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Abstract

Environments can change suddenly and unpredictably and animals might benefit from being able
to flexibly adapt their behavior through learning new associations. Serial (repeated) reversal learn-
ing experiments have long been used to investigate differences in behavioral flexibility among in-
dividuals and species. In these experiments, individuals initially learn that a reward is associated
with a specific cue before the reward is reversed back and forth between cues, forcing individuals
to reverse their learned associations. Cues are reliably associated with a reward, but the associa-
tion between the reward and the cue frequently changes. Here, we apply and expand newly de-
veloped Bayesian reinforcement learning models to gain additional insights into how individuals
might dynamically modulate their behavioral flexibility if they experience serial reversals. We de-
rive mathematical predictions that, during serial reversal learning experiments, individuals will gain
the most rewards if they 1) increase their *rate of updating associations* between cues and the
reward to quickly change to a new option after a reversal, and 2) decrease their *sensitivity* to
their learned association to explore the alternative option after a reversal. We reanalyzed reversal
learning data from 19 wild-caught great-tailed grackles (Quiscalus mexicanus), eight of whom par-
ticipated in serial reversal learning experiment, and found that these predictions were supported.
Their estimated association-updating rate was more than twice as high at the end of the serial re-
versal learning experiment than at the beginning, and their estimated sensitivities to their learned
associations declined by about a third. The changes in behavioral flexibility that grackles showed in
their experience of the serial reversals also influenced their behavior in a subsequent experiment,
where individuals with more extreme rates or sensitivities solved more options on a multi-option
puzzle box. Our findings offer new insights into how individuals react to uncertainty and changes
in their environment, in particular, showing how they can modulate their behavioral flexibility in
response to their past experiences.
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Introduction

Most animals live in environments that undergo changes that can affect key components of
their lives, such as where to find food or which areas are safe. Accordingly, individuals that can-
not react to these changes should have reduced survival and/or reproductive success (Boyce
et al., 2006; Starrfelt & Kokko, 2012). One of the ways animals react to changes is through
behavioral flexibility, the ability to change behavior when circumstances change (Shettleworth,
2010). The level of behavioral flexibility present in a given species is often assumed to have
been shaped by selection, with past levels of change in the environment determining how well
species might be able to cope with more rapidly changing (Sih, 2013) or novel environments (Sol
et al., 2002). However, in another conception, behavioral flexibility is itself plastic (Wright et al.,
2010). Behavioral flexibility arises because individuals update their information about the en-
vironment through personal experience and make that information available to other cognitive
processes (Mikhalevich et al., 2017). Such modulation of behavioral flexibility is presumably rel-
evant if the rate and extent of environmental change is variable and unpredictable (Donaldson-
Matasci et al., 2013; Tello-Ramos et al., 2019). We are still limited in our understanding of when
and how individuals might react to their experiences of environmental change.

Evidence that animals can change their behavioral flexibility based on their recent expe-
rience comes from serial reversal learning experiments. Serial reversal learning experiments
have long been used to understand how individuals keep track of biologically important associa-
tions in changing environments (Dufort et al., 1954; Mackintosh et al., 1968; Bitterman, 1975). In
these experiments, individuals are presented with multiple options associated with cues, such
as different colors or locations, that differ in their reward. Individuals can repeatedly choose
among the options to learn the associations between rewards and cues. After they show a
clear preference for the most rewarded option, the rewards are reversed across cues, and indi-
viduals are observed to see how quickly they learn the changed associations. When they have
reversed their preference, the reward is changed back to the other option, until the individual re-
verses their preference again, and these reversals continue in a process called serial reversals.
Their performance during the reversal task is taken as a measure of their behavioral flexibility,
with the more flexible individuals being those that need fewer trials to consistently choose the
rewarded option after a reversal (Bond et al., 2007). While the primary focus of these serial
reversal learning experiments has been to measure differences in behavioral flexibility across
individuals and species (Lea et al., 2020), several of these experiments show that behavioral
flexibility is not a fixed trait, but that individuals can improve their performance if they experience
repeated reversals (Bond et al., 2007; Liu et al., 2016; Cauchoix et al., 2017). Here, we investigate
how individuals might change their behavioral flexibility during serial reversal learning experi-
ments to better understand what cognitive processes could lead to the observed differences
and adjustments in behavioral flexibility (Izquierdo et al., 2017; Danwitz et al., 2022).

We recently found that great-tailed grackles (Quiscalus mexicanus; hereafter grackles) can
be trained to improve how quickly they learn to change associations in a serial reversal learn-
ing experiment (Logan et al., 2023a). After training birds to search for food in a yellow tube,
the reversal learning experiment consisted of presenting birds with a light gray and a dark gray
tube, only one of which contained a reward. After individuals chose one of the tubes, thus ex-
periencing whether this color was rewarded or not, the experiment was reset, with the reward
being in the same colored tube as before. Once an individual chose the rewarded color more
than expected by chance (passing criterion of choosing correctly in at least 17 out of the last 20
trials, which represents a significant association according to the chi-square test), the reward
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was switched to the other color. Again, individuals made choices until they chose the now
rewarded tube above the passing criterion. For one set of individuals, the trained group, we
repeated the reversal of rewards from one color to the other until the birds reached the serial re-
versal passing criterion of forming a preference in 50 trials or less in two consecutive reversals.
The median number of trials birds in this trained group needed to reach the passing criterion
during their first reversal was 75, which improved to 40 trials in their final reversal. Importantly,
we found that, in comparison to a control group who only experienced a single reversal, trained
grackles who experienced serial reversals also showed increased behavioral flexibility and in-
novativeness in other contexts. In particular, trained grackles performed better on multi-option
puzzle boxes than control grackles, being faster to switch to a new access option on a box if
the previous option was closed, and they solved more of the available access options (Logan
et al., 2023a). This indicates that individuals did not just learn an abstract rule about the serial
reversal learning experiment, but rather changed their overall behavioral flexibility in response
to their experience. To understand these changes in behavioral flexibility, we need approaches
that can reflect how individuals might update their cognitive processes based on their experi-
ence.

Previous analyses of serial reversal learning experiments were limited in understanding the
potential changes in behavioral flexibility because they focused on summaries of the choices
that individuals make (e.g. Bond et al., 2007). These approaches are more descriptive, making
it difficult to link flexibility differences to specific processes and to predict how variation in be-
havior might transfer to other tasks. While there have been attempts to identify potential rules
that individuals might learn during serial reversal learning (Spence, 1936; Warren, 1965a; Warren,
1965b; Minh Le et al., 2023), these rules were often about abstract switches to extreme behav-
iors (e.g. win-stay / lose-shift) and therefore could not account for the full variation of behavior.
A number of theoretical models have recently been developed that appear to reflect the poten-
tial cognitive processes individuals seem to rely on when making choices in reversal learning
experiments (for a recent review see, for example, Fromer & Nassar, 2023). These theoretical
models deconstruct the behavior of individuals in a reversal learning task into two primary pa-
rameters (Camerer & Hua Ho, 1999; Chow et al., 2015; Izquierdo et al., 2017; Bartolo & Averbeck,
2020). Importantly, in the Bayesian reinforcement learning models there are now also statisti-
cal approaches to infer these underlying parameters from the behavior of individuals (Camerer
& Hua Ho, 1999; Lloyd & Leslie, 2013). The first process reflects the rate of updating associa-
tions (which we refer to hereafter as ¢, the Greek letter phi), or how quickly individuals learn
about the associations between the cues and potential rewards (or dangers). In the reinforce-
ment learning models, this rate is reflected by the Rescorla-Wagner rule (Rescorla & Wagner,
1972). The rate weights the most recent information proportionally to the previously accumu-
lated information for that cue (as a proportion, the rate can range between 0 and 1; for details
on the calculations see the section on the reinforcement learning model in the Methods). Indi-
viduals are expected to show different rates in different environments, particularly in response
to the reliability of the cues (Figure 1). Lower updating rates are expected when associations
are not perfect such that a single absence of a reward might be an error rather than indicating
a new association. Higher updating rates are expected when associations are reliable such
that individuals should update their associations quickly when they encounter new information
(Dunlap & Stephens, 2009; Breen & Deffner, 2023). The second process, the sensitivity to their
learned associations (which we hereafter refer to as ), the Greek letter lambda) reflects how
individuals, when presented with a set of cues, might decide between these alternative options
based on their learned associations of the cues. In the reinforcement learning model, the sen-
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sitivity to learned associations modifies the relative difference in learned rewards to generate
the probabilities of choosing either option (Daw et al., 2006; Agrawal & Goyal, 2012; Danwitz et
al., 2022). A value of zero means individuals do not pay attention to their learned associations,
but choose randomly, whereas increasingly larger values mean that individuals show biases in
choice as soon as there are small differences in their learned associations. Individuals with
larger sensitivities will quickly prefer the option that previously gave them the highest reward
(or the lowest danger), while individuals with lower sensitivities will continue to explore alterna-
tive options. Sensitivities are expected to reflect the rate of change in the environment (Figure
1), with larger sensitivities occurring when environments are static such that individuals start
to exploit any differences they recognise as soon as possible. Lower sensitivities are expected
when changes are frequent, such that individuals continue to explore alternative options when
conditions change (Daw et al., 2006; Breen & Deffner, 2023).

- Changing
s Reliable

So o8
s C Unchanging
g.; 0.6 seEsfueeeeeEe e EEEEEEERD
>3 ' Unreliable
% § 0.4
Sp o2 .
o 0.0 Reliable
o o .

Trials

What to do in the trials after X?

Reliable: switch to alternate (large ¢)
X Changing: sometimes explore (small A)

No reward
Unreliable: stay with current (small )

EEEN
Unchanging: always exploit (large A)

Figure 1 — Individuals are expected to update their associations and make decisions differ-
ently depending on the environment they experience. In serial reversal learning experiments,
associations are reliable, such that if an option is associated with a reward, it is rewarded
during every trial (white background). However, the associations between options and the re-
wards change across trials (solid line). In these reliable, but changing conditions, individuals
are expected to gain the most rewards if they update their associations quickly (large ¢) to
switch away from an option if it is no longer being rewarded, but to have small sensitivities
to their learned associations to continue to explore all options to check if associations have
changed again (small \). In contrast, in unchanging and unreliable conditions, the probability
that an option is rewarded stays constant across trials (dotted lines), but is closer to 50% (gray
background). In these conditions, individuals are expected to gain the most rewards if they
build their associations by averaging information across many trials (small ¢), and have high
sensitivities to learned associations to exploit the option with the highest association (large
). Grackle picture credit (CC BY 4.0): Dieter Lukas.

Here, we applied and modified the Bayesian reinforcement learning models to data from our
grackle research on behavioral flexibility to assess if and how the cognitive processes might
have changed as individuals experienced the serial reversal learning experiment. We previously
found that the model can predict the performance of grackles in a reversal learning task with
a single reversal of a color preference (Blaisdell et al., 2021). Grackles experiencing the serial
reversal learning experiment are expected to infer that associations can frequently change but
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that, before and after a change, cues reliably indicate whether a reward is present or not. Based
on the theoretical models, we predict that individuals increase their association-updating rate
because cues are highly reliable, such that they can change their associations as soon as there
is a change in the reward (Dunlap & Stephens, 2009; Breen & Deffner, 2023). In addition, we
predict that individuals reduce their sensitivity to the learned associations, because the option
that is rewarded reverses frequently, requiring individuals to explore alternative options (Neftci
& Averbeck, 2019; Leimar et al., 2024). Given that reversals in the associations are not very fre-
quent, we also expect some variation in individuals in whether they switch to the newly rewarded
option because they find the reward quickly through continued exploration (somewhat lower A
and higher ¢) or because they quickly move away from the option that is no longer rewarded
(somewhat higher X and lower ¢). To assess these predictions, we addressed the following six
research questions. With the first research question, we determined the feasibility and validity
of our approach using simulations. As far as we were aware, Bayesian reinforcement learning
models had not been used to investigate temporal changes in behavior. We therefore used
simulations as a proof-of-concept assessment to show their sensitivity and ability to answer
our questions. With the second research question, we derive mathematically specific predic-
tions about the role of ¢ and X in the serial reversal learning experiment. With the other four
questions, we analyzed the grackle data to determine how the association-updating rate and
the sensitivity to learned associations reflect the variation and changes in behavioral flexibility
in grackles.

1) Are the Bayesian reinforcement learning models sufficiently sensitive to detect changes
that occur across the limited number of serial reversals that individuals participated in?
We used agent-based simulations to answer this question, where simulated individuals made
choices based on assigned ¢ and \ values. We determined how to apply the Bayesian reinforce-
ment learning models to recover the assigned values from the choices in each trial. Previous
applications of the Bayesian reinforcement learning models always combined the full sample
of observations, so it is not clear whether these models are sufficiently sensitive to detect the
changes over time that we are interested in. Two problems arise when trying to infer the under-
lying processes from a limited number of trials. The stochasticity in which option an individ-
ual chooses based on a given set of associations introduces differences in the set of choices
across trials even among individuals with the same ¢ and \ values. On the flip-side, because
of the probabilistic decisions, a given series of specific choices during a short number of trials
can occur even if individuals have different ¢ and \ values. We varied the number of trials we
analyzed to determine how many trials per individual are necessary to recover the assigned ¢
and X values in light of this noise.

2) Is a high rate of association-updating (¢) and a low sensitivity to learned associations
(\) best to reduce errors in the serial reversal learning experiment?
We used analytical approaches to systematically vary ¢ and \ to determine how the interaction
of the two processes shapes the behavior of individuals throughout the serial reversal learning
experiment. Previous studies made general predictions about the role of ¢ and X\ in different
environments (Dunlap & Stephens, 2009; Breen & Deffner, 2023). We assessed here whether,
under the specific conditions in the serial reversal experiments, where information is reliable
and changes occur frequently, the best approach for individuals is to show high ¢ and low .

3) Which of the two parameters ¢ or \ explains more of the variation in the serial reversal
learning experiment performance of the tested grackles?
Across both the trained (experienced serial reversals) and control (experienced a single rever-
sal) grackles, we assessed whether variation in the number of trials an individual needed to

Peer Community Journal, Vol. 4 (2024), article e88 https://doi.org/10.24072/pcjournal 456


https://doi.org/10.24072/pcjournal.456

6 Dieter Lukas et al.

reach the criterion in a given reversal is better explained by their inferred association-updating
rate or by their inferred sensitivity to learned associations.

4) Do the grackles who improved their performance through the serial reversal learning
experiment show the predicted changes in ¢ and \?
If individuals learn the contingencies of the serial reversal experiment, they should reduce their
sensitivity to learned associations )\ to explore the alternative option when rewards change, and
increase their association-updating rate ¢ to quickly exploit the new reliably rewarded option.

5) Are some individuals better than others at adapting to the serial reversals?
In previous work, we found that there are individual differences that persist throughout the ex-
periment, with individuals who required fewer trials to solve the initial reversal also requiring
fewer trials in the final reversal after their training (McCune et al., 2023). We could expect that
these individual differences are guided by consistency in how individuals solve the reversal
learning paradigm, meaning they are reflected in individual consistency in ¢ and X that per-
sist through the serial reversals. In addition, it is not clear whether some grackles change
their behavior more than others. For example, it could be that individuals who have a higher
association-updating rate ¢ at the beginning of the experiment might also be better able to
quickly change their behavior to match the particular conditions of the serial reversal learning
experiment. Therefore, we also analyzed whether the ¢ and X values of individuals at the begin-
ning predict how much they changed throughout the serial reversal learning experiment.

6) Can the ¢ or )\ from the performance of the grackles during their final reversal predict
variation in the performance on the multi-option puzzle boxes?
Grackles would be expected to solve more options on the multi-option puzzle boxes if they
quickly update their previously learned associations when a previous option becomes unavail-
able (high ¢). Given that, in the puzzle box experiment, individuals only receive a reward at
any given option a few times, instead of repeatedly as in the reversal learning task, we predict
that those individuals who are less sensitive to previously learned associations and instead
continue to explore alternative options (low \) can also gain more rewards.

Material and methods
Data

For question 1, we re-analyzed data we previously simulated for power analyses to estimate
sample sizes for population comparisons (Logan et al., 2023c). In brief, we simulated choices
in an initial association learning and single reversal experiment for a total of 640 individuals.
The ¢ and ) values for each individual were drawn from a distribution representing one of 32
populations, with different mean ¢ (8 different means) and mean X\ (4 different values) values
for each population (32 populations is the combination of each ¢ and )\). We simulated 20
individuals in each of the 32 populations. The range for the ¢ and \ values assigned to the
artificial individuals in the simulations were based on the previous analysis of single reversal
data from grackles in a different population (Santa Barbara, California, USA) (Blaisdell et al.,
2021) to reflect the likely expected behavior. Based on their assigned ¢ and X values, each
individual was simulated to pass first through the initial association learning phase and, after
they reached criterion (chose the correct option 17 out of the last 20 times), the rewarded option
switched and simulated individuals went through the reversal learning phase until they again
reached criterion. Each choice that each individual made was simulated consecutively. Choices
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during trials were based on the associations that individuals formed between each option and
the reward based on their experience. The first choice a simulated individual made in the initial
association learning was random because we assumed individuals had no information about
the rewards and therefore set the initial attractions to both options to be equally low. Based
on their choices, individuals updated their internal associations with the two options based
on their individual learning rate. We excluded simulated individuals from further analyses if
they did not reach criterion either during the initial association or the reversal within 300 trials,
the maximum that was also set for the experiments with the grackles. For each simulated
individual, we recorded their assigned ¢ and A values, as well as the series of choices they
made during the initial association and the first reversal. For a given ¢ and ), the stochasticity
in which option a simulated individual chooses based on their attractions, plus the experience
of either receiving a reward or not during previous choices, can lead to differences in the actual
choices individuals make. The aim was to see what sample is needed to correctly infer the
assigned ¢ and X given the noise in the choice data. We also used the simulated data for
question 3, to compare the influence of ¢ and X\ on the behavior of the simulated individuals
with that of the grackles.

To address question 2, we used an analytical approach and did not analyze any data.

For the empirical questions 3-6, we re-analyzed data on the performance of grackles in se-
rial reversal learning and multi-option puzzle box experiments (Logan et al., 2023a). The data
collection was based on our preregistration that received in principle acceptance at PCl Ecology
(Coulon, 2023). All of the analyses reported here were not part of the original preregistration.
The data we use here were published as part of the earlier article and are available at the Knowl-
edge Network for Biocomplexity’s data repository (Logan et al., 2023b).

In brief, grackles were caught in the wild in Tempe, Arizona, USA for individual identification
(colored leg bands in unique combinations), and brought temporarily into aviaries for testing,
before being released back to the wild. The first experiment individuals participated in in the
aviaries was the reversal learning experiment, as described in the introduction. A total of 19
grackles participated in the serial reversal learning experiment, where they learned to associate
a reward with one color before experiencing one reversal to learn that the other color was re-
warded (initial rewarded option was counterbalanced and randomly assigned as either a dark
gray or a light gray tube). The rewarded option was switched when grackles passed the crite-
rion of choosing the rewarded option in 17 of the most recent 20 trials. This criterion was set
based on earlier serial reversal learning studies, and is based on the chi-square test, which indi-
cates that 17 out of 20 represents a significant association. With this criterion, individuals can
be assumed to have learned the association between the cue and the reward rather than having
randomly chosen one option more than the other (Logan et al., 2022). A subset of 8 individuals
were randomly assigned to the trained group and went through a series of reversals until they
reached the criterion of having formed an association (17 out of 20 choices correct) in 50 trials
or less in two consecutive reversals. The individuals in the trained group needed between 6-8
reversals to consistently reach this threshold, with the number of reversals not being linked to
their performance at the beginning or at the end of the experiment. A subset of 11 grackles
were part of the control group, who experienced only a single reversal, before participating in
trials with two identically colored tubes (yellow) where both contained a reward. The number
of yellow tube trials was set to the average number of trials it took a bird in the trained group to
pass their serial reversals.

For question 6, we additionally used data from an experiment the grackles participated in
after they had completed the reversal learning experiment. Both the control and trained individ-
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uals were provided access to two multi-option puzzle boxes, one made of wood and one made
of plastic. The two boxes were designed with slight differences to explore how general their
performance was. The wooden box was made from a natural log, thus was more representa-
tive of something the grackles might encounter in the wild. In addition, while both boxes had
four possible ways (options) to access food, the four options on the wooden box were distinct
compartments, each containing rewards, while the four options on the plastic box all led to the
same reward. Grackles were tested sequentially on both boxes, in a counterbalanced order,
where individuals could initially explore all options. After proficiency at an option was achieved
(gaining food from this locus three times in a row), this option became non-functional by clos-
ing access to the option, and then the latency of the grackle to switch to attempting a different
option was measured. If they again successfully solved another option, this second option was
also made non-functional, and so on. The outcome measures for each individual on each box
were the average latency it took to switch to a new option and the total number of options they
successfully solved.

The Bayesian reinforcement learning model

For both the simulated and the observed grackle data, we used the Bayesian reinforcement
learning model to estimate for each individual their ¢ and X values based on the choices they
made during the reversal learning experiments. The estimated ¢ and \ values were then used
as outcome and/or predictor variables in the statistical models built to assess questions 3-6.
We used the version of the Bayesian model that was developed in Blaisdell et al. (2021) and
modified in Logan et al. (2023c) (see their Analysis Plan > “Flexibility analysis” for model speci-
fications and validation). This model uses data from every trial of reversal learning (rather than
only using the total number of trials to pass criterion) and represents behavioral flexibility using
two parameters: the association-updating rate (¢) and the sensitivity to learned associations
(N\). The model transforms the series of choices each grackle made based on two equations to
estimate the most likely ¢ and X that generated the observed behavior.

Q) Apori1 =1 =) Ap ot + PpTp ot

Equation 1 estimates how the associations A, that individual b forms between the two different
options (o, option 1 or 2) and their expected rewards, change from one trial to the next (trial ¢+1)
as a function of their previously formed associations 4, ,, ; (how preferable option o is to grackle
b at trial t) and recently experienced payoff 7 (in our case, = = 1 when they chose the correct
option and received a reward in a given trial, and 0 when they chose the unrewarded option).
The parameter ¢, modifies how much individual b updates its associations based on its most
recent experience. The higher the value of ¢,, the faster the individual updates its associations,
paying more attention to recent experiences, whereas when ¢, is lower, a grackle’s associations
reflect averages across many trials. Association scores thus reflect the accumulated learning
history up to trial ¢. The association with the option that is not explored in a given trial remains
unchanged. At the beginning of the experiment (trial ¢ equals 0), we assumed that individuals
had the same low association between both options and rewards (4, = 4, 5 = 0.1).

el’p(/\bAb,a,O
2 eap(\Ay o)

(2) Pb,o,t =
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Equation 2 is a normalized exponential (softmax) function to convert the learned associations
of the two options with rewards into the probability, P, that an individual, b, chooses one of
the two options, o, in the current trial, t. The parameter )\, represents the sensitivity of a given
grackle, b, to how different its associations to the two options are. As \, gets larger, choices
become more deterministic and individuals consistently choose the option with the higher as-
sociation even if associations are very similar. As )\, gets smaller, choices become more ex-
ploratory, with individuals choosing randomly between the two options independently of their
learned associations if \, is 0.

We implemented the Bayesian reinforcement learning model in the statistical language Stan
(Stan Development Team, 2023), calling the model and analyzing its output in R (version 4.3.3)
(R Core Team, 2024). The model takes the full series of choices individuals make (which of
the two options did they choose, which option was rewarded, did they make the correct choice)
across all their trials to find the ¢ and X values that best fit these choices given the two equa-
tions. Which option individuals chose was estimated with a categorical distribution with the
probability, P, as estimated from equation 2 for each of the two options (categories), before
updating the associations using equation 1. The model was fit across all choices, with individ-
ual ¢ and X values estimated as varying effects. In the model, ¢ is estimated on the logit-scale
to reflect that it is a proportion (can only take values between 0 and 1), and ) is estimated on
the log-scale to reflect that values have to be positive (there is no upper bound). The limitation
that, with an estimation on the log-scale X can never be equal to 0, is not an issue because we
only included individuals in the analyses who did not pick options at random. We set the priors
for the logit of ¢ and the log of A\ to come from a normal distribution with a mean of zero and
a standard deviation of one. We set the initial associations to both options for all individuals
at the beginning of the experiment to 0.1 to indicate that they do not have an initial preference
for either option but are likely to be somewhat curious about exploring the tubes because they
underwent habituation and training with a differently colored tube (see below). For estimations
at the end of each reversal, we set the association with the option that was rewarded before
the reversal to 0.7 and to the option that was previously not rewarded to 0.1. Note that when
applying equation 1 in the context of the reversal learning experiment, as is most commonly
used, where there are only rewards (positive association) or no rewards (zero association) but
no punishment (negative association), associations can never reach zero because they change
proportionally.

For each estimation (simulated and observed grackle data), we ran four chains with 2000
samples each (half of which were warm up). We used functions in the package “posterior”
(Vehtari et al., 2021) to draw 4000 samples from the posterior (the default). We report the
estimates for ¢ and \ for each individual (simulated or observed grackle) as the mean from
these samples from the posterior. For the subsequent analyses where the estimated ¢ and
A values were response or predictor variables, we ran the analyses both with the single mean
per individual as well as looping over the full 4000 samples from the posterior to reflect the
uncertainty in the estimates. The analyses with the samples from the posterior provided the
same estimates as the analyses with the single mean values, though with larger compatibility
intervals because of the increased uncertainty. In the results, we report the estimates from
the analyses with the mean values. The estimates with the samples from the posterior can
be found in the code in the rmd file at the repository https://github.com/corinalogan/grackles/
blob/master/Files/Preregistrations/g_flexmanip2post.Rmd. In analyses where ¢ and \ are pre-
dictor variables, we standardized the values that went into each analysis (either the means, or
the respective samples from the posterior) by subtracting the average from each value and di-
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viding by the standard deviation. We did this to define the priors for the relationships on a more
standard scale and to be able to more directly compare the respective influence of ¢ and \ on
the outcome variable.

1) Using simulations to determine whether the Bayesian serial reinforcement learning models
have sufficient power to detect changes through the serial reversal learning experiment

We ran the Bayesian reinforcement learning model on the simulated data to understand the
minimum number of choices per individual that would be necessary to recover the association-
updating rate ¢ and the sensitivity to the learned associations \ assigned to each individual.

To determine whether the Bayesian reinforcement learning model can accurately recover the
simulated ¢ and X values from limited data, we applied the model first to only the choices from
the initial association learning phase, next to only the choices from the first reversal learning
phase, and finally from both phases combined. To estimate whether the Bayesian reinforce-
ment learning model can recover the simulated ¢ and \ values without bias from either the
single or the combined phases, we correlated the estimated values with the values individuals
were initially assigned:

@p,1 OF Ay 1 ~ Normal(py, ),
By =t B X gy g 0r Ay g,

a ~ Normal(0,0.1),

B ~ Normal(1,1),

o ~ Exponential(1),

where ¢, , or )\, ;, the values estimated for each bird, indexed by b, from the simulated behavior
are assumed to come from a normal distribution with a mean that can vary for each bird, ,,
and overall variance, o. The mean for each bird is constructed from an overall intercept, «, and
the change in expectation, the slope, 3, depending on the values assigned to each bird at the
beginning of the simulation (¢, , or A, ). The combination of « close to 0 and of j3 close to 1
would indicate that the estimated values matched the assigned values.

This, and all following statistical models, were implemented using functions of the package
‘rethinking’ (McElreath, 2020) in R to call Stan and estimate the relationships. Following the
social convention set in (McElreath, 2020), we report the mean estimates and the 89% compat-
ibility intervals from the posterior estimates from these models. For each model, we ran four
chains with 10,000 iterations each (half of which were warm up). We checked that the number
of effective samples was sufficiently high and evenly distributed across all estimated variables
such that autocorrelation did not influence the estimates. We also confirmed that in all cases
the Gelman-Rubin convergence diagnostic, i, was 1.01 or smaller, indicating that the chains
had converged on the final estimates (Gelman & Rubin, 1995). In all cases, we also plotted the
model inferences onto the distribution of the raw data to confirm that the estimated predictions
matched the observed patterns.

2) Using mathematical derivations to determine whether variation in ¢ or \ has a stronger
influence on the number of trials individuals might need to reach criterion in serial reversal
learning experiments

We mathematically derived predictions about the choice behavior of individuals using equa-
tions 1-3. We determined the values for ¢ and \ that individuals would need to reach the passing
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criterion in 50 trials or fewer in the serial reversal learning experiment. To derive the learning
curves for individuals with different ¢ and ), we incorporated the dynamic aspect of change
over time by inserting the probabilities of choosing either the rewarded or the non-rewarded
option from trial ¢ as the likelihood for the changes in associations at trial ¢+1.

(3) Ar,t+1:(<1_¢)XAr,t+¢X7r)XPt+(1_Pt)XAr,t

(4) An,t+1:(1*Pt)X(1*@XAn,t+Pt+(1*Pt)XAn,t

In equations 3 and 4, the association with both the rewarded, A,, and the non-rewarded, A,
options change from trial ¢ to trial ¢+1 depending on the association updating rate ¢ and the
probability, P, that the association was chosen during trial t. The probability, P, is calculated
using equation 2. The reward 7 is set to 1. We used these equations to explore which combina-
tions of ¢ and X would lead to an individual choosing the rewarded option above the passing
criterion in 50 trials or less after a reversal in the rewarded option. We assumed serial rever-
sals, and therefore set the initial associations after the reversal to 0.1 for the now rewarded
option (previously unrewarded, so low association) and to 0.7 for the now unrewarded option
(previously rewarded, so high association). We obtained these associations from the end of
the reversal learning simulation in question 1. For a given combination of ¢ and ), we first used
equation 2 to calculate the probability that an individual would choose the rewarded option
during this first trial after the reversal (where the remaining probability reflects the individual
choosing the non-rewarded option). We then used equations 3 and 4 to update the associa-
tions. We repeated the calculations of the probabilities and the updates of the associations 50
times to determine whether individuals with a given combination of ¢ and A would reach the
passing criterion within either 50 (the serial reversal passing criterion) or 40 trials (the average
observed among the trained grackles). For ¢ ranging between 0.02 and 0.10, we manually ex-
plored which XA would be needed such that an individual would choose the rewarded option with
more than 50% probability at trial 31 (or 21) and with more than 85% probability at trial 50 (or
40), to match the passing criterion of 17 correct out of the last 20 trials (17/20=0.85).

3) Estimating ¢ and )\ from the observed reversal learning performances of grackles to de-
termine which has more influence on variation in how many trials individuals needed to reach
the passing criterion

We fit the Bayesian reinforcement learning model to the data of both the control and the
trained grackles. Based on the simulation results indicating that the minimum sample per indi-
vidual required for accurate estimation are two learning phases across one reversal (see below),
we fit the model first to only the choices from the initial association learning phase and the first
reversal learning phase for both control and trained individuals. For the control grackles, these
estimated ¢ and )\ values also reflected their behavioral flexibility at the end of the reversal
learning experiment. For the trained grackles, we additionally calculated ¢ and ) separately for
their final two reversals at the end of the serial reversal to infer the potential changes in the
parameters.

We determined how the ¢ and A values influenced the number of trials individuals needed
during a reversal by building a regression model to determine which of the two parameters had
a more direct influence on the number of trials individuals needed to reach the passing crite-
rion. We fit this model to the data from the simulated individuals, as well as to the data from the

Peer Community Journal, Vol. 4 (2024), article e88 https://doi.org/10.24072/pcjournal 456


https://doi.org/10.24072/pcjournal.456

12 Dieter Lukas et al.

grackles. We assumed that the number of trials followed a Poisson distribution because the
number of trials to reach criterion is a count that is bounded at smaller numbers (individuals
need at least 20 trials to reach the criterion) with a log-linear link because we expect there are
diminishing influences of further increases in ¢ or \. The model is as follows:

vy, ~ Poisson(u),

log 1= a+ By X ¢y + By X Ay,
a ~ Normal(4.5,1),

B; ~ Normal(0,1),

By ~ Normal(0,1),

where the number of trials each individual needed during their reversal, v,, was linked with sepa-
rate slopes, 3, and j3,, to both the ¢ and X of each individual. The mean of the prior distribution
for the intercept, o, was based on the average number of trials (90) grackles in Santa Barbara
were observed to need to reach the criterion during their one reversal (mean of 4.5 is equal to
logarithm of 90, standard deviation set to 1 to constrain the estimate to the range observed
across individuals). The priors for the relationships 3, and 3, with ¢ and \ were centered on
zero, indicating that, a priori, we did not bias these toward a relationship.

4) Comparing ¢ and )\ from the beginning and end of the observed serial reversal learning
experiment to assess which changes more as grackles improve their performance

For the subset of grackles that were part of the serial reversal group, we calculated how
much their ¢ and X changed from their first to their last reversal. The model is as follows:

¢b,r or >\b,r ~ Normal( p, , 0 ),
Wy =yt By X,

[ g: ] ~ MVNormal ([ g ] ,S),
g_ [ %a 0 7 %« 0
N 0 og 0 og '

Z ~ LKJcorr(2),
a ~ Normal(5,2),
B ~ Normal(-1,0.5),

d;, ~ Exponential(1),
o ~ Exponential(1),

where each grackle, b, has two ¢ and A values, one from the beginning (r = 0) and one from the
end of the serial reversal experiment (r = 1). We assume that there are individual differences that
persist through the experiment (intercept «,), and that how much individuals change from the
first to the last reversal, r, estimated by ,, might also depend on their values at the beginning.
Each bird has an intercept and slope with a prior distribution defined by the two dimensional
Gaussian distribution (MV Normal) with means, ¢, and o, and covariance matrix, S. The
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covariance matrix, S, is factored into separate standard deviations, §,, and a correlation matrix,
Z. The prior for the correlation matrix is set to come from the Lewandowski-Kurowicka-Joe
(LKJcorr) distribution, and is set to be weakly informative and skeptical of extreme correlations
near-1or1.

We also fit a model to assess whether individual improvement in the number of trials from
their first to their last reversal was linked more to their change in ¢ or to their change in \. The
model is as follows:

Aw, ~ Normal(py, o),

py = ot By X Agy + By X ANy,
oy, ~ Normal(40, 10),

B1 ~ Normal(0, 10),

By ~ Normal(0, 10),

o ~ Exponential(1),

where Awv,, the improvement in the number of trials, is the difference in the number of trials
between the first and the last reversal, and A¢, and A\, are the respective differences in these
parameters between the beginning and the end of the serial reversal experiment. The remaining
parameters in the model are as defined above.

5) Calculating whether individual differences in ¢ and )\ persist throughout the serial reversal
learning experiment and whether grackles differ in how much they change throughout the
experiment

We checked whether the ¢ and X values of grackles at the beginning were associated with
how much they changed (difference in values between beginning and end):

Agy or A), ~ Normal(p, , 0),
By =t X gy g or Ay g,

a ~ Normal(0,1),

B ~ Normal(0,1),

o ~ Exponential(1),

where A¢, and A\, are the changes in these values, and ¢, , and ),  are the bird’s values from
their first reversal. The remaining parameters are as defined above. We also checked whether
the ¢ or A values of grackles at the beginning were associated with the values they had at the
end:

@p,1 O Ay 1 ~ Normal (g, , o),
By =t B X gy g 0r Ay g,

a ~ Normal(0,1),

B ~ Normal(0,1),

o ~ Exponential(1),

where ¢, ; and ), ; are from the last reversal. The remaining parameters are as defined above.
In addition, we assessed whether grackles at the end of the serial reversal experiment fo-
cused more on one of the processes, ¢ or ), than the other. The model is as follows:
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¢y,1 ~ Normal(p, , o),
Py =t BX XAy g,

a ~ Normal(0,1),

B ~ Normal(0,1),

o ~ Exponential(1),

where the values estimated for birds from their last reversal are assessed for an association.
All parameters as defined above.

We used the ¢ and \ values estimated from individuals after they completed the serial rever-
sal learning experiment to better understand how individuals behave after a reversal in which
option is rewarded. We chose two combinations of ¢ and ) from the end of the range of values
observed among the individuals who completed the serial reversal learning experiment. The
first combines a slightly higher ¢ (0.09) with a slightly lower X (3), and the second combines
a slightly lower ¢ (0.06) with a slightly higher X (4). We entered these values in equations 2,
3, and 4 We plotted the change in the probability that an individual will choose the rewarded
option across the first 40 trials after a switch. As above, we set the initial associations to the
now rewarded option to 0.1 and to the now non-rewarded option to 0.7.

6) Linking ¢ and )\ from the observed serial reversal learning performances to the performance
on the multi-option puzzle boxes

We modified the statistical models in the original article (Logan et al., 2023a) that linked per-
formance on the serial reversal learning tasks to performance on the multi-option puzzle boxes,
replacing the previously used independent variable of the number of trials needed to reach cri-
terion in the last reversal with the estimated ¢ and X values from the last two reversals (trained
grackles) or the initial discrimination and the first reversal (control grackles). We assumed that
there also might be non-linear, U-shaped relationships between ¢ and/or X and the performance
on the multi-option puzzle box. For the number of options solved, we fit a binomial model with
a logit link:

o, ~ Binomial(4, p),

logit(p) ~ a+ B x ¢+ By x ¢? + B3 x A+ B, x A%
a ~ Normal(1, 1),

B1 ~ Normal(0, 1)
By ~ Normal(0, 1),
B5 ~ Normal(0, 1),
B4 ~ Normal(0, 1),

)

where o, is the number of options solved on the multi-option puzzle box, 4 is the total number
of options on the multi-option puzzle box, p is the probability of solving any one option across
the whole experiment, « is the intercept, 3, is the expected linear amount of change in p for
every one unit change in ¢ in the reversal learning experiments, 3, is the expected non-linear
amount of change in p for every one unit change in ¢?, 35 the expected linear amount of change
for changes in ), and 3, is the expected non-linear amount of change for changes in \2.

For the average latency to attempt a new option on the multi-option puzzle box as it relates
to ¢ and )\, we fit a Gamma-Poisson model with a log-link:
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n;, ~ Gamma-Poisson(m, s),

log(m,) ~a+ By X ¢+ By X ¢% + By X A+ B, x \2,
a ~ Normal(1, 1),

B1 ~ Normal(0, 1),
By ~ Normal(0, 1),
B5 ~ Normal(0, 1),
B4 ~ Normal(0, 1),
s ~ Exponential(1),

where n, is the average latency, counted as the number of seconds, to attempt a new option
on the multi-option puzzle box, m, reflects the tendency of each grackle to wait (if they have
a higher tendency to wait, they have a longer latency), s controls the variance (larger values
mean the overall distribution is more like a pure Poisson process in which all grackles have
the same tendency to wait), « is the intercept, 3, is the expected linear amount of change
in latency for every one unit change in ¢, 3, is the expected non-linear amount of change in
latency for every one unit change in ¢2, 3, the expected linear amount of change for changes
in )\, and 3, is the expected non-linear amount of change for changes in \2.

Results

1) Power of the Bayesian reinforcement learning model to detect short-term changes in the
association-updating rate, ¢, and the sensitivity to learned associations, \

Applying the Bayesian reinforcement learning model to simulated data from only a single
phase (initial association or first reversal) revealed that, while the model recovered the differ-
ences among individuals, the estimated ¢ and )\ values did not match those the individuals
had been assigned (Figure 2). The estimated ¢ and ) values were consistently shifted away
from the values assigned to the simulated individuals. The estimated ¢ values were consis-
tently smaller than those assigned to the simulated individuals (here and hereafter, we report
the posterior mean slope of the association, the 3 factor in the statistical models, with the 89%
compatibility interval; +0.15, +0.06 to +0.23, n=626 simulated individuals), while the estimated
) values were consistently estimated to be larger than the assigned ) values (+6.04, +5.86 to
+6.22, n=626 simulated individuals)(Figure 2). The model assumed that, during the initial asso-
ciation learning, individuals only needed to experience each option once to learn which of the
two options to choose. This would lead to a difference in the associations between the two op-
tions. The model assumed that the simulated individuals would not require a large ¢ because
a small difference in the associations would already be informative. Individuals would then be
expected to consistently choose the option that was just rewarded, and they would because of
their large \. In addition, these shifts mean that ¢ and X are no longer estimated independently.
The model estimated that, if an individual had a particularly low ¢ value, it would require a par-
ticularly high X value. This dependency (which was due to inaccurate estimation) between ¢
and ) led to a strong positive correlation in the estimated values of ¢ and \ (+505, +435 to +570,
n=626 simulated individuals). This correlation is erroneous because individuals were assigned
their \ values independent of their ¢ values, with the different combinations across the popu-
lations meaning that high and low values of A were assigned to individuals with both high and

Peer Community Journal, Vol. 4 (2024), article e88 https://doi.org/10.24072/pcjournal 456


https://doi.org/10.24072/pcjournal.456

16 Dieter Lukas et al.

with low ¢ values.

In contrast, when we combined data from across the initial discrimination learning and the
first reversal, the model recovered the ¢ and X values that the simulated individuals had been
assigned (¢: intercept 0.00,-0.01 to +0.01, slope +0.96, +0.70 to +1.21, n=626 simulated individ-
uals; \: intercept +0.01, -0.15 to +0.16, slope +0.98, +0.92 to +1.05, n=626 simulated individu-
als) (Figure 2). While different combinations of ¢ and A could potentially explain the series of
choices during a single phase (initial discrimination and single reversal), these different com-
binations lead to different assumptions about how an individual would behave right after a
reversal when the reward is switched. In combination, the choices before and after a reversal
make it possible to infer the assigned values (initial learning plus first reversal, or two subse-
quent reversals). Given that the choices individuals make during any given trial are probabilistic,
the estimation can show slight deviations from the assigned values. However, this was also
reflected in the uncertainties of the estimated values, and the compatibility intervals of the es-
timated values included the value assigned to the simulated individuals (Figure 2).
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Figure 2 — Both the ¢ (a) and the X (b) values are only estimated correctly by the Bayesian
reinforcement model when the choices from the simulated reversal learning are combined
with the previous initial association learning (green circles). When ¢ was estimated based on
the choices made only during the first reversal, the estimates were consistently lower than
the assigned values, particularly for large ¢ values (a, blue diamonds). The model assumed
that the simulated individuals chose the rewarded option consistently not because they up-
dated their associations, but because they consistently chose the rewarded option as soon
as they had learned which option was rewarded. Accordingly, the model wrongly assigned
individuals very high X values (b, blue diamonds). Lines around the points indicate the 89%
compatibility intervals of the estimated values and are only shown for the estimation from the
combined choices from the initial and reversal learning - the approach we ended up using for
the remaining analyses.

2) Role of ¢ and ) on performance in the serial reversal learning task based on analytical
predictions

To determine how ¢ and ) influence behavior during the serial reversals, we performed a
mathematical derivation using equations 2, 3, and 4. We identified the range of values for ¢ and
for A that we would expect in individuals who quickly change their behavior after a reversal in the
serial reversal learning experiment. We found that ¢ needs to be 0.04 or larger for individuals to
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be able to reach the passing criterion in 40 or 50 trials after a reversal (Figure 3). With smaller
¢ values, individuals are expected to take longer before switching to the newly rewarded option
because they would not update their associations fast enough. We also found that, as ¢ values
increased beyond 0.04, individuals could have a larger range of )\ values and still reach the
passing criterion in 40 or 50 trials. However, the \ values are expected to be less than 10 and
as low as 2.4.
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Association-updating rate ®

Figure 3 - Individuals are more likely to reach the criterion of choosing the correct option 17
out of 20 times during the serial reversal trials if they update their associations quickly (high
¢). Using the equations, we found the space of values individuals are predicted to need to
reach the passing criterion in 40 trials or less (dark gray shading) or 50 trials or less (light gray
shading). Individuals are predicted to need a large ¢ to completely reverse their associations
with the two options presented in the serial reversal learning experiment. The predicted A
values are expected to be relatively small given that there is no upper limit. The figure also
shows the median ¢ and )\ values estimated for the trained grackles during their first reversal
(yellow), when they needed on average 70 trials to reach criterion, and during their last reversal
(purple) when they needed on average 40 trials to reach criterion. During the training, grackles
increased their ¢ to become efficient at gaining the reward and reaching the criterion. They
also showed a slight decline in their )\, allowing them to explore the alternative option after a
reversal.

3) Observed role of ¢ and )\ on performance of grackles in the reversal learning task

We estimated ¢ and ) after the first reversal for all grackles, and additionally after the fi-
nal reversal for the individuals who experienced the serial reversal learning experiment. The
findings from the simulated data indicated that A and ¢ can only be estimated accurately when
calculated across at least one reversal. In the simulation, we could combine the performance of
individuals during the initial learning with the first reversal to estimate the parameters because
the behavior during those two phases in the simulations was determined in the same way by
the ¢ and X values that individuals were assigned. We determined that we can also combine
the first two phases for the observed grackle data because we found that the number of trials
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grackles needed to reach criterion during the initial learning and the first reversal learning were
correlated (+1.61, +1.53 to +1.69, n=19 grackles), where grackles needed about 28 trials more
to reach criterion during the first reversal than they needed during the initial association learn-
ing. Therefore, we estimated ¢ and ) for the grackles based on their performance in the initial
discrimination plus first reversal, and for the trained grackles additionally based on their per-
formance in their final two reversals. The inferred ¢ values for the grackles in Arizona ranged
between 0.01 and 0.10, and the X values between 2.1 and 6.5 (Figure 4).
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Figure 4 — Comparisons of the parameters estimated from the behavior of 19 grackles in the
serial reversal task. The figure shows a) the number of trials to pass criterion for the first
reversal (yellow; all grackles) and the last reversal (purple; only trained grackles); b) the ¢
values reflecting the rate of updating associations with the two options inferred from the initial
discrimination and first reversal (yellow; all grackles) and from the last two reversals (purple;
trained grackles); and c) the X\ values reflecting the sensitivity to the learned associations
inferred from the initial discrimination and first reversal (yellow; all grackles) and from the last
two reversals (purple; trained grackles). Individual grackles have the same position along the
x-axis in all three panels. Grackles that needed fewer trials to reverse their preference generally
had higher ¢ values, whereas )\ appeared unrelated to the number of trials grackles needed
during the first reversal. For the trained grackles, their ¢ values changed more consistently
than their X\ values: their ¢ values were generally higher than those observed in the control
individuals, while their X values remained within the range observed for the control group.

For the 19 grackles that finished the initial learning and the first reversal, only their ¢ (-20.69,
-26.17 to -15.13; n=19 grackles), but not their \ (-0.22, -5.66 to +5.26, n=19 grackles), predicted
the number of trials they needed to reach criterion during their first reversal (Figure 4, increase
left to right in panel a), decrease in panel b), no pattern in panel c¢)). A grackle with a ¢ of 0.01
higher than another individual needed about 10 fewer trials to reach the criterion. The slope
between ¢ and the number of trials for the grackles was essentially the same as the slope from
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the simulations (-20.69 vs -20.48, Figure 5). The number of trials grackles needed to reach
the criterion given their ¢ values fell right into the range for the relationship between ¢ and the
number of trials for simulated individuals (Figure 5). Even though the 8 trained grackles also
appeared to need slightly fewer trials to reach criterion in their final two reversals if they had a
higher ¢, the limited variation in the number of trials and in ¢ and X values among individuals
means that there is no clear association between the number of trials and either parameter in
the last reversals (¢: -7.38,-15.97 to +1.28; \: -4.00, -12.53 to +4.61, n=8 grackles).
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Figure 5 — Relationship between ¢ and the number of trials needed to reach criterion observed
among grackles during their first reversal (yellow points; all grackles) and last reversal (purple
points; trained grackles), as well as for the first reversal for the simulated individuals (green
stars). The observed grackle data falls within the range of the number of trials individuals with
a given ¢ value are expected to need. Grackles show the same negative correlation between
their ¢ and the number of trials needed to reach criterion as the simulated individuals (the
shaded lines display the 89% compatibility interval of the estimated relationships between ¢
and the number of trials for both the simulated individuals, green line, and for the grackles
during their first reversal, yellow line). We did not simulate individuals with ¢ values larger
than 0.05 because we did not observe larger values among grackles in the Santa Barbara
population, which we used to parameterize the simulations.

4) Changes in ¢ and ) through the serial reversal learning task

Grackles who experienced the serial reversal learning reduced the number of trials they
needed to reach the criterion from an average of 75 to an average of 40 by the end of their
experiment (-30.02, -36.05 to -24.16, n=8 grackles). For the trained grackles, the estimated ¢
values more than doubled from 0.03 in their initial discrimination and first reversal (which is
identical to the average observed among the control grackles who did not experience the serial
reversals) to 0.07 in their last two reversals (+0.03, +0.02 to +0.05, n=8). The ) values of the
trained grackles went slightly down from 4.2 (again, similar to control grackles) to 3.2 (-1.07,
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-1.63 to -0.56, n=8 grackles) (Figure 4). The number of trials to reverse that we observed in the
last reversal, as well as the ¢ and )\ values estimated from the last reversal, all fall within the
range of variation we observed among the control grackles in their first and only reversal (Figure
5). This means that the training did not push grackles to new levels, but changed them within
the boundaries of their natural abilities observed in the population.

As predicted, the increase in ¢ during the training fits with the outcome from the mathemat-
ical predictions: larger ¢ values were associated with fewer trials to reverse. The improvement
the grackles showed in the number of trials they needed to reach the criterion from the first
to the last reversal matched the increase in their ¢ values (+7.59, +1.54 to +14.22, n=8 grack-
les). The improvement did not match the change in their ) values (+2.17, -4.66 to +9.46, n=8
grackles) because, as predicted, the trained grackles showed a decreased X in their last rever-
sal. This decrease in A meant that grackles quickly found the rewarded option after a reversal
in which option was rewarded. Across all grackles, in their first reversal, grackles chose the
newly rewarded option in 25% of the first 20 trials, while the trained grackles in their final re-
versal chose correctly in 35% of the first 20 trials. Despite their low ) values, trained grackles
still chose the rewarded option consistently because the increase in ¢ compensated for this
reduced sensitivity (Figure 3; also see below).

5) Individual consistency in the serial reversal learning task

We found a negative correlation between the ¢ estimated from an individual’'s performance
in the first reversal and how much their ¢ changed through the serial reversals (-0.84, -1.14 to
-0.52, n=8 grackles). The larger increases in ¢ for individuals who had smaller ¢ values at the
beginning made it so that individuals ended up with similar ¢ values at the end of the serial
reversals. We did not find consistent individual variation among grackles in ¢: their beginning
and end ¢ values were not correlated (-0.21, -1.55 to +1.35, n=8 grackles). Similarly, individuals
who started with a high A changed more than individuals who already had a lower \ during the
first reversal (-0.44,-0.76 t0 -0.10, n=8 grackles). Individuals changed to different degrees, such
that those with higher X\ values in the beginning did not necessarily have higher X values than
other individuals at the end of the serial reversal learning: their values at the beginning and end
were not associated (+0.17,-0.67 to +0.97, n=8 grackles).

Individuals appeared to adjust their behavior differently to improve their performance
through the serial reversals. There was a negative correlation between an individual’'s ¢ and
A after their last reversal (-0.39, -0.72 to -0.06, n=8 grackles). While, as predicted, essentially
all grackles who experienced the serial reversal learning experiments increased their ¢ and
decreased their )\ (Figure 5), individuals ended up with different combinations of the two
parameters and all combinations allowed them to switch to the newly rewarded option in 50
trials or less. Individuals ended up along the lower (on the y-axis) side of the space of values
that are needed to reach criterion in the serial reversal learning experiment (the lower edge of
the light gray shading in Figure 3).

We illustrate how these differences in ¢ and A lead to slightly different ways of reaching the
passing criterion during the final reversal. We used the values from the two individuals at the
ends of the spectrum, the one with the highest ¢ and lowest ), and the one with the lowest ¢
and highest ), to explore how individuals switched from the previous option to the option that
is now being rewarded. Based on equations 1-3, individuals with a slightly higher ¢ and slightly
lower )\ are expected to learn the new reward associations after a reversal more quickly. How-
ever, they continue to explore the alternative option even after they learned the new association
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and therefore do not exclusively choose the rewarded option (red line in Figure 6). Individuals
with a slightly lower ¢ and a slightly higher \ are expected to take slightly longer to learn that
the reward has switched, but once they reversed their association, they rarely choose the unre-
warded option (purple line in Figure 6). Together, this suggests that all individuals improved by
the same extent through the training such that the differences in their performances persisted,
but they utilized slightly different behaviors to quickly reach criterion after a reversal.
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Figure 6 — Predicted and observed performance curves of individuals with different ¢ and A\
values in their last reversal in the serial reversal learning experiment. The dotted lines present
the behavior of the grackles Burrito (red on the top, ¢ = 0.08, \ = 2.1) and Habanero (purple
on the bottom, ¢ = 0.06, X = 4.8) during their last reversal. The dotted lines show the prob-
ability with which they chose the rewarded option during their last 20 trials. We used their
¢ and X\ values in the analytical equations 2, 3, and 4 to derive the predicted curves (solid
lines) of the probability that an individual will choose the option that is currently rewarded for
each trial number. Individuals with a higher ¢ and lower X (red lines on the top) are expected
and observed to quickly learn the new association, but continue to explore the unrewarded op-
tion even after they learned the association, leading to a curve with a more gradual increase
through the trials. Individuals with a lower ¢ and higher X (purple lines on the bottom) are ex-
pected and observed to take longer to switch their association, but, once they do, they rarely
choose the non-rewarded option, leading to a more S-shaped curve where the initial increase
in probability is lower and more rapid later.

6) Association between ¢ and )\ with performance on the multi-option puzzle boxes

We found that the number of options solved for both the wooden and the plastic multi-option
puzzle boxes as well as the latency to solve a new option on both boxes correlated with the un-
derlying flexibility parameters ¢ and \. In particular, the X values individuals had after their
last reversal had a U-shaped relationship with the number of options solved on both the plastic
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(X +0.17,-0.27 to +0.61; A\? +0.59, +0.18 to +1.02; n=15 grackles) and the wooden multi-option
puzzle boxes (A +0.03,-0.50 to +0.59; A2 +0.63, +0.12 to +1.19; n=12 grackles). There was no as-
sociation between the number of options solved on either box and ¢ (plastic box: ¢ +0.03,-0.38
to +0.43; ¢2 -0.16, -0.59 to +0.28, n=15 grackles; wooden box: ¢ -0.08, -0.62 to +0.47, ¢> +0.43,
-0.08 to +0.97, n=12 grackles). Grackles who had either particularly low or particularly high sen-
sitivities to their previously learned associations were more likely to solve all four options than
grackles with intermediate values of \ (Figure 7).

For the latency to attempt a new option on the plastic box, there was also a U-shaped associ-
ation, but only with ¢ (¢ -0.66, -1.30 to +0.0.06; ¢? +0.58, -0.06 to +1.30; A +0.14, -0.45 to +0.70;
A2 +1.09, +0.28 to +1.87; n=11 grackles). Grackles with either particularly high or particularly
low rates of updating their associations took longer to attempt a new option than grackles with
intermediate values of ¢ (Figure 8). There was no association between the latency to attempt
a new option on the wooden box with either ¢ (-0.62, -1.46 to +0.14; ¢? +0.39, -0.47 to +1.26; 11
grackles) or \ (+0.13,-0.66 to +0.86; \? +0.32,-0.62 to +1.35; n=11 grackles).
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Figure 7 — Relationships between ¢ and X\ from the last reversal and performance on the
wooden (black dots) and plastic (magenta triangles) multi-option puzzle boxes. Grackles with
intermediate X values in their last reversal (a) were less likely to solve all four options on both
multi-option puzzle boxes than grackles with either high or low X values. Grackles with inter-
mediate ¢ values had a shorter latency to attempt a new option on the plastic box (d). There
were no clear relationships between ¢ and the number of options solved on either box (b), A
and the latency to attempt an option on either box (c), or ¢ and the latency to attempt a new
option on the wooden box (d). Anindividual’s ¢ and X values changed slightly between the top
and bottom rows because values were standardized for each plot and not all individuals were
tested on both boxes, therefore values changed relative to the mean of the points included
in each plot. The shaded areas (black for the data for the wooden box, magenta for the data
from the plastic box) show the 89% compatibility intervals for the detected relationships be-
tween ¢ / X and the respective outcome variable. Lines around each point indicate the 89%
compatibility intervals for the estimated ¢ and X values.
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Discussion

Our analyses show that grackles change their behavioral flexibility to match the reliability
and stability of the environment they experience. The application of the Bayesian reinforce-
ment learning model to the grackle serial reversal learning data revealed that the association-
updating rate, ¢, explained more of the interindividual variation in how many trials individuals
needed to reach criterion during a reversal than the sensitivity to learned associations, \. We
found that, as predicted given the reliability of cues and frequent switches in the serial rever-
sal learning experiment, ¢ more than doubled between the first and last reversals, whereas A
slightly declined. Even though all grackles changed their behavior in the expected direction
by the end of the serial reversal learning experiment, we found that these trained individuals
used slightly different approaches from across the range of possible behaviors. Finally, these
changes in how the trained individuals explored alternative options and switched preferences
in light of recent information subsequently also influenced their behavior in a different experi-
mental test of behavioral flexibility and innovativeness. Grackles with intermediate sensitivities
to learned associations solved fewer options on both multi-option puzzle boxes than grackles
with either low or high sensitivities. Accordingly, the trained grackles not only changed their be-
havior within the specific serial reversal learning task, they also more generally changed their
behavior across contexts in response to their training. Our findings show that grackles modu-
late their behavioral flexibility in response to the high reliability of cues and frequent changes
in associations they experienced in the serial reversal learning experiment.

Applying the Bayesian reinforcement learning model to serial reversal data shows that par-
ticipating in the serial reversal learning experiment made grackles change how much they value
new information over old to update their associations, and how much they continue to explore
alternative options or whether they are sensitive to the reward they are receiving at their cur-
rent choice. Grackles coming into the experiment already had different rates of updating their
associations and different sensitivities to learned associations, suggesting they had different
experiences of how predictable cues are and how frequently their environment changes. In the
urban environment they live in, changes are presumably frequent, so they would be expected
to change their associations frequently (Lee & Thornton, 2021; Breen & Deffner, 2023). In line
with this, the association-updating rate, ¢, appeared to explain more of the variation in how
many trials individuals needed to reach the criterion of consistently choosing the rewarded op-
tion during a single phase as early as in their first reversal. Other recent applications of the
Bayesian reinforcement learning model to serial reversal learning experiments also found that
the association-updating rate explains more of the variation in the number of trials to pass crite-
rion (squirrel monkeys Bari et al., 2022; mice Metha et al., 2020; Woo et al., 2023). In response
to learning that the cues are highly reliable and the reversals are relatively frequent, the grack-
les increased their association-updating rate, ¢, which on average doubled across individuals,
changing more for individuals who started off with lower ¢ values. Grackles also changed their
sensitivity to the learned associations, )\, during the serial reversals in line with the prediction
that they benefit from being open to exploring the alternative option when the associations
between cues and rewards switch frequently. Individuals changed their ¢ and A more if their
initial values were further from those necessary to reach the passing criterion quickly. Individu-
als who passed their first reversal in 50 trials or less, changed ¢ and X only slightly by the end of
the serial reversal learning experiment. Among the trained grackles, who all required very few
trials to consistently reach the criterion by the end of the experiment, we observed different ap-
proaches (see also Chen et al., 2021). Some individuals seemed more focused on the frequent
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changes, such that they kept exploring the alternative options and changed their associations
as soon as they encountered new information. These individuals reached the passing criterion
quickly because they switched to the newly rewarded option soon after a reversal. However,
their continued exploration of the alternative option meant that they still needed several trials
to reach the criterion. Other individuals seemed to place more emphasis on the reliability of
the cues, focusing on the rewarded option after they learned that the cues had reversed. These
individuals reached the passing criterion quickly because they consistently chose the rewarded
option. However, these grackles needed a few more trials after a reversal began to switch to
the new option. At the beginning of the experiment, the grackles showed a diversity of ¢ and
A values and, because they had no prior experience, they did not show specific approaches to
quickly reach the criterion. With the variables we measured at the beginning of the serial rever-
sal learning experiment, we could not predict which approach grackles ended up with after the
serial reversals.

The changes in behavioral flexibility that the grackles showed during the serial reversal learn-
ing experiment influenced their subsequent behavior in other tasks. The analyses linking ¢
and ) to the performance on the multi-option puzzle boxes show that the different approaches
grackles utilized to improve their performance during the serial reversal learning experiment
subsequently appeared to influence how they solved the multi-option puzzle box. Grackles with
intermediate ¢ values showed shorter latencies to attempt a new option. This could reflect that
grackles with high ¢ values take longer because they formed very strong associations with the
previously rewarded option, while grackles with small ¢ values take longer because they either
do not update their associations even though the first option is no longer rewarded or they do
not explore as much due to their small \. We also found that grackles with intermediate values
of A solved fewer puzzle box options. This could indicate that grackles with a small X are more
likely to explore new options, while grackles with a large A and low ¢ are less likely to return to
an option that is no longer rewarded. We are limited in our interpretation by the small sample
sizes for the multi-option puzzle boxes. We have some indication that experiencing the serial re-
versal learning experiment continued to shape the behavior of the grackles after releasing them
back to the wild. Individuals who changed their ¢ and A more during the serial reversal learning
experiment appeared to switch more frequently between food types and foraging techniques
(Logan et al., 2024). It took a grackle on average one month to pass the serial reversal learning
experiment (Logan et al., 2023a), and the observations of the foraging behavior in the wild con-
tinued for up to 8 months after individuals were released (Logan et al., 2024). This indicates
that the effects of enhancing flexibility are durable and generalize to other contexts. In grack-
les, behavioral flexibility does not change within days or only during certain critical periods. Our
results suggest that individuals change their behavioral flexibility to match their environment if
they experience the same conditions repeatedly across weeks.

Most individuals that have been tested in serial reversal learning experiments thus far show
improvements throughout the reversals, suggesting that most species can modulate their be-
havioral flexibility in response to the predictability and stability of their environments (e.g. War-
ren & Warren, 1962; Komischke et al., 2002; Bond et al., 2007; Strang & Sherry, 2014; Chow et
al., 2015; Cauchoix et al., 2017; Degrande et al., 2022; Erdsack et al., 2022). Previous studies
used summary statistics to describe how the behavior of individuals changes during the serial
reversal learning experiment (e.g. Federspiel et al., 2017) or show changes in learning curves
(e.g. Gallistel et al., 2004). As shown in Figure 6, we can recreate these learning curves from the
inferred association-updating rates and sensitivities to learned associations. The advantage of
the Bayesian reinforcement learning model with its two parameters of the association-updating
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rate and the sensitivity to learned associations is that it has a clear theoretical foundation of
what aspects of the experimental setting should lead to changes in the behavior (Gershman,
2018; Metha et al., 2020; Danwitz et al., 2022; Woo et al., 2023). Based on our application here,
the model appears to be sufficient to accurately represent the behavior of grackles in the serial
reversal experiment. This suggests that the stability and reliability of the environment has a
large influence on how individuals learn about rewards. The importance of experiencing sta-
ble and predictable environments potentially explains the difference between lab-raised and
wild-caught animals in how they change their behavior during the serial reversal learning exper-
iment. Many lab-raised animals were observed to switch to a “win-stay versus lose-shift” strat-
egy, where only their most recent experience guided their behavior and they no longer explored
alternative options (Mackintosh et al., 1968; Rayburn-Reeves et al., 2013). These animals gener-
ally experience very stable conditions during their lives, and often participate in large numbers
of trials in an experiment. Accordingly, cues are reliable and changes are rare, so individuals
would be expected to show the high association-updating rates and high sensitivities to learned
associations that would lead to the “win stay versus lose shift” strategy. In contrast, wild-caught
animals, including grackles, only slowly move away when an option is no longer rewarded and
they continue to explore alternative options (Chow et al., 2015; Cauchoix et al., 2017). These
individuals probably experience environments in which associations are not perfectly reliable
and changes occur more gradually. These individuals are expected to show smaller sensitiv-
ities to their associations and therefore continue to explore their environment. This focus on
the key pieces of information that individuals likely pay attention to when adjusting their behav-
ior also provides ways to link their performances and inferred cognitive abilities to their natural
behavior. We found that, for the grackles, the behavioral flexibility they exhibited at the end of
the serial reversal learning experiment linked to their foraging behavior in the wild (Logan et al.,
2024). The existing literature on foraging behavior, investigating trade-offs between the explo-
ration versus exploitation of different options, has a similar focus on gaining information (ex-
ploration) versus decision making (exploitation) (Kramer & Weary, 1997; Berger-Tal et al., 2014;
Addicott et al., 2017). Linking this framework to the concepts of reinforcement learning and
decision making could provide further insights into the cognitive processes that are involved
and the information that individuals might pay attention to. The approach we established here
to study behavioral flexibility, linking the theoretical framework of the Bayesian reinforcement
learning model to the specific experimental task of the serial reversal learning experiment and
the natural behavior of individuals, offers opportunities to better understand cognition in the
wild (Rosati et al., 2022).
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