct) value, a measure of the concen-tration of viral genetic material obtained using qRT-PCR (lower Ct value = higher concentration).The virus concentration in a pooled urine sample is determined by three key factors that influ-ence the final pooled concentration: (1) proportion of positive bats, (2) concentration of virusshed by each positive bat, (3) relative urine volumes collected from each bat. Here we focuson the first two factors, and assume that the volumes collected from each bat are equal. In or-der to estimate the proportion of positive bats using the Ct value, it is necessary to calculate aprobability distribution of Ct values for pooled samples, as this in turn enables calculating thelikelihood of observing certain values given a combination of parameter values. A Ct probabil-ity distribution can be calculated by combining two key parts, a standard binomial probabilitydensity function (to take into account prevalence) and an ad-hoc distribution of probabilities ofobserving a pooled Ct value given a combination of negative and positive bats:
(4) Cj ∼ PooledCt(Nj , θt[j]),

where Cj is the Ct value of pooled sample j , Nj is the total number of bats contributing to
sample j , θpoolt[j] is prevalence at the time sample j was collected, and
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(5) PooledCt =

Nj∑

qj=0

(
Nj

qj

)
θ
qj
t[j](1 − θb,t[j])

Nj−qjP(Cj |qj ,Nj).

Here, (Nj
qj

)
θ
qj
t[j](1 − θb,t[j])

Nj−qj is the binomial probability of observing qj positive out of Njcontributing individuals in pooled sample j , given a prevalence θt[j]. P(Cj |qj ,Nj) is the probabilityof observing Ct value Cj given qj positive out of Nj individuals. qj and θt[j] are the estimatedparameters, while Nj and Cj are observed. This equation closely matches equation 2 in Zeniosand Wein (1998).Prior to model fitting, P(Cj |q,N) must be calculated for each possible combination of q, Njand Cj , which is done according to the following algorithm:1. Determine all possible combinations (with repetition) of q possible Ct values and Nj − qnegative values.2. For each combination:— 2.1. Transform the Ct values of the positive samples to virus concentrations (conversionbased on laboratory controlled testing, or testing of a range of individual samples).— 2.2. Calculate the mean virus concentration.— 2.3. Back-transform the mean virus concentration to its corresponding Ct value. Roundup the Ct value to the next integer to mimic detection in RT-PCR (a concentration even slightlyhigher than a certain Ct value will not be detected until the next PCR cycle).3. Count the number of combinations that result in Ct value C , and divide by the total num-ber of combinations. This is Ct observation probability P(Cj |q,Nj), without accounting for preva-lence in the population.All code used for the calculation of the probability distributions can be found in Supplemen-tary Information.There are a number of important considerations when calculating P(Cj |q,Nj). A first is thatwhile the algorithm assumes that each Ct value (in step 1) is equally likely, this is rarely thecase. The distribution of Ct values in a population rarely follows a uniform distribution, and caninstead follow many possible non-standard distributions (e.g., a skewed distribution when lowconcentrations are more likely). These distributions can also change over time and with changingbiological conditions (Lunn et al., 2023). When this is the case, probability P(Cj |q,Nj) can becalculated by first calculating the total probability of each combination, then taking the sum ofthe total probabilities of all combinations that result in Ct value C , and dividing this by the sumof all total probabilities of all combinations. When the underlying Ct distribution changes overtime, or under certain conditions, P(Cj |q,Nj) must be calculated for each of these situations.Individual samples, if collected, can be used to inform this distribution.A second consideration is that urine volume is assumed to be equal for all N contributingbats. If this is not the case, the combinations can be corrected by normalizing for volume inthe sample. This step requires knowledge of the volumes contributed by each individual. Whilethis is possible in situations where samples are pooled after collection from individuals, this isunrealistic in field conditions. In this situation, the most parsimonious solution is to assume thatall bats contributed equally to a pooled sample. Thiswill of course rarely be the case, but variationin contributed volumes should not affect inference as long as it is not biased. Such biases couldarise if infected bats, or bats shedding lower or higher virus concentrations, excrete differentvolumes than others. It is possible however to account for this when calculating P(Cj |q,Nj) ifthere is a model of how this bias occurs.A third consideration is computational burden, which enforces a limit on the number of Ctvalues and the number of contributing bats. This is due to the fact that for each possible Ct valueof a pooled sample, a probability is calculated for each possible combination (C+N−1)!
N!(C−1)! of Ct val-

ues C and individuals N . For example, in a simple situation where only 2 Ct values are possible,and a sample has 3 contributing individuals, the probability of observing a certain Ct value ofthe pooled sample must be calculated for (2+3−1)!
3!(2−1)! = 4 combinations. For more realistic numbers
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of 15 possible Ct values and 10 individuals, this becomes 1,961,256 combinations, increasingexponentially and rapidly reaching a maximum computationally feasible limit around combina-tions above 15 Ct values and 15 individuals. There are solutions for this, however. One solutionwould be to discretize Ct values into larger intervals (e.g., [21-24), [24-26), etc.), and/or settingall numbers of individuals above a certain maximum value equal to that value. This would lowerthe number of possible combinations and reduce computation time to feasible levels. Anothersolution, which would not require discretizing biomarker values or limiting the number of con-tributing individuals, would be to approximate the Ct probability distribution using Monte Carlosimulation/sampling (Kroese and Rubinstein, 2012) to generate a large number of random com-binations of all values (versus numerically calculating every possible combination). While thesesolutions are likely to still result in good prevalence estimates, this will depend on the situationand should be tested with simulations prior to model fitting. We recommend taking these poolsize requirements into account during the field experimental design process.A full working example of the procedure to calculate the Ct probability distribution is pro-vided in Figure 2.

Figure 2 – Illustration of how the probability of observing a Ct value in a pooled sampleis calculated. In the example, we want to calculate the probability of observing a Ct of 36with 2 out of 3 positive bats and 20% prevalence in the population. First (A), the pooledCt value is calculated for every possible combination (with repetition) of 1 negative and2 positive bats. For each combination, the Ct values (ln scale) are converted to genomecopies (Gc) so that the pooled concentration can be calculated on a linear scale. Thepooled genome copy concentration is then converted back to a Ct value, rounding up tothe next integer to emulate the RT-PCR detection process. Next, for each combinationof Ct values the corresponding probability of observing the pooled value is calculatedby summing the respective individual probabilities that are estimated from the Ct distri-bution in individual bats. The probabilities corresponding with the target value of 36 arethen summed and divided by the sum of all probabilities, to get an overall probability ofobserving Ct 36 (B). This probability is multiplied by overall prevalence in the population.The probability of observing 2 out of 3 positive individuals given a prevalence of 20% isthen calculated (C) and multiplied by the probability of observing Ct 36 to get the finalCt probability given 20% prevalence and 2 out of 3 positive individuals (D). This examplewas randomly chosen for illustration purposes, and these steps are repeated for eachpossible combination of Ct values and contributing individuals.
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Modeling true prevalence in the population over time
The final model component is a model of θt dynamics, which explicitly incorporates the infor-mation about prevalence from individual and pooled samples through their respective models.This is possible because prevalence parameter θt is leverages information from both models,which further ensures that each of those two model components can benefit from the informa-tion about prevalence contained in the other. For pooled samples this is done as part of the Ctprobability distribution, while for individual samples this is done using a hierarchical structure,where

(6) θindt ∼ Beta(θtκ, (1 − θt)κ),

where κ is the precision parameter for the beta distribution, modeled using a weakly infor-mative prior such as Gamma(2, 0.04). Prevalence θt changes over time t in a smooth way whereprevalence will be more similar for times that are close together than for those that are fartherapart. This temporal autocorrelation can bemodeled in a variety of ways, and the choice ofwhichmodel to use will depend on the research questions of interest. If the goal is to estimate preva-lence dynamics over time, relatively simple smoothing functions can be used such as splines,weighted average or kernel functions (Maxted et al., 2012). If the goal is to model the underlyingbiological dynamics, it will be necessary to develop a more complex transmission model (Funket al., 2018). Here, we used a relatively simple Gaussian Process (GP) smoothing function, whichuses a Gaussian kernel to model prevalence over time. This approach was based on the one usedin Scherting et al. (2023).A GP is a time continuous stochastic process {Xt}t∈τ where the set of variables
Xt = (Xt1, ...,Xtn)

τ is a multivariate Gaussian random variable (i.e., every combination of
(Xt1, ...,Xtn) has a univariate Gaussian distribution). Because θt ∈ [0, 1], a transformation mustbe used to map the real support of Xt to the [0, 1] interval, for which we used the inverse probitfunction Φ(·). We did this by modeling a latent prevalence process W := {Wt}t∈τ and trans-forming this to prevalence θt = Φ(Wt). As prevalence and the form of the unobserved dynamicprocess are unknown, we used a GP prior onW with a covariance function that enables interpo-lation of prevalence over time (i.e., smoothing). There aremultiple options for suitable covariancefunctions. Here, we used the exponentiated quadratic covariance function, which includes pa-rameters for both the amplitude (lengthscale ℓ) and the oscillation speed (σ2) of the smoothingprocess,

(7) Q = Cov(t, t ′|σ2, ℓ) = σ2exp

(
−(t − t ′)2

2ℓ2

)
.

Wt thus becomes Wt ∼ GP(0,Q), a zero-mean GP that allows independent modeling ofthe mean, which is useful for modeling the effect of covariates on prevalence, as θt becomes
θt = Φ(Wt + µ), where µ can be any regression model.A useful property of the covariance function is that by fitting the lengthscale parameter (ℓ), wecan learn from the data howprevalence covaries over time is: the covariance between prevalencevalues separated by a time interval ℓ will be exactly σ2exp(−ℓ2

2ℓ2
) = σ2exp(−1

2) = σ20.61, for an
interval of 2ℓ this will be σ2exp(−22

2 ) = σ20.14, and so on.The prior distributions for parameters σ and ℓ can be any continuous positive distribution.We used a truncated normal distribution for σ (Normal(0, 1), with 0 as lower bound for sampling)and an inverse gamma distribution for ℓ (InverseGamma(2.5, 150)). All priors used for model fittingcan be found in the code in Supplementary Information.
Testing model performance using simulated data

To test how well the model can estimate parameters under various circumstances, we simu-lated datasets that resemble realistic infection sampling scenarios. These datasets consisted of
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individual-level samples (collected directly from captured bats) and pooled urine samples (col-lected using a sheets under a roost), collected at certain time intervals (e.g., Burroughs et al.,2016; Field et al., 2015; Giles et al., 2021). We created a main simulated dataset that resemblesa common situation with regards to sample size and temporal resolution and was used as a pointof reference for all analyses. To test model performance in different scenarios this main datasetwas adapted in a number of ways that are described below.For the main dataset, an autocorrelated fluctuating prevalence time series was generated fora time period of 300 (an arbitrary number, where the unit can be, but is not restricted to, days)time points using a b-spline function with knots at times 1, 100, 200 and 300. Coefficients forthe b-spline function were chosen so that the function would result in reasonable prevalencefluctuations, not based on a specific system but useful for testing model performance under arange of sample availability scenarios (Figure 3). Ten sampling sessions were selected to occurevenly between times 1 and 300. At each sampling session, 50 individual-level catch samplesand 50 pooled samples were generated. The infection status (negative/positive) of each indi-vidual sample was generated using a Bernoulli distribution with success probability equal to
(1 − ψ)logit−1(βt[i ] + X · β) (Figure 3A), where false negative rate ψ was set to 0.1 (i.e., 10% ofpositive samples test negative). The βt values were generated by taking the logit of simulatedprevalence at time t . One covariate was simulated by drawing random samples from a standardnormal distribution. This covariatewas then used to simulate outcome variables (infection status)for three different coefficients. Because the same βt values were used for the three coefficients,this resulted in three different sets of outcome variables (Figure 3B), each with their own slightlydifferent prevalence curve, which is a consequence of changes in prevalence due to the additionof Xβ to the intercept term.For each pooled sample, a Ct value was generated in four steps (Figure 3C). First, the numberof bats contributing to the sample was simulated using a negative binomial distribution with size30 and mean 2.3 (which results in a range between 1 and 10, with most numbers around 1 to 4).Next, each of the contributing bats was randomly assigned an infection status using a binomialdistribution with success probability equal to prevalence at the corresponding sampling session.Then a Ct value was generated for each individual bat, with negative bats receiving a Ct value of0 and positive bats receiving a Ct value randomly drawn from a non-standard, realistic probabilitydistribution of Ct values. Last, the resulting Ct value of the pooled sample was calculated by firstconverting each individual Ct value to number of genome copies (Lunn et al., 2023), calculatingthe mean number of genome copies (including the negative samples), and re-converting thismean of the pooled sample to a Ct value. Note that while a Ct value is generated for individualscontributing to a pooled sample, the individuals used for the "individual sample" model describedin the previous paragraph only have a negative or positive status, and not a Ct value. Whenrequired it is possible to add an observation process layer to the model that explicitly models theclassification of sample into negatives or positives based on the concentration, as for exampleshown in Self et al. (2022) and Zenios and Wein (1998).Main dataset simulation parameters are summarized in Table 2. Additionally, we show the im-portance of accounting for false negative individual samples when estimating covariate effectsby fitting a model that does not include the false negative rate parameter. Last, to test model per-formance under different scenarios of data availability, we generated additional scenarios thatare outlined in Table 3, including examples of when these scenarios can occur. Details and resultsfor these scenarios are provided in Supplementary Information, including combined scenarios.
Model implementation and code

All coding was done in R (R Core Team, 2022). Model fitting was done with Stan (Stan De-velopment Team, 2022b) using R package rstan (Stan Development Team, 2022a). Plotting wasdone using packages ggplot2 (Wickham, 2016), ggridges (Wilke, 2021), patchwork (Pedersen,2022) and Rcolorbrewer (Neuwirth, 2022). Prevalence splines were generated using the pack-age splines (R Core Team, 2022). Ct value probability distribution generation used the packageRccpalgos (Wood, 2022). Supplementary information (including all code) is available online at
https://doi.org/10.5281/zenodo.11520773 (Borremans, 2024).
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Table 2 – Overview of the parameters used for the main simu-lated dataset
Parameter Value
Times 300 (arbitrary) time units
Number of sampling sessions 10
Timing of sampling session Every 34 time units
Individual samples per session 50
Pooled samples per session 50
Infection data of individual samples Binary (negative or positive)
Infection data of pooled samples Concentration (Ct value)
False negative rate 10% of positive individual samplestests negative
Individual covariate, strongcorrelation Effect estimate = 3.3
Individual covariate, moderatecorrelation Effect estimate = 1.8
Individual covariate, nocorrelation Effect estimate = -0.06
Ct distribution used to simulatepooled Ct values Skewed low to high (details inSupplementary Information)

Figure 3 – Simulated data. Black dots show true prevalence in the population, which wasused to generate samples for 10 sessions over a period of 300 time points. Panel A showsindividual negative (blue) and positive (red) samples, with false negative samples shownas red triangles. Panel B shows boxplots and data points for three simulated covariatesfor individual samples, with correlations being strong (top), moderate (middle) and ran-dom (bottom). Panel C shows pooled negative (blue) and positive (blue to red gradientcorresponding with Ct value) samples. Note that infection data are binary (neg/pos) forindividuals, and concentrations (Ct values) for pooled samples.

Results
Shedding prevalence dynamics estimated using the combined pooled and individual dataclosely matched the true dynamics, with true prevalence consistently falling within the poste-rior distribution (Figure 4A). All individual and prevalence covariate coefficients were estimatedcorrectly except for the model excluding the false negative rate parameter, where the correctcoefficient was 3.3 but the posterior mean estimate was 2.3 (95% CrI: 1.9-2.6). (Figure 4B-D).
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Table 3 – Simulated scenarios to test model performance. Details and model fit re-sults are provided in Supplementary Information.
Scenario Details and examples
Pooled data only Only pooled samples are used for model fitting. ψ not estimated. This sit-uation occurs when it is not possible not collect any individual data. Exam-ple: collecting wastewater samples for COVID-19 monitoring (McMahanet al., 2021).
Individual data only Only individual samples are used for model fitting. ψ not estimated. Thissituation is themost commonwhen sampling populations. Example: cross-sectional sampling for monitoring arenavirus prevalence in rodents (Mar-iën et al., 2020).
Irregular sampling The timing of sampling sessions is not regular, resulting in uneven timegaps between sessions. This situation occurs when regular sampling isnot possible, or when sampling sessions need to be canceled due to condi-tions. Example: gaps in influenza A monitoring time series due to politicalinstability (Tun Win et al., 2017).
Low sample sizes Lower sample sizes (20 instead of 50 for each sample type) per session.This situation occurs when it is not possible to sample many individuals.Example: logistically challenging captures of lions for canine distempervirus monitoring (Viana et al., 2015).
Ct distributionmismatch The distribution of Ct values used to calculate the likelihood for pooledsample Ct values is different from the true distribution used to simulatepooled Ct values. This situation can occur when the distribution of Ctvalues in the population is not well known. Example: small numbers ofpositive samples in individual bats make it difficult to describe the viralload distribution of filoviruses (Leendertz et al., 2016).
Pool contributioncount error An error is added to the number of individuals contributing to a pooledsample. This situation occurs when it is difficult to count or estimate thenumber of individuals contributing to a pooled sample. Example: environ-mental sampling for Leptospira sp. prevalence estimation (Pui et al., 2015).
Prevalence dynamicsshape A number of different, uncommon prevalence fluctuations are used to sim-ulate the data. This situation occurs because prevalence dynamics canvary strongly depending on many factors. Example: measles prevalencedynamics exhibiting multi-annual cycles of varying magnitude (Ferrari etal., 2008).
Prevalence covariate A covariate that correlates with prevalence is estimated using Gauss-ian Process regression. Example: climate can drive inter-annual cycles ofcholera transmission (Koelle et al., 2005).

The model correctly estimated false negative rate (ψ) regardless of which covariate was used(Figure 4C).
When using only pooled data the model was still able to capture the true dynamics, whileprevalence estimated using only individual data resulted in under-estimates. (Figure 5A-B). Thefalse negative rate could not be estimated in the absence of pooled data as there was no addi-tional source of information to provide information about true prevalence over time.
When sampling sessions were timed irregularly, or when there were fewer sessions, preva-lence was still estimated well but with a higher degree of uncertainty between larger time gaps(Figure 5C and Supplementary Information). For regular sampling with low sample sizes preva-lence dynamics were still captured reasonably well overall, exhibiting increased variability thatresulted in an over-estimation of the false negative rate parameter (Figure 5D). Asynchronoussampling of pooled and individual sessions resulted in prevalence dynamics thatwere very similarto those of the main simulated dataset (Supplementary Information). When combining irregularand asynchronous sampling with lower sample sizes or with fewer sampling sessions prevalence
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Figure 4 – Model outputs for the main simulated dataset. (A) shows the distribution offitted prevalence curves (cloud of 6,000 iterations from 5 chains) with 50% credible in-terval band overlaid. The black dots are the simulated prevalence values. The proportionof positive pooled and individual samples in each sampling session is shown using dia-mond and plus shapes, respectively. Panels (B) to (D) show the posterior distributions(95% credible intervals in orange) for two covariates (where B and C differ in whether ornot false negatives were accounted for), and panel (E) shows the posterior distributionfor the false negative rate ψ, with black dots indicating the true values.
dynamics exhibited higher degrees of uncertainty due to the lower sample size or during largertime gaps without available samples (Supplementary Information).A mismatch of the Ct distribution in the population (i.e., the Ct distribution used to con-struct P(Cj |q,Nj) did not correspond with the distribution used to simulate Ct values for pooledsamples, see Supplementary Information for details) had a noticeable effect on the estimatedprevalence dynamics (Figure 5E). Specifically, the model tended to overestimate prevalence, par-ticularly during peaks, despite overall good performance. This effect was less pronounced whenthe distribution was less different from the true distribution (Supplementary Information). Themodel was not sensitive to moderately misspecified counts of the number of individuals con-tributing to a pooled sample (Figure 5F; 30% of the data were off by N = 1, 20% by N = 2), butwas more strongly affected by large misspecifications (80% wrong by 1 or 2, 80% wrong by 1 to5; Supplementary Information).Last, the shape of the prevalence dynamics did not affect the model’s ability to estimateprevalence, as long as data were available to inform the fluctuations (5G and SupplementaryInformation). For example, the dynamics in Figure 5H have an initial peak that was not predictedby the model because this peak occurred between two sampling sessions.

Discussion
Sample pooling offers major benefits through collecting data from multiple individuals at thesame time, lowering costs for collection and testing, and enabling the use of samples that wouldotherwise be disregarded (such as sewage or fecal/urine under bat roosts or in animal dens;Dalu et al. (2011), Field et al. (2015), and McMahan et al. (2021)). This study presents a Bayesianmodeling approach that enables the estimation of prevalence dynamics from both pooled andindividual samples by leveraging infection concentration of infectious agent in the pooled sam-ples, allowing the distribution of infection concentrations to be any shape, and accounting forfalse negative results.The model is able to successfully reconstruct prevalence dynamics for a wide range of eco-epidemiological scenarios. Model performance was tested for a range of relevant scenarios ofinfection dynamics and sampling schemes including irregular prevalence fluctuations, irregulartiming of sampling and misspecified counts of individuals contributing to the pooled samples,and combinations of multiple scenarios. The model performs well when only one sample type
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Figure 5 – Fitted prevalence curves for different simulated scenarios. All scenarios usedthe same sample types, sizes and sessions as the main scenario shown in Figure 2, ex-cept where indicated. Session prevalence of pooled and individual data is shown usingdiamond and plus shapes, respectively. Black dots show true prevalence in the popula-tion. Specifics for each scenario are: (A) only pooled data; (B) only individual data; (C)sampling sessions are unevenly spaced over time; (D) lower sample sizes (20 per sampletype) per session; (E) the Ct distribution used to simulate Ct values of pooled samples wasnot the same as that used to calculate the Ct probability distribution in the model, withthe shapes inverted (i.e. low Ct values more likely); (F) an incorrect number of individualscontributing to a pooled sample was provided to the model for 50% of pooled samples;(G) and (H) data were simulated using irregular, unconventional prevalence dynamics.

was provided, which is particularly encouraging in the case of pooled samples, as it shows thatfield studies targeting only pooled samples would still allow precise reconstruction of prevalencedynamics. These results highlight the key strengths of the model: the explicit modeling of themixing process in pooled samples allows accurate estimation of prevalence evenwhen using onlypooled samples, and the inclusion of pooled samples also enables correcting for the prevalenceestimation bias in individual samples introduced by false negatives when both sample types areavailable. False negative rate is an epidemiological parameter commonly neglected in wildlifestudies, yet important for inferring dynamics of infection at the individual level. In the model,estimation of false negative rates is made possible by the explicit integration of informationabout prevalence included in both data types. Importantly, accounting for false negative resultsensures that covariate coefficients in individual-level regression models are estimated correctly,which we show would otherwise lead to estimation errors (Figure 4C). Lower sample sizes and
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large gaps between sampling sessions increased uncertainty, indicating that these are importantfactors to consider for study design.
The model introduces an algorithm to empirically calculate the probability distribution of ob-serving a certain infection biomarker (here Ct from qRT-PCR) value given the estimated preva-lence in the population and the number of individuals that contributed to the sample. This prob-ability distribution enables the calculation of a likelihood for the biomarker values of the pooledsamples. This approach for calculating a probability distribution can be adapted to other sys-tems (e.g., analyzing pooled SARS-CoV-2 samples for monitoring prevalence) and other biomark-ers (e.g., antibodies, blood chemistry). The approach can incorporate any non-standard familydistribution of the biomarker. Encouragingly, we found that the model is quite robust againstmisspecifications of the underlying biomarker distribution. The calculation of this probabilitydistribution function relies on a correct determination of the distribution of biomarker valuesin the population. We found that assuming a distribution that differs strongly from the real dis-tribution can result in biased prevalence estimates. We therefore recommend an in depth priorexploration of biomarker distribution in the population, as well as a sensitivity analysis to assesshow different realistic shapes of the distribution affect model output.
Prevalence reconstruction is a goal for many epidemiology and disease ecology studies, butthis is often done as a necessary step towards learning what the drivers of pathogen transmis-sion are. Such drivers can be intrinsic, such as individual immunity, herd immunity, individualvariation in shedding, or behavior/movement (which can affect contact/transmission rates), orextrinsic, such as temperature and rainfall affecting pathogen survival, food availability affectingindividual stress (which in turn affects immune competence, susceptibility and shedding). Themodeling framework provides a way to incorporate and statistically test the effect of such co-variates on the individual and the population/prevalence level. This enables testing of hypothe-ses about intrinsic or extrinsic drivers of infection, thereby contributing to a more mechanisticunderstanding of infection dynamics, beyond the phenomenological patterns. This also enablesthe development of models to predict prevalence.
The current model formulation has a number of requirements. Firstly, the model uses esti-mates of the number of individuals that contributed to a pooled sample. While the model isrobust against moderately misspecified counts, we find that errors have to be within reasonablelimits. However, when these counts are unknown or uncertain, this can be incorporated in themodel by specifying a prior distribution of the number of individuals contributing to a pooledsample based on available data. A secondmodel requirement is that the distribution of biomarkervalues, which are used to calculate the biomarker probability distribution of pooled samples, isassumed to be constant over time. Although this can be a reasonable baseline assumption, re-cent work suggests this may not always be the case (Lunn et al., 2023). Therefore, it is possibleto adapt the model using a time-dependent probability distribution when pathogen sheddingconcentrations are known or suspected to be higher during certain periods. We recommend anin-depth analysis of the distribution of biomarker values in wild individual samples over time todetermine whether the probability distribution used in the model needs to be time-dependent.
The model presented here provides a way to simultaneously leverage pooled and individ-ual samples to accurately estimate the true underlying prevalence of infection in a population.It introduces a way to explicitly account for the biological mixing/dilution process in pooledsamples, and ensures that individual covariate effects can be estimated correctly when falsenegative results are possible (this requires the use of both pooled and individual samples). Themodel is also shown to be robust against common issues associated with field-based data col-lection, such as observation noise and the often unknown shape of the underlying prevalencefluctuations. Crucially, this approach enables the accurate reconstruction of prevalence dynam-ics even when using pooled samples only, which is encouraging for designing lower-cost sam-pling strategies. The application of this model can directly enhance the efficacy and efficiencyof bio-surveillance efforts by increasing inference and prediction. This is of particular interest inthe case of wildlife that hosts pathogens of concern for human and animal health in geographicalareas of high spillover risk.
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